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1. INTRODUCTION

Procedures for the seasonal adjustment of economic time series have typically
been evaluated by studying their effect on a sample of actual time series. Recent
proposals for amendments and exteﬁsions to existing methods have also been
evaluated in the same way. Perhaps this approach is thought to be inevitable
given that "there seems to be no ideal process of evaluating a method of adjustment"
(Granger, 1978, p.55). In contrast, however, this paper continues a line of
research in which the properties of the procedures themselves are studied, in the
abstract. It is hoped that this will improve our general understanding of the
performance of the existing methods and their extensions, and help to explain the

results of the previous empirical studies.

The particular procedure considered is the U.S. Bureau of the Census Method
11, Variant X-11 (Shiskin et al., 1967), which is widely used and is generally held
to give satisfactory results in the seasonal adjustment of historical data. Our
analysis proceeds by linear filter methods. The basic framework of a set of "time-
varying" linear filters is presented by Wallis
(1982) , and further properties of these filters and their components are considered
in the present paper. The use of linear methods implies that attention is
restricted to the performance of X-11 in additive mode (in which seasonal components
are estimated as average differences from, not average ratios to, the trend-cycle),

neglecting the option of graduating extreme irregular values.

The problem of first adjusting the current month's observation and then
revising the seasonally adjusted figure as time goes by and more data become
available has received much attention recently. A specific suggestion is that
the subsequent revisions in the adjusted values might be reduced by applying X-11

not to the observed series alone but to a series augmented by forecasts of future



values. This has been put forward in association with various forecasting methods
(compare Dagum, 1975, 1979; Geweke, 1978; Kenny and Durbin, 1982), but since in
all thése methods the forecasts are calculated'aé linear combinations of observed
values, our analysis can also encompass these "X~11-FORECAST" procedures. Many
statistical agencies run the X-1l program only once a year, and at that time
project seasonal factors for the adjustment of the next twelve months' data, to be
used as tﬁe data become available. Kenny and Durbin (1982) and Wallis (1982) have
argued that this practice should be replaced by running the program every month,

and it is not considered in the present paper.

The linear filter representation of the X-11 seasonal adjustment procedure is
presented in Section 2. The filters range from the purely one-sided moving
average implicit in the preliminary adjustment of the most recent observation,
through a number of asymmetric moving averages, to the symmetrié moving average
implicit in the adjustment of historical data. The relations with forecast-
augmented procedures are considered in Section 3, and following a result given by
Géweke (1978) and Pierce (1980) we define the property of internal consistency of
a set of linear filters. The polynomial regression origins of smoothing filters
are consiéered in Section 4, and it is shown that whereas sets of filters constructed
in this way aré internally consistent, the Henderson moving averages used in X-11,
for which a new interpretation is given, are not. In Section 5 forecast-augmented
procedures are used to provide models for which the X-11 procedure already
minimises the mean squared error of revisions, thus illuminating the empirical
comparison of various methods. Particular attention is paid to important work
by Kenny and Durbin (1982) and Dagum (1975, 1979). The relation to optimal

signal extraction methods is briefly considered in Section 6.



2. THE X-11 LINEAR FILTERS

The original observable monthly series, denoted x,_, is the input to a linear

t
filtering operation, of which the output is denoted Yo In the present context
y 1is the seasonally adjusted value of x, but the basic framework can be applied

to any problem of signal extraction, interpolation, extrapolation and smoothing

by linear filter methods. The X-11 program comprises a sequence of moving average
or linear filter operations, but their net effect can be represented by a single
set of moving averages. For a date sufficiently far in the past, the final or

(m)

historical adjusted value ytm is obtained by application of the symmetric filter

am(L) I
m
(m) _ _
yt = am(L)xt = _Z am,jxt—j R
j=-m
where L 1is the lag operator and an 3 =a j This filter is described
2 T

variously as a 2m+l~term moving average, or as a symmetric filter of half-length
m. For current and recent data this filter cannot be applied, and truncated

asymmetric filters are employed:

(4) = a,(L)x, = ? a b4
Ye A T

For the filter ai(L), i=0,1,...,m, the subscript 1 indicates the number of
"future" values of x entering the moving average, that is, the number of negative

powers of L that appear, or the negative of the lower limit of summation in the

expression Ia, Equivalently, the superscript on y indicates that yél)

