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Abstract
The paper provides a unifying framework for conducting Bayesian inference on the presence of
seasonal and zero frequency unit roots in quarterly data. The main technique used is the
analysis of posterior odds ratios. A new parameterization is provided for the model and the
prior distributions implemented are discusses and justified. The analysis relies heavily on the
application of a Gibbs sampling algorithm. Such techniques render the Bayesian approach
more flexible and implementable, giving the applied researcher the possibility of specifying a
vast range of prior distributions. The methods are applied to a set of UK quarterly series.
Compared to previous studies, less evidence is found to support seasonal integration

hypotheses.
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Introduction

Interest about the non-stationary characteristics of macroeconomic time series is
widespread. The debate among applied researchers was sparked by the work by Nelson
and Plosser (1982), whose aim was to use sound statistical criteria in order to
discriminate between competing non-stationary hypotheses, i.e. trend and difference
stationarity. For univariate analysis under a classical statistical approach, the available
statistical tools are the integration tests developed in Fuller (1976), Dickey (1976)
Dickey and Fuller (1979, 1981), Phillips and Perron (1988), Schmidt and Phillips
(1992). These tests aim at detecting the presence of a unit root in the univariate AR
representation. A comprehensive exposition of this topic is provided by Hamilton
(1994, chapter 17). The most difficult aspect related to the empirical application of these
tests is the evident difficulty of discriminating, in small samples, between alternative
models of non-stationarity which replicate sufficiently well the correlation properties of
the series under analysis. This is the so-called "near observational equivalence" described
in Sims (1989) and Campbell and Perron (1991).

It is well known that three characteristics of the classical inference approach present
difficulties. First, it is known that the unit root test statistics have peculiar distributions
under the null and the associated critical values have to be obtained numerically. Thus
there exist a distributional asymmetry between the two hypotheses considered. Second,
the Neyman-Pearson inferential apparatus assigns asymmetrical roles to the two
hypotheses. Third, unit root tests share the alarming feature of having unsatisfactory
power properties. DeJong, Narkervis, Savin and Whiteman (1992) conducted an
interesting simulation exercise and report type II errors comparable to ones attained in a
coin tossing game.

The Bayesian inference framework has been applied to the unit root testing problem
relatively recently: see for example, Sims (1988), Schotman and van Dijk (1991a,
1991b, 1992), Phillips (1991, 1992), Phillips and Ploberger (1992), Geweke (1993). In
the Bayesian framework it is possible to devise inferential strategies with properties that
diverge substantially from those of the classical techniques. In the posterior odds ratio
inference setting (see Zellner 1971), the hypotheses being compared are treated in a
symmetric fashion, their relative plausibility being gauged on the basis of the
corresponding posterior probability. The posterior distributions under both the
hypotheses are not asymmetric, and the testing is fully "consistent”, in that the
probability of picking the wrong model goes to zero as the sample size increases.
Moreover, since the relevance of the unit root inferential problem is often related to
some decisions the applied researcher has to take in the model building process, i.e.
difference the series, insert a trend, apply a seasonal frequencies filter, it seems
conceptually appealing to be able to provide Bayesian techniques that have consistently
proved to be a valid support to decision making in other fields of human activity.

The more general advantages and disadvantages of the Bayesian techniques also apply
to this problem. The advantages, together with the ones already described, are
essentially related to the fact that the Bayesian approach is simple, and it constitutes the
only logical formalization of the process of learning. The disadvantages are mainly of a
computational kind. Bayesian methods are "labour intensive techniques". When the
attention of the researcher is confined to a subset of the parameters entering the model,



one has to take the joint posterior distribution and mairginalise it accordingly. This
entails the use of analytical techniques, exact or approximated, and of numerical
techniques, quadratures and Monte Carlo integration. Another important aspect is
related to the specification of sound prior distributions. They have to reflect the state of
a priori knowledge of the applied researcher, and not to be devised exclusively in order
to minimise the computational burden.

In the present paper a Bayesian procedure is applied to testing the seasonal features of
quarterly data. The effects of blind reliance on the published seasonally adjusted series
are well known (see Wallis, 1974). In particular the adjustment of data prior to
modelling might result in biased inference. We therefore consider it worthy to analyse
the seasonal features of quarterly time series on a univariate basis. Given that the
classical seasonal unit roots tests (like Hylleberg, Engle, Granger and Yoo (1990),
henceforth HEGY) appear to share the poor properties of the zero frequency unit root
test, we decided to take the less travelled road, and explore the application of Bayesian
inference techniques.

We begin by devising a parameterization which seems to be particularly well suited for
the inferential setting being proposed. Section 1 is devoted to describing the general
characteristics of the AR model used, together with the particular parameterization
chosen. The specification allows easy discrimination between deterministic and
stochastic seasonality (in the form of the occurrence of seasonal unit roots), and
between trend and difference stationarity. In section 2 the structure of the prior pdf's is
presented, while section 3 describes how the joint posterior is dealt with via application
of a Gibbs sampling algorithm. Section 4 is ancillary to this, since it presents the
descriptions of the conditional posterior distribution for subsets of the parameter vector.
Section 5 provides a description of the posterior odds ratio which seems to ease the
computing burden. Section 6 contains the results of the application conducted on a set
of UK quarterly series, and section 7 concludes. Appendices A and B deal with the
strict technicalities of the analysis. Appendix A contains the detailed description of the
conditional posterior distributions of different groups of parameters. Appendix B
illustrates the key aspects of the rejection sampling algorithms being implemented.

[1] General features of the model

We consider an autoregressive model for quarterly data. Seasonality can be either
deterministic or stochastic. Deterministic seasonality can be accounted for by
introduction of dummy variables. Stochastic seasonality requires the application of the
adequate filter to induce stationarity and raises the issue of the occurrence of seasonal
cointegration (see HEGY, 1990 and Engle et al., 1993). We have stochastic seasonality
when the AR polynomial contains some unit modulus roots at seasonal frequencies. In
the quarterly case, the seasonal roots are -1, for the biannual cycle, and +/- i, for the
annual cycle.

The model considered for the observable variable z, is the following:

o)y, =e, , .~ NID.(0, 0%),



ye =2t - Sg-yt,
St = ag+ap cos(m/2)t + By sin (M/2)t+ g cosmt .
OL) = 1-0¢,L-0¢,L2-...- o L~.

