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I. PURPOSE AND PLAN OF THE PAPER

The purpose of this paper ié to subject to spectral
and cross-spectral analysis four major economic and demo-
graphic U.S. time series with the purpose of investigating
evidences of long swings (or Kuznets cycles, or Kuznets
waves, as thé long swings are alternatively called in the
literature) and testing the plausibility of an elementary
model of the generation of the 15 to 25 Qears wave.

Part II presents a survey of the non-spectral analyses
of the long swing hypothesis and discusses the statistical
techniques which these analyses employed.

Part III presents the basic concepts underlying the
spectral methods of analysis.

The most common estimation problems to whiqh the investi-
gator must address himself when designing a spectral analysis
are presented in Part IV.

Part V is concerned with the statistical tests of sig-
nificance of spectral estimates.

Part VI supplies the empirical findings.

Some overall conclusions are presented in Part VII.
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II. NON-SPECTRAL ANALYSES OF THE LONG SWING

A, Hypotheses of the Long—SQing

The hypothesisrof fluctuations 6f an average duration
of 15 to 25 years in the rate of growth of numerous economic
variables started with the work of Wardwell, Kuznets, and
Burns in the late 1920's and the 1930's.

Kuznets's study of data from the U.S., ﬁhe U.K., Belgium,
France, and Germany indicated the existence of long swings
in the rate of growth of the production of many individual
commodities as well as of prices.

carrying further the analysis of U.S. data, Burns demon-
strated that not only are the Kuznets cycles diffused in many
sectors of the U.S. economy, but they tend to be general in
the sense that swings in different series exhibit systematic
relationships with one another.

Later analysis of U.S. data by Kuznets revealed that

15-25 years long waves were also present in capital formation

lSimon S. Kuznets, Secular Movements in Production and
Prices (Boston: Houghton Mifflin, 1930).

2Arthur F. Burns, Production Trends in the United States
Since 1870 (New York: National Bureau of Economic Research,
1934.
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(both aggregate and its components), population growth,

and immigration.

Abramowitz4 finally showed that

in the United States, Kuznets’ cycles in
output growth have arisen from swings in
almost all the elements into which out-
put growth can be resolved. Waves in

the rate of change of output have been
accompanied -- with certain character-
istic differences in timing - not only

by swings in additions to the labor force,
but also by fluctuations in additions to
the capital stock, in the rate of in-
crease of output per unit of resources
employed, and in indicators of the inten-
sity of resource utilization.>

3Simon S. Kuznets, "Long-Term Changes in National In-~
come of the United States Since 1870," in S.S. Kuznets (ed.),
Income and Wealth, Series II (Cambridge, 1952), and

Simon S. Kuznets, "Long Swings in the Growth of Popu-
lation and in Related Economic Variables," in Proceedings of
the American Philosophical Society, Vol. CII, No. 1 (Feb.
1958), pp. 25-52.

4Moses Abramowitz, Statement in United States Congress,
Joint Economic Committee, Employvment, Growth, and Price Levels,
Hearings (86th Congress, lst Session), Part II (Washington,
1959), pp. 411-66.

5Moses Abramowitz, "The Nature and Significance of Kuz-
nets Cycles," in American Economic Association, Readings in
Business Cycles, Vol. X (Homewood: Richard D. Irwin, 1965),

pp. 523-524. ‘
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Studies of the Kuznets wave have been made for eco-
nomies other than the U.S.

Cairncr0556 and especially Brinley Thomas7 have sug-
gested that the long swings in Americah and British capital
construction and more general economic activity have been
inversely related to each other and that this relationship
is to be accounted for by British emigration and capital
exports to the U.S.

Maurice Wilkinson8 idéntified'Kuznets cycles in numerous
Swedish economic and demographic time series covering the
periods of both before and after World War I. The study of
the lead-lag relationships of the several variables led him
to the formulation of the following model of the long swing
mechanism.

There occurs fifst an investment boom in the manufacturing
and mining sectors, possibly derived from an export boom.

The investment boom results in an increase in the demand
for labor and per capita income, a decrease in emigratioh,
an increase in marriages and births, and a wave of internal

migration from urban to rural areas.

6A.K. Cairncross, Home and Foreign Investment, 1870-1914

(Cambridge: At the University Press, 1953).

7Brinley Thomas, Migration and Economic Growth: A Study
of Great Britain and the Atlantic Economy (Cambridge: At the
University Press, 1964).

8Maurice Wilkinson, Swedish Economic Growth (unpublished
Ph.D. dissertation, Harvard University, 1965), Ch.III.
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The increase in population growth and movement generates
a long swing in residential and other capital construction.

Manufacturing sectors derive demand for consumer and
capital goods.

Ohkawa and Rosovsky have identified long swings in the
growth of outéut, investment, and productivity of the Japan-
ese economy and have concluded that investment spurts are
the primary causés of the Kuznets cycles of the Japanese
economy.

O'Leary and Lewis have, finally, demonstrated that the
Kuznets cycle is Widespread not only in industrialized but
also in agricultural economies. The capital exports of in-
dustrial countries constitute the means by which the swing

in industrial economies is transmitted to the periphery.

9K. Ohkawa and H. Rosovsky, "Economic Fluctuations in

Prewar Japan: A Preliminary Analysis in Cycles and Long
Swings, " in Hitotsubashi Journal of Economics, Vol. III, No.l
(October, 1962), and,

K. Ohkawa and H. Rosovsky, Postwar Japanese Growth in
Historical Perspective: A Second Look (mimeo.)

lOP.J. O'Leary and W. Arthur Lewis, "Secular Swings in
Production and Trade," in The Manchester School, vol. XXIII
(May, 1955).
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B. Statistical Technique

The studies referred to in the preceding section
employed several statistical techniques for the identifi-
cation of the long swing. The techniques used can be con-
veniently grouped into three categories.

A) Kuznets (in the Secular Trends), Burns, and Thomas

first removed the 'primary trend' by fitting a logistic
curve or a second degree parabola, then took five- or nined.
years moving averages of the residuals in order to remove
the influence of the Kitchin and the Juglar cyc¢les, and
finally examined the smoothed residpals for evidences of
Kuznets cycles.

O'Leary and Lewis employed a variation of the above
method. They fitted an exponential curve and looked at the
unsmoothed residuals for evidences of long waves.