X .
i,j t-3
is the adjusted value of x calculated from observations at times t-m, t-m+l,...,

ty...,t+1, and yéO) is the first-announced or preliminary seasonally adjusted

t

figure. For the X~11 filters considered here the value of m is 84 (it is assumed



that at the stage at which the program chooses a 9~, 13- or 23-term Henderson
moving average to estimate the trend-cycle, the 13-term average i1s chosen). Thus
the X-11 program can be represented as a set of 85 linear filters, with respectively
0,1,...,84 coefficients of future values. There is no attempt to compensate
for the ﬁruncation of the weights applied to future data by increasing the number
of past values entering the moving average, thus with few exceptions all filters
involve 84 past values, as indicated by the constant upper limit of summation
in the above equation, although the remote weights are very small. In Figure 1
the weights and transfer functions of three filters of particular interest, aO(L),
alQ(L) and a84(L), are reproduced from Wallis (1982), where details of their
calculation can be found; the symmetric filter is alsc given in Wallis (1974).

At times t+i and t+k two seasonally adjusted values yéi) and yék)can be
calculated, corresponding to the unadjusted value xt, and the revision is defined

as

LRk )

£ + + ’ Ogi<kgm.

This reflects the information in the "new" data x see § X . The

trivl’ Frrit2’ t+k
total revision from a given point in time t+i is réi’m) . Often statistical

agencies run seasonal adjustment programs only once a year, so that the revisions

i4
r(l'l 12) . The first annual revisions r(O,lZ)

then mad r
n e are & N

are of particular

interest below.



3. FORECAST-AUGMENTED PROCEDURES AND THE INTERNAL CONSISTENCY OF SETS OF LINEAR

FILTERS

In the X-11-FORECAST procedures current data are adjusted not by the one-sided
filter %3(L) but by later filters applied to a series extended by forecasts. In
practice twelve such forecasts are used, thus the procedures calculate the prelimin-

but as alz(L)xt, where the tilde (-) indicates

~ ~

ary adjusted value not as aO(L)xt

that the input to the filter is the augmented series xl,...,xt, xt+1' ves g xt+12.

Since the forecasts are calculated as linear combinations of observed values, the

result is still a one-sided filter of the original data. Writing the forecasts as

>
=

= f £ X

xt+k K t-q k=1, ... , 12

the new one-sided moving average is

- 12 N m
§>(L)xt = kil alZ;-k Kige * jioalz'j xt-j
max (m, L) 12
= 5 ( + I £ ) x .

812,53 L 812,-kk3’ *t-j

j ==y <

Dagum (1975, 1979) bases the forecasts on ARIMA models fitted to the observed
series, while Kenny and Durbin (1982) use autoregressive models fitted by stepwise

regression methods to the first differences of the series.

Support for X-11-FORECAST procedures is provided by a result given by
Geweke (1978) and Pierce (1980), namely that the asymmetric filter for which the
total revision has smallest mean square is given by the application of the
symmetric filter am(L} to a series extended to the extent necessary by optimal

-

linear forecasts. Similarly the one-sided filter'for which the first annual
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revision rgo’lz)

has smallest mean square is aO(L) above, provided that the

forecasts are optimal. (Many of the empirical evaluations compare the

Xtk
total revisions of various procedures, even though only twelve forecasts are
employed in the X-11-FORECAST procedures; we return to this below.) In Geweke's
words, "the best linear forecast of any given linear combination of xt's is the

given linear combination of the forecasted xt’s.“

Given a symmetric moving average these results provide a way of constructing
asymmetric moving averages for the adjustment of recent data, based on optimal
forecasting equations for a given x~process. We say that a set of linear filters

constructed in this way is internally consistent, with respect to the given x-~

process. Likewise a given set of linear filters can be examined for its internal
consistency by asking what forecast function and hence what x-process is implied
if ai(L) is equivalent to the application of am(L) to a series extended by
m-i forecasts, and is this x-process the same for all possible pairs. By

(1) and yt(k) ;, O0gi<k<m,

considering two intermediate adjusted values Ye
and repeatedly applying Geweke and Pierce's result, in effect repeatedly taking
conditional expectations, we see that an internally congsistent set of filters mini-

mizes revisions throughout the whole sequence of adjustments. Thus if the filters

ai(L) and ak(L) minimize the mean square of the revisions «r (4m) and

t
(k ,m)

« respectively, being identical to the application of am(L) to a

sequence of observations augmented by m - i and m - k forecasts respectively,

(i,k)

£ and is

then ai(L) also minimizes the mean square of the revisions «r
identical to the application of ak(L) to a series extended by k - i forecasts.
Note that while the theoretical result refers to an optimal forecast given the
infinite past, the practical filters involve a finite past, hence some restriction
on the x-processes considered is necessary in order for the equivalences among
filters to hold exactly. Finite-order autoredressive models clearly allow corres-
pondences among the practical filters, but moving average mbdeisﬂwhbsé infinite

autoregressive representations do not converge quickly allow only an approximation

to an optimal forecast equivalence.



