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Introduction

(1)

A well-known although as yet unpublished paper by K.M. Kang points

out some peculiarities in the behaviour of the least squares and maximum
likelihood estimators of the moving average process. The investigation
described in this paper was stimulated originally by some practical
problems encountered in the development of a programme for the estimation

of econometric models with moving average residuals, to which the Kang

results appeared relevant.

The paper derives in a general context the properties of the likelihood
and sum of squares functions established informally by Kang, and compares
the properties of various asymptotically equivalent estimation criteria.
The main issue here is the appropriate treatment of the "starting
residuals" in small samples. Monte Carlo experiments were carried out
for the first-order moving average model, comsidering both the simple
time-series case and the case of linear regression residuals. The
results suggest practical conclusions of some importance concerning the

choice of estimation criterion in small or moderately sized samples.

(1) Kang {1973}.



il General Background

The q#h order moving average (MA(q)) process is defined as

u = o(L) e NI (0,02) (1.1)

+ €

t? t

where 0(L) represents the lag polynomial 6, + 6, L+* 62L2 + ... 4 Bqu
where 60 = i, and L is the lag operator such that
th =X g The roots of the process, Oys cve s aq s are then
defined by

q

(L) = T (1 - a.L) (1.2)
. i
1=1

The rootS may be either resl, or in complex conjugate pairs.

The autocovariance function of the MA(q) process (treating the roots

as paremeters by substitution of (1.2) into (1.1)) is

_ 2
E(utut+s) =0 W (al 5 000 4 aq) 5
(1.3)
q-s
W = I Gr er+s . s =0, 1, «ces 5, @
r=0
= 0 s s >4,
and has an impbrtant property which we state as
Theorem 1
. .th :
(i) When the root is real
2 il
ws(..., 05 oee } = aj ws(..., aj s cos ) (1.4)



(ii) When the jth and j*lth roots form a complex conjugsate

pair,

( 1, e )
w lll, a. ’a'j+l’ . &

n
ry

W (...,aj, ®spq ces)

Note that complex roots cannot be inverted singly if the ei's are to

be restricted to resl values.

A proof of Theorem 1 is given in Appendix II. It's most important

consequence is that when the variance of the white noise process {et}

is unknown, there will exist as many as 22 observationally equivalent

representations of the MA process corresponding to the possible

combinations of the roots and their inverses.

For the joint density of a realisation of the series u;, ... , U is

2
f(?; Gys oo aq, o”) =

1 (1.6)
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where u = (ul,..., uT)' and
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From (1.4) we obtain for real o the relstions

9—1 (eoe, o = a32 9-1 (ven, agl seee)s (1.7)
N T TR | E e I S U I (1.8)

~ J J ~ J

and it is evident, substituting in (1.6), that

. 2y = ofn: -1 2 2
f(g, er s Gy ey O ) f(E, ee s O, ...,(aj a )). (1.9)

For a pair of complex roots, the corresponding equality is

2
f(}‘l; OO [} aj’ aj+l’ LR 1 G ) (l.lO)
. -1 -1 L o
= f(]i, * s ’aJ- 'y G.J.+l 3 ...,(lajl U))-

It follows that the likelihood function - treated conventionally as a
function of the lag coefficients rather than of the roots - will possess
up to o4 equal maxims. It is usual to identify the process arbitrarily
by imposing the condition that all the roots lie inside the unit circle,
called the 'invertibiliﬁy condition' because it ensures that the MA

process has an equivalent stationary autoregreséive representation,

_ -1
€, =0 (L)ut.

t
All estimation procedures therefore entail a search for a maximum cf the
likelihood or other eriterion function over the invertability region -
defined as the set of points in 6-space for which all the corresponding
roots lie inside the unit circle - and search routines need to incorporate
some device for excluding the choice of parameter values outside the |

region.



II. Alternative Estimation Critefi;

A sample realisation of length T of the process specified by (1.1) can

be represented by

o | o
where u = (ul, oo UT)'
= L
Sl (Sl, se s g ET)
= '
e (El-q’ e 59),
C 1 0 o .
6, 1 0
6, 6 1
85 6, 8
M = 8 .
= q .
0O 6
L] q’
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0 )
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0 0.
N = 0 . [ ] 1 ] .
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(T % 1)
(T x 1)
(q x 1)

.
0
1

-t
(T x q)

(2.1)

(T x T)



From (2.1)
e = Wi(u-Ne) (2.2)

and the full (T + q) - vector of independent disturbances is

~0 = g = Wu + X So (2'3)
1
j’g .
where W = 4 (T xq) xT)
.M_l J
"1 -
~q
X = ((T + q) x q)
M-lNJ

(1) show that the exact likelihood of u can be obtained

Box and Jenkins

by replacing the unobserved starting values e, by their conditional

-~

expectation. Letting 6 = (el, cee s eq), their result cen be stated
as
Theorem 2 (Box and Jenkins)
I
£o, 0% w) = (2102) 2 a(e)F exp { - L5 s(0)) (2.1)
b - 20
where a(e) = |x'x|] = |q| (2.5)

(where 9 is defined following (1.6)),

~

s(e) (2.6)

il
rm

t M

Wu + X ;o . g =~ (X'X)-‘l X'"Wu (2.7)

= - - ~0 ~ o~ ~ o

(1) Box and Jenkins {1970}.
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Hence, since S(8) it follows that

. W - x(x'x) x') W WG W, (2.8)

P -~ ~ ~

L3l
L]

A proof of the theorem is given in Appendix III.

The more general case is where u 1is a vector of regression residuals.

~

Let

u=y-28 (2.9)

vhere Z is a (T x k) matrix of bounded explanatory variables, y is
8 T-vector of dependent variables and B 1is a k-vector of unknown,
unrestricted regression coefficients, to be regarded as arguments of the

likelihood.