B) The National Bureau of Economic Research (NBER) method

employed by Hickman and sometimes by Abramowi{:zll consists of:

'llBert G. Hicﬁman, “TPhe Postwar Retardation: Another

Long Swing in the Rate of Growth?" American Economic Review:
Papers and Proceedings, vol. LIII, No. 2 (May, 1963).

Moses Abramowitz, Evidences of Long Swings in Aggregate

Construction Since the Civil War (New York: NBER, 1964),
chapter 8. ) ‘
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1. removing the influence of the ‘specific’' cycle
from the primary series of GNP, investment, etc. by taking
peak—to-peak and trough-to-trough averages and locating them
at the midpoints of the specific cycles,

2. calcula;ing the average growth rates of the smoothed
series on a peak-to-peak and trough-to-trough basis again
and locating these growth rates at the midpoints of their
specific bands of years, and,

3. looking at this smoothed series of growth rates for
evidences of long swings.

Wilkinson used a variation of the NBER method in which
he did not smooth the original series but rather applied the
specific cycle analysis directly on the series of unsmoothed

growth rates.

C) In his study of Capital in the American Economy: Its

Formation and Financing (New York: NBER, 1964), Kuznets first

smoothed the primary series by taking five-years moving
averages, then estimated average growth rates for oveflapping
decades, and finally investigated the resulting smoothed
series of growth rates.

The objection has been raised to the above techniques
that the Kuznets cycles might merely be an 'artifact' created

by the smoothing procedures with which the different analysts
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operated on their series.l2 The Yule-Slutsky theorem con-
cerning the éffect of moving averages on a series of random
numbers has been invoked to give theoretical basis to the
possibility that the Kuznets cycles are spurious.13 We will
consider the effects of smoothing procedu;es in section IV-B.
It is one of the advantages of spectral analysis that it
provides a way of determining the effects of smoothing and

other transformations on the final results of the analysis.

III. SPECTRAL METHODS OF ANALYSIS: BASIC THEORY

A. Methods of Analysis of Stationary Stochastic Processes

The decomposition of time-dependent economic phenomena
into a set of independent components has held a prominent
position in pure economic theory as well as in the statistical
analysis of economic time series. The 'momentary', ‘'short-',
'mediumt, and ‘long-run' are the key economic—theoretic con-
cepts describing the decomposition over the time axis of the
effects of economic phenomena. The statistical techniques
for decomposing a time series into a trend; a seasonal, one
or more cyclic, and a random component constitute the equi-

rd

valent approach in econometrics.

12
See, for example, Irma Adelman, "Kuznets Cycles.

Fact or Artifact?", American Economic Review, vol. LV, No. 4,
Dec. 1965.

13

See, for example, Hickman, ibid., Pp. 492, and Moses

Abramowitz, "Resources and Output Trends in the U.S. Since 1870,“

American FEconomic Review: Papers and Proceedings, Vol.XLVT,
No. 2 (May, 1956), p. 21l.
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Spectral methods of analysis géeneralize the concept
of decomposition of a time series into a set of statistically
independent components, each component corresponding to a
different freguency of occurrence.

Spectral anaiysis can be applied only on covariance
stationary stochastic processes. The time series being
subject to spectral analysis is thus viewed as a realization
[x(t); t =1, 2, ... T] of a stationary stochastic process.
Statiénarity‘iﬁplies that the mean, variance, and covariance
of the series do not vary with time,

i.e. E [x(t)] = m, and

E [(x(t) - m)(x (t+24) - m)] = c(4),

4L =0, 1, ..., M; all t.

There are two fundamental statistical approaches to the
analysis of the intertémporal dependence of stationary sto-
chastic processes:

1. Analysis of the process in the time domain, and,

2. Analysis of the process in the frequency domain.

The'remaining sections of this part bf the paper will
be devoted to stating the main techniques emﬁloyed in each
of the two approaches, and to pointing out their similarities
and differences. Several advantages of the spectral methods

will be emphasized in the course of the discussion.
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B. Description of a Time Series in the Time Domain
Consider the time series [x(t); t =1, ... T] which
has been normalized to mean zero. The autocovariance of

x(t) is defined as

c(t, 4) = EBIx(t) x (t+4)] L =0, 1, ..., M.
4 is the lag for which the autocovariance is computed.
Since we are concerned with covariance stationary
series, C is independent of t, and is a function of the lag
4 only; that is:

c(4) = Elx(t) x (t+4)]

for 4=0,1, ..., M, and for all t.
If we normalize the autocovariance function by dividing

by C(0) - the variance of the series - , we obtain

4@ .
R(4) =-§—-((5-’)-, L=1, ..., M,

the autocorrelation function.

The plot of the autocorrelation function against 4 is
called the correlogram of the series. The correspondiné plot
of the autocovariaﬁce function is called the covariogram.

The correlogram and the covariogram are the most widely employed
statistical tools for analyzing a statiohéry stochastic pro-

cess in the time domain.
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C. Description of a Time Series in the Frequency Domain

1
It can be shown 4 that any covariance stationary stochas-
tic process x(t) can be represented in the form (eg.III-1)
x .
x(t) = f [cos wt dU(w) + sin wtdV(w) ], where U and V are
o)

stochastic processes, and w is frequency of occurrence.

du(w) and dv(w) have the following properties:

1. E [auw)]=E lavw)] = 0.

2. du and dv are orthogonal for any pair of frequencies,
that is:
E [du(w) du(w')] = E [av(w) av(w')] = 0, for all w 7w,
3. du and dv are mutually orthogonal for all frequencies;
E [dUu (w) av(w')] = 0, all w and w'.
4. 4dU and dV have the same variance at all frequencies;
E [auw)?] = B [av)2] = aF (w)
dF (w) is the power spectrum of x(t).
f(w) = ggfg%' ié the spectral density of x(t).
It can be shown that the properties of the random vari-

ables dU(w) and dv(w) imply that

c(£)

£w cos wi dF(w). For & = 0, we have:

c (o)

i

fw (cos 0) AF(w) = fw dr (w) .
o) o)

14Yaglom, A.M. An Introduction to the Theoryv of Stationary
Random Functions (Prentice-Hall, 1965).




—-]D=
This last equality implies that the spectrum describes a
time series'in the frequency doméin by decomposing its
variance C(0) in terms of the contributions of a set of

components indexed on the entire frequency domain.