The hypotheses of interest concern the roots of the equation ¢(L) =0, and are as
follows:

De¢-1) =0, (integration at frequency A=n : semi-annual cycle)
2) ¢(i) = o(-i) =0 (integration at frequency A=r /2: annual cycle)
1) =0 (integration at frequency A=0: the series is difference stationary)

4) Any combination of the above hypotheses.

Each one of the "null" hypotheses considered is compared to a parallel "alternative", in
which the envisaged non-stationary feature is modelled with an appropriate deterministic
component. The last part of this section is devoted to setting out the chosen
parameterization. In the next section the structure of the prior used is outlined and
justified.

The model is cast in terms of the parameterization used by HEGY, which makes use of
the Laplace expansion of ¢(L) around the roots +/-1, and +/-i:

¢*(L)Y4t = ViVia + V2 Y1 T V3 Yoo t Wy Yo + € (1)

in which ¢*(L) is a polynomial in L with degree k*=k-4, Vi, V,, Y5 and y, are linear
functions of the parameters in ¢(L) , and the variables y,, , V,,, ys, and y,, are defined in
the following terms:

Vi = (14L+L2+L3) Ve

Yu=- (1I-L+L2-L3) y,,

Vu= - (1-LD)y,,

Vo= (1-L4 y, = (1-L) SL)y, , SL) = 1+L+L2+L3,

In HEGY's setting the hypotheses of integration at different frequencies are represented
as the following restrictions on the representation (1) :

integration at frequency A =0 : y1=0;
integration at frequency A = /2 : y3=y4=0;
integration at frequency A=7 yy=0.

We consider now how to use Bayesian inference techniques for the analysis of such
hypotheses.In order to ease the implementation, a variant of the parameterization (1) is
used, so as to represent the w/2 integration hypothesis as a restriction on a single
parameter. In fact defining :



y,=-2rcos 8 ,y,=2rsinB,
we can write the model as:

O*L)Yae = Wy Vier ¥ Vo Yo +21(8in 0y, -cosOyy ) =¢e, ()
or equivalently:

O*L)Zg - Wy Zypy - W Zgy - 20 (SINO 25, -COS B 25 5) =
= [4¢*(1) +10y+2y,+41(sinB-c0s6)- 4y, t] v -4y, o,
+4 rcos((w/2) t — B)a,+ 4 rsin((w/2) t — 0)B, - 4y, cos(mwt ), +¢,, (3)

where:

z,= (1+L+L24L3) z,,
z, = - (1-L+L2-L3) z,,

2y, = - (1-L2) 7,,

2y = (1-L%) z, = (1-L) S(L)z, .

We have integration at frequency n/2 when r=0; in such an occurrence, the parameter 6
is indeterminate, and the parameters o, ,B, and 6 disappear. When there is integration at
frequency zero, the parameter o, disappears, and so does the trend term -4y t. The
model is difference stationary. Under the hypothesis of integration at frequency 7, the
parameter o disappears.

It is evident that the model is not linear in the parameters involved. Nevertheless, we
believe that it may provides the most correct framework to conduct inference, because it
is based on a "structural” parameterization (see Barghava, 1986), Schmidt and Phillips
(1992)). No parameter is redundant under any of the hypotheses considered.

The specification of prior distributions is bound to yield analytically intractable posterior
distributions. For this reason, we resort to simulation methods, such as Monte Carlo
integration with Gibbs Sampling, drawing on Geweke (1993) and Chib (1993).

f2] The specification of the priors

In order to describe the application of the simulation techniques used in this paper, the
parameter of the model can be distinguished in 7 different groups: n =[n,' N,' N3 Ny Ns

MeMyl':
N= ﬁ*= [B' Y]', B = [ao o, O Bl]'
N, = (0™ 7, ¢*= [¢*1 ¢*m]',

M=o, =V Ms =V, M =L Th =4,



As it will become clear in the next Sections, this division is done in order to associate
these subsets of parameters with tractable conditional posterior distributions.
We also adopt the notation 7, , i=1, ...7, to indicate that subset of parameters in 1} such

that m, UM, =7.

The following prior distribution structure is put forward:
pB Yl n ) ~N@* o2V Be R4,
1

V*=diag(-y, 71, —y, 7L, rrl, L (0,/0)2,

b*= [b' pyl'

p(9*) <1, 0* e RK*

p(c) < o1, o R,

p(y;) =Aj exp(A] vy, yie R, i=1,2;

p(r) =Apr exp(-A; 1), re R, ;

p(®) ~ Nlpg,ogl, 8 € [-m, +n]. (4)

The choice of the priors is justified in the following way:

1)The prior on P, the parameters of the deterministic seasonal structure, is 4-variate
normal, around a location vector b which is determined on the basis of the initial
observations of the process. The prior variances of the single elements of B are designed
to go to infinity as the model approaches the corresponding frequency integration
setting. We have that:

" o Vi = o V= M Vi = e 13,4
Y0 UT T gy 0 2T ro0 Vi o154
but we have also:

m im lim .

21 -0 Vi V11 =0, ] -0 Yy V22=0, V1 =0 I Vii= 0, i=3, 4.

i.e. the prior precisions go to zero, but slower than 1|;12, \|f22 and r2. This property is
particularly important because it ensures that the deterministic component of the
"reduced form" model has a logically sound prior distribution, and that the posterior
distribution of the parameters under the stationary alternative passes smoothly to the



posterior distribution under the different integration hypotheses being considered. The
analytical proofs of the smooth transition properties are available on request and are
contained in Amisano (1994),

The linear trend parameter vy is given a normal prior, with position and variance specified
by means of the two corresponding hyperparameters (Wy, oy). Of course the choice of
such hyperparameters is entirely subjective. The specification of a flat prior for ¥ would
induce only marginal modifications to our analysis, and can be seen as a particular case,
when the prior precision goes to zero.

2) The parameters in the transient AR dynamics, i.e. on the lags of y4¢, are given a flat
prior, just to ease the computations. Of course the specification of more articulated
priors is possible. For instance one follows Geweke (1993), and put a prior on each of
them along the lines of Doan, Litterman and Sims (1984): normal prior with zero mean
and prior variance that shrinks to zero as the lag order increases. This would not modify
our analysis very much. It is nevertheless believed that we do not have such problems as
overparameterization here, and we can focus on models with not too many lags.

3) The prior on the variance parameter ¢ is customarily a Jeffreys prior.

