THE FOLK THEOREM IN REPEATED GAMES OF
INCOMPLETE INFORMATION

Martin W. Cripps and Jonathan P. Thomas

No.439

WARWICK ECONOMIC RESEARCH PAPERS

O

o 2 -
WAW/I CK DEPARTMENT OF ECONOMICS




THE FOLK THEOREM IN REPEATED GAMES OF
INCOMPLETE INFORMATION

Martin W. Cripps and Jonathan P. Thomas
Department of Economics
University of Warwick
Coventry CV4 7AL
England

No.439

July 1995

This paper is circulated for discussion purposes only and its contents
should be considered preliminary.



The Folk Theorem in Repeated Games of
Incomplete Information

Martin W. Cripps and Jonathan P. Thomas™
University of Warwick,
Coventry CV4 7AL, UK.

March 1995
Revised June 1995

ABSTRACT: The paper analyzes the Nash equilibria of discounted repeated
games with one-sided incomplete information. If the informed player is arbi-
trarily patient relative to the uninformed player, then the characterization is
essentially the same as that in the undiscounted case. This implies that even
small amounts of incomplete information can lead to a discontinuous change
in the equilibrium payoff set. For the case of equal discount factors, however,
a result akin to the folk theorem holds when a complete information game is
perturbed by a small amount of incomplete information.

KEYWORDS: Reputation, Folk Theorem, repeated games, incomplete in-
formation.

JEL CLASSIFICATION NUMBERS: C73, D83, L14.

* Our thanks are due to seminar participants at Erasmus and Carlos III Madrid and also to Marco
Celentani for their comments and suggestions.



1. Introduction

The folk theorem for discounted repeated games of complete information asserts that
any feasible strictly individually rational payoff vector can be sustained in equilibrium
provided both players are sufficiently patient. A natural question which arises from the
literature surrounding the folk theorem is whether a similar result holds when there is
asymmetric information about the players’ preferences over outcomes in the game. This
is of interest in its own right; it has implications, for example, in situations where agents
are repeatedly trading and valuations are uncertain. It is also important for the question
of how robust complete information results are to small perturbations of the information
structure. Suppose there is a small chance that the opponent’s preferences might be
different from their representation in some complete information game: does this small

perturbation lead to a substantial change in the predictions of the model?

In this paper we consider discounted repeated games between two players when the
stage-game payoff matrix of one of the players in unknown to the other player. As
the players become patient, we shall investigate to what extent the (Nash) equilibria
of the game can be characterized by a corresponding folk theorem result. We find that
the answer to this question depends critically upon what is assumed about the relative
rates of patience of the two players. If the players’ discount factors are equal, then as
they become very patient we can establish a continuity result for small perturbations of
complete information games. If the informed player is sufficiently patient relative to the
uninformed player, however, it turns out that the characterization is different, and such a
continuity result no longer holds; we establish that all equilibria are approximately payoff
equivalent to equilibria in which the informed player acts to reveal her information at the
start of the game (see the end of the following subsection for a more complete summary

of the main results).

1.1. An Example and Statement of Main Results

In this subsection, to motivate the main ideas of the paper, we shall analyse a simple

example of an incomplete information game. While the general argument is much more



complex, the example illustrates well the main issues and results. (The relationship
between the current paper and the existing literature is deferred until the next section.)
We consider the game in Figure 1 in which there are two players, 1 (row player) and 2
(column player). Player 1 has a stage-game payoff matrix given by either A, or A,, while
player 2 has the payoff matrix B. As in the usual Bayes-Nash approach, we imagine that
nature selects Ax, & = 1 or 2, before the start of the game with probabilities (1—p) and p
respectively (0 < p < 1) and only player 1 observes this choice; hence p is player 2’s prior
belief that player 1 is of “type 2”. Each period t = 0,1,2,... the simultaneous move stage
game (A, B) is played out, and it is assumed that players can observe all previous actions.
For the moment assume that there is a common discount factor §, 0 < é < 1, with the
payoff at time t being weighted by (1 — §)é’. Apart from the incomplete information, the

game is a standard discounted repeated game (see Section 2 for the formal description).
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Figure 1 — Battle of the Sexes

This game is a perturbed version of Battle of the Sexes Game, in which type 2 is a
“commitment type” of player 1, existing with probability p; playing the top row (U) is a
dominant strategy in the repeated game for this type.' It will become clear that a crucial
issue in characterizing the possible equilibria is the speed of revelation of the informed
player’s information. To start, consider first a fully revealing Nash equilibrium in which
the types distinguish themselves in the first period (i.e. type 1 chooses D and type 2

chooses U). What conditions must such an equilibrium satisfy? After the first period,

1'While the analysis below does not generally restrict the payoff matrices of the various types of player
1, such a commitment type simplifies the example in two important ways. First, on the equilibrium
path, type 2 always chooses U, and consequently we need only concentrate on the behaviour of type 1.
Secondly, punishing player 1 for deviating is simple since only type 1 needs to be punished.
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t = 0, the game essentially becomes one of two possible complete information games,
depending on which type is revealed. If type 2 is revealed, the equilibrium thereafter
involves U being played each period. Clearly player 2 must respond so as to get at least
his minmax payoff (= 3/4) from t = 1 onwards (i.e., the equilibrium must be individually
rational for both players). On the other hand, if type 1 is revealed, in addition to the usual
constraints on equilibria of a complete information game (essentially, again, individual
rationality for both players), there is an incentive compatibility constraint which must be
observed. Type 1 has the option at ¢t =0 of mimicking type 2. Consequently the incentive
compatibility constraint requires that the payoff type 1 gets from revealing her type and
playing out some complete information equilibrium of the game (A;, B) must be at least
as great as the payoff she would get from mimicking type 2. This latter payoff, discounted
to period t = 1, is at least 9/4, since in the type 2 equilibrium player 2 must play L
(against U) at least three quarters of the time. Hence, in any fully revealing equilibrium,
for § near one, type 1 must receive at least approximately 9/4. Since this argument is
independent of p, it follows that even small perturbations of the repeated Battle of the
Sexes game only have fully revealing equilibria in which type 1 does substantially better

than her minmax payoff of 3/4.