D. Fundamental Theorem of Time Series Analysis

Recalling that

cé = fm cos wh dF (w), we obtain
o
 ® eiwg + e—iwé

cé) = ar > ar (w),

or c) = [ eiw@ Qg-ém- (eg.III-2).

where by definition dF(-w) = dF (w).
The autocovariance function is thus the Fourier trans-
form of the power spectrum.

Dividing (eq.III-2) through by C(0) we obtain

Sl _ry =y 7, evE G

dr (w)
C(0)

thus the Fourier transform of the autocorrelation coefficient.

is the spectral density.function which is

We thus arrive to the Fundamental Theorem of Time Series
Analysis which states that there is a one-to-one correspondence

between the power spectral and the autocovariance function
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(and, similarly, between the spectral density and the auto-
correlation function) of stochastic process, since each

pair of functions forms a Fourier transform pair.

E. Comparison of Autocovariance Function and Power Spectrum

According to the Fundamental Theorem of Time Series Ana=-
lysis, knowledge of either one of the autocovariance and
power spectral functions entails knowledge of the other.

The following are the main reasons that make it preferable
to study intertemporal dependence in the frequency domain
using the spectrum (or spectral density) rather than in the
time domain using the covariogram (or the correlogram).'s-

1. The spectral function describes a covariance sta-
tionary process in terms of additive contributions to the
variance of the process of a set of uncorrelated frequency
components. In contrast, the value at 20 of the autoco-
variance function is a weighted sum of its values at zl, 22,
... Where ﬂl, 22, .o <~£O and 20 is a linear combinatién of
zl, 22, e .

The power spectral function thus gives us information
as to the relative importance of the contributions of the
different cyclical movements which have generated the ob-
served time series, while the autocovariance function does not.

2. Whereas consistent estimates of the power spectral

function can be made, the sampling distribution of the auto-

covariance function is unstable.

15 See, for example, C,W.J., Granger and M. Hatanaka, Spectral Analysis of Economic

Time Series (Princeton, 1964), Ch. 1 and 2,
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F. Cross—-Spectral Analyéis

The idéas»of spectral analyéis of a single time
series are ektended to the cross-spectral analysis of
two covariance-stationary time series. This extension is
based on a theorem demonstrating that not only is each
frequency component of one time series independent of all
the other freguency components of the series, but it is
also independent of all such components of another stationary
series except for the latter's component that corresponds to
the same given frequency.

The following measures of the association of the fre-
quency components of two processes are central in cross-
spectral analysis:l7

(L) ‘Coherehce, C(w). It can be shown that 0 < C(w) = 1.

c(w) is analogous to the square of the correlation coeffi-
cient between two time series. The greater C(w) is the closer
is the association between the two series at frequency w.

(2) Phase difference, Y(w). The phase difference

between the frequency components of the two series measures
the extent to which at each particular frequency the cyclical
movement of one series leads, coincides with, or lags the

corresponding cyclic movement of the second series.

1
6See Granger C.W.J. and Hatanaka M, Spectral Analysis
of Economic Time Series (Princeton, 1964), Ch. 6.

7 1piq.

Seeppeiv—po.
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iv. SPECTRAL METHODS OF ANALYSIS: ESTIMATION PROBLEMS

A. Spectral Averages: Lag Windows and Spectral Windows

The discrete analogue of (eq.III-1l) is

M
I(w,) = l‘[C(O) + 2 2 cos 2mw, C(4)] ,
1 m 4=1 *

where wi = i=0,1, ..., M,

M is the maximum lag for which C(£) is estimated, and

I(wi) is the periodogram ordinate for W measuring the
variance contributed by the oscillation of frequency W,

The periodogram estimate of the power spectrum would
suggest itself as a natural estimate of the power spectral
function. We are, however, interested in econqmic time
series which exhibit oscillations without a strict period.
Tt can be shown that for this class of time series the periodo-
graﬁ ordinates

1) are asymptotically unbiased éstimators of the power
spectrum, but,

2) they are not consistent estimators.

In order to obtain estimates of the power spectrum that
are statistically consistent we must estimate average power
over a band of frequencies rather than power at specific

frequencies.
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A weighting scheme of power in the frequency domain

is called a spectral window. The Fourier transform of a

spectral window, called a lag window is the corresponding

weighting scheme of autocovariances in the time domain.

An ideal window would be one that weighs equally the
power of all freguencies +% the distance between two chosen
frequencies and gives zero weight to powers of frequencies
outside this band. The perfect window being a mathematical
impossibility, the choice of an appropriate window becomes
a crucial issue in spectral analysis.

B. Filters— Prewhitening and Recoloring

The window through which we look at specific frequencies
of the spectrum concentrates its weight on an arbitrarily
small band around a designated frequenéy, but there is always
some leakage through the edgeé of the window. Some weight,
in other words, is given to all frequencies outside the band
of interest.

High power at certain frequencies will thus tend to
distort the spectral estimates of other frequency components
however distant the latter frequencies are from the one
with the exceptionally high power.

Most economic processes are not stationary but rather

exhibit a trend in their mean. 1In any finite realization
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of such a process the trend will be indistinguishable

from low frequency components. In order to obtain un-
distorted spectral estimates we must thus 'filter out'

some of the power at the very low frequencies by appropriately
transforming our data. Such transformations are known as

prewhitening. Taking moving averages, fitting a polynomial

in time, or differencing the series are the most commonly
employed pre-whitening procedures.

We can now recall the various 'traditional' techniques
of analyzing the long swing. The smoothing techniques there
~employed are in effect pre-whitening techniques. But the
spectrum of the pre-whitened series is not the same as the
spectrum of the original series. One advantage of spectral
‘over other methods of anélyzing time series is that the
spectrum of the pre-whitened series can be xrecolored, i.e.
we can move back to an estimate of the spectrum of the ori-~
ginal series in which however leakage is not as pronounced
as it was in the briginal series before pre-whitening wés
performed._ 'Tradition?l' echniques in contrast do not
recolor their estimates and thus, in effect, draw inferences
about the spectrum of the original series from the spectrum
of the pre-whitened series, a procedure which is unwarranted
and which may lead to erroneous inferences since the pre-

whitened series may exhibit cycles which do not exist in

the primary series.
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C. The Choice of Maximum Lag — The Uncertainty Prin-

ciple of Time Series Analysis.