By Theorem 2,

2
f(ea By O ;y,Z)- =

2,- 2 . 1
(o) 2  A(e) exp { - =5 s(e,8)} (2.10)
- o0 e
where S(e,p) = . s (y - 2 a)'w'oxw(y - zs) (2.11)

Concentrating £ with respect to 8 leads to

T
* - - !
t%6, o® ; 7,2) = (22 2 a(e)F exp - Lss(e))  (2.12)
- - - 20 -
where now defi_ning

€ = Wy-Wapg+Xe

: T (2.13)
= QX(W? - ??;9)_



LT >
H

P

(z'w' wz z'w Qk (2.14)
~ ~ 9

the sum of squares function instead of (2.11) is

s(e) = e'e (2.15)
-1
= Y WGy - WZ (ZTWIQ W) TGy Wy
= y'( 1o g z(z' 27t z)7 g n’l) y by (2.8),

Estimation of B can be accomplished by maximisation of (2.12) with
respect to 6 , and using (2.14). For the present purpose, however, which

is to investigate the properties of the likelihood itself, we shall derive

results which apply equally to (2.4) and (2.12), and will not in general

distinguish between them. Thus, either sum of squares can be decomposed
by
» o .

s{e) =5 (8) - 5 (8) (2.16)

where when S(8) 1is defined by (2.6) and (2.7), (2.17)
( ) = u'W'wu

*a -

and s (8) = wwWwx(XX) T XV, (2.18)

If S(8) 1is defined by (2.15), on the other hand, by a standard

manipulation

Qx ~Qx W2 (Z'W'Qy W z) = Z'W'Qy

~ o~ o~ ~ o~ oA

(2.19)

Gz ~ g XXy 0TI X

I - wz (z'w'wz) z'w'

~ N e

where

=



Accordingly we define

5'(0) = gy W e

*% =il
1 1] 1 ]
57 (0) = y'W'Q X(X'Qu X) T X' G Wy (2.21)

*
s(e) and S (8) are known as the unconditional and conditional sums of
squares respectively although confusingly, S is the sum of squares
obtained using the conditional expectation of €, 88 starting values,

~

*
whereas S  in effect uses the unconditional (marginal) expectation of

€ i.e., zero.

Now concentrating (2.4) (or (2.12)) with respect to 02, dropping
multiplicative constants and taking the —2/Tth power yields a convenient
minimend, what Keng has dubbed the 'unlikelihood function',

LI

s(e) (2.22)

~

u(e) = a(e)

Evidently we may also define the function

s(0/% 8% (o) (2.23)

u* (o)

which might eymmetrically though imprecisely be called the 'conditional
unlikelihood'. In fact it is just an approximation to (2.22) with no

obvious theoretical interpretation.

In the remainder of the paper we compare the merits of the four functions
* #

U, S;U @and S as alternative criterion functions for estimation of the

MA process, either in the simple time-series (TS) case defined by (2.1),

or the linear regression residuels (LR) case defined by (2.1) and (2.9)
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together.

The conditions for the asymptotic equivalence of the functions follow

from the property which we state as :

Lemma 1 Defining @; as the dominant root of 6(L), having

multiplicity m, the orders of magnitude of the elements of the quadratic

matrix X'P X as T » where P is an arbitrary (T+q)x(T+q) matrix

~ ~

whose elements are O(1), are

(1) 0(1) when la 1

al <

(1) o(r?(ml) |q 2T))

when Iadl > 1

2(m-1)

(iii) o(T £(T)), 1 £(T) ¢ T2, when ladl =1,

and f(T) depends on the structure of P.

~

12T
Note that Lim (I“I

) = w for all |a|l > 1 and all f.
Too  £(T

A proof of Lemma 1 1is given in Appendix IV. For the case P = I, it

is easily deduced from the proof that f£(T) = T.

~

** ~ ~
For & TS model, 5 (8) = € ' X'X eo where the elements of £s

~ ~ o oA ~

*¥
are alweys O(1). The order of magnitude of S is found directly

~

o
from Lemma 1, setting P = I. For an LR model, S = € X'QWZ X

A

€
~0
_1 e
= = ' t
where € (; ng g) g ng y y - The elements of both €

-~

and Q, are easily shown to be 0(1), and therefore setting P = U

- - ** - .
gives the order of mesgnitude of S in this case. Further,
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#*
A = |X'x| and S 3 0(T), so that it follows generally from Lemma
" #
1 and the definitions that U,S,U and S are asymptotically equivalent(l)
strictly inside the invertibility region. On the boundary, it is easily

found from the lemms that A'7 =1+ 0(1), and hence the pairs, U,S

*
and U , S are equivalent, but the 'conditionsl' and 'unconditional!

functions are not.

*
Appeal to this property has been made to Justify the use of S or S
as suitable criteria, as by Box and Jenkins {1970} for example.(e) The

Phillips(3) method employs S as criterion for the estimation of the LR

model.

However, Kang's investigation has made it clear that the asymptotic
equivalences are a poor guide to the behaviour of the functions in finite
samples, particularly near the boundaries of the invertibility region.

The current'view(see for example Osborn {1976} , Pagan and Nicholls {1976}
and Prothero and Wallis {1976})is that the use of U (or equivalently the
exect likelihood) is desirable in épite of the extra computation involved,
because of problems associated with S to be exasmined in the next section.
The consensus appears to be that except in large semples, it is desirable
to calculate the starting residuals, rather than setting to zero. Rstrem
and Bohlin {1966} employ S*, however. As far as is known, the use of

*
U has not been considered to date.

(1) More precisely, suitable transformations of the functions which are
bounded as T+» are asymptotically equivalent.

A

(2) In fact, Box and Jenkins advocate approximating e using the 'back-
forecasting' procedure. The properties of this ~ approximetion
will not be examined here.

(3) See Trivedi {1970}.
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III. Properties of the Criterion Functions

Properties (1.9) and (1.10) are stated in terms of the roots (or moduli
if the roots are complex) and to examine the consequences of these
properties for the behaviour of the criterion functions, it is desirable
to treat the roots as the independent variables. This would be
straightforward if, say, the roots were always restricted to be real,
since then the set of g real o, (represented a8 a point in &%)
determine & set of lag coefficient values uniquely. In her informal

discussion Kang confines herself to the domain of real roots.

To generalise the problem, we would like tc consider a function having as
its domain the product space of m conjugate pairs of complex roots, and
qQ - 2m real roots, for each m =0, 1, ..., p, where p =qf2 if q is

even, or (q-1)/2 if q is odd. Let such a function be defined by Ck

-~

P
(where C can stand for any of U, S, U, S ), and k € K is an

index which identifies which roots are real and which complex . 2P  elements

of K are required to enumerate all poseible combinations of m complex and

p-m real pairs, for each m. The index set K 1is defined precisely in

Appendix I.