7.

As an illustration, we examine the 5-term "Henderson" moving averages used
for estimation of the trend-cycle component in the quarterly version of the X-11

program (Shiskin et al., 1967, Appendix B, Table 3A):

a (L)x = . + 0. -

o (L)X, 0.670x_ + 0.403x,_, - 0.073x__,
L = ° ® -

al( )xt o] 25?xt+l + 0 522xt + O.294xt_l 0.073xt_2

aZ(L)xt = —O.O73xt+2 + 0.294xt+1 + O.558xt + 0'294xt~1 - 0.073xt_2

We seek the x-process and associated forecast coefficients implied by the assumption
that the one-sided filter ao(L)xt is identical to az(L)it , that is, the symmetric

, X, R b'q . For an

filter applied to the forecast-augmented series L & e+1’ Xego

exact equivalence the forecasts can only involve three observed x-values, so we

postulate a third-order autoregressive process, with forecasts given by

~

el O1Xp F bpXy T 03X oy

>

~

€42 O1%¥pqp 0% * o0

]

2
(0 + 0y xp + (010, + 03) x, _, + ¢,0x , .

Equating the coefficients of, respectively, x and x in ao(L)x and

' Fe-1 £-2 t

a2(L)§£ then gives three polynomial equations for the ¢'s, which have four solu-

tions. Writing them in the form ¢(L) = l—¢lL—¢2L2—¢3L3 , these are
2 2
(1 - 0.568L - 0.43217), (1 - 4.459L + 3.459L°) ,
(1 - 3.027L - 1.493L%), (1 - 4.027L + 2.5341% + 1.4931%).

Note that this mathematical problem has multiple solutions even when one is
attempting to recover an autoregressive operator that has actually been used to
construct the one-sided filter from the symmetric filter. One hopes. in general

that (at least) one of these solutions has a plausible statistical interpretation. To



consider this it is more informative to express ¢(L) in terms of its roots

$(L) =1 (1 - AiL), whereupon the solutions can be written
(1-1L) (1 + 0.432L), (1-L) (1 - 3.4591),
(1 + 0.432L) (1 - 3.459L), (1-L) (1 + 0.432L) (1 - 3.459L).

Of these, the first is acceptable as an ARIMA (1,1,0) model, but the remainder are
not acceptable from a statistical point of view due to the presence of the explosive
root. Thus we conclude that aO(L) is equivalent to the application of az(L)

to a sequence of observations augmented by optimal forecasts for series obeying

the first model, that is, for such a series ao(L) minimizes the meansquare of

the revisions rt(o' 2)

The problem of non-linearity does not arise when comparing ao(L) with
al(L), or al(L) with a2(L), since only one forecast is involved, whose coefficients
are (linear in) the ¢'s. Simple calculation gives the model relating aO(L) to
al(L) as

(1-L) (1 + 0.,424L) X =€,

and the model relating al(L) to aZ(L) as

(1-L) {1 + 0.493L) X o= €.

Although the three models are very similar, their coefficient values do not exactly
coincide, and we conclude that these filters are not internally consistent in this

sense.



4. INTERNAL CONSISTENCY OF REGRESSION-BASED FILTERS

4.1 Least squares polynomial regression

Filters used to estimate the trend-cycle component prior to estimation of the
seasonal component are usually designed to reproduce, locally, a polynomial of
prescribed degreek d. A least sguares estimate of the trend value then emerges as
a linear function of the data, whose coefficients are independent of time, and these
are the moving average coefficients (see, for example, Kendall, 1973, Ch.3). Given
a sample of n observations Xyo eee 0 X placed in a column vector f , and an
nx{(d+1l) matrix g whose jth column comprises the (j-—l)th powers of the integers

1, ... , n, the trend estimate at time t is

2 . .
where z' = (1,t,t, ... ,td). Writing the coefficientsg of the observations in a

-~

column vector a, with the coefficients of the earliest data entering first, then
Ve = a'x, a=12(2'2) "z_ .