4) and (5) As for the parameters , and y,, which are associated with the hypotheses of
zero frequency and w frequency integration, we choose to specify negative-exponential
priors with hyperparameters A, and A,. It is believed that such a functional form is
quite appropriate because:

i) it does not force any restriction on the support of the parameters, other than the
legitimate one of stationarity.

ii) it is a proper non- flat prior which therefore can be used in a posterior odds ratio
testing framework involving sharp point nulls. The problems outlined in Schotman and
van Dijck (1991a, 1991b, 1992) and regarded as occurrences of the "Lindley paradox"
(see Lindley, 1957) in the specification of flat priors under a composite hypothesis are
therefore solved.

The researcher has to provide a choice for the hyperparameters involved. Since these
two parameters are the inverse of the respective prior means, in the absence of any
extra-sample observation, one might choose them to be equal to the inverse of the
unrestricted OLS estimates of the HEGY parameterization.

6) For r exactly the same kind of prior is chosen,except that the parameter r is defined
to be positive. '

7) The prior on O, the phase angle in the deterministic w/2 seasonal, poses some
problems. Although the parameter 0 ceases to be identified under the n/2 frequency unit
root hypothesis, it is not possible to assign it a prior dispersion determined on the basis
of r. This would put obstacles in the way of the smooth transition results, which form
the basis of the posterior odds ratio evaluation. Therefore we use a truncated normal
distribution. The functional form chosen is normal because the domain of 6 is not
restricted: being an angle, it will be bound to lie between -x and =. For this reason, we
choose a symmetric prior. Other choices, such as Cauchy or Student-t, are equally
legitimate. The choice of the hyperparameters is based on the OLS estimates of y3 and



Y4 in the standard HEGY parameterization. Of course it is necessary to provide a check
for sensitivity with respect to the specification of all the prior distributions. This comes
with the results of the application contained in section 6.

[3] The joint posterior distribution

The likelihood of the model can be written as follows:
(data | n Dp) = o~ T ex {-—-1-— e'e} (5)
p n Dy exp 262 :

e={ed.,

In the text the notation " D¢ " means conditional on the data evidence up to period t,
and therefore when we condition upon D or D, we respectively indicate "conditional
on initial conditions" or "conditional on the whole sample information" (a posteriori).
Combining the information provided by the prior distribution with the likelihood
function, we obtain the joint posterior:

1
(MDY = o™ (-y)I2 ()21 exp{- 577 [€ ‘& + 0, (B-g)? +
+HO/op? (Y -Hy P+ MYy + My, =21 ),

e
€ = [V*_I/Z (B* —b* )] (6)

When it comes to conducting inference on a subset of parameters of interest, on the
basis of the posterior pdf, it is clear that we have to be able to marginalise it with respect
to the parameters we are not interested in, i.e. the nuisance parameters. Expression (6)
does not allow the possibility of easily obtaining marginal distributions or posterior
moments on the basis of available analytical results. Another possibility is to resort to an
approximations, such as that described by Phillips (1983) and used in a Bayesian setting
by Tiemey and Kadane (1986). But it is still difficult to obtain manageable results. On
the other hand, numerical integration is not feasible, given the high dimensionality of the
parameter space (we have in total k+6 parameters).One has then to rely on fast, efficient
and precise numerical simulation techniques.

Suppose that our interest focused on the posterior mean of some function of the
parameters, say g(n):E(g(m)ID1) =[g(n) p(niD1)dn. We show in section 4 that the
posterior odds ratio (henceforth POR) can be thought of as the posterior expectation of
a particular function of certain parameters. The posterior moments can be computed
numerically to an arbitrary degree of accuracy on the basis of the Monte Carlo
integration principle; see Hammersley and Handscomb (1964) or Geweke (1989). If it
were possible to obtain m draws from the joint posterior pdf, say n®, i=1,2,...m, then
the posterior expectation of g(1) could be easily estimated as the sample mean:



m

- m Y gn®). %)
i=1

Given an i.i.d. assumption on the draws, the law of large numbers ensures convergence
of the above expression to the posterior expectation of g(n). Of course as m increases,
so does the accuracy of the estimate.

If it is not possible to provide i.i.d. draws from the joint posterior distribution, as in our
case where it is of no known analytical form, then some other methods have to be
adopted. Following the suggestions of Hammersley and Handscomb (1964) one could
choose an "importance function”, to sample from. In any case that choice is not easy,
and it might yield very poor estimates. In fact, as it is stressed in Koop (1994), it is
necessary that the tails of the importance distribution be fatter than those of the
posterior distribution, otherwise the draws from the tails of the importance function
dominate the behaviour of the Monte Carlo estimate. For this reason, one should know
exactly the shape of the posterior distribution, in order to choose correctly the
importance function. We do not know the form of the joint posterior in our context, and
therefore we follow Chib (1993) and Geweke (1993), in adopting a Gibbs Sampling
Algorithm (henceforth GSA). This algorithm is being increasingly applied in the
Bayesian literature since it provides a feasible way of computing posterior moments.
Geman and Geman (1984) introduced the technique, and Gelfand and Smith (199C) and
Smith and Roberts (1993) give interesting discussions about the interrelation between
different numerical methods. Tierney (1991) contains a thorough discussion of the GSA
properties.

The idea behind the GSA is quite simple and intuitive. Suppose that all we know is the
mathematical expression for the joint posterior, but this is of no known analytical form.
Suppose further that the conditional posterior distributions of a class of mutually
Nj
that each of them can be easily simulated. If these conditions are met the GSA works as
follows. We start from an arbitrary initialisation of the parameter vector:

1O =00, 7,0

exclusive exhaustive subsets of the parameters p(n;l_~ D) are "available" in the sense

..... , @7

At each pass of the algorithm, a random draw from each of the p(n;l ;]" D7)
i

distributions is obtained, and the results from the draw are used to condition the
posterior distributions in the next pass.

What we have is hence a Markovian updating scheme, in which the draws are not
independent, nor identically distributed. Geman and Geman (1984) show that mild
conditions ensure that: 1) the continuous state Markov chain induced by the GSA
converges in distribution to the true joint posterior distribution at a rate which is
geometric in the number of passes used in the algorithm. 2) The numerical
approximation of the posterior mean of any function of the parameters (if exists)
converges a.s. to its true value. Geweke (1993, section 3.1) proves corresponding



results for the GSA as applied to an AR model plus trend with fat-tailed disturbances.
What has to be shown is how to characterise the conditional posterior pdf's in our
context, and how it is possible to obtain random drawings from them. This forms the
object of the next section.