It is a result from the theory of undiscounted incomplete information games (of the
type considered here) that all equilibria are payoff equivalent to revealing equilibria; that
is, even for equilibria where revelation does not occur immediately, there are payoff- equiv-
alent revealing equilibria (see Section 3 for a full discussion of these results). We shall
show that this is not the case with symmetric discounting. Indeed for small perturbations
of a complete information game there will be equilibria, not (in general) involving im-
mediate revelation, which give overall payoffs close to any payoffs which are feasible and
individually rational in the complete information game, as § goes to one. Hence for sym-
metric discounting there is a continuity result for small perturbations of the information

structure of complete information games.

To see how type 1 can receive payoffs substantially below 9/4 in the example when 6
is close to one, it is only necessary to delay revelation, so both types of player 1 pool on
Ufort=0,1,...,7T—1,and at t = T type 1 reveals her type by playing D. If type 2 is

revealed at time T, then an equilibrium of the complete information game between type



2 and player 2 is played out from T + 1 which gives player 2 a payoff of 0.8 (discounted
to T + 1); this is possible for § close enough to one. Notice that if type 1 was to mimic
type 2, she would receive a payoff of 2.4. If type 1 is revealed, then an equilibrium of the
repeated Battle of the Sexes game is played out, in which type 1 receives 2.5 and player
2 receives 1.5 — an equilibrium for § near one.? At T player 2 plays R, and so incentive
compatibility is satisfied. (A deviation by player 2 at T is not profitable for é near one

assuming minmax punishments are used.)

Hence we have constructed a revealing equilibrium starting at ¢ = T', provided ¢ is
close to one. In this equilibrium type 1 receives a payoff of (1 — &) +6(2.5), and player 2
receives p-6(0.8)+ (1—p)((1 —68)(3)+6(1.5)). For § close to one and p close to zero, these
payoffs are respectively approximately 2.5 and 1.5. Next, for t < T, (U, R) is played out
by both types. Choose T so that the weight in the discounted sum placed on the first T
periods, (1 — §) v IL 6t is approximately 0.4, so player 2 gets a payoff of approximately
(0.4)(0) + (0.6)(1.5) = 0.9 provided p 1s very small, and hence the threat of minmax
punishments will prevent a deviation. Type 1 of player 1 gets approximately (0.4)(0) +
(0.6)(2.5) = 1.5. So provided § is close to one and p is close to zero, an equilibrium can
be constructed in which type 1 gets considerably less than 9/4, her minimum payoff in a

revealing equilibrium. Revelation still occurs, but not immediately.

Is it possible to drive type 1 down to her minmax payoff of 3/4 in such a pure
strategy equilibrium? The answer is no. The worst equilibrium for type 1 would have
a revealing equilibrium from T’ which gave her exactly 9/4 and which gave player 2 the
highest feasible payoff consistent with this, 7/4.2 The initial pooling phase can have a
weight in the discounted sum of no more than 4/7 since player 2 then gets overall at
most (3/7)(7/4) = 3/4 when p is very small (a larger p can only reduce the weight on the
pooling phase); any extension of the pooling phase would imply that player 2’s overall
payoff drops below his minmax payoff. This gives a lower bound on type 1’s payoft of
(3/7) - (9/4) = 27/28 > 3/4. It is easily checked that no other configuration can lead to

a lower payoft.

To construct an equilibrium in which type 1 is held close to her minmax payoff it

2Because this is a revealing equilibrium from T' onwards, type 1 must receive at least 9/4 as argued
above.
31t is being assumed that § is close to one so the actual period of revelation is insignificant for payofis.
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1s necessary not only to delay revelation, but to make it gradual. The equilibrium will
consist of the previously constructed delayed revelation equilibrium, preceded by an initial
pooling phase of (U, R) which ends with a random move by type 1. More precisely,
suppose that at ¢ = T type 1 plays D with probability 0.5, while player 2 plays R. If
type 1 chooses U, the above equilibrium is followed. If type 2 chooses D, a complete
information equilibrium is played which gives type 1 the same payoff she would get from
playing U, that is, approximately 1.5. Player 2 receives the maximum payoff consistent
with this, approximately 2.5 (for § close to one payoffs at 7" are insignificant). Now
payoffs discounted to 7" are approximately 1.5 for type 1 and (0.5)(0.9) + (0.5)(2.5) = 1.7
for type 2. By having the initial phase of (U, R) sufficiently long, type 1s payoff can
be reduced close to 0.75, her minmax payoff, without violating individual rationality for
player 2 (provided the weight in the discounted sum on the first phase is appromately 0.5;
the integer problem is the only constraint which prevents this being achieved exactly).
To conclude, for all § sufficiently close to one, and all p sufficiently close to zero, type 1

can be held arbitrarily close to her minmax payoff.

The example illustrates the need for a mixed-strategy equilibrium to attain certain
payoffs — equivalently, revelation of player 1’s information must be gradual; this is in
contrast to the complete information case where only pure-strategy equilibria are needed.
The example also illustrates the purpose served by the gradual information revelation: it
permits player 2’s overall payoff to be increased relative to the payoff player 2 receives
along the path played by type 2. In turn, this permits actions to be taken along that path
which are undesirable for type 2 and hence also for type 1. This relaxes the incentive
compatibility constraint, which was the constraint which guaranteed type 1 a high payoff

in the revealing equilibrium.

The characterization that type 1 can be driven down to her minmax payoff for small
perturbations, fails, however, if player 1 is very patient relative to player 2. In the example
it was argued that type 1’s payoff could be held down by gradual revelation because the
path followed by type 2 could then be made unattractive from type 1’s point of view,
thus relaxing the incentive compatibility constraint. If, however, player 1 is very patient
relative to player 2, the part of the game in which type 2’s path is unattractive becomes

insignificant from the point of view of player 1; this implies that the incentive compatibility



constraint will again require that type 1 gets at least approximately 9/4 (in this case there
is a discontinuily with the complete information game as p goes to zero). It is the periods
of learning which can be used to hold type 1’s payoff down, but for a very patient player

1, the periods of learning are insignificant in the calculation of payoffs.

In what follows, we shall treat these two discounting cases in reverse order to the
above discussion. Our first main result states that for arbitrary given initial beliefs, for
a fixed value of player 2’s discount factor, and for player 1’s discount factor sufficiently
close to one, the equilibrium payoffs to player 1 (for each of a finite number of types) must
approximately satisfy the conditions of a revealing equilibrium. This implies continuity
with the undiscounted case (holding prior beliefs constant): as the players’ discount factors
go to one, if player 1’s discount factor goes to one sufficiently fast relative to that of player
2, then the limiting set of equilibrium payoffs for player 1 must satisfy the necessary

conditions appropriate for the model with no discounting.