In order that the estimated spectrum averages are re-
presentative of the true spectrum, the spectral window
must concentrate its main lobe around the particular fre-
quency of interest. The ability of a window to concentrate
its focusing power on particular frequencies is measured by

the band-width. The band width is defined as the width of

the rectangle whose height and area correspond to those of
the spectral window at the frequencies of interest.
For the Tukey-Hanning window, the avéraging procedure

employed in this paper,

21
M

Bandwidth = B(M) = N

For a normal process the variance of a spectral esti-
mate is

v = 0.75 £2 (w).®

The above two equations demonstrate the uncertainty
principle of time series analysis. As we increase M we
increase the resolution capacity of our window but we do
so at the expense of an estimate of increased variance.

Hence the choice of the maximum lay M becomes an important

issue in the design of spectral analysis.

18Fishman, G.S., Spectral Methods in Econometrics,
(RAND, R-453-PR, 1968), p. 137.
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D. Aliasing and Nyquist Freguency.

A recorded time series is the result of sampling
an economic phenomenon at equally spaced points in time,
each successive two points being Dt apart. We can, therefore,
estimate the spectrum only for the frequencies 0 to 7/Dt.
m/Dt, the highest frequency about which we can obtain direct

information is called the Nyguist freguency.

But whereas no direét information can be obtained about
frequencies higher than the Nyquist one, these frequencies
will tend to be confounded with the frequencies for which
the spectrum is measured. Such a confounding of frequencies
is known as aliasing. If aliasing of frequencies is serious,

then the observed spectrum differs from the true one.

V. TESTS OF SIGNIFICANCE OF SPECTRAL ESTIMATES.
In his study "A Spectral Analysis of the Long-Swing
Hypothesis," Howrey performs the following test for the

existence of a long swing in an economic time series.

The long=-swing hypothesis can be interpreted
as stating that the variance-contribution of
[the long swingl] band of frequencies is signi-
ficantly greater than that of neighboring
bands. This intuitive statement of the hypo-
thesis suggests that its rejection be based

on the absence of a local peak in the spectrum
near this long-swing frequency. For the use
of the estimated spectrum as a descriptive
statistic, this statement of the hypothesis
seems to be adequate. However, a more pre-
cise formulation of the hypothesis in terms
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of conventional tests of significance

is possible. The (100'- 2« ) percent con-
fidence band for normally distributed
independent random variables, referred

to as white noise, can be determined

from
2 dA
pr {x (@) = -—?(-f)ﬂSxi(d)} =1 - 2

l-a

where d [stands] for the equivalent de-
grees of freedom .... These confidence
limits provide a method for testing the
hypothesis that the underlyving process
is random. Specifically an estimate
which lies outside the (100 - 2a ) per-
cent confidence limits is said to be
significantly different from white noise
at that level. (emphasis added) 19

Howrey]s test is erroneous on two grounds; first, in
terms of its underlying statistical logic, and second, in
terms of its interpretation of the Long-Swing Hypothesis.
We will deal with both issues at some length.

A) Howrey's method of testing spectral density esti-
mates against the hypothesis of equality with the corres-

ponding white noise density seems to be a common test of

19Howrey, Philip E., A _Spectral Analysis of the Long
Swing Hypothesis (Princeton, Econometric Research Program,
Research Memo No. 78, 1965), p. 26.
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significance in spectral analysis.20 The underlined
guote from HS}ey provides the bésis for the writer's
contention that the test is logically erroneous.

The concept of randomness, when applied to the spectrum
of a time series, is a concept that refers to the entire
configuration of frequency bands and their spectral densi-
ties rather than to the spectral density of one frequency
band alone. ‘The estimate of one specific spectral density
cannot be (or fail to be) significantly different from
white noise. It is the entire time series which either is
or is not sign;ficantly different from Gaussian white
noise.

It is, therefore, perfectly correct to construct fre-
guency bands for ﬁhe spectral density function of the Gaussian
white noise and compare the entire estimated spectral density
function with the confidence limits. But once one spectral
density is observed to lie ouﬁside the confidence intervals
of the white noise spectrum, then the hypothesis that the
underlying process is random must be rejected. It is logi-
cally absurd to then proceed and test whether particular
densities could ha&e arisen from white noise. How could
they have arisen from a process the existence of which has
already been rejected?

20See, for example, C.W.J. Granger and H.J.B. Rees,

"Spectral Analysis of the Term Structure of Interest Rates,"
in The Review of Economic Studies, vol. XXXV (1), January 1968.
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B) Howrey's procedure of examining oniy relative peaks
of the spectrum is wrong because, in our analysis for
example, the frequency band centered around 0.025 years
per cycle (which corresponds to the Kondratieff cycle of
40 to 60 years period) neighbors thé long swing band of
0.050 cycles per year. There would not be any reason for
refusing to examine the contribution of the long-swing band
to the variance of tﬁe series simply because the Kondratieff
band contributed to this variation more than the long-swing
band.

In this paper we will employ the following procedure for
examining the importance of the long swing:

1. Tes£ the entire spectrum against the null hypothesis
Ho that it is not significantly different from the spectrum
of white noise.

2. If‘Ho is rejected, we shall examine the importance
of the long-swing frequency bands in terms of their contri-
bution to the variance of(the series relative to the con-
tribution of bands corresponding to other important cyclical
movements.

We shall regard the bands centered around 0.050 and 0.075

cycles per year as the long swing bands.

21The corresponding periods are 20 and 13.3 years per cycle.
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VIi. EMPIRICAL FINDINGS

A. The Serjes Analyzed

In this part of the paperiwe will present and analyze
the estimated spectra and cross-spectra of the annual
growth rates from 1889 to 1967 of the following U.S. series:

1. Real GNP.

2. Real gross capital formation.

3. Réal per capita consumption.

4. Population.22

The choice of the series was made with a model of the
long swing in mind similar to that of Wilkinson.

B. Estimation Considerations

1. Stationarity.

All four of the'analyzed.series of growth rates seem to
satisfy the stationarity requirements. None of the traces
of the series exhibits trend in the mean (see'figures 1L, 2,
3, and 4). The size of the sample precludes any test of
heteroscedasticity and changing covariance. |

2. Aliasing.
The period between two observations of all time series

is one year. The Nyquist frequency is, therefore, 0.5 cycles

22
Appendix 1 contains the primary data as well as a dis-

cussion of the operations performed on them.

i
~ 238ee Section A of Part II of this paper.
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per year. Given that the data are seasonally adjusted
and that economic and demographic theory supply no evidence
of other important cycles in the frequency band 0 to 0.5
cycles per year, it follows that our results are not ob-
scured by aliasing of frequencies.
3. Choice of Window

The Tukey window was used in this paper. The charac-

teristic measures of the window are given on Table 1.
4. Choice of Maximum Lag

In section C of Part IV, we stated that thé choice of
the maximum lag is an important part of the design of
spectral analysis because of the conflict between resolvability
and low variance of estimate.