[4] The conditional posterior distributions

Even if the joint posterior distribution hasno known analytical form, it turns out to be
possible to characterize the conditional posterior distributions of some subsets of
parameters. Some of these pdf's are of known analytical form, whereas others are not; in
appendix B we will describe how it is possible to obtain synthetic draws from whichever
univariate distribution through the method of "rejection sampling” (see Devroye 1986).
Starting from expression (6) we can readily obtain some results for the 7 different
groups of parameters in the model. These results are presented as lemmas, whose proofs
are contained in appendix A.

Lemma 4.1

p(n,Im, D;), where m;, = [B' v]' = B¥, is 5-variate normal, from which independent
random draws are readily obtained.

Lemma 4.2

p(nzln_2 D;) is k*-variate normal, and again independent random draws are readily
obtained. Remember that g = [¢*] isa (k*xl) vector containing the parameters on the
lags of y,, =z, - 4Y.

Lemma 4.3

pm3z | ’ﬂ3DT)’ where 13 =0, allows for indirect drawing through a %2 distribution.

Lemma 4.4

p(Mylm 4 D), withn, =y, p(nsl T15 Dy), with ns =y,, and p(n, | 1—1—6 Dy), with ng =r,

have no standard form. Their simulations require "rejection sampling” (see Devroye,
1986, and Geweke, 1993). In appendix B the method is explained, with a complete
account of the choices made in terms of functional form for the reference distributions
and their parameters.

To summarize, the last two sections show how the resulting joint posterior distribution
is not of any analytically known kind. Nevertheless, given that we are able to draw
independently from an exhaustive set of conditional posterior pdf's. Putting these draws
into a Markov chain sequence, we can apply a Gibbs sampling algorithm to obtain



synthetic draws from the joint posterior pdf. These draws form the basis for the
evaluation of the posterior moments of any function of the parameters. We next show
that the posterior odds ratios of hypotheses can be seen as posterior means of certain
functions of the parameters.

{51 A convenient description of the posterior odds ratio

We can now describe the POR for some hypotheses of interest. It can be thought of as
representing the posterior expectation of an aptly defined function of the parameters in
the model. Suppose we are faced with the problem of deciding between two competing
hypotheses Hp and Hp which concern 1, the parameter vector of our model

Associated to the two hypotheses we have, as usual, two families of priors, pao(n) and

pB(M).
The POR is defined as:
p(Haldata) f pA(M)p(dataim Hp)dn
POR = (Hpldata) = . “
f pB(M)p(datain Hg)dn

We conjecture that the two hypotheses involve the same set of parameters, and so we
are allowed to write quite easily:

_ (pa(m)
O p(MIDT Hp) dn, 9)

i.e. the POR can be seen as the posterior expectation, under hypothesis B of the
function: g(n)= p4(n)/pg(M)-

Therefore one might obtain a set of synthetic draws from the posterior distribution of
the parameters in the model under Hp, by application of the Gibbs sampling algorithm.
For each draw the function g(m®) can be computed, and its posterior expectation can be
estimated as the sample mean (7).

The context is only slightly more complicated when we consider comparing a point
hypothesis against a composite competing hypothesis. We illustrate the case by referring
it directly to our model, where we are interested in gauging the posterior evidence in
support of the presence of different unit moduli roots. The sharp point hypothesis can
consider just one unit root at a time or more, and it compares directly to the stationary
alternative specification.

For explanatory purposes, we restrict attention to the mw/2 frequency integration
hypothesis, and consider a comparison between Ha: r=0 and Hg: r>0. Comparisons
involving different frequencies integration hypotheses (even between joint hypotheses)
can be conceptually dealt with on the basis of exactly the same framework.

We consider Hp as the limiting expression, for € approaching zero, of the following
hypothesis:

10



HaM):re (0, 9), (11)
pAM) =&~ 1 [p.ey(0) . r e (0, 8),

with I((.¢)(r) the indicator function, which takes unit values within the (0, €) interval
and is equal to zero elsewhere.

For homogeneity we restore the notation used in section 2 and indicate r as ng; all the

M
parameter vector in the likelihood function of the model under the w/2 frequency

integration hypothesis, i.e. all the parameters in 1 except a1, f1, 6 and r.

other parameters in the model are collected in the set _—, and the set N indicates the

As for the parameters in 'ﬂ_’ we adopt the prior pdf specification discussed in section 2,
6

i.e. we have p A(T_];m") - pB(n_Gm(,).

As for 1, we specify the same prior as in section 2 under hypothesis B; under Hp, a flat
prior is adopted as described in expression (11).

We can therefore write the POR as follows:

e RO _ _
POR= [ [[ 408 bl - DrHy) dngl pG 1Dy Hyd = . (12)

The posterior expectation of the function g(ne) =p,(Ne)/p(Ne), conditional on the other

parameters in 'ﬂ— , has to be averaged by using the posterior pdf of Tl_ as a weighting
6 6
function. From the discussion in section 2, we already know the form of the conditional

posterior distribution of 1, (see also appendix B). In what follows, we show what
happens when we contemplate e—0. We make use of the smooth transition results, as
described in Amisano (1994),

It is easy to see that the function of interest, i.e. g(n¢)= e‘lI(O,e)(r) ?\,r'lexp(%T r), only
depends on m,. Theoretically one could marginalise out all the parameters but g and
evaluate the POR as posterior expectation of g(f¢) on the basis of the uni-dimensional
posterior pdf of m,. That is analytically impossible. What we can do, in order to make
efficient use of the numerical evaluation techniques being used, is to marginalise with
respect to the parameters of the deterministic representation that disappear when
r=0,namely o; and B;.