The coefficients are independent of time in the sense that, on indexing the data
to+1, tQ+2, .« o - 7 to+n and using these integers to construct % and %t
conformably, the same coefficients are obtained whatéver the value of to . So
when n = 2m+ 1 it is conventional to let the time index run from -m to m ,
for arithmetical convenience. (Similarly the use of orthogonal polynomials
simplifies the arithmetic without affecting the results.) If n is odd and t
is the mid-point of the sample, then a symmetric moving average is obtained.

Kendall (1973, Appendix A) presents Cowden's tabulations of moving averages for

trend estimation at t = 0,1 ..., n, n+tl, for given values of n and d . Such
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a table does not correspond to a set of filters in the sense of Section 2, but
such a set is easily constructed by putting t = m+l and considering in turn

n = m+l, m+2, ..., 2m+l, and this set is internally consistent with respect to
the regression model.

To see this consider the filter applicable ton £ 2m + 1 data points and
that applicable to k <n (but k > d) data points. For internal consistency the
latter must be equivalent to the application of the former to the series
xl, cee o Xy ;k+l' ese o ;n ;, where the forecasts are now obtained by poly-

nomial regression. We partition the vector x and matrix 2Z into their first

k and last (n-k) rows, thus

The forecasts X, obtained from polynomial regression based on the data x, are

1

. | .
= ' '
%) Zy (292)) "2 %)

]

and applying the n-term moving average to the series x' = (§i H §5) gives the

trend estimate at time t as

v, = z. (2'2)

-] -]
= ' v ' ' 1 ' 1
% (§1§1 * §2?2) (glfl * §2%2(%1§1) §l§l)

which is identical to the application of the corresponding k-term filter to the

data fl'
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4.2 The Henderson moving averages

These filters are designed to reproduce a cubic polynomial trend. 1In
obtaining a general expression for the weights of the symmetric filter, Henderson
(1916) showed that three alternative smoothing criteria lead to the same result:

(i) minimization of the variance of the third difference of the output

series,

(1i) minimization of the sum of squares of the third differences of the

moving average coefficients,

(iii) fitting a cubic by weighted least squares, with the sum of squares

of the third differences of the weights a minimum.
A more accessible presentation of the general derivation and a demonstration of
the equivalence of these criteria is in the Appendix of Kenny and Durbin (1982).
A further interpretation can be obtained using the approach of Hannan (1970; PP.

186-~7), as follows.

Augmenting the moving average coefficient vector a with zeros to accommo-
date the differencing operations, criterion (ii), the sum of squares of the third

differences of these coefficients, can be written

S = a'Va

o

where V is a symmetric band matrix with elements on the main diagonal and first
three sub-diagonals equal to 20,-15,6 and -1 respectively, all other elements being
Zero. Hannan shows that minimization of this general expression subject to the
condition that the filter reproduces an arbitrary polynomial of degree d vyields

the solution
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In Hannan's formulation Y is the covariance matrix of the input series, and he
notes that, as is well known, this result corresponds to using the best linear
unbiased regression of the input series on the polynomials to estimate the trend
value at the relevant time point. In the present case the particular matrix VvV is

the covariance matrix of the moving average process

3

and so we have a further interpretation of the Henderson filters, namely as
generalized least squares polynomial regression subject to this error structure. If
n is odd and t is the mid-point of the sample then the coefficients are again

symmetric, and using this approach we can readily verify their published values.

By sétting t = m+l and considering in turn n = m+l, m+2, ... , 2m+l the
above expression gives a set of filters of the kind discussed earlier. This set
is again internally consistent with respect to the present regression model. The
proof of this is a tedious generalization of the proof for the least squares case

given in section 4.1, taking account of the need to define xk+l' cee o xn as the

best linear unbiased predictors of T x  given Kir eee X .