The domain of Ck is denoted Qk . In Appendix I the family of

~

meppings

C (8 : o > R k €K

are given rigourous definition, and the required properties are established -

i.e., the sets ¢ are open, so that C is differentiable everywhere in

k

=

k

~

¢k’ and the family Ck 3 E € K completely define the original function

~



in terms of the roots of o(L). Note that a complex conjugate peir of
roots is represented in polar co-ordinates so that the moduli, denoted

rj, can be treated as independent variables.

With the aid of the family of Ck as a representation of C, we now

prove first of all the general case of the two properties noted by Kang.

Theorem 3 The function U has at least g+l stationary points

in 6 space, on the boundaries of the invertibility region.

Proof U is a monotonic transformation of f concentrated with respect
to 02, and from the properties of f established in Section I,

inversion of a root leaves the value of U unchanged. More precisely,

defining Uk by analogy with Ck’ Lemme 4(1) ensures that one may
write

u, ( a;y oe) = U ot ,..l) (3.1)

k lll’ J, LR N k .." j ,.'. L
vhere aj is a real root, and

-1
Uk( s e g r'j’ .uo)= Uk( soey rj ’ooo) (3'2)
, ) .th .

where r; is the modulus of the j complex pair ; (3.1) and (3.2)

follow directly from (1.9) and (1.10) respectively.

Partially differentiating with respect to o (or rj) in o, gives

(1) See Appendix I.



J 1
= =- (3.3)
9 a a.2 3 atd
J dJ J
implying
aUk 3Uk
~ = ~ . 0 (3-h)
d o o, =+ 1 a.'o., = + 1
J d J J -
and similarly
10)
k
-~ L O . . (3-5)
or. r. =1
J J
Let ¢k* represent the domain of g real roots. It follows from

-~

(3.4) that there exist (at least) 2% stationary points of the function in

¢k* at aj =%13, =1, ..., q, although consideration of the form of

the relationship (1.2) shows that these points map into g+l points on

the invertibility boundary in  6-space.

Theorem U4 The function S is decreasing with respect to all real ‘
roots and complex moduli as the boundary of the invertibility region is

crossed from inside.

Proof From (1.9) and (3.1) (or (1.10) and (3.2)) and the fact that

the Ml estimator of o- is S/T (compare (2.4)) it follows that for

any real root aj,

2
Sk("" as”, ces) = o Sk(..., aj,...) (3.6)
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and differentiating leads to

BSk ( |

= = =5 (eeey 1y au < 0
da. 0. =1 k T

J J -

(3.7)

S

- = Sk(..., 13 wen) » O
da. 0. = =1

J J -

and similarly for any rs

BSk

. =-58.(.s1, ...) <0 (3.8)
or. r. =1 -

dJ dJ

By Lemmas 2 and 3(1), applying (3.7) and (3.8) for each k € K is

sufficient to prove the Theoren.

To determine what happens to the 'conditional' functions on the boundary

is more difficult. While S* may be increasing or decreasing, it is
clear that I? will 'generally' be increasing, since it differs from U

by the additive term A S** > O which by Lemma 1 is 0(1) inside
boundery, and O(T) or greater outside. The relevant property is formally

derived as Theorem 5.

To go beyond arguments from orders of magnitude, however, is unduly
%
complex. A sufficient condition for- U to be always increasing as

the boundary is crossed is thet

(1) See Appendix I.



e in the TS case, or

3 X! X
__:_SEZ_; in the LR case, be

positive definite; but the conditions for this to hold are not easily

determined. The general result (for all T) is here proved only for the

simplest case, the ~ MA(1) model (Theorem 6).
Theorem 5 There exists & sample size T' such that for a1l T > geLis

#
the function U . is increasing with respect to all real roots and complex

moduli as the boundary of the invertibility region is crossed from inside.

Proof By (2.16) and (2.22),
y& # *%
Ue = 8T (s -5 ) (3.9)
so for any real root aj,
# (1)
Y, ” 35, 38, 84,
. - S R - ¥ g™ 1 = | (3.10)
aaj Ak Baj aaj f (Sk sk )(TAk) aaj

= 0 at t. = + 1, by Theorem 3.

L]
=

30 a. =+ 1 i
J ga - - (3.11)
(1] £
%& ask i -1 aAk
= A ~ + S _(Ta) ~
k k Kk i
~ Ja - - aaj

Pamam 2 900

16.
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* e
Let {Sk(T)} denote the sequence of functions S derived from a

k
sample reaslisation of size T; and let no root have modulus greater than
unity; then from Lemma 1 of Section II, there exists a T' such that for

all T > T',

L3 S** ( ) S** ( 1 )
lm l."a" L - n .l.’ ’ LI BN 3
a.+1 - k(T) J k(1) >0 (3.12)
J 6. — 1 '
J
and
Li S** ( ) S** ( 1 )
im cnu’ao, s e - % seeg Tlyg e
a.+(—1)[ x(T) h () ©T < 0 (3.13)
J +
. + 1
d
where the limits are taken over values of aj less than 1 or greater
than -1 respectively.
From (3.10) and (2.}62ﬁy§7§§ve
8Sk . aAk ( .
e = - = . = + 1 3.1
P S (Th) =t e :
J ~ J
and this implies by (3.8)
A
k = TA > 0 (3.15)
oai . . = 1 v
J J
aAk
| = -TA < O (3.16)
0. | a. = =1
d J

Hence, substituting results (3.12) and (3.15), or (3.13) and (3.16),

into the right-hand equality of (3.11), it follows that for all
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»
U

k(T

~( ) >0 (3.17)
30, . a. =1 -

J J

*
LU <o

- _ (3.18)
aaj A = (-1) +

where (3.17) and (3.18) are right-hand and left-hand derivatives

respectively. In the case of a complex pair, inequalities corresponding to
(3.17) and (3.18) are obtained by replacing aj by rj throughout, and

applying the result for all j and k proves the theorem.

Theorem 6 For the first—order (MA(1)) model, the results of Theorem 5

hold for all T > 0.

Note, when q = 1, the index set K hag only one member, and the single

root is always real. The k-subscript is therefore discarded.