Priestley24 has proposed a rigorous method for choosing
the maximum lag by fixing an acceptable level of bias of
estimate and then choosing the lag that minimizes the variance;
or, alternatively, by choosing M so as to minimize the mean
squared error of the estimated ordinates.

The limited length of the four.time series, unfortunately,
made any rigorous choice of M impossible. Our choice of M
was thus made véry crudely. The analysis should satisfy

the following two requirements:

24
Priestley, M.B., "The Role of Band-Width in Spectral
Analysis," in Applied Statistics, 1965. '
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1) The maximum lag should not be greater than approxi-
mately one fourth of thg length of the time series.25
2) The maximum lag should not be too small compared to
the length of each one of the periods corresponding to the
long swing.
The choice of a lag equal to twenty seemed to achieve

the best balance between the above two requirements.

C. The Estimated Spectral Densities

The estimated spectral densities are presented on
Tables 2, 3, 4, and 5, and on Figures 5, 6, 7, and 8. The
90 and 95 percent confidence limits for the spectral densities
of Gaussian white noise for the length of series and maximum
lag of our analysis afe given on Table 6.26

The spectral density functions of all four series are
significantly different from the white noise spectrum at the
95 percent confidence level.

The contribution to the overall variance of each series

of the long-swing frequency bands is high for all series.

25
This is a rule of thumb followed by all students of
spectral analysis. See, for example, Granger and Hatanaka,
or Fishman.

6See Appendix B for the derivation of the confidence
limits.
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TABLE 2.
U.S.: Spectral Estimates of the Growth Rate of GNP
Frequency ' Spectral Density
(cycles/year)
0 0.46
0.025 - ' > 1.08
0.050 2.13
0.075 3.04
0.100 2.76
0.125 1.59
0.150 2.41
0.175 4.10
0.200 3.62
0.225 S 1.63
0.250 0.49
0.275 2.06
0.300 3.40
0.325 2.10
0.350 1.09
0.375 0.56
0.400 ‘ 0.64
0.425 1.15
0.450 ‘ 1.58
0.475 1.86

0.500 2.25
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TABLE 3

U.S.: Spectral Estimates of the Growth Rate of Gross
Capital Formation '

Frequency Spectral Density
(cycles/year)
0 0.37
0.025 0.72
0.050 1.68
0.075 2.75
0.100 2.88
0.125 2.31
0.150 3.39
0.175 5.02
0.200 3.92
0.225 1.44
0.250 1.21
0.275 1.62
0.300 2.29
0.325 2.61
0.350 1.16
0.375 ' 0.36
0.400 0.47
0.425 1.26
0.450 1.86
0.475 " 1.49

0.500 1.19
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TABLE 4.
U.S5.: Spectral Estimates of the Growth Rate of Per Capita
Consumption ‘

Freguency Spectral Density
(Cycles/Year)

0 0.34

0.025 1.47

0.050 2.89

0.075 2.53

0.100 ; 2.50

0.125 2.25

0.150 1.83

0.175 2.03

0.200 2.57

0.225 1.97

0.250 ; 0.91

0.275 1.60

0.300 . 1.79

0.325 0.76

0.350 0.68

0.375 1.54

0.400 ' 2.71

0.425 1.80

0.450 0.82

0.475 2.49

0.500 0.45



U.S.: Spectral Estimates of the Population Growth Rate

Fregquency
(cycles/year)

0

0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200
0.225
0.250
0.275
0.300
0.325
0.350
0.375
0.400
0.425
0.450
0.475
0.500

-34 -

TABLE 5.

Spectral Density

6.89
5.94
2.83
1.70
2.08
2.26
1.98
1.70
1.60
1.70
1.88
1.98
1.51
1.13
0.76
0.76
0.57
0.57
0.76
0.76
0.66
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TABLE 6.

Confidence Limits of Spectral Density of Gaussian White

Noise for T = 78 and L. = 20

CONFIDENCE LEVEI LOWER LIMIT ' UPPER LIMIT
90 percent 0.83 3.58
95 percent 0.69 3.98

Source: Appendix B



—36-

2
o

! i
— - *) S —— 3*1 S —

DLVA  HrMmo2g dNO 4O
ANDILINAL L sNTQg TIVILITAS T H T Ol4d

.‘] it

(SR

)

P
W

Y
]

Gh

06



Y HIMOyO
SN Iws/SINNI Ao NoILINVS ;
L IsNFA MY LDALS - S oid

N

(S

~r

D

R

P —
L



,_-,,é_..._.u e e

N

Nyt

-

a2
TOM

FLird H1MDPHO WL
NOT LAV IISNDD

L LISN Jd

N LINVIH

VT YLIILS Jund 14

e AN
=(,‘ fg bV .:",.

T )

f——



oo
O

—— 3 ’:i -

NO/L NS 04 40 Ng)LI NS
fls~vIa 42 TdS 18 914

; ~
Loww T
-]
R
e
: s
—t
i -
{ B
t
! -
[ S
— LR}
L} —
i "\ e
i M
! A Y
! -
w —
N -~
;
“
]
e
SN
o
{
i
|
t
s
—-
i
AN
i
i
!
{
'\
\
~ad
—
—



~-40-

Concerning the spectrum of the GNP growth rate, only
the bands corresponding to the 3-, 5- and 6-years cycles
contribute more to the variance of the series than does the
0.075 cycles per year band. Similarly, the contribution of
the 0.05 cycles per year band stands above average on the
ranking.

The importance of the long swing bands is less pronounced,
though still apparent in the case of gross capital formation.

The 0.05 cycles per year band is the single most impor-
tant band of the consumption per capita spectrum.,

Finally, the 0.05 cycles per year band is third in impor-

tance in the population growth spectrum.