We define T]— = such that :
6
n6* = al Bl r’

11



ie.n «is the vector of all the parameters bar o.j, B, and r. We can write the POR as
6

follows:

p (n ) —k —— %k

POR = || | = P(Tlsms D HB) dﬂe]P('ﬂs' D, HB) dng (13)
PB(ns)

The smooth transition resuits then allow us to write:

(Mgl TT6 Dy Hp) =[148 Tl exp{(-1/(20%) w MX W - &}/ k( TTG*)’

k(n—6*) = [[L+8 T exp((-1/20%) w" MX )" - % 1} dn,
0

where the [(T+2)x1] vector w" and the [(T+2)x2] matrix X are defined as:
w'=[r24a, ,r%b,, w], X*"'=[r2], , X7,

w={wle, X ={x1,

Wy = 0*(L)Yae - Wi Vier - Wa Yarr - 2 1[I0 6(2y 1+ 2 ) - 0S8 6 (25,,+2Y)],
X, = 4r[cos ((n/2)t-0) | sin ((m/2)t-6)],

and M(X") =I- X ' x*x*-1x*' |

Therefore the POR is:
€ 0_2 *! %k *
B exp{-1/Q2c)w M(X )w } —_ —_— : _
POR= | [[ e7~r[1+8 Tr] dr]/k(n;)] p(n;IDT Hp) dn; .
0

Given the smooth transition results, we have that:

lim -1 ! *_ K ,
=0 [1+8 Tl " =1, =0 v MX w =e,'e,,

where e, is the vector of the error terms in the model under the m/2 frequency
integration hypothesis:

12



CAt™ O*(L)Y4e - W1 Yier - V2 Your-

Now we are ready to consider what happens to the above quantity as € shrinks to zero,
and the prior distribution of r under H 4 attains unit probability mass atn, =r = 0.
The limiting expression is obtained as:

— | r-lexot-1/2620e — 1 o(— -
POR= ﬁxr exp{(-1/209)e, ex} /KGro)] PG 1Dy Hpd T (14)

*

M

This means that the function of interest :

oGy = A lexp{(-1/(202))eq’ e} / kG )
6 6

which depends on all parameters of the model but o, Bl and r, is evaluated for any
Mg
basis of the draws obtained from the posterior distribution under Hg.The application of
the GSA renders this approach feasible.

draw from the posterior distribution of _  , and then averaged numerically, on the

The above framework applies to any unit root hypothesis comparison with the
associated stationary alternative, and the corresponding POR can be obtained exactly in
the same conceptual way. For this reason the inferential strategy for the problem under
study is as follows: we make use of the Gibbs sampling algorithm to generate draws
from the joint posterior distribution. At each pass of the sampler we keep track of the
relevant functions of the parameters. These functions are averaged to yield the posterior
odds ratios.

[6] An application

This section presents an application to five of the UK macroeconomic series studied in
Osborn (1990), where details of the source of the data can be found. We consider real
GDP, total real consumption (including durables and non-durables), real investment
(total gross fixed capital formation), employment, and real narrow money (MO). All the
series are in natural logarithms. Data run from 1955, first quarter, to 1988, last quarter,
except for MO, for which a shorter sample period is available (1969:3-1988:4).

For these variables, the application of HEGY' s testing procedures led to the conclusion
that GDP and consumption possess unit roots at all frequencies, whereas investment,
employment and real money have only a zero frequency unit root (Osborn, 1990, Table
2). The application of the Bayesian technique only partly confirms these results, as
shown below.
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Before presenting the results, some explanation of how the univariate models were
specified and how prior distribution hyperparamenters were chosen is required.

The model lag order was chosen on the basis of the application of a series of different
criteria: informative criteria (Akaike, Hannan and Quinn and Schwartz), variable
deletion tests on an over-paramerized general model, and Godfrey portmanteau test to
check the validity of the resulting model. It emerged that all the series being analysed
required an autoregressive representation of the 5th order.

As for the deterministic parameters o, ., ¢, and B,, their location hyperparameters a,,
a, a; and by, are determined on the basis of the pre-sample observations, treated as initial
conditions of the underlying processes. The parameters in the prior distribution of v, 1,
and o, are determined such that |, matches the average in-sample growth rate of the
series, and such that the prior distribution assigns 95% of the whole probability mass to
the interval L, + 2%. The hyperparameters of the prior distributions of y,, y,, and r, i.e.
respectively A, A, and A, were determined on the basis of the following procedure. A
unrestricted AR process was fitted to the data:

6(L)z, = 5.8, D, +ct+e,,
i=1

and estimated by means of the OLS estimator. On the basis of these estimates, indirect
estimates for y, y,, and r were provided for ail the series under study. The reliability of
these estimates has been previously gauged on the basis of a Monte Carlo esperiment.
This experiment points out that these indirect estimates have a well behaved, bell-shaped
distribution around the true values. The indirect estimates, ,, ,, 7,form the basis of
the choice of the hyperparameters. In the absence of any a priori information, recall that
the parameter of a negative exponential distribution is the reciprocal of its expected
value. On the basis of this consideration the hyperparameters were determined as:

! = L A= % (15)

v, &) r

While this choice seem plausible and sound, it may have an important bearing on the
analysis. Consequently sensitivity analysis of the results with respect to different choices
of such hyperparameters is carried out, and the results are discussed at the end of this
section. Finally for the hyperparameters of the prior distribution of 6, 1, is chosen equal
to zero and oy is determined as that value that gives 95% of the Gaussian probability
mass to the (-w,+) interval.

The hyperparameters used in the application are summarized in Table 1, presented here.
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Table 1: Hyperparameters

GDP | Consumpt. | Investm. Employm. MO
a, 10.557 10.190 8.712 10.105 8.208
a, 0.004 0.023 0.046 -0.001 0.016
a, -0.008 -0.023 0.001 -0.003 -0.020
b, 0.021 0.023 0.019 -0.000 0.003
i, 0.006 0.007 0.009 0.001 0.009
o, 1.020 1.020 1.020 1.020 1.020
A 49.03 39.781 75.803 57.250 69.905
A 5.915 6.463 5.107 2.749 2.028
A 5.851 5.436 4.848 3.082 2.859
T 0.000 0.000 0.000 0.000 0.000
O 1.603 1.603 1.603 1.603 1.603

On the basis of these hyperparameters, the resulting joint posterior distributions were
simulated via application of a Gibbs sampling algorithm 1. The number of iterations used
was 2,000, plus a batch of 100 unretained iterations used to "warm up" the sampler. The
results obtained include not only the posterior odds ratios (see Table 2), but also the
posterior mean of the parameters, collected in Table 3, and the marginal posterior
distributions which are graphed in Figures 1 to 5.