On computing sets of filters for m = 4, 6 and 11 in this way we immediately
notice that, except for the symmetric filter, the coefficients differ from those
used in X-11. The source of the asymmetric moving averages given by Shiskin et
al. (1967, Appendix B, Tables 3B-3D) corresponding to the symmetric 9-, 13- and
23-term Henderson méving averages is something of a mystery: they are not due to
Henderson (1916), no alternative source is cited, and they are not the result of
applying Henderson's criteria to the design of asymmetric filters. Our calcula-

tions in general find that the weights given to current data are somewhat larger
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than those in the tabulated filters used in X-11. Kenny and Durbin (1982)

report that the "one-sided version is constructed essentially by assuming that the
series to be smoothed can be extended by a straight line fitted by least squares",
which is their own empirical finding for the monthly filters. For the quarterly
5-term filters analysed in Section 3 we do not claim that the autoregressive
models we have deduced were actually ysed. to construct the asymmetric filters,

but we note that the models imply that the forecast is approximately given as

the average of the last two observed values, which may be a more plausible
interpretation of the actual derivation. Basing asymmetricvfilters on forecasts
obtained from a different model than that embodied in the symmetric filter leads
to internal inconsistency. In turn this leads one to expect that improvements
over the existing one-sided seasonal adjustment filters could be made for series

well-described by the model underlying the symmetric filter and hence

satisfactorily adjusted by it.



5. FORECASTING INTERPRETATIONS OF THE RELATIONS BETWEEN SELECTED FILTERS

(L)

5.1 Autoregressive models relating aO(L) to a ., (L

The filters under consideration require a finite amount of past data, and in
section 3 the possibility was suggested of finding an autoregressive model and
associated forecast functions such that an existing filter ai(L) is already

equivalent to the application of ak{L) to a series augmented by k-i forecasts.

(i,k)

For such a model the mean square of the revision rt

is already at a minimum.
Much research has focussed on the adjustment of current data, and the practical
X-11-FORECAST procedures augment the observed series with 12 forecasts, and so

first we consider the relation between the X-11 filters aO(L) and a,.(L).

12
To obtain a general characterization we follow the approach of Kenny and
Durbin (1982), in which forecasts are obtained from autoregressive models. They
estimate these by regressing the first difference Axt on Axt-l' ces o Axt_zs,
reducing the set of regressors by the Efroymson stepwise method. Neglecting the

restriction implied by the use of the first difference operator, the general

model is
¢(L)xt = £

where  ¢{L) is of degree 26. For this model we construct the forecast coefficients

for one-step, two-step, ... , twelve-step forecasts

~ 25

b'e = J £ . x '
t+k =0 kj “t-j

k=1,...,12

by starting with the expression for the one-step forecast
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~

Kool T X P 0¥ gt ot doex o0

and then using, sequentially, the expression for the k-step forecast

~ ~ ~

Berk T P1Xeake1 oot T Q1 Xeny YOt et bpex o

k=2,...,12.

We then seek the ¢'s that equate the one-sided filter implied by the application

of alZ(L) to the forecast-augmented series, namely

- 25 r 12 3 m 5
a (L) = I L a + I . a ] L + I a -,
o joo L %1203 7 2 B P12,k jm26 1243

to aO(L). Note that the use of a finite autoregression implies that the later

coefficients in the new filter are simply those of alz(L), and so the new filter
cannot be exactly equated to aO(L). (Comparing the coefficients of ao(L) and
al2(L) plotted in Figure 1, we see that there is little difference in the
coefficients at lags greater than 25 except at lag 36.) Equating the earlier

coefficients in the two filters gives
I £ a j=0,1,...,25,

a set of 26 nonlinear equations in the 26 unknown ¢'s which we solve by
numerical methods. (A nonlinear least squares algorithm is used: at a solution
the residual sum of squares is zero.) As in the simpie example of section 3 there
are multiple solutions to this numérical problem, and while we cannot claim to
have examined them all, indeed we are not sure how many there are, the model given

below has the most plausible statistical interpretation and is also suggested by the
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models relating successive pairs of filters.

i 1 2 3 4 5 6 7 8 9 lo 11 12 13
¢i -.60 -.40 =-.26 .13 =-.19 .38 -.16 .29 =-.13 .12 .11 ~-.28 =-.21
i 14 15 16 17 18 19 20 21 22 23 24 25 26