D. The Estimated Cross-Spectra

Table 8 exhibits the coherence and phase angle for GNP
and investment. The phase angle, being an angle derived from
arctan, can be altered by addition or subtréction of any
multiple of 2m. We therefore present two estimates of the
phase angle, the one differing from the other by 2m. Our
discussion is in each case based on that one of the two angles
that seems to benﬁgé plausible on the basis of theory and
common sense. The fact that one of the two phase angles in

most cases implied implausible leads or lags made our choice

easy.
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Table 7 presents the critical values for estimated
coherence when the true coherence is zero. Comparing the
estimate of Table 8 with these critical values, we see that
the coherence between GNP and investment is significantly
different from zero at the 95 percent level for both the
long swing bands. The long swing in investment leads the
long swing in GNP by approximately 4 to 5 years.

Per capita consumption and population exhibit very low.
coherences (see Table 9).

Per capita consumption and GNP exhibit significant co-
herences and are approximately coincident. (see Table 10).

Per capita consumption and investment exhibit coherences
that are not significant at the 90 percent confidence level,
but come closely to being so. Investment leads per capita
consumption by 3 to 4 years (see Table 1ll).

The cross-spectra of investment and population on the
one hand and GNP and population on the other do not exhibit
coherences significantly different from zero at the 90 percent
confidence level (see Tables 12 and 13).

The results of the cross-spectral analysis thus suggest
that the long swing in investment sets off a corresponding
wave in GNP (a proxy for productive activity) and GNP per
capita (a proxy for the standard of living). No link was

found between per capita consumption and population.
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TABLE 7.

Critical values for C (w) when C(w) = 0 for T/M = 4

Median ‘ 0.454
90% 0.732
95% 0.795

Source: Granger and Hatanaka, p. 79.
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TABLE 8.

U.S.: Coherence and Phase Angle of the Growth Rates of
GNP and Gross Capital Formation.

Frequency
(Cycles/year) -

0

0.025
0.05C
0.075
0.100
0.125
0.150
0.175
0.200
0.225
0.250
0.275
0.300
0.325
0.350
0.375
0.400
0.425
0.450
0.475
0.500

Cohe®ence

0.70
0.82
0.78
0.90
0.95
0.86
0.93
0.97
0.87
0.42
0.23
0.60
0.72
0.79
0.87
0.32
0.27
0.60
0.92
0.78
0.67

Phase Angle from GNP to Gross

Capital Formation

circle)

A
0.73
0.81
0.88
0.95
0.96
0.95
0.00
0.00
0.98
0.97
0.97
0.96
0.96
0.97
0.00
0.03
0.22
0.06
0.00
0.97
0.97

(fraction of a

B
-.27
-.19
-.12
-.05
-.04
-.05
-1.00
-1.00
-.02
~-.03
-.03
-.04
-.04
~.03
-1.00
-.97
-.78
-.94
-1.00
-.03
-.03
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TABLE 9.

U.S.: Coherence and Phase Angle of the Growth Rates of
Per Capita Consumption and Population

Freguency Coherence Phase Angle From Consumption
(cycles/year) to Population (fraction of a circle)

A B
0 0.55 0.14 -.86
0.025 0.31 0.24 -.76
0.050 ' 0.27 0.30 0.70
0.075 0.06 , 0.04 -.96
0.100 0.22 0.19 ~-.81
0.125 0.24 0.32 -.68
0.150 0.07 0.89 -.11
0.175 0.27 0.11 -.89
0.200 0.71 0.23 -.77
0.225 0.45 0.28B -.72
0.250 0.14 0.44 -.56
0.275 0.00 0.01 -.99
0.300 0.28 0.04 -.96
0.325 0.43 0.97 -.03
0.350 0.01 0.77 -.23
0.375 0.01 0.71 -.29
0.400 0.13 0.04 -.96
0.425 0.39 0.12 -.88
0.450 -~ 0.20 0.06 -.94
0.475 0.02 0.46 ~-.54

0.500 0.17 0.48 -.52




~45-
TABLE 10.
U.S.: Coherence and Phase Angle of the Growth Rates of
GNP and Per Capita Consumption

Frequency Coherence Phase Angle from GNP to
(cycles/year) Per Capita Consumption
‘ : (fraction of a circle)
0 0.84 0.98 -.12
0.025 0.88 0.01 -.99
0.050 0.90 0.01 -.99.
0.075 0.85 0.99 -.01
0.100 0.81 0.99 -.01
0.125 -0.79 0.02 -.98
0.150 0.81 0.00 -1.00
0.175 0.95 0.97 ~.03
0.200 0.93 0.96 -.04
0.225 0.89 0.95 -.05
0.250 0.33 0.02 -.98
0.275 0.69 0.09 -.91
0.300 0.66 0.06 -.94
0.325 0.41 0.04 ~.96
0.350 0.58 0.03 -.97
0.375 0.55 0.05 -.95
0.400 0.50 0.95 -.05
0.425 0.48 0.91 -.09
0.450 0.37 0.98 : -.02
0.475 0.43 0.04 -.96

0.500 0.55 0.02 -.98
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TABLE 11.

U.S.: Coherence and Phase Angle of the Growth Rates of
Per Capita Consumption and Gross Capital Formation

Frequency Coherence Phase Angle from Consumption
(cycles/year) to Investment (fraction of
a circle)
A
0 0.50 0.77 -0.23
0.025 0.65 0.80 -0.20
0.050 0.60 0.85 ~-0.15
0.075 0.66 0.94 -0.06
0.100 0.71 0.96 -0.04
0.125 0.67 0.90 -0.10
0.150 0.68 0.98 -0.02
0.175 0.98 0.03 -0.97
0.200 0.78 0.02 -0.98
0.225 0.23 0.00 -1.00
0.250 0.11 D.61 -0.39
0.275 0.31 0.80 -0.20
0.300 0.28 0.85 -0.15
0.325 0.10 0.89 -0.11
0.350 0.34 0.96 -0.04
0.375 0.00 0.10 -0.90
0.400 0.51 0.39 -0.61
0.425 0.18 0.27 -0.73
0.450 0.18 0.04 -0.96
0.475 0.08 0.86 -0.14

0.500 0.08 0.88 -0.12
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TABLE 12.