Table 2: Posterior odds ratios

GDP Consumpt. [ Investm. Employm. MO
zero freq. 1.753 3.629 2.449 0.510 2.113
/2 freq. 0.049 0.130 0.003 0.001 0.001
T freq. 0.744 1.162 0.433 0.022 0.055

Table 3: Posterior means

GDP Consumpt. | Investm. Employm. MO
o, 10.646 10.058 8.774 10.076 2.475
o, -0.014 0.013 -0.002 0.001 0.002
o, -0.014 0.027 0.045 0.001 -0.003
B, -0.019 -0.024 0.009 -0.003 0.001
Y 0.006 0.007 0.009 0.001 0.013
d, 0.292 0.457 0.446 0.301 0.264
o 0.022 0.016 0.036 0.005 0.008
v, -0.012 -0.005 -0.005 -0.008 -0.003
W, -0.148 -0.120 -0.160 -0.034 -0.618
r 0.175 0.151 0.186 0.032 0.309
0 -0.012 -0.354 -0.292 -0.988 -0.855

1 All the Monte Carlo and Bayesian analysis computations were performed with software developed by
the author and written in GAUSS 2.1. The preliminary analysis for the choice of the lag length was
done by means of RATS 4.02 routines.
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The results can be summarised as follows.

1) GDP: the posterior odds ratio analysis seems to clearly favour the hypothesis of zero
frequency integration (POR=2.479). The posterior mean of v, is very low (-0.012), and
its posterior distribution assigns high probability mass to the immediate neighbourhood
of zero (see Figure 1). The posterior odds ratio instead soundly rejects the hypothesis of
n/2 frequency integration (POR=0.049). This is confirmed by the value of the posterio
mean of r (0.175) and by the shape of its posterior distribution, which assigns almost no
weight to values near to zero.The possible presence of a  frequency unit root is more
controversial (POR=0.74). The posterior distribution of w, assigns a non-negligible
probability mass to values near to zero, although the mode of the distribution is well
distant from zero. Considering all these results together, one might cautiously assume
that the series has a non-seasonal unit root, but that its seasonality might be dealt with
by seasonal dummies. This contrasts with Osborn's results.

2) Consumption: the posterior odds ratio leads to clear acceptance of the long run unit
root hypothesis (POR=3.629). The posterior mean of v, is close to zero (0.005), and
the whole posterior distribution is concentrated near zero (see Figure 2). As for the /2
frequency integration hypothesis, (POR=0.134), it is squarely rejected by the data, and
the marginal posterior distribution of r gives all its weight to values well away from zero
(posterior mean=0.151). Data are not conclusive on the issue of the presence of a &
frequency unit root (POR=1.16): the posterior distribution of W, has mean equal to
-1.120, mode equal to .0.06, but gives high weight to values near to zero. Varying the
values of hyperparameters did not help to resolve uncertainty: the POR remained close
to 1 for all the prior configurations being specified. Data are simply not very informative
in this respect. Therefore one could weakly favour the presence of a bi-annual stochastic
cycle in the data, but not the presence of an annual cycle. This again contrasts with
Osborn's findings.

3) Investment: again for this series the presence of a zero frequency unit root seems
unquestionable (POR=2.449): the posterior distribution of v, (see Figure 3) is squeezed
to the immediate left of zero, with a posterior expectation of -0.012. The results
contradicts the presence of a /2 frequency unit root, given that the POR is 0.003, and
the posterior distribution of r does not assign any weight to the neighbourhood of zero;
its posterior mean is 0.186. Likewise the model rejects the hypothesis of ® frequency
unit root (POR=0.433), and the posterior distribution of y, does not give the
neighbourhood of zero substantial probability mass. For this series, one could thus
conclude that, first, the series is I(1) in the conventional sense, and second, that non-
stationary stochastic seasonality can be ruled out, receiving no support from the
posterior analysis. Deterministic seasonals account for the seasonal pattern. This is in
perfect accordance with Osborn's results.

4) Employment: the presence of a zero frequency unit root is rejected by the data, the
alternative hypothesis being preferred in the light of the POR (0.510). This is in sharp
contrast with Osborn's findings concerning this series. The posterior distribution of
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(see Figure 4) has mean -0.008, mode -0.009, and it does not give much weight to
values near zero. Similarly, but more neatly, the posterior analysis reject the hypotheses
of m and 7/2 frequencies integration (POR = 0.001 and 0.022 respectively). Also the
posterior distributions of y, and W, are both clearly distant from zero. The series is
therefore taken to be stationary around a deterministic linear trend with seasonal
intercept shifts.

5) Real MO: the zero frequency integration hypothesis is clearly accepted on the basis of
a POR of 2.113. On the contrary, both the hypotheses of seasonal integration are
rejected on the basis of the posterior odds ratios (0.001 and 0.055, respectively). Also
the examination of the posterior distributions of Wy, and W, are consistent with these
findings (see Figure 5). This is consistent with OSborn's results.

As a partial corroboration of these findings, a sensitivity analysis experiment has been
carried out. For the sake of brevity, we consider only the GDP series. Clearly, given the
high dimensionality of the hyperparameter space, it is not feasible to monitor the effects
of changes on all hyperparameters, and we focus only on the most crucial ones, that is,
those controlling the prior distributions of W, ¥, and r. The prior hyperparameter
specification (15), which produces the benchmark prior 1, is modified to generate
another 4 priors along the following lines:

prior 2: A, =~i, Ay =.i, A =‘%-,
¥, Y, r
pI‘iOI‘ 3: 7\«1 =_,:‘£-a 7\‘2 =-.ji’ }\'t =§,
¥, Y, r
prior 4: A, =£, A, =9~°—5, A, =9;—5-,
Y, v, I
prior 5: A, =g~2—5—, A, = 0225, A= O'~25-
¥, Y, I

Prior distributions 2 and 3 are more and more squeezed near zero values, whereas
priors 4 and 5 assign greater weight to values distant from zero. For each one of these
prior specifications, the posterior analysis described above was repeated out in exactly
the same terms. The results in terms of the associated posterior odds ratios are
presented in Table 4.

Table 4: Sensitivity analysis, GDP series

prior 1 prior 2 prior 3 prior 4 prior 5
zero freq. 1.753 2.201 2.485 1.551 1.547
/2 freq. 0.049 0.079 0.401 0.038 0.025
T freq. 0.744 0.811 0.899 0.626 0.555

As one can easily see, these changes to the prior specification do not radically alter the
nature of the results. As would be expected, priors 2 and 3 tend to give a higher
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posterior probability to the integration hypotheses, whereas priors 4 and 5 tend to
favour the alternative hypotheses. These results seem encouraging and are interpreted as
giving strength to the findings of this paper.