Proof The model to be considered is uy e e g in this



case,
v‘ O 0.-..-.......-...-.. 0.‘
1 0 0
o 1
a2 a 1
W= - » ((T+41) x T)
. . “a
: : ¢« 1 0
aT—l aT-E s e s s o s O 1
- .
X= (1aa® ....aob) ((T+1) x 1),
X'x = l+a2+ah+....+a2T (3.19)
= A
(& scalar)
and
]
[ 6 0 H eenerenaat o873, 2T
X'w = a2 + ah 800000 o a2T_2
: (1 xmT) (3.20)
aT-l+ aT+l
T .

S = A es where € = - A7 X'Wu, andfrom (3.19) and (3.20)

~ A A

it is easily deduced that eo(a) = eoﬁf-ﬁ, (which we should expect to

hold since €, 1is the conditional expectation of eo).

Hence, using the same argument employed to prove Theorem 3

19.
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L =0, (3.21)
da [ a = £ 1
i
and as = 94 22 2 0 as a 2 O
3a 2a o)

from (3.15) and (3.16). The proof then follows that of Theorem 5,

replacing the inequality conditional on T' with a general one.

. *
(The LR model) note that from (2.20), S can be

1]
=]
[+
]
g
!
N
t ™

written as

* ~ ~ ~
S (a, B(a)) = (y - ZB)'W'W(y - ZB) (3.22)
where é - (Z’W'WZ‘)_1 Z'W'Wy , and so
* o * S
U (a, B(a)) = A(a)}$ S (a, B(a)) (3.23)
* ~ * [ ] ~
W (, B8G@) . a0 |, [ ag* 38
da da 38 B= B da
*
-
o
since B 1is the solution to %E = 0, It follows that the property

just established for the TS model applies equally to the LR model. This

completes the proof.
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IV. Monte Carlc Results

Whether the boundary turning points of U are maxima, minima or saddle
points is sample-dependent, and in small ssmples - by which we mean samples
of moderate size from an econometric point of view — there is a large
probability that for a process with a root near the unit circle, U will
have a minimum on the boundary. In other words, instead of a pair of
minims at a. and l/aj with an intervening maximum at the boundary,

the three turning points degenerate into a single minimum.

The behaviour of U and the other criteria is illustrated in Fig. I.

(1)

which shows the graphs of the criterion functions for the MA(1l) process

with fitted mean. The plotted curves are the average over 50 replications
of the functions calculated from a sample of size 20 of the process

ut = et - .8 et—l 5 et being a computer generated normel process (as
deséribed below). Notice that U* is the only function which takes an

interior minimum, in this case.

Monte Carlo experiments to investigate the incidence of this kind of
behaviour, and compare the performance of the different criteria were
performed on the MA(1l) process, which should satisfactorily exemplify

the problems under consideration. The models employed were

CHR NI(0,1)
Ut = u o+ €, " 0€, (4.2)

_ * *
(1) The values actually plotted are of 'ki(%d where C = S,U,S and U .
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6.0 -

b5

FIGURE I: Concentrated criterion functions for the model

\

AT

u = u + e =-q €myr B = 0, a=.8, ? = 20,
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the simplest cases of the TS and LR model respectively. The datea
used to generate each model was identical, with y always being assigned

the value zero in (L4.2), but treated as an unknown parameter in the

estimstion.

The experiments were performed on the Burroughs 6700 computer at the
University of Warwick. The procedure adopted was to generate 2000

standard normal pseudo-random numbers using the formula

12
2 =[in] -6 (4.3)

i=1

where the X, are uniformly distributed in the interval B)JJ, generated
using the Burroughs supplied routine RANDOM. This dsta set was tested

for serial independence and zero mean, the computed statistics being :

Mean : - ,00852
S.D. : . 9837
1st order autocorrelation

coefficient : .00439

(on the null hypotheses, autocorrelation coefficient and mean respectively
are both normal variates with mean zerc and standerd deviation of

(2000)—5 = .02236). This random series was then used to generate the
series {ut} » which was split into sub-series - 200 of size 10, 100

of size 20, 50 of size 40 and 25 of size 80 - to provide the samples

for replications of the estimation procedures. Samples were genersted

in this way at 21 equally spaced values of a from -1 to 1 inclusive.

The approach at this stege was therefore extensive rather than intensive,

taking advantasge of the fact that the parsmeter space for the process is
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in this case a compact interval which can be investigated uniformly.
While the experiments are not on a scale of replication which allow point
estimates to be treated as effectively exact, they suffice to give a good

idea of the relationship between the different estimators.

To minimise the functions a univariate quadratic interpoiation routine was
employed, based on the algorithm of Davies, Swann and Campey.(l)

Estimates were constrained to lie in the interval Eﬂq lJ s the search
for the minimum being terminated whenever the function was found to
decrease on moving out of the region, and the estimate set at 1 or -1

as appropriate. The true value of o was used as sfarting value, both to
minimise search time and to reduce the possibility of missing the global
minimum. The functions minimised in the estimation of the two models
(4.1) and (L4.2) were the univariatespécialisations 8(a), U(a), S*(a) and
U'(a) of the functions defined in Section IT — either conditional onm u = o
or concentrated with respect to u, respectively. Note that a boundary
minimum of the sum of squares functions is usually a constrained minimum,

"
& boundary minimum of U 1is always unconstrained, while U always

hes an interior minimum.

The results of all the 672 experiments (U4 criteria x 21 parameter values x

4 semple sizes x 2 models) are not given individually, since interpretation
of so much data would be difficult. Instead, various methods of sumarising
and assessing the results are employed. Table I(a) shows, for each model

and semple size, the average of the estimated root mean squared errors for the
21 parameter values, a figure which provides a standard of comparison for

the estimators over the parameter space as a whole.

(1) See Box, Davies and Swann [i96§] » P-1k.