6. .27 .14 -.15 .15 -.20 .23 =-.16 .15 -.08 -.09 -.39 .59 .OL

To interpret this general autoregression we calculate the roots of the autoregressive
operator, ¢(L) =1 (l—AiL). There are two real roots, (1+0.982L)and (1+0.018L),

and twelve complex conjugate pairs, whose modulus and argument (in radians) are as

follows:

mod ar mod ar

1.033 0.10 0.981 0.27 R
0.958 0.51 0.945 0.82

0.983 1.06 6.965 1.37

0.985 1.57 0.975 1.89

0.982 2.10 0.978 2.42

0.985 2.62 0.988 2.81

Noting that the arguments in the first block of six pairs of roots are approximately
kn/6, k=0,1,...,5, these together with the first real root can be approximated as
(l—L)(l—Ll2) , the differencing operator commonly employed in ARIMA models for
seasonal time series. While this solution contains a complex conjugate pair of
roots with modulus greater than one, it is one of the least explosive solutions to
this problem we have found, and no solution representing a stationary autoregression
has been observed. In empirical time series analysis the use of as many as twentysix
coefficients to specify a model would be thought excessive, and likewise the rela-

tions between the filters may be more readily interpreted in terms of seasonal ARIMA

models parameterized more  parsimoniously, as considered in section 5.2.
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The implication of this result is that, for a series with suqh‘autoregressive
structure, the existing one-sided X-11 filter 'aO(L) minimises the mean square
of the first annual revision réo'lz) , and no X-11~FORECAST procedure of this
kind will lead to an improvement. Of course for series having substantially
different autoregressive structures, the appropriate X~11-FORECAST procedure will
outperform X-11. Attention is then drawn to Kenny and Durbin's anomalous
finding that for one group of nine series (those with MCD=1) the X-11 ao(L) gives

better results than the X-11-FORECAST aO(L). If this finding is not due to

sampling variation, then three possible explanations are suggested.

The first possibility, on which we have little further to say, is that the
various nonlinearities in the practical procedures vitiate our linear analysis.
The second is that the comparison is based, as in other studies (e.q. Kuiper, 1978),

O
on the total revision ré rm) of the two methods and not the first annual revision

;12 , o,
réo ) . The one~sided filter that minimises the mean square of ri m) is

am(L) applied to a series augmented by m forecasts; call this ag(L). On the

other hand the filter being considered is aO(L), namely alz(L) applied to a series

augmented by 12 forecasts. If the filters were internally consistent then a._ (L)

12
would be equivalent to the application of am(L) to a series augmented by m-12
feorecasts and aO(L) could be obtained either by applying this alz(L) to a

series augmented by 12 forecasts or as a;(L). However, our earlier results

suggest and later results confirm that the X-11 filters are not internally consistent,

and we have the possibility that for these series the X-11 aO(L) is a better

approximation to a;(L) than is ao(L), hence the result.

A third explanation involves the possible non-optimality of the autoregressive
forecast, which might apply if the appropriate models for the series had important

moving average components. However the form of the seasonal ARIMA models identified
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by Kenny and Durbin for these series is little different in this respect from

those for the series for which lel-FORECAST methods dominate, énd without knowing
the coefficient values this possibility cannot be assessed. Using the conventional
Box~Jenkins notation (p,d,q) x (P,D,Q)12 ; -the nine series giving the ancmaleaé
results have p+d+D = 3, and this distinguishes them from the other series. Eive'of
the nine models are (0,2,1) x« (0,1,1)12 , and the remaining four also have P=0

and Q=1. Leaving aside questions about the existence of measures such as MCD.for
models of this kind (Burridge, 198) énd despite the fact that if MCD=l1 the X~-11
program applies the 9-term Henderson moving average to estimate the trend-cycle
component, not the l3-term average used in our linear filter calculations, the
results suggest that such models might emerge when we consider equivalences between

filters based on ARIMA models.
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5.2  ARIMA models relating a (L), a;,[L) and ag, (L)

In this section we report the results of a comparable exercise to that of
the previous section, except that seasonal ARIMA models replace the finite auto-
regressive model. That is, for a given seasonal ARIMA model we construct the

forecast coefficients and hence the X-11-FORECAST filter coefficients.

= g .+ g £ a j=0,1,...,m,
and then seek the model and its associated parameter values such that ;O(L) is
as close as possible to aO(L). For a given model the parameter values are
chosen to minimise the unweighted sum of squared deviations between the filter
coefficients. The choice among candidate models is partly based on the sum of
squares, but we also have in mind the various criteria used to interpret such models
when they are fitted to observed time series; For comparative purposes we include
in the search the three models available in the automatic version of Statistics
Canada X-11-ARIMA (Dagum, 1979}, and it turns out that one of these is our

preferred model. The results for these three models are as follows.