Summing up, the Bayesian approach we propose is helpful in shedding new light on the
inferential problem connected to the presence of unit roots at different frequencies. It is
a sensible approach because it is base on a sensible parameterisation, and it allows to
treat symmetrically all the hypotheses being tested. No use of asymptotics is made, and
all the relevant posterior distributions are exact. In the particular application run here,
the procedure seems to work well enough, giving in most of the cases a clear response
to the issue of the presence of unit roots. The results seem to be robust with respect to
alternative sensible prior specifications.

[7]1 Conclusion

The paper presents a new testing procedure to ascertain the presence of unit roots at
different frequencies in quarterly data. Given the weaknesses and logical inconsistencies
of the classical inference setting, the proposed procedure is Bayesian, and relies on
posterior odds ratio computations. Special emphasis is placed ondevising a sensible prior
distribution specification. The resulting joint posterior distribution is treated by means of
a Gibbs sampling algorithm. _

The procedure is applied to a set of UK series, previously analysed by Osborn (1990).In
contrast to her results, less evidence was found in favour of non stationary stochastic
seasonality, which seems to occur only for the consumption series. For the employment
series it was found that the trend stationary alternative is preferred to the hypothesis of
zero frequency integration: this series seem stationary around a deterministic time trend.
All the other series are found I(1) in the traditional sense, that is they possess a zero
frequency unit root, as in Osborn (1990).

The Bayesian approach described in this paper is particularly well suited to cope with
situations where the classical inference techniques present difficulties, as they do in the
presence of non-stationary variables. In a multivariate context, the inference problem in
cointegrated settings is complicated by the fact that different deterministic components
originate different asymptotic distributions for the cointegrating rank test statistics (see
Johansen, 1992). In addition, only asymptotic and potentially misleading resuits are
available, as it happens for the distribution of the identified cointegrating vectors (see
Bauwens and Lubrano, 1993). We believe that a Bayesian approach could help
overcoming these difficulties in a sensible way, and our research agenda is orientated in
that direction.

Appendix A: Proofs of distributional results
Proof of lemma 4.1

The exponential term in (6) can be written as:
(-1/(26%)[(z-Cn)'(z-Cn,) + (B*-b*)' V*-1(§*-b"),
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where z is a (Tx1) vector with tth element:
O*(L)Zgy - Wy Zyp g = Wp 2y - 21 (810 O 25, - COS 6 25, ,),
Cis a (Tx5) matrix with tth row:

[ 4w, -4y,cos(nt), 4rcos((n/2)t—0), 4rsin((nw/2) t-0), 407(1)+
+10y,+2y,+ 4r(sinB-c0s0)- 4y, t].

Defining:

2" =[V*-12b*, 27,

C* = [V*'1/2, C1,

the exponential term in the joint posterior can be written as:
(-1/(262)[("-C*n,) @"-C*ny)].

Therefore we have:
P Dy ~ N[(c*c*c*z¥, cc*tCcHyY,

i.e. a 5-variate normal distribution, whose position vector and dispersion matrix depend
on the other parameters of the system.

Proof of lemma 4.2

Consider the joint posterior pdf (6). It is evident that this depends on M7 only through
the term e'e in the exponential part, which can be written as:

e'e=(y-Xn2)'(y-Xn2),

where y is (Tx1) with tth element given by:

Y4t - V1 Y1t-1- W2 Y2t-1-21(sin 8 y3¢.1 - cos 0 y3¢-2),
and X is a (Txk") matrix with k™ lags of y4¢ in its tth row.

Thus, conditionally on the other parameters of the system, mg4 has the following
posterior pdf:

P(nzln—z Dr) ~ NI[(X X)Xy, o2(X X)-1].
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Proof of lemma 4.3
From expression (6) we have that :

p(n3 | n—3 D) == 613 exp { -c/(202)}, ¢ = e'e+(B*-b*)' V*-1(B*-b*).

where ¢ depends on the data and on the other parameters of the model.
The expression above has the appearance of the inverted-Gamma distribution (see
Zellner, 1971, p.371):

p(ylv o) = 2[T()y®* y20-11-L exp(-1/(2y y2)},

the connections between inverse Gamma, Gamma and x2 distributions can be exploited.
We define o' = ¢/02, and since o' is a monotone function of &, we conclude that:

p(G1n Dy) e o' 22 exp{-c2},
3

i.e. that the conditional posterior pdf of ¢' given all the other parameters is xz(T+4).
This is intuitive, since:

T
¢ /02 = ('t +02(0—11e))/0? = 02 [T e + (B-b) V-I(B-b) + 5 2(6—119)"] ,

t=1

is just the sum of the squares of T+4 independent standard normal variates.

Proof of lemma 4.4
Starting from expression (6), we realise that the parameter y; appears both in the

exponential term, via e'e, (o - 2 )y, and Ay, and outside, via (-y;)~12.
The term e'e in the exponential part can be represented as:

e'e = (y-x1,)" (y-xn,),

where the vector (Tx1) y has tth element equal to ¢*(L)y,, - Vo1 - 271 (sin Oy, , - cos 6
Yai.2)> and X is another (Tx1) vector with corresponding element equal to yy;_;.

On the basis of this representation, and using a notation consistent with expression
above, we can represent the whole relevant exponential term as quadratic in n:

p(n, In_4 Do) o< (V2 exp{-1/(27,2)(M,~, )2},

where:
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=Xy + (12)(@-a)* + A S (X%), T = 02/(X'X).

Although Gaussian-looking in the exponential part, the above distribution is not
unfortunately of any analytically known form.

As for 15, we have:

p(nSl ns DT) x(_ns)l/Z exp{(-1/(2’[:22))(1’]5_”2)2}’

with:

W =[xy + (12)(0p-3)% + A, 0%V (x'%), T, = 62/(x'x),

the vectors y and x have been conveniently defined to decompose:

e'e = (y-xms)' (y-xms).