TABLE I(a)

. Mean RMSE (1 to ~1)

T LR 15
10 S% 0.5007 0.4011
U* 0.4662 0.3864
) 0.5015 0.4207
U 0.5220 0.4239
20 S* 0.3099 0.2675
U* 0.3069 0.2609
S 0.3345 0.2761
U 0.3295 0.2727
40 S% 0.2027 0.1810
U* 0.1953 0.1393
S 0.2002 0.1720
U 0.1933 0.1671
80 S* 0.1399 0.1358
U* 0.1387 0.1361
S '0.1321 0.1256
U 0.1294 0.1250
Iég&g_lﬁhl : Mean RMSE (0.9 to =0.9)
I LR Is
10 S% 0.5186 0.4036
U 0.4654 0.3781
S 0.5542 0.4650
U 0.5439 0.4342
20 S* 0.3194 0.2705
U* 0.3099" 0.2584
S 0.3697 0.3052
U’ 0.3503 0.2841
40 S* 0.2063 0.1815
U* 0.1956 0.1333
S 0.2197 0.1887
4] 0.2057 0.1761
80 S* 0.1420 0.1365
U* 0,1395. 0.1356
S 0.1443 0.1364
U 0.1398 0.1331°
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TABLE II

Percentage of minima of U falling at -1 and 1 (LR Model)
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Note that the sum of squares functions generslly have larger RMSE than the
unlikelihood functions, both in the conditional (starfed) and unconditional
case. While on this basis of comparison no criterion appears to be uniformly
superior, the conditional functions perform better in small samples, the
unconditional functions better in large samples. The result is of some
interest in viéw of the common assumption that the exact likelihood (equiv. U)
should be the preferred criterion in small semples - a view which does not
teke account of the increased propensity of this function to "degenerate"
boundery minime in small samples. The extent of this behaviour is shown

in Table II which shows the percentage of replications of the LR model

in which U has an upper or lower boundary minimum, for a range of parameter
values and sample sizes. The comparable figures for the other model and
other criteria are not given here, but on the whole S has more boundary
minima (constrained), S* has fewer, and as expected U* none. The
picture for the TS model is similar, taking account of the differing

characteristics of this model.

It may be questioned whether the figures in Table I(a) are the best basis

for RMSE comparison, since the parameter points -1 and 1 are included in the
average. Since in the smaller sample sizes a high proportion of replications
produce a boundary minimum for the unconditional functions, the replication
variance of these estimators for the boundary points is naturally close to
zero. To assess how this fact influences the ranking of the criteria we give
the average RMSE over the interior points (-.9, .9) only, in Table I(b).

But in choosing a basis for comparison note that the boundaries are points

of meximal bias for the conditional estimators.

Another method of assessing the experimental results is to look at the
estimated biases in relation to parameter values and sample sizes. We do

this in two ways. We plot the mean simulation bias against the parameter
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points, for each model and sample size, in Figures II(a) and II(b). And
we'8stimhté the "bias réEporsd HinctiSns"y tRELTES, dsstime “tHat for a

T

£ e bies of

donstatént “estimator o~ V627 %q; " £hEBEas a‘r‘"’ﬁ(l’i_a-) SpEECruetiondl form

Blay = o) = = ¢ (o) (4.4)

where the function ¢ can be approximated by a polynomial in o . The
lattér iy sstimated by least squdres, ‘E5Suming tHat d cubic is sufficient
to represent the bias curves plotted id Figires itla) and T1{v), and that
nultiplying through by /T ig & suitéble transférmation to ensure homo=

J {1) k > P
scedastic errors. -’ Eight regreéssiots were perrormed (for each modél and

each ériterion) on the equation
/. B, = a /T, +a . +a, a.//F
i o "Ty * e YTyt 8y g /YT

2, . 3
+ aj/ /63 + 8, aj/ /53 + U,

ag i

where Bj is the mean biaé obtained from simulations with Tj = 10, 20,
)-I-O, 80 a.nd. Gj = _l’ -¢9, _-8, s e 9 09’1’ j = l’ ces g Bh- Th.e results

are given in Table III.

The R2's and Durbin Watson statistics can be used as & check on the
adequacy of the functional form, and the low vaelues of some of the latter
here indicate that & higher order polynomial might be desirable. But the
R2's are quite high, and for present purposes the results should be
adequate. Note that the terms in YT (the constants in the regression

prior to the heteroscedasticity transfonmétion) are generally insigificant

(1) See also Hendry and Trivedi {1972}, Hendry and Harrison {1974}.

30,
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which is the expected result when the estimators are comsistent. (ef. (4.L)).
There are various possible ways of ranking the criteria on the basis of the
regressions, but we will only informelly compare the coefficients, noting
that inside the unit interval the coefficients of 1/YT and ofYT will
play the most important role. It does appear from these results that in

#
both models, U again performs best overall.

Tt is interesting to note the uniform positive bias in the estimates of

the LR model, which the TS model does not exhibit. No immediate
explanetion of this result is offered, and the estimates of u (which were
recorded although are not reproduced here) show no significant bias.
Incidentally, the possibility of programming error is never to be discounted
in experiments of this type, but a simple check on the computation of U is
provided by the property U(a) = U(a—l)- The computed function possesses
this property to within machine accuracy, and since the other functions

are all simplifications of U, the presumption of computational accuracy

seems reasonable.

The conclusion to be drawn from these experiments is that no criterion

is uniformly superior either in respect of sample size or parameter value,
but on bslance the advantage in small samples lies clearly with U*, except
in the case where the true parsmeter value lies sufficiently close to the

boundaery that & boundary minimum can be regarded as a good estimate.
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V. The Distribution of the Estimates

It has been shown, for example by Pierce {1971} that the ML estimates of
@ are asymptotically normal, and in the LR model are asymptotically

independent of the estimates of B , provided the parameters lie

strictly within the invertibility region. For a process on the boundary,

1)

however, the asymptotic distribution appears to be non-normal.

All the estimastors we have considered are asymptoticallf ML, and have

the same asymptotic distribution inside the region, but it is apparent

that small-semple deviations from normality may be severe, not only because
the estimates are only defined over & compact region of the parameter space,
but slso because, with the exception of U*, the distribution functions
appear to possess discontinuities at the boundaries. This raises serious
problems for hypothesis testing, and in particular for the interpretation
of boundary estimates. An intensive Monte Carlo exercise which complements
the extensive study of the last section is to estimate the distribution
functions of the estimators by cumulative frequency functions, that is,

step functions defined by (number of estimates <X)/N for N replications
and a discrete set of points X in the domain of the function. The set
{X} chosen was the integral multiples of .0l in the unit inverval, and

N = 500. The LR model with o = .5 and e sample size LO waé chosen

as & fairly representative case. The results are plotted in Figures III(a) to
III (d); the broken line in each diagram indicates the asymptotic
distribution for comparison. The asymptotic variance for the MA(1)

model, using the formula derived in Pierce {1971} is (1-—a2)/T- Hence
the graphed function is the normal distribution function with mean of .5

and standerd deviation of .137.