U.S.: Coherence and Phase Angle of the Growth Rates
of Gross Capital Formation and Population

Freguency Cohe rence Phase Angle from Investment
to Population
. A B
0 0.89 0.40 -.60
0.025 0.77 0.40 -.60
0.050 0.19 0.45 -.55
0.075 0.22 0.97 -.03
0.100 0.03 0.15 -.85
0.125 0.18 0.55 -.45
0.150 - 0.33 0.84 -.16
0.175 - 0.32 0.08 -.92
0.200 0.64 0.20 -.80
0.225 0.06 0.08 -.92
0.250 0.25 0.89 -.1l1
0.275 0.03 0.22 -.78
0.300 . 0.03 0.35 -.65
0.325 0.05 0.83 -.17
0.350 - 0.02 0.04 -.96
0.375 0.41 0.38 -.62
0.400 0.05 0.59 -.41
0.425 0.45 0.99 -.01
0.450 0.72 0.02 -.98
0.475 0.29 0.06 -.94

0.500 0.07 0.15 -.85
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TABLE 13.

U.S.: Coherence and Phase Angle of the Growth Rates of
GNP and Population

Frequency Coherence Phase Angle from GNP to
(cycles/year) Population (fraction of a
circle)
I II
0 0.80 0.11 -0.89
0.025 0.47 0.22 -0.78
0.050 0.26 0.29 -0.71
0.075 0.21 0.96 -0.04
0.100 0.09 0.09 -0.91
0.125 0.07 0.40 -0.60
0.150 0.23 0.89 -0.89
0.175 0.39 0.08 -0.92
0.200 ~0.75 0.17 -0.83
0.225 0.44 0.19 -0.81
0.250 0.03 0.09 -0.91
0.275 0.02 0.08 -0.92
0.300 0.10 0.08 -0,92
0.325 0.11 0.95 -0.05
0.350 0.00 0.04 -0.96
0.375 0.00 0.36 ~0.64
0.400 D.33 0.00 -1.00
0.425 0.81 0.04 -0.96
0.450 0.67 0.03 -0.97
0.475 0.14 0.08 -0.92

0.500 0.03 0.29 -0.71
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VII. CONCLUSION

Being based on only four series, our spectral and
cross—spectral analysis of the long swing hypothesis was
necessarily elementary.

The results of our research differed in twop ways with
the conclusions of previous spectral analyses of the Kuznets
wave.

First, our spectral estimates indicated that the long
swing is an important cyclical movement in terms of its
contribution to the variance of the four time series that
we studied.

Second, the implications of the cross-—-spectral estimates
were in agreement with the model of long swing outlined by
Wilkinson, except for the fact that we could not establish
any inter-relationship between population growth and the

other three variables.
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APPENDIX A:

PRIMARY DATA AND TRANSFORMS




1889
1890
1891
1892
1893
1894
1895
1896
1897
1898

1899 °

1900
1901
1902
1903
1904

1905

1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928

G.N.P.
(billions
1929 %)
{1’
2364
2408
2602
2Be3
275
266
2901
3060
320
3362
35e4
376l
4006
4162
4364
4269
4547
50e7
52e2
4863
5368
544
543
5561
582
570
6lel
663
66e9 -
63e7
7063
Tlek
6Bt
7302
83.0
852
8Te4
93 e 4
94e2
9567
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TALLE

PRIMARY

Consumpte Gross Inv. Popula-

(bill.
1929 %)
(2)
1862
17.8
1943
198
2045
199
21e7
22.8
2400
2449
271
278
3065

" 3069

32.9
3363
3409
3863
3%e7
3861
41le4
4201
4362
4268
4467
4761
4802
4904
5068
4946
522
5442
570
5942
64e3
6900
6761
725
T4e?2
7663

A-1

DATA

(billions tion

1929 #) (thousands)

(3)
3

OV~ OO ~JWm
® © o 6 ¢ 8 © 6 © © © © O

WrewwNONNENO OO

(4)
61775
63056
64361
65666
66970
68275
69580

70885
72189
73494
74799
76094
77585

- 79160

80632
82165
83320
85437
87000
88709
30492
92407
93868
95331
97227
99118
100549
101966
103266
103203
104512
106466
108541
110055
111950
114113
115832
117399
119038
120501

Per capita
Cons.(2/4)

(5)
294
282
299
301
306
291
311
321
332
338
362
365
393
390
408
405
418
448
456
429
457
455
460
448
459
475
479
484
491
480
499
500
525
537
574
604
579
617
623
633



1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967

(1)

101e4

9165

8463

707

E68e3

Thebd

85.8

9568
1039

9667
10347
113.0
12642
12246
12169
126¢6
130e2
15149
1535
158+8
15460
172.8
178.6
180s2
185.0
18604
19642
199.,9
20748
20004
21363
21Be6
22208
23T7e4
24669
26004
27604
2924
299.9
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TABLE A-1 (continued)

(2)

8043
7569

732 -

66e4
6540
6866
7361
80.8
844
83.0
87.0
91e7
97«9
9662
9848
102.2
109.1
122.3
12449
1275
130.7
138.7
139.8
144.,0
15060
1529
164.0
1683
1724
17345
183.7
189.0
192.8
202.3
2113
2235
23862
25060
25761

(33

21s1
1566
1lel
403

363
660
127
1540
1945
1346
1607
2143
2Be4
26e4
2342
2465
212
2966
28B.6
3163
2363
3440
38.8
3663
3560
3440
43,1
426
39e4
34,49
4261
414
3945
45,45
47T o2
5062
56461
60.4
5585

(4)

121770
123077
124040
124840
125579
126374
127250
128053
128825
129825
130880
131954
133121
133920
134245
132885
132481
140054
143446
146093
148665
151868
153982
156393
158956

161884

165069
168088
171187
174149
177135
179992
183057
185890
188658
191372
193815
195936
197863

(5)

659
616
590
531
517
542
574
630
655
639
664
694
735
718
735
769
823
873
870
872
879
913
907
920
943

993
1001
1007

996
1037
1050
1053
1088
1120
1167
1229
1275
1299



NMOTES ON "ABLLE A-1

A)

B)

The GNP, Gross Capital Formaticn, and Cbnsumption series
are taken from the fcllowing sources:

1889-1918: S. Kuznets, Capital in the American Economy
(N.B.E.R., 1961), version IIT.

1919-1952: John W. Kendrick, Productivity Trends in
the U.S. (N.B.E.R., 1961), Appendix A.

1953-1967: Economic Report of the President, 1968,
Statistical Appendix. The conversion of the
data taken from this source to 1929 prices
is based on the figures given on Table A-2.