Estimated model relating aG(L) to alz(L) Sum of squared
deviations
2 12 2 12
(1-1.37L + 0.39L") (1-L) (1-L™7) X, = (1~1.49L + 0.76L") (1-0.69L )et 0.0096
i
1-m? a-*?) x_ = (-1.321 + 0.6309) (1-0.74t'%)e,  o.0111
(1-0) (- x_ = (1-0.251) (1-0.690 e, o.0188

The final column can be compared to the "zero-forecast" sum of squares
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2

I (a - a ) = 0.0477 ,

0,] 12,3
We note that the autoregressive operator in the preferred model has a root close

to unity, but setting it equal to unity worsens the fit, and we retain the

(2,1,2)x(0,1,1);, model for further comparisons below, where this feature is less

pronounced.

Again the interpretation is that for a series obeying the model

(2,1,2) x (0,1,1) with the above parémeter values, the existing X-11 filter

12 7
aO(L) is a close approximation to the X~-11-ARIMA filter that minimises the mean

(0,12)

square of the first annual revision rt . In empirical comparisons of the

two methods the advantage of X~11-ARIMA will increase as the x-process differs
more extensively from that given above. In practice we note that substantial

variation can be observed as parameter values change within a given model.

To consider filters that minimise the mean square of the total revision

réo,m) we repeat this exercise for the filter a;(L) obtained by applying the

symmetric filter am(L) to a series augmented by m forecasts:

3=0,1,...,m,

[

&+

it

+
R ]

+h

w

0,3 amj X kj “mk '’

The preferred model is again (2,1,2) x (0,1,1)12 , and the results for the three

Dagum models are as follows,

Estimated model relating a {L) to a (L) Sum of squared
o T :
deviations
2 12 2 12

(1-1.23L + 0.35L7) (1~L) (1-L )xt = (1-1.45L + 0.73L") (1-0.62L )st 0.0114
(1~L)2(1-L12)xt = (1-1.33L + 0.58L2)(1—0.65L12)et 0.0124
(-1 (-1 x, = (1-0.211) (1-0.661 %) ¢ 0.0218
m 2
I (a_ .- )T = 0.0696
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Results in earlier sections cast doubt on the internal consistency of the
X-11 filters, and while the models relating these three filters are not identical,
the form of the preferred model is the same in each case, and the coefficients are
remarkably similar. To complete the picture we report the coefficient values for

the (2,1,2) x (0,1,1)12 model that best approximates a.,(L) by the application

12

of am(L) to a series augmented by m-12 forecasts:

(1-1.08L + 0.21L%) (1-L) (1-L.2%) x, = (1-1.42L + O.7OL2)(1~O.6012)et.

Once more these values are similar, suggesting that whatever adjusted values

(o) (12) (m)
Y or

£ ! Yt yt then for series

empirical comparisons are based on -
well-described by this model X-11 will produce approximately the same results as

¥-11-FORECAST methods.



22,
6. OPTIMAL SIGNAL EXTRACTION

The problem of seasonal adjustment is formulated as a problem of optimal
signal extraction by Grether and Nerlove (i970) and solved uéing methods presented
by Whittle (1963). it is assumed that the observed series X is the sum of two
unobserved uncorrelated stationary components, s, and Uy s respectively the
seasonal and non-seasonal componénts. Assuming that the stochastic structure of

(k)

is known Whittle gives expressions for st '

s, and ut, and hence that of x

t t’

the minimum mean squared error estimate of Sy given data {XT;T$t+k}f These
expressions are linear filters of the data, in general of semi-infinite extent;

the case k=« gives a symmetric filter. Extensions of these results to models

in which the components follow non-stationary ARIMA schemes are given by Cleveland
and Tiao (1976) ( see also Pierce, 1979), who present a components model for which
the X~-11 symmetric filter am(L) approximates the optimal signal extraction filter.
The relations between the filters considered in the previous section are examined

in the light of such models by Burridge and Wallis (1981).

The practical difficulty in implementing seasonal adjustment methods based
on optimal signal extraction results is that of identifying models for the components
from the observed series, given that different components models can lead to the
same overall model. Burman (1980) makes some practical proposals in this respect,
and implements a seasonal adjustment method based on the resulting decomposition.
We are not yet able to incorporate this approach into our comparisons, but anticipate
that for series well-described by the models for which the X-11 filters
approximate optimal signal extraction filters, little benefit from the 4

new methods will be found in empirical comparisons.
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