(1) The distribution in this case has recently been investigated for
the MA(1) process by Sargan {197T}.
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None of the empirical distributions are a close fit to the asymptotic
distribution - and note that this is in a decent-sized sample from the
econometricians point of view - but clearly the U* criterion performs
best, all the other distrib utions showing a marked discontinuity et

the boundary.
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VI. Conclusions

Several important conclusions appear to emerge from the foregoing. Firstly,
thet exact ML (the U eriterion) is not an ideal estimator in small
samples. Estimates fall on the boundary of the invertibility region

with rather high probability, presenting difficulties with interpretation
and inference. Aﬁ example of these difficulties is found in the recent
study of Prothero mnd Wallis {1976}, who cocnsider a number of explanations
for the frequency with which they obtain boundary estimates for a fourth-
order moving average, in the context of exact ML estimation of quarterly
Box-Jenkins models (P.479-480). They consider mis-specification as a
possible cause, as well as {(referring to the Kang paper) the possibility

of degenerate boundary mexima of the likelihood; but apparently believe
the latter explanation to be implausible in a sample of size ho.(l)
While we have not studied the ARMA model here, there is no reason to
suppose that our Monte Carlio results are a misleading guide to that case.
Reference to Table 2 shows that in a sample of size 4O, exact ML estimates
of an MA(1) process with tTue parameter of .8 fell on the boundary seven
times out of ten. The Prothero and Wallis estimates, having rather fewer

degrees of freedom than this, are not improbable even if the true

parameter velues are well inside the invertibility region.

The second conclusion is that U* is the best criterion of those studied.
We have noted that the estimator has marginally superior bias and mean
squares error characteristics in small samples, although one should not
ignore the fact that it is fairly strongly biased away from boundary values.
In view of the previous section, we may also surmise that its small sample
distribution diverges less drastically from the asymptotic normal approxima-
tion than those for the other criteria, and inference using these approxima-

tions is correspondingly more reliable.

(1) They suggest, I think mistakenly, that estimates of a fourth-order
process from forty observations are ".... in effect based on 10
observations."
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To these advantages we may add two others; that it is less expensive to
calculate than the exact ML estimator, and also that there is no problem,

in the first order case and probebly generally, with imposing the invertibility
constraints during estimation. Whatever the estimato: used, it is

desirable to impose the constraints, for even when the function possesses an
interior minimum, & temporary step outside the invertibility region by the
search routine can lead to failure due to rounding errors (because of the

powers of order T of the roots involved).

Osborne {1976}, for example, suggests an ingenious transformation to achieve

(1)

this, but her type of method has the difficulty that whenever the

constraint becomes binding, the derivatives of the transformation tend to
zero,(2) resulting in a singular Hessian, and failure of a gradient
minimisation routine wherever the minimum lies on the boundary. Modified
transformations to overcome this are possible, but not wholly satisfactory.
A criterion which guasrantees an interior minimum is clearly preferred,
except only in the case where the true process is on the boundery. The
importance of this case should not be under-estimated, but it appears that
with the estimators here considered, one must choose between observing a
process on the boundary when the true process is not, with a large
probability, or never observing a process on the boundary at all. There

eppears to be a fundamental problem of identifiability for which no simple

solution is apparent.

(1) Her procedure (with modified notation) is to employ the B, and v,

defined by (A.1.1) of Appendix I below as independent

varisbles, and impose the invertibility constraints |Yi | <3,

Isil < 1#y, by defining v; = a, /(1+ la;| ) end

Bi = gi(l + Yi)/(l + lgil ), 8o that the constraints are satisfied for
~» < dj, g7 < = The function is then minimised unrestrictedly with
respect to the di and g

(2) For example, with the change of varisble described in the last

footnote, 3
Lim i\ = o.
di+°° ad

i
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A final conclusion, from the Monte Carlo results, is that if for reasons
of computational comvenience asum-of-squares criterion is to be used,
then S* is preferable to S, the latter having the worst small sample
characteristics of all the functions studied. On the presumption that in
"~ large samples the difference between the criteria'becomes negligible,
there never appears to be a justification for estimating the starting
residuals, in spite of the apparent theoretical desirability of this

procedure.



APPENDIX I

Representation of the criterion functions with the roots of the lag

polynomial as independent variables.

qd
Observe that o(L) = m (1 - aiL) can be partially solved as
i=1
a/2 5
e(LYy = m (1 4+ B.L + v.L%) (A.1.1)
. i i
1=l
when q 1is even, or
(g-1)/2 -
(L) = T (L + B.L + y.L°)(1 - o L) (A.1.2)
i=1 * * s

if q is odd, where B,, y. and a, ere always real. (Note:
henceforth it will be assumed that q is odd, to avoid tedious
duplication of expressions. The modifications in the even case are

mostly obvious, end will be noted where necessary. )

The vector-valued function implied by (A.1.1) or (A.1.2),

8 = h(t) : rRE - g% (A.1.3)

?

vhere t = (Byy Yy Bos Yo o vee s Brogy /o0 Y(gm1)/2° o)

e

is continuous although not 1-1 in geneéral, and there is no difficulty

in meking this change of variable and writing

= c(g(g)) S



Considering the pair (B., y.) — we drop the subscripts whenever the
i* '3

meaning is clear - the original pairs of roots are identical with the

roots of the quadratic

A

+ OB+

O.

Complex conjugate pairs of roots will be represented using polar co-

ordinates,

A

iw

1 = re

y Ay = re *®, It will be found

convenient to represent a complex conjugate pair as & point in the

open subset of

S

B>,

{(r,w) :

r

> 0,0< <}

instead of in the moTe conventional Argand plane.

We then define

wvhere

and

where

i.e.

~

Loy

g ()\ls Az) :

R

2, (A.1.4)

= {(B.Y):-w<8<w,v<332 }

(g),8,)

(8]'_ ’ Gé

(A.1.4) and (A.1.5)

real and complex roots to

T and

R2

- T.