The population series measures total resident population,
excluding armed forces overseas, but including armed forces
domestically (as measured on July 1).

The series is taken from the following‘sources:

1889-1949: U.S. Department of Commerce and Bureau of
the Census, FHistorical Statistics of the U.S.,
Colonial Times to 1957 (U.S. Government Print-
ing Office, Washington, D.C., 1960), Series 2,
1-3, col. 2, p. 7.

1950-1967: "Estimates of the Population of the U.S.;
January 1, 1950, to May 1, 1968, " in Current
Population Reports, Series P-25, no. 395
(U.S. Department of Commerce, Bureau of the
Census, June 14, 1968),




1953
1954
1955
1956

1957

1958
1959
1960
1961
1962
1963
1964
1965
1966
1967

1929
1958

GNP

CONSUMPTION

INVESTMENT

(billions of dollars; 1958 prices)

412.8
407.0
438.0
446.1
452.5
447.3
475.9
487.7
497.2
52¢.8
551.0
581.0
617.7
©52.6
669.2

IMPLICIT PRICE DEFLATORS FOR

GNP

50.6
100

250.8
255.7
274.2
281.4
288.2
290.1
307.3
316.1
322.5
338.4
353.3
373.7
398.4
418.C
429.9

CONSUMPTION

55.3
100

6l1.2
59.4
75.4
74.3

INVESTMENT

3¢.4
100



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1501
1902
1603
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928

G'N.P‘

t1)
5098
565
8,02
"’2083
~3e¢27
9640
3409
6eb67
3675
6663
44,80
9643
le48
5634
‘1.15 e
6653
10,94

296

-7 .47
11639
- 1lel2

"0.18

le47
563
“2.06
719
Be51
0,90
“4978
10,36
le56
‘4.20
702
1339
265
2058
686
0686
1659

TABLE A-3
ANNUAL  GROWIH  RATES
Per cap. OGross Popu-
consump. invest. 1lation
(2) (3) (4)
~4618 32608 2607
6023 -1043 2.07
- 0655 21e74 2603
1952 “16.67 1.99
~4478 ’4.29 1095
- 700 10e45 191
3613 =270 1.88
3036 11611 184
1,91 2650 1e81
694 1e22 le78
Oe84 12605 1673
760 8060 1696
-0e70 1,98 2403
4653 le94 le86
- =0eb7 - =857 1,90
3635 11.46 le4l
T602 14695 254
179 1663 183
~5088 -18e40 le96
6652 21657 2001
~0e42 ~le61 212
1002 -9e02 le58
~2e45 10081 1e56
2¢40 976 1,99
3036 -27.41 1.94
088 31663 leb4
107 31.01 lo&l
le54 -5¢33 1627
~26¢30 ~-11687 ~0.06
3692 28637 1e27
193 ~4097 1.87
3016 ’33072 1.95
2443 21293 1639
678 34653 1e72
5628 -13¢37 193
~4620 25¢31 1.51
6661 2096 1¢35
Ce94 “4078 1.40
1.58 ~-2651 1.23

~57-



1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945 -
1946
1947

1948

1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967

Note:

TARLE

(1) (2)
5096 4615
~9476 ~6e48
"'7.87 -4431
‘16013 ‘9.87
~3439 —2068
9,22 4487
15601 5483
11466 9.84
Bel4b 383
~6e93 242
Telb 3697
8497 454
1168 5083
-2485 —2e32
-0457 2e45
3086 4450

2.84 7408 -
16467 6004
1,05  =—0e29

3e45- i ---0e23-—
-3.,02 Oe74
12.21 3.88
3436 -0659
0490 le42
2466 249
De76 0.09
526 5019
1.89 D.78
le&5 058
~1l.18 ~107
6ol 4409
2048 125
1692 0430
6e55 3633
4400 . 2492
5e47T 4e27
6e1l4 5023
579 3482
2456 l.84

-58-

A*3(continued)
(3) (4)
8476 1.05

—26407 107

‘28.85 0078

‘61026 0«64

-23826 059

8182 Oeb3

11167 Deb9

18011 De63

3000 De60

~30e26 0.78

2279 0.81

2754 0e82

33033 0.88

~Te 0k 0e60

-12412 Oe24
5460 -1.,01

-13e47 -0430

39062 5472

-3.38 2.42
Qo ity R T -

“25056 1076

45492 2el5

14612 1439

604l 1.57

-3.58 leb4

-2286 ‘ 1.84

26076 1497

~-1lel6 183

~7e51 184

-1le42 1e73

20463 l1e71

-1466 le61

-4 459 1,70

15619 1655
374 1e49
6636 lettd

11.75 1.28
7666 1.09 -

-8.11 0,98

These are the data which were subject
to spectral and cross-spectral analysis.



APPENDIX B:

CONSTRUCTION OF CONFIDENCE BANDS OF GAUSSIAN WHITE NOISE



et et e
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The confidence limits for Gaussian white noise pre-
~sented on Table 6 were derived as follows:

On the assumption that spectral density estimates are
distributed as chi square, we have:

xé (d)} =1 - 2q,

WA

Pr { x2 (d) < iw;_gﬁﬂl
1-a £f(w)

where £ (w) the true spectral density,

E(w) the estimated spectral density, and,

d the degrees of freedom.

For the Tukey window,

d 2.7(T/M).

it

For T 78 and M = 20 (that is, for the length of
our series and the maximum lag employed in our analysis),
d is approximately equal to 11.

The spectral density of white noise, when its frequency
is measured in cycles per year, is equal to 2 for all .

For d =11 and f(w) = 2, we obtain:

_(11) 2
(eq.. B-1) Pr { fi_E____ < £(w) < ¥a (11) } = 1-2a.
55 5.5

The values of xé(ll) and x3__(11) for a = .025
and o = .05 are given on Table B-1l.
The confidence limits of Table 6 are obtained by insert-

ing the values of chi square,as supplied on Table B-1,in

equation B-1.
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ARIES I DERR: i

- Jenarfidence Liodts of CZal square for 11 Degrees ¢f reedom
COWFIDENCE LOYER UPPER
LEVEL LIMIT LIMIT

©0 per cent 4.57 19.7
@5 per cent 2.82 S 21.¢@

i Source: A. M. Mood and 7. A. Graybill, Intrcoduction to the

Theory of Statistics (New Yerk: McGraw-Hill, 1853).
{
i