In the second part of the paper, the symmetric discounting case is analysed. Where
the informed player has only two types, we establish a continuity result with complete
information games as the probability of one of the types goes to zero: for each type of
the informed player, and for any feasible strictly individually rational payoff vector in
the game between this type and player 2, there is Nash equilibrium of the incomplete
information game with these payoffs (to the type and to player 2) provided the players
are sufficiently patient and provided initial beliefs put sufficiently high probability on that
type. Since there is no such continuity result for undiscounted games as the size of the
perturbation goes to zero, it can be concluded that the equilibrium characterization which
exists for the undiscounted case is only the limit (as discount factors go to one, holding
beliefs constant) of the discounted case if the limit is taken in a particular way,* and in
particular it is mot the limit of the discounted case if both players’ discount factors are

equal.

4This provides another contrast with complete information games where it can be shown that the
projection of the set of equilibrium payoffs onto the more patient player’s axis converges, as both discount
factors go to one, to the folk theorem projection, so that in terms of the payoffs possible to the more
patient player, the way the two discount factors go to one does not matter.



1.2. Relation to the Literature

Complete information discounted repeated games have been studied in great detail. By
contrast, the situation where one or more players’ preferences may be unknown to the
opponent(s) has received relatively little attention in the discounted repeated games liter-
ature, despite the attention it has received in both the signalling games and the bargaining
literature. Some recent results exist however. Kalai and Lehrer (1993) and Jordan (1995)
have established that play must converge to Nash play of the true game.® Jordan (1995)
has also proved the existence of equilibrium for this class of games. Perfect Bayesian
equilibria of such games must have a Markov property (Bergin (1989)). McKelvey and
Palfrey (1992, 1993) have studied belief stationary equilibria. Schmidt (1993b) has ob-
tained a strong results in a finitely repeated bargaining game in which he also imposes a

belief-stationarity restriction on the equilibrium concept.

The results of Kalai and Lehrer and Jordan on convergence to Nash play are informa-
tive about the long-run behaviour of an equilibrium, but to be able to say anything about
the overall payoffs from the beginning of the game—what we are interested in here—it
is necesssary to know something about how fast convergence takes place relative to the
rate of discounting of payoffs and also, possibly, what happens in the shorter run.® By
exploiting a fundamental result due to Fudenberg and Levine (1992) on the speed of learn-
ing, the case where the informed player is arbitrarily patient relative to the uninformed
player can be completely solved purely on the basis of “long-run” considerations. As was
illustrated in the above example, however, a more detailed consideration of the shorter

run is needed for the symmetric discounting case.

A closely related literature is the recent “reputation” literature on games with a
small amount of incomplete information of a particular type. Here, complete informa-
tion games are perturbed with a small possibility that one or more players might be

irrational or “commitment” types which are committed to playing a particular strategy.”

5Their approach also covers a broader learning environment than the standard one.

SIn this respect the undiscounted case is much more straightforward since long-run behaviour and
payoffs can be characterised using martingale arguments, and the speed of convergence to the long-run
does not affect average payoffs.

It is possible to motivate fixed repeated game strategies as dominant strategies for particular pref-
erences, and even mixed strategy commitment types can be motivated in this fashion (Fudenberg and
Levine (1992)).



The question of whether such perturbations can lead to substantial changes in the set
of equilibrium payoffs as compared to the corresponding complete information game —
in the form of sharper or more realistic predictions—has received much attention since
Kreps, Milgrom, Roberts and Wilson’s (1982) analysis of the finitely repeated prisoner’s
dilemma. A contrasting result was established by Fudenberg and Maskin (1986), who
demonstrated that any strictly individually rational and feasible payoff vector can be sus-
tained as an equilibrium outcome in a finitely repeated game if the modeler chooses the
“right” incomplete information. Recent results, which allow for more general perturba-
tions, include those of Aumann and Sorin (1989), Schmidt (1993a), Cripps, Schmidt and
Thomas (1995), Celentani et al. (1994) and Aoyagi (1993). Our results have implica-
tions for small perturbations of the information structure of a complete information game
with types which are rational in the sense maximizing expected discounted stage-game
payoffs. They show that small perturbations of a complete information game can lead to
large changes—in the form of a lower bound for the informed player—in the equilibrium
payoff set provided the informed player is sufficiently patient relative to the uninformed
player. This result is reminiscent of recent results in the reputation literature, where a
relatively patient informed player is a common assumption (indeed, the characterizations
of Schmidt (1993a) and Cripps, Schmidt and Thomas (1995) are implied by our more
general results when the perturbation introduces a type with a payoff matrix that makes
a particular action dominant in the repeated game). The application of our results allows
reputations for being a different normal type (i.e., for having a different stage-game payoff
matrix) to be analysed. For equally patient players, however, we establish a continuity

result with the complete information game.

In contrast to the discounted literature, undiscounted repeated games of incomplete
information have been studied in some depth, especially in the zero-sum case and where
payofts are time averaged (see Mertens, Sorin and Zamir (1993)). In the non-zero-sum
undiscounted payoffs case Hart (1985) in a seminal paper has given a complete charac-
terization of Nash equilibria for a broad class of two-person games. Hart studied games
where one player is informed of both her own and the other player’s stage-game pay-
off function, with the other player uninformed. While this characterization is extremely
complex, it has been shown by Shalev (1994) that a simpler characterization obtains for

the case of “known own payoffs”, where the uninformed player is aware of his or her own
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payoff function (this is a special case of the general model studied by Hart). This as-
sumption of known own payoffs is the one most often made in economic applications, and
it 1s the case we study here. Shalev’s characterization is described in detail in Section 3,
but amounts to the proposition that all equilibria are payoff equivalent to fully revealing
equilibria, that is equilibria in which all types take actions at the start of the game which
reveal their types. Such equilibria can be characterized in a relatively straightforward
fashion. As discussed above, we obtain the same characterization as Shalev, in the limit
as discounting goes to zero, but only if the limit is taken so that the informed player is

arbitrarily patient relative to the uninformed player.
2. The Model

The infinitely repeated game ['(p, 6, 82) is defined as follows. There are two players called
“1” (she) and “2” (he). At the start of the game, player 1’s “type” k is drawn from a
finite set K (where K also denotes the number of elements) according to the probability
distribution p = (pi)rex € AK (the unit simplex of R®), and informed to player 1. Hence
pr will denote the prior probability of type k. We shall assume that each type has strictly
positive probability: pr > 0 for all £. In every period ¢ = 0,1,2,..., player 1 selects an
“action” 7% out of a finite action space I, where I has at least two elements, while player
2 simultaneously chooses an action j* from the finite set J. Payoffs at stage ¢ to type k of
player 1 and to player 2 are respectively Ax(s%, 7*) and B(¢%, j¢). Player ¢ discounts payoffs
with discount factor §;, and we normalize payoffs so that stage-game and repeated-game
payoffs can be expressed on the same scale. The payoff to type k of player 1 is
o
(1) G = (1= 6) 2 5iA 5

and that to player 2 is

(2)

o~
fl

(1-8) Y 8B 5Y) -
t=0

Throughout the paper we restrict attention to the case where both players observe
the realized action profile (i%,;*) after each period. Let H* = (I x J)**! be the set of
all possible histories A* up to and including period ¢. A mixed (behavioral) strategy

for type k of player 1 is a sequence of maps o = (00,08,-++), of : H! — AL We



define 0 = (ok)rer. Likewise, a mixed strategy for player 2 is a sequence of maps
= (% 7%,--), 7t : H™' — AJ. The prior probability distribution p, together with
a pair of strategies (o, 7), will induce a probability distribution over infinite histories and
hence over discounted payoffs. We use Ep, ; to denote expectations with respect to this
distribution, and abbreviate to E where there is no ambiguity. Players are assumed to
maximise expected payoffs, and a Nash equilibrium is defined as a pair of strategies (o, 7)

such that for each &
(3) Eporlac| k] 2 Eporrlar| k] forall o,

(where the conditional expectation given type k uses only the probability distribution

induced by o and 7) and

(4) Eporlb] > Epom[b forall .

Finally we shall need the following. Let
(5) 4 = min max Ay(f, 9)

be type k’s minmax payoff, where we use the notational abuse that Ax(f, g) is the expected
value of Ak(7,7) when mixed actions f and g are followed. Likewise

(6) b = min max B(f, g).

geA’ feAl

3. A Relatively Patient Informed Player

We start by considering the case where the discount factor of player 2 is taken as fixed,
and we let the discount factor of player 1, the informed player, go to one. This case
corresponds closely to the undiscounted case; necessary conditions which must be satisfied
by player 1’s payoffs in the undiscounted case must also be (approximately) satisfied in
the discounted case as 61 — 1. These necessary conditif)ns can be interpreted as requiring
payoff equivalence to some fully revealing equilibrium. Before we consider the discounted

case, we briefly review the existing results in the undiscounted case.
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3.1 Review of the Undiscounted Case®

Using the limit of the means criterion, with an arbitrary Banach limit, Hart (1985) gave
a complete characterization for the general class of games with one-sided incomplete
information, which includes the possibility that the uninformed player is unaware of his
own payoff function. This characterization is based on bi-martingales. For the case we
are interested in, namely where each player is aware of their own payoffs but one of the
players does not know the payoffs of the other player,® a much simpler characterization
has been found, using Hart’s results, by Shalev (1994), as discussed in the Introduction.®
Denote this game by I'(p, 1,1). We shall show that essentially the same characterization
as that of Shalev can be obtained for the discounted case provided the informed player is

arbitrarily patient relative to the uninformed player.

We define first individual rationality in this setting. For q € AX, let a(q) be player
I’s minmax payoff in the one-shot game with payoffs given by 2kek Gk Ak(7,7). A vector

payoff x = (zx)rex Is sald to be individually rational for player 1 if
(7) q-x>a(q) forall qe A,

This condition is, by Blackwell’s (1956) approachability theorem, necessary and sufficient
for player 2 to have a strategy 7 against which no type k € K can achieve a limiting
average payoff greater than z; by any choice of strategy, that is, Ep, z[ax | k] < z for
all o and k. For player 2 the definition of individual rationality is the usual one from

complete information repeated games: a payoff y for player 2 is individually rational if
(8) Yy > b.

Let 7 = (7);; € A’ be a joint distribution over I x J (i.e. a correlated strategy). This
will generate a vector of payoffs for player 1 and a payoff for player 2 of

(9) Ag(m) = 3 TIA,J)

iel,jeJ

(10) B(r)= > =“B(i,7).

i€l jed

8See Forges (1992) for an excellent survey of the literature.

®That is, in the general case the informed player knows both her own and the opponent’s payoff matrix,
while the opponent knows only the probability distribution over the possible types of the informed player;
here the uninformed player’s payoff matrix does not vary with the informed player’s type.

10For a direct proof of these results which does not use the bi-martingale approach, see Koren (1988).
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Let IT = (A’7)X be the set of all correlated strategy profiles for each type, (k) kek -
Then

Definition 1 Define Ilo C II to be the subset of profiles satisfying conditions
(i) (individual rationality): (Ar(mk))kex is individually rational for player 1,
and B(my) is individually rational for player 2 for each k € K, and (ii) (in-
centive compatibility): Ax(mi) > Ax(mw) for all k, k' € K.

We can state

Result 1 (Shalev) Payoffs (a,b) are Nash equilibrium payoffs of T'(p,1,1)
if and only if there exists a profile of correlated strategies (mi)rex € o such
that Ag(my) = ax for all k € K and e pe B(m) = b.

The basic idea behind the result is as follows. Every Nash equilibrium is payoff equivalent
to a completely revealing joint plan, which involves each type & of player 1 revealing its
type at the beginning of the game and then playing out a deterministic equilibrium which
has relative frequencies over action profiles corresponding to the joint distribution .
The revelation is achieved by constructing deterministic strategies for each type which
differ during a finite number of periods at the start of the game. Since the payoffs are

time-averaged, this revelation phase does not affect average payoffs.

It is straightforward to show that if payoffs satisfy the conditions of the result, then
a completely revealing joint plan can be constructed which is an equilibrium and which
delivers these payoffs. Condition (i) of the definition of Il says that following the equilib-
rium gives each type of player 1 and also player 2 individually rational payoffs. Since all
strategies are deterministic, deviations by player 2 are punished by minmaxing him; this
makes deviations unprofitable. Deviations by player 1 from one of the k possible equi-
librium strategies (i.e. playing an action inconsistent with any type dependent strategy)
are punished by player 2 playing his Blackwell strategy corresponding to the equilibrium
payoff vector a. This ensures that no type can benefit from such a deviation. Condition
(ii) is an incentive compatibility requirement; no type prefers to mimic another type’s

strategy. Consequently type k can benefit neither by mimicking one of the other types,
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nor by playing some other strategy, and so we have a Nash equilibrium. The converse,
namely that any equilibrium payoffs satisfy the conditions of the result, is considerably

more difficult to establish.

3.2 The Discounted Case

In this subsection we shall show that the characterization for the undiscounted case also
holds for the discounted case provided player 1 is sufficiently patient relative to player
2. We start by establishing two preliminary results. First, in Lemma 1, we show that
if player 2's equilibrium strategy gives him less than b when he plays against k, then he
must expect that the probability distribution over outcomes generated by the repeated
play of type k’s strategy differs from the one generated by the “expected” equilibrium
strategy of player 1, where the expectation is taken over all possible types using player 2's
beliefs. Furthermore, because player 2 discounts future payoffs, there must be a significant
difference between these distributions in the not too distant future. The second result
(Result 2) is based on a fundamental proposition of Fudenberg and Levine (1992), which
establishes that if player 1 follows type k’s strategy, then player 2 cannot continue to
believe that the true probability distribution over outcomes is significantly different from
the one generated by type k’s strategy. Taken together, these results imply that if player
1 always plays according to type k’s strategy, then player 2 cannot continue to respond
with a strategy which gives him less than b against this strategy. Eventually he will learn
that his opponent plays type k’s strategy, and he will choose a response which gives him

at least his minmax payoff.

Below, we shall heavily exploit the fact that player 2 can guarantee himself at least
his minmax payoff in every Nash equilibrium. The problem is, however, that the minmax
payoff is a lower bound not for the actual but only for the expected equilibrium payoff.
Thus, player 2 could continue to play a strategy which gives him less than his minmax
payoff against type k’s strategy if he believes that there is a high enough probability that
player 1 is playing according to some other strategy. To be more precise: It may be
the case that the equilibrium strategy of player 2 yields strictly less than b against type

k, as long as it yields at least b in expectation against all types of player 1, where the
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expectation is taken according to the beliefs of player 2. However, the following lemma
says that in this case the strategy of type k and the expected strategy of player 1 must
lead to significantly different probability distributions over outcomes in the not too distant

future.

The intuition for this result is simple: Given that player 2 discounts future payoffs,
everything that happens after some finite period N is insignificant for today’s expected
payoff. Suppose the probability distributions over nodes in the game tree up to period
N generated by the equilibrium strategy of player 2, paired with first the repeated play
of type k’s strategy and secondly with the expected equilibrium strategy of player 1, are
arbitrarily close to each other. Then the distribution over payoffs for player 2 would be
almost the same in both cases. Thus, if he gets strictly less than b against k, he must also

get less than b against the expected equilibrium strategy of player 1, a contradiction.

To express this formally consider after any history h* the set of possible outcomes

over the next N periods, that is (I x J)" with typical element

(11) yN - ((it+1’jt+1), o (it+N’jt+N)) )

For given equilibrium strategies (o,7) we let qV(- | &*) be the distribution over these
outcomes and likewise g™ (- | A%, k) the distribution conditional additionally upon player
's true type being k (defined for A* having positive probability conditional on type k).

We define for any two distributions q" and gV,
(12) la" —&" |l = max|a"(s") - 4" .

Finally, define the continuation payoff for player 1 type &, discounted to period ¢ + 1, as:

(13) Q= (1—6) 3 §TTATL ST,
r=t+1

and that for player 2 as

(14) P =(1-68) > &7IB(, 7).
r=t+41

Lemma 1 Let 62 < 1 and € > 0 be given and consider any Nash equilibrium

and any history h* which has positive probability in this equilibrium conditional
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upon type k. Suppose that conditional upon player I being type k the ezpected

continuation payoff for player 2 is
(15) E[B* | btk < b—ce.

Then there exists a finite integer N and a number n > 0, both depending only

on 63 and €, such that

(16) Ia™(- 1% = V(- | A k) | > .

Proof: See Appendix.

The next result shows that if player 1 follows the strategy of type k, then there can
be only a finite number of periods in which the probability distribution over outcomes
predicted by player 2 differs significantly from the true distribution. Eventually, player 2

will predict future play (almost) correctly.

Given integers N and n, with ¥ > 0 and 0 < n < N, define the set T(n,N) =
{n,n+ N,n+2N,...}. Suppose that at the end of each of the periods ¢t € T'(n, N) player
2 makes predictions about the course of play over the following N periods. The result
says that if type £ is the true type of player 1 then, no matter how small p; and what
strategies the other types of player 1 are supposed to play, in almost all periods player 2
will make predictions which are very close to the true predictions given player 1’s type.

The result is a straightforward adaptation of the main theorem of Fudenberg and Levine
(1992) which is stated for the case N = 1.

Result 2 (Fudenberg and Levine) Given integers N and n, with N > 0
and 0 < n < N, and for every £ > 0, ¥ > 0 and a type k of player 1 with
pk > 0, there is an m depending only on N, &, v, and py such that for any
(0,7) and any h* consistent with (o, 7), the probability, conditional on player

1’s true type being k, that there are more than m periodst € T'(n, N') with
(17) Fa™ (1A —av(- B k) || > o

is less than €.



Proof: See Fudenberg and Levine (1992), Theorem 4.1.

We are now able to establish that if player 1 follows type &’s strategy, then player 2
must eventually respond so as to get at least his minmax payoff against type k’s strategy.
Consider a history of any Nash equilibrium in which player 1 is type k. By Lemma 1
we know that, on the one hand, player 2 can reply with a strategy which yields less
than b against type k’s strategy only if he believes that the probability distribution over
outcomes generated by player 1’s expected equilibrium strategy differs significantly from
the one generated by type k’s strategy over the next N periods. On the other hand, by
Result 2 we know that there are at most m periods in which player 2 may believe that
there is a significant difference if the true distribution is the one generated by type k’s
strategy. Thus, there can be at most m -V periods, m- N < oo, in which player 2 expects
player 1’s strategy to be significantly different from type &’s strategy, and consequently
if a sufficiently high discount factor (i.e. &, as oppposed to &) is used to evaluate player
2’s payofts, these m - IV periods will be insignificant and player 2 must get approximately

his minmax payoff against type k. !

First, for a fixed equilibrium, we define the average frequencies over action profiles

conditional on type k& when the discount factor is § as follows:
(18) o =a-08[ 516650 ).
t=0

for each ¢ and j, where 1(7,5,t) is the indicator function for the action profile (3,)

occurring at date ¢. It is easy to check that the equilibrium payoffs are F[as | k] =
Ai(mi(81)) for each k and E [b] = Siex piB(mi(62)).

Lemma 2 Given 6, < 1 and for any ¢ > 0, there ezists a §; < 1 such that
whenever §; < 6, < 1, the average frequencies over action profiles for each
k € K in any Nash equilibrium, calculated using discount factor &1, m(6),
satisfy

(19) B(ri(62)) 25— ¢

'1The formal argument is a bit more involved. Since type k’s strategy may be mixed we can only say
that there will be more than m - N such periods with probability less than £.
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Proof: See Appendix.

Given the result of Lemma 2, we are now in a position to establish the main result
of this section, namely that Shalev’s equilibrium characterization holds approximately
as a necessary condition provided that player 1 is sufficiently patient relative to player
2. Recall that this implies that the equilibrium is approximately payoff equivalent to
a revealing equilibrium. This theorem is a characterization of the equilibrium payoffs
of player 1 only; since different discount factors are being used, the usual feasibility
constraint on the average payoff profile across both players does not apply here. First
we need to define the set of payoff vectors which player 1 can receive in equilibrium in
the undiscounted case (i.e., the projection of the equilibrium payoff set onto the space
of player 1’s payoffs). Recall that Iy is the set of all correlated strategy profiles which

satisfy individual rationality and incentive compatibility. We define

(20) A" = {(A1(m1), Aa(m2), ..., Ak(7k)) : m € T} .

Theorem 1 Let é,, 0 < 6, < 1, and p > O be fized. Then for any e > 0 there
erists a 6; < 1 such that for all 1 > &, > §,, if payoffs a are Nash equilibrum
payoffs to player 1 in I'(p, 61,82), then a lies approzimately in A* in the sense
that

(21) Mmingea: | a —x||< €.

Proof: See Appendix.

Theorem 1 developed necessary conditions which equilibrium payoffs must satisfy
asymptotically. In the undiscounted model, the necessary conditions were also sufficient
(see Result 1). A similar result can be established with discounting provided the in-
equalities in the conditions of Definition 1 are assumed to hold strictly. We say that a
payoff vector a is strictly individually rational for player 1 if there exists some individually

rational point x with ax > zj for all %.

We can state

Theorem 2 Suppose that (7)kex € Ilo satisfies (i) (strict individual ratio-
nality): (Ar(mi))kex is strictly individually rational for player 1, and B(my)
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is strictly individually rational for player 2 for each k € K, and (ii) (strict
incentive compatibility): Ax(my) > Ar(mer) for all k&' € K. Then for any
€ > 0 there exists a § such that whenever 1 > &y, 8 > §, there exists a Nash
equilibrium of ['(p, 61,62) with payoffs (a,b) satisfying |Ax(7k) — ax| < € for
all k € K and |Crex pxB(me) — b < e.

Proof: Omitted.

The proof is straightforward and follows closely the argument given below Result 1 for
constructing a completely revealing joint plan, with each type k revealing itself during the
first few periods and thereafter playing approximately according to 7. One complication
which arises is the punishment of player 1. See below in Section 4 for a discussion of

Blackwell punishment strategies with discounting.

3.3 Applications to the Reputation Literature

The characterization given in Theorem 1 is independent of the va.iue of p; in particular
it holds for even small perturbations of a complete information game. Suppose that p; is
close to one, and that there are only two types of player 1. Type 1 is a “normal type”!?,
with arbitrary preferences A,, and type 2 a type committed to an action :* in that her
payoffs from the row corresponding to :* are all equal and strictly greater than any other
payoff. Then Theorem 1 has the following implications. Consider Iy in this case (see
Definition 1): by condition (i) that Aj(m;) is individually rational, m, must specify all
play occurs in the row corresponding to i*, that is 3¢ w;'j = 1. Also by condition
(i), B(m2) must be individually rational for player 2. Consequently 3 must specify a
probability distribution over the ¢* row which gives player 2 at least b. By condition
(ii), incentive compatibility, 7y must give type 1 at least what she can get from following
T, 80 it can be concluded that type 1, the “normal type”, must get from any = € Il
at least what she would get in the stage game from playing :* when player 2 responds

with the least favorable (mixed) response to i* (from type 1’s point of view) which gives

12We shall use “normal type” to refer to a type such as we have been studying so far, that is, with
general stage-game preferences Ap and discount factor §;.
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player 2 at least his minmax payoff. This is a lower bound on type 1’s payoffs in A* (see
(20)). Applying Theorem 1, for a fixed é; and for any desired degree of approximation,
equilibrium payoffs for player 1 must be approximately equal to or greater than this bound
for all é; sufficiently close to one. For conflicting interest games,'* this gives the result of
Schmidt (1993) that the Stackelberg payoff can asymptotically be guaranteed by player
1. For general games, this is exactly the bound established in Cripps et al. (1994).

The recent reputation literature typically deals with perturbations which allow a
large class, or even an unrestricted class, of types, including irrational types, whereas
our results only deal with a finite number of normal types. It is however straightforward
to check that the necessary conditions on a Nash equilibrium developed in Theorem 1
remain as necessary conditions even when arbitrary other types of player 1 are present.
In that case, the payoff vector a needs to be interpreted as the payoffs to a particular
subset of types of player 1 consisting only of normal types. In view of this observation,
the application to commitment types discussed above gives exactly the results (in terms

of lower bounds) of the work cited.

An interesting question in the reputation literature arises as to whether building a
reputation for being a (different) normal type can provide a patient player with a lower
bound on equilibrium payoffs which exceeds that furnished by types of the kind considered
above which are committed to playing a constant action. In other words, if the relatively
patient player could create some uncertainty about her preferences in the mind of her
opponent, would it be better to make the opponent think that she might be a constant
action type or a type with more sophisticated preferences? We can answer this question by
relating our results to those of Israeli (1989, quoted in Forges, 1992) who analysed the best
normal type from the reputation point of view in the undiscounted model (see also Shalev
(1994)). The answer turns out to be surprisingly simple: the best lower bound on type 1's
payoffs can be obtained by assuming that type 2 has diametrically opposed preferences
to player 2: A; = —B. Moreover this lower bound cannot be improved upon by having
additional types with different preferences (this statement is true within the model studied

here, that is, with a finite number of normal types). If we define a; := minaea-{a:} to

13Defined as games in which the action to which player 1 would most like to commit also minmaxes
player 2. In calculating the payoff from committing to an action to which there are multiple best responses,
it is assumed that the least favorable one from player 1’s point of view is chosen.
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be the lower bound on type 1’s payoffs in the undiscounted game, then if A, = —B,

2) % =LA, 1)
where
(23) AY(f) == {g€ A7 | B(f,9) 2 B} .

This lower bound is independent of whether there are other types (k > 3) and cannot
be bettered. We can relate Israeli’s result to the discounted model by using Theorem 1:
if A = —b, then for a given §; and a given ¢ > 0, there exists a §, such that for all
1 > 61 > §,, a lower bound on type 1’s equilibrium payoff is given by g, — ¢ (where g,
is as defined by (22)). Since, as noted above, Theorem 1 derives necessary conditions for
equilibrium, this lower bound is valid no matter which other types, normal or otherwise,
are present; it depends only on the existence of a positive probability type with preferences
which are the opposite of those of player 2 (though in this general case we do not know
whether a better bound is available from a type other than a normal one). Since this is
the best possible bound that can be derived from a “normal” type, it must be at least
as good as that derived from a type committed to playing the same action each period,
as there is a normal type which behaves in this fashion. Indeed, the expression given in
(22) can be interpreted as the best that type 1 could get in the complete information
stage game between herself and player 2 by committing to some mixed strategy f given
that player 2 responds by choosing ¢ in the least favorable way subject only to (player
2’s) individual rationality. This is a generalization of the description of the bound given
above for fixed action commitment types, in the sense that it allows player 1 to choose
a mized strategy, and it is shown in Cripps and Thomas (1995) that in games with no
discounting this is indeed the bound associated with the best mixed strategy commitment
type. Consequently the —B type is equivalent, in terms of its value to type 1, to a type

which is committed to the best mixed strategy.
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4. A “Folk Theorem” Result for Equally Patient Players

In this section we consider games I'(p, §) where the players are equally patient, § = §; = §,,
and there are only two types of player 1, #K = 2. We denote this class of games by
I'(p,6), so I'(p,6) :=I'(p,6,68). We show, in a sense to be made more precise, that the
(Nash) Folk Theorem can be extended to the repeated games I'(p,6) when p; is large.
' In the repeated game of complete information played between type 1 and player 2 the
Folk Theorem asserts that, given any profile of feasible and strictly individually rational
payoffs (a1,b), there is a Nash equilibrium where the players receive these payoffs if the
players are sufficiently patient. We will extend this result in the following way. Again let
(a1, b) be any profile of feasible and strictly individually rational payoffs for the complete
information game played by type 1 and player 2. Then Theorem 3 shows that there exists
8,p, < 1 such that the pair (a;,b) are the players’ equilibrium payoffs in I'(p, ) if § > §
and p; > p,. Thus introducing a small amount of uncertainty about the type of player
1 does not reduce the set of equilibrium payoffs in any significant way when both of the

players are sufficiently patient.

To prove our result we will follow the usual folk theorem strategy and construct an
equilibrium where the payoffs (a;,b) are received. We begin this section by discussing
the notion of punishments and individual rationality in the games I'(p, §). Then Lemma
3 characterizes the long-run behaviour of the players at the folk theorem equilibrium
by describing an equilibrium that is played out when all learning is finished. Lemma 4
describes a finite sequence of actions that holds type 1 to her minmax level, é;, or below
whilst at the same time rewarding type 2. This is used in Lemma 5 which shows how
a given equilibrium of I'(p,§) can be preceded by repetitions of this finite sequence to
get an equilibrium of the game where type 1’s payoff is reduced and player 2’s payoff is
also altered. Finally in Theorem 3 repeated use of Lemma 5 together with the long-run
behaviour described in Lemma 3 are combined to prove the result. This argument is a
generalization of the construction presented for the Battle of the Sexes example in the

Introduction.

It is helpful at this stage to recall the Folk Theorem of Fudenberg and Maskin

14In the previous section, in contrast, the characterization was valid for all values of p.
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(1991) for the repeated game of complete information, I';(6), played between type 1
and player 2. Define the set of feasible and (uniformly for a given €) strictly individ-
ually rational payoffs for the complete information game between type k and player 2:
Gi(e) := {(Ax(m), B(m))|Ax(7) > ax + ¢, B(x) > b+ ¢e,7 € AV}, k € K. The Folk
Theorem for I'y(§) combined with Fudenberg and Maskin (1991), Lemma 2, implies that
provided ¢ is sufficiently close to unity, then for any payoffs (a1,b) € G;(¢), there exists
a Nash equilibrium for I',(6) where the players play a deterministic sequence of actions,

receive the payoffs (ay, ), and their continuation payoffs after any finite history are within

¢/2 of (a,b). 1°

Result 3 (Fudenberg and Maskin) Let € > 0 be given. There isa § < 1
such that if § > § and (a1,b) € Gy(€) then there exists an equilibrium of I'y(8)

where the sequence of actions {(¢%,7%)}2, is played and:
a1 = (1= 8) £2 6 A (it %), b= (1 — 6) 52, 6'Bi, j*) with

[ (L=8) 2,87 A(¢ 7)) —ay | <¢€/2 Vs,

t=s
| (1= 6) 52, 6B, ~b| <e/2 V.
There are two points to stress concerning Result 3. First for the result to have any
significance it is necessary for there to exist a pair (a1,b) € Gy(¢) for some ¢ > 0, that
is, there must be a profile of strictly individually rational payoffs. Second the result
works because each player can punish deviations by holding their opponent to his/her
minmax level. These two features will appear in a different guise in the repeated game of

incomplete information.

In the repeated games with incomplete information studied here the punishment
strategies for player 2 are more complex because the deviations can be made by either
of player 1’s types; the punishment must simultaneously punish both possible types. In
a repeated game without discounting the problem of simultaneously punishing the two
types is solved by Blackwell’s approachability result (Blackwell (1956)), briefly discussed
in the previous section. Let x := (z¢)rex be a vector of payoffs for the types of player 1.

The set of payoffs {y|y < x} is said to be approachable by player 2 if he has a strategy,

15While their result is established for subgame-perfect equilibria, we only need the result for Nash
equilibria, the proof of which is straightforward.
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7, that guarantees type k gets no more than =, whatever strategy, o, player 1 uses. Thus
the set {y|y < x} is approachable if x is a vector of feasible punishment payoffs for player
2 to impose on the types of player 1. Therefore, the vector x = (zx)rek is individually
rational (IR) if the set {yly < x} is approachable, and the convex set of all such IR
payoffs (zi)rex is characterised by (7). The above definition of individual rationality
applies to player 1’s undiscounted payoffs, however; here we are interested in discounted
repeated games. In discounted games it is in general impossible to impose the severe
punishment described by the approachable sets {y|y < x}, but as the players become
more patient player 2 is able to approximate these punishments arbitrarily closely. First

define the notion of ¢-IR payoffs.

Definition 2 Let € > 0 be given. The vector x = (zx)rex 15 e-individually
rational (e-IR) if the set {y | y + €1 < x } is approachable. '®

By Zamir (1992) there is a lower threshold on the discounting, &, so that if § > §, then
player 2 can hold the types of player 1 down any e-IR payoff in I'(p,§). " Note that

without loss of generality we can assume §, > § so Result 3 also applies for 6§ > é..

The second element of Result 3 is the existence of strictly individually rational payoffs.
We will assume (in (A.1)) that we can find strictly individually rational payoffs for the

repeated game of incomplete information I'(p, §).

(A.1) There exists 7ty € AY for all k € K and € > 0 such that (Ax(%+))rek
is e-IR and B(#;) > b for all k € K.

16The notation 1 is used to denote a vector of 1’s of unspecified dimension; the dimension should be
clear from the context.

17Let Cav a(p) be the (pointwise) smallest concave function g(p) satisfying g(p) > a(p) where a(p)
is defined in (7). Then by Zamir (1992 p.126) Cav a(p) is the value for the zero-sum repeated game of
incomplete information with no discounting that is played when player 2’s payoffs are (—Ar(Z, 7))kek-
(Player 2 can achieve his value by using a strategy to approach a given set of payoffs.) Now consider
the zero-sum discounted repeated game of incomplete information with the same payoffs. By Zamir
(1992 p.119) the value function for this game, vs(p), exists and since fK = 2, by Zamir (1992 p.125)
this satisfies 0 < vs(p) — Cav a(p) < M/{(1 - 6)/(1 + 6)}. Thus as § — 1 the punishments that can
be imposed in the discounted game converge uniformly to the punishments that can be imposed in the
undiscounted game. Suppose that player 2 could not hold the types of player 1 to some e-IR payoffs as
&6 — 0, then this would contradict the uniform convergence of the two value functions.
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Here strict individual rationality is defined by a strict inequality and approachability
rather than in relation to the players’ minmax levels. As in the complete information
case there are always weakly individually rational payoffs, that is, there exists 7, and an
individually rational vector (Wi)rex so that: Ag(Fx) > &, B(#k) 2 b, for all k € K.
18 Assumption A.l implies that the game of complete information played between each
type k and player 2 has strictly individually rational payoffs (Gk(€) # @ for some € > 0)
and thus it cannot be the case, for example, that one of player 1’s types plays a zero-sum
game with player 2. 1° It is, nevertheless, a natural extension of the assumption made in

the complete information case.

Using A.1 we can now describe a particular Nash equilibrium which we refer to
as the terminal equilibrium. The terminal equilibrium will serve to describe the play-
ers’ long-run behaviour. That is, the terminal equilibrium will be the equilibrium that is
eventually played out if type 1 mimics type 2 indefinitely in the ”Folk Theorem” construc-
tion below. Of course, because the players are discounting, the payoffs in the terminal
equilibrium may have very little impact on the players’ expected payoffs at the start of
the game. The terminal equilibrium is revealing and so in general the incentive com-
patibility conditions discussed in the introduction will bind most tightly at it. In fact
we choose the payoffs at the equilibrium so type 1 receives a payoff @;(¢) which is her
largest individually rational payoff in Gi(e), that is, @i(¢) := max{ a; | (a1,b) € Gi1(e¢) }.
All the other players get strictly individually rational payoffs. Below we will also use
M to denote an upper bound on the absolute magnitude of the players’ payoffs, that is,
M := max( ;) max{ max |Ax(z,7)| , |B(z,7)] }-

Lemma 3 Assume A.l and let € > 0 sufficiently small be given. If 6 >
max{ &, , 2M(2M + ¢€)~' }, then I'(p,d) has a terminal equilibrium with the
payoffs (@, &2, B) satisfying &1 = d1(5€), & > @ + 5S¢ and B> b+ 5e.

Proof: See Appendix.

181et § be a strategy that ensures player 2 receives his minmax payoff, B(i,§) > bfori=1,2..1
By playing j in every period he can hold type k to the payoff max; Ax(i,§), so the set {yly <
(max; Ax(3,§))kex} is approachable. If #; is the correlated strategy generated by player 2 playing §
and type k playing a best response then we will have Ak(ﬂ"k) > max; A(4,§) and B(#) > bfor ke K.

1974 also rules out commitment types, as in the example in the introduction; extending the argument
below to the commitment type case is straightforward.
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The assumption A.l allows us to calculate a particularly simple equilibrium for T'(p, §)
with desirable properties which we will use later. However, the assumption is by no means

necessary for the existence of an equilibrium of I'(p, §) as shown by the work of Jordan
(1995).

Before reaching the terminal equilibrium type 2 and player 2 repeatedly play out
a finite deterministic sequence of actions and most of the time type 1 also plays this
sequence, but occasionally she will deviate from it with positive probability. The sequence
is chosen so that on average type 1 gets a payoff close to or below her minmax payoff
and type 2 receives a high payoff. Thus type 1 is forced to accept a very low payoff
if she wants to acquire a reputation for being type 2. The finite sequence of actions is

A

denoted {