(= (g +2) 5 A2,
S + BS - T (4.1.5)
) = (- 2r cos W, r2).

define respectively mappings from pairs of

the corresponding subsets of the real plane

39.
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Now letting p = (@ - 1)/2 (or q/2 when gq is even), consider the
mepping from m complex and p - m real pairs of roots to the corresponding
pairs (Bi’ Yi) - in addition to the identity mapping from aﬁ odd real
root to itself, whenever q 1is odd. The necessary notation is

provided by defining an index set K whose members are ordered

(p + 1)-tuples denoted k = (kl, Ky 3 vee s kp , m). The first p
elements are some ordering of the integers from one to p, (corresponding
to the indices in (A.1.2)) such that the first m are the indices of a
complex pair, and the last p-m the indices of a real pair of roots;

the ordering is otherwise arbitrary, 8o to avoid indeterminacy assume

the netural ordering within each sub-vector. m runs over integral

values from O to p.

There are (i) possible combinations of m complex and p-m real
pairs, and the members of K enumerate all possibilities for each m,

m=0,1, ... , Dy giving & total of Z(i) = 2P members.

m
Now define for each k € K a set
- 2(p-m)+1 a
. = (X s ) X R C R
k B k. =
~ 1i=1 1
with typical elements
. = (1, 5 W, geees I s W 5 A y A s veen s
"% kl kl km km l’km+1 2’km+l
)‘l k ] )‘2 k 9 aq) ]
p *p

where the subscript k is to be interpreted as a vector-valued index,
the member k € K, such that the subscripts of the elements of ¢k

correspond to the elements of k. Note that the last 2(p-m) + 1 co-

-~

ordinates of ¢k e o ere identical with the real a; of (1.2).



Similarly define

*

'Elk = { 'Ek = (81’ Yl’ see g B p.’ Yp,aq) I— o < Bj < eo;
Y. < 11? B? iff Jd = k, and i m Vj' ~®m < g < o}
i 3 v ; > . : )

(A.1.T7)
- 2
= (X T )X R C R
T if j=ki y 1 > m
where Tj =

B2 -7 ifj=k. ,i€m

Then by a natursl extension of (A.l.h) snd (A.1.5) we can define a

femily of continuous meppings.

*
t, = 91:("11:)' Pody > Tk s 1~zeK (A.1.8)

~ ~ ~ -~ ~

By a similar extension from (A.1.3), we also define

- *
- - q
o Bg): T, > & & R (A.1.9)

~ ~

Important properties of G and h are summarised by the following

~

~

lemmas:

Lemma 2 The femily T, , k€& K, forms a partition of rC.

IR

41.



Proof of Lemms 2:

Assume q is odd - the modifications in the even case are trivial.
We are required to prove (i) any t€ R%Y is in at least one set

T 5, k € K (ii) any t € &2  can be in at most one set

Consider t = (Bl, Y. s vee s Bp,yp,aq) e RY.

For each pair (3j,yj) either (a) Ys > Bg or (b) Y;

Arrange the indices j into a p-tuple,. those for which (a) holds

)
< 1 B

first followed by those for which (b) holds. Together with the number

m of pairs for which (a) holds, this defines an element k of K,
*
and so by definition t@ T, for k € K. This proves (i).
* *
Now suppose that 3 t s.t. toe Tk' and t € Tk" where
k' # k". Form the (p+l) - tuple k from t in the manner just
*
described. If kX #Xk' then t ¢ T,+ and hence k= k' .

Similarly k = k", contradicting the assertion that k' # k". This

~

proves (ii), and hence the lemma.

Corollary. Every bowndary point of Tk is the limit point of a
. -
sequence in T+ for some k' # k.
0] “ -
Lemma 3: The imege sets ek of '1‘k under h form a covering

for R

42



Proof of Lemma 3:

»
We have to prove that 6@ R? is in at least one set O, = h(Tk) ’

k € K.

The function h is defined by (A.1 .3to be a mapping from g? to

R, and from its functional form derived from(Al.l) or(Al.2), it is

evident that
R = n(RY) (A.1.10)

i.e. eany point 06 € RY can be associated with one or more points

t € RY by h. Unless the lemma is true,

EI 8, &.t. gk# g(tk), viee T

~

, k € K (A.l.11)

L

~ ~ -~

: #
But by Lemma 2, every t € R? is identical with some tk € Tk’

-~

k € K, so (A.1.10) is false unless J 6, = 0 #h(t), t € rY,

which contradiets (A.1.11).

Lemma 4: If a point is in ¢, » then the point obtained by replacing
either a real root r; ora complex modulus as by its' inverse is

also in ¢k'

The proof of Lemma U4 follows immediately from the definitionms.

Using the preceding results it becomes straightforward to define a

collection of composite mappings

C_ = Coh oG ¢ > B, k g K.

43.



Lemmas 2 and 3 ensure that the collection jointly represents the

function C over the whole of the original parameter space.

Appendix II

Proof of Theorem 1

(i) When oy is a real root, observe that (1.2) can be written in a

partially factored form as

%
8(L) = 8 (L)(1 - ajL) (A.2.1)
* *
- q-1
- + s e
(Q+6, L+ + 8.y L )
- a.(L + + ...+
aJ(L 8, L 0.1 L*)
*
= © (6, -a; o ) i
r=0 J
» * #*
where 9_1 = 6 = 0 and 8 =0, so that
= * * (A.2.2)
er = er = aj er_l s r=1, ccc0 o Qo 2,

t 5 . .
The 8 h -order autocovariance oews is defined by

q-s
wy = z er er+s 8 =0, 1y se0 5 @ (A.2.3)
r=0
s . 2 . » : % " P
= 3 - a. +
rzo L(l ¥ aJ ) er er+s GJ( ar--l er+s er er+s—1)]

substituting from (A.2.2) and rearranging, using the fact thet terms

* *
conteining e_l and eq are zero. The proof of (i) is immediate on

substituting yaj for o in (A2.3).