For the parameter 15 (y,) we have results that coincide with those seen for n, (y,). The
parameters T, and L, derive from a similar sort of decomposition of the exponential part

as seen above.
The conditional posterior pdf of 1 (that is r) is likewise complicated:

p(n | 11_6 D) = rexp{(-1/(2t2))(r—uu,)2}, where , =T,
= {x'y - [(@-a)2 + (By-b)212 + A 02}/ (x'%), T, = 02/(x'%);

e'e = (y-xn)' (y-x1g).

The conditional posterior of 11, (8, the phase angle) is even more complicated:

Pl - Do) exp{ (-1(202)ete + (010p)” (8- p 21},

T

ee= X [0*(L)Yy- Vi Yies - Vs Yoy - SN B(2r Ya p) + COS O (2r Ysp0) 12,
t=1

We obtain draws from these conditional posterior distribution using the algorithms
described in Appendix B.

Appendix B : Rejection sampling from the conditional posterior distributions

We followthe approach of Geweke (1993). First, a brief description of the method used
is given, then the solutions adopted to the particular problem being treated are

21



developed with particular attention their capability of providing efficient random
drawings from the conditional posterior pdf's.

Suppose that f(x16) is the kernel of the pdf of the random variable x, which depends on a
certain vector of parameters. We furthermore suppose that no analytic results that allow
direct random variate generation from f() are available. We then choose a comparison
function, with kernel g(xI¢). The function g() must be such that it is possible to obtain
random draws from it directly.

A single result draw, say X is retained or rejected on the basis of the outcome of
another independent random drawing from the uniform distribution defined over the
support :

S= O,max( f(XIO)) .
=\ &(xip)
If the result from such drawing, say Yj, is less than f(X;l0)/g(X;l¢), then the draw X is

accepted, and rejected otherwise. This implies that for any subset A of the support of x,
the probability of getting retained draws is given by:

f(x10)
[exio) —EXY) g o [r(xin)x,

x€eA max( f(XIe)) X€EA
x \ g(x19)

i.e. the algorithm generates synthetic draws from the target distribution f(x10), via the
comparison function.

Therefore we face the the problem of optimally choosing the comparison function. We
suppose that the aim is to maximise computational efficiency, i.e. to maximise the
unconditional probability of retaining draws from the comparison function.

We have thus to solve:

: (f(xle))
min| max .

o | = \gxlo)
We emphasise that the choice of the parameters in ¢, togethef with the choice of the
functional form of g(.l.) does not affect the correctness of the results from the synthetic
draws, but only the efficiency of the procedure, i.e. the rejection rate of the draws from
g(.1.), and hence the computational time.
In the remainder of the present appendix, the choices made in this respect are discussed

for each of the 4 synthetically replicated conditional posterior pdf 's, namely those of v,
Yy, rand 6.

1) Conditional posterior density of y.
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The distribution is:
£(x) o= (-x) 2 exp{ (-1/(26%) (x-1)?}, xeR.

with the quantities 1 and o defined as in Section 4.
The comparison function chosen is:

2(0) o= exp{ (- /25D x-W)?} I_g (%),
a negative truncated normal distribution. In order to avoid further complications, we
confine our choice to the location parameter v.
The differentiation of log f() -log g() with respect to x gives:
x* = -62/(2(-V)).
Provided p—v > 0, x* belongs to the support of f(x). The second order condition for a
maximum holds.
The expression log g() - log f() evaluated in x* is maximised with respect to v, yielding:
v = - @22c)l2y,,
This is the only admissible solution. The second order condition is satisfied.
2) Conditional posterior pdf of y,.
Exactly the same computations as above apply.
3) Conditional posterior pdf of r.
The distribution is:
2 2
f(x) == x exp{(-1/(207))(x-W)“}, xeR,
with the quantities | and ¢ defined as in section [4].
The comparison function chosen is:
g() = exp{ (-2} g )®),

a positive truncated normal distribution. The same kind of computations as previously
described yield:

x* = 62/(V—{L),

v=(u+ (p2+402)1/ 2)/2.
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4) Posterior distribution of 6.
Recalling the analysis contained in Section 4, we can write:

f(8) <exp{ (-L/2c™))[ee + (5/0g)* (O~ pg)dl}, O e[, 7],

where:
T

ee= I [0*(L)y4r- W1 Yit-1- W2 Y2r-1 - sin B2ry3e.1) +cos O 2ry3e) 12
t=1

= (y-xP)'(y-xB), B =[sin 0, cos 6], x={x,}_,, X, = [21 ¥3,41-21 ¥3,,]

The problem of obtaining draws looks quite cumbersome, given that the maximisation
of log £() -log g() involves trigonometric expressions. An easy way out is to choose:

8(0) < exp{(-1/209 D)0~ ug2}[_ 11(),

so that the function to be maximised is:
log () - log 20) = -1/(262) (y-xB)'(y-xP).

We maximise this expression with respect to B, under the non- linear constraint: B =1.
This can be done numerically.Once the maximum value is obtained, say M, one then
draws y from U(0,M), and applies the rejection sampling technique.
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Figure (l.a): UK GDP, 1955:1—1988:4

T T T T T

T

LI

-

T

™

(] L L L L L 1 i L Ll A o oL 1 L 1 A L L L L i 1 1 4 L L ). 1 L 1 El
1957 1960 1963 1966 1969 1972 1975 1978 1981 1984 1987
Figure (l.c): UK GDP, posterior distribution of 3
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Figure (1.b): UK GDP posterior distribution of vy,
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Figure (1.d): UK GDP, posterior distribution of r
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Figure (2.a): UK Consumption, 1955:1-1988:4
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Figure (2.c): UK Consumption, posterior distribution of v,
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Figure (2.b): UK Consumption posterior distribution of ¥,
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Figure (2.d): UK Consumption, posterior distribution of r
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Figure (3.a): UK Investment, 1955:1-1988:4
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Figure (3.c): UK Investment, posterior distribution of ¥y
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Figure (3.b): UK Investment posterior distribution of ¥,
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Figure (3.d): UK Investment, posterior distribution of r
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Figure (4.a): UK Employment, 1955:1-1988:4
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Figure (4.c): UK Employment, posterior distribution of ¥3
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Figure (4.b): UK Employment posterior distribution of ¢,
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Figure (4.d): UK Employment, posterior distribution of r
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Figure (5.a): UK MO, 1955:1-1988:4
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Figure (5.c): UK MO, posterior distribution of v,
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Figure (5.b): UK MO posterior distribution of ¥,
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Figure (5.d): UK MO, posterior distribution of r
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