write the roots

|
1

(ii)  When a; 1s complex, and O, = 95 o

in polar co—ordinates as

. = -iw.
_ 1w, and 0. = | a. e .
a; = | o; ey 3 oy | J
. . ~ 2
Define B = - 2 |u.| cos w; and y = la.l
] dJ Cd
A suiteble partial factorisation is
+ =
S ajL)(l - o L)
. 2
= o (L)(1 + BL+ yL%) (A.2.4)
- p [+ eesye ]
B _ r 8 r~1 v 2
=0
h é+ = é+ = é+ L é+ = 0 d é+ = 1 d
where 6_, = 6_; = - e an o = s &an
+ + +
= + + . A.2,
8. M BO. . * Y6, (A.2.5)
Substituting into the definition of w, as before gives
B 2 2, .+ +
wg = I [(1 + 85+ y)e 8 ¢
r=o0
+ + + +
6
B(L+y) (8, 8, + 8. 8. ) (A.2.6)
+ + + +
+ (8] 6. > 6y p Orag )]
2 2 2 b
where 1 +8 +vy = 1+ lajl cos “j + Iaj |
= 3
B(1+y) = =~ (Iaé| + ]aj |°) cos w,
2
y = |o. |7,
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. 1 1 ~iw 1 1w . :
Since —_— = = and -4/~ B —~—— ¢ » 1nversion of
35 5] o oyl

the roots in pairs is equivalent to inversion of the modulus of the pair.
Hence, the proof of (ii) is immediate on substituting I%-] for |aj|

J
in (A.2.6).

- Appendix III

Proof of Theorem 2:

By assumption the joint density of the observed realisation u and the

pre-sample disturbances €y is

~

-(T+q)/2 e'e

%) exp { = =%} (A.3.1)
20

£u, e 5 8, 02) = (20Ng

-~

where € is the (T+q) -vector of independent random variates defined

~

by (2.3).
(A.3.1) is related to the joint density of u by

f(u, e, 8, 02) = f(u; 0, 62)'f(;° lu 5 o, 02) (A.3.2)

~

. . 2 .
It 1s therefore required to evaluate f(e° Iu; 8, o). First

S ~

premultiply (2.3) by (X'X)"1 X' and rearrange to give

e, = (XN X' (e - W) (A.3.3)

~

£, is normally distributed with conditional mean vector

~xx)r X W

€ by definition (2.7)

DG
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and covariance matrix

E(e,~ €)(e =g ju) = o® (x'x)7%

Hence
: - 3 (e ~¢ }'X'K(e -~ ¢ )
-~ - - | »
(A.3.4)

*X (e e,)

™
]
tdm

From (2.3) and (2.7),

so that
' = ' + - Y1yrs _A .3,
€' € €' e (fo fo) § ?(Eo go) since (A.3.5)
e' X = 0.

Hence combining (A.3.1), {A.3.2), (A.3.4) anda(é.B.S),
Q ~% € €
% |x'x| (A.3.6)

f(u; 6,0?) =(2mn 02) emp{"=*§ }

which is equivalent to (2.k).



AEBendix IV

Proof of Lemma 1 ¢

It may be deduced from the definitions that the elements of X are

defined by the recursive formula

-8

xjt = 1 xjt_l" see -8

q xjt*q » (A.4.1.)

t = 1+4qg, ooy T +*gq, J=1, «v. »

the starting values le 5 000 ¢ qu being provided by the jth
column of the q-order identity matrix. Assuming all the roots to be

distinct, the solution of the difference equation (A.4.1) is

ALl (A.4.2)

where the coefficients AY  are the (i,j)th elements of A_l, and

‘ al Q2 ss0sses aq
2 2 5
4 % % :
3 . 5
o . (¢ x @)
q 3
‘al GZ R uq n
. ,\th ' .
Hence, the (j,%) element of X'PX is
T+q T+q
z r P X.. X (A.4.3)
tw] s=l ts “jt “Is
q q . T+q T+q
- ij k2 t
z z A A z z Pes %4 o, from (A,4.2)

i=1 k=1 t=1" g=]
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The elements of A_1 and by assumption P are O0(1) as T+ .

~

Hence to determine the order of magnitude of (A.4.3) as T » = it is

sufficient to consider the order of the double power series

T+q T+q
I T a§+s (A.4.4)
t=]l s=1

where o is the dominant root, and P oy ;8 = 1, <. , T+q 1is a

d
sequence of bounded variables.

Now consider the case where a root, say o, has multiplicity m. (There
is no need to consider the case of more than one multiple root). The

solution to (A.4.1) becomes

- 1j t 2j t mj m1 t
xjt A al + A t oy + ..o + A t al
1 i ¢
+ I A o, (A.4.5.)
i=m+1 1
where
avl... al am+1.l.- a
2a2 2m-1a2 uz az
é - 1.-. . 1 m+1l|o

q m14q q q
qal...q Gy G 1" aq

From consideration of the analogue of (A.4.3) corresponding to this case,
it is evident that to determine the order of magnitude of

z I P %, X as T+, when o has multiplicity m, it

¢ s jt Tis ‘ d

is sufficient to consider the order of



T+q T+q
gl oGt TpTp  gml 8 (A.4.6)

t=1 s=1

This reduces to (A.4.4) when m = 1, so we consider (A.4.5) as the general

case.

Using standard results on the convergence of power series(l), (A.4.6)
is convergent if a is inside the unit circle, and divergent if it is

outside. This proves part (i) of the Lemma.

We assume | ad[ > 1, and consider
T T
1 m-1 t ol 8
— It la; | = s lo) | (A.4.7)
2 (m l)laiTl t=1 d ' o ts d
T m-1
T m-1 t-T ) s=T
= & leg 1 zoR @ ey
T s=1
t=1
T-1 T-1 m-1
tym-1l ;| -t ] 8
- o (1-3) [a.7] = P (1-2) |
g T d a=0 T-t,T-s T l d
This series is convergent, which is sufficient to prove (ii).
If Iadl = 1, consider
T T
1 m-1 m-1
2D Lt L s ® (A.4.8)

(1) See Apostcl {1974}, Chapters 8 and 9.
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T-1 m1l T-1 s m-1
- 5 (1-=) I Ppigg -7 .
t=0
(A.4.8)
/has the same order of magnitude as I Pts’ and I Pts = 0(£(T)),
t,s t,s
2

where 1 & £(T) ¢ T".

This proves (iii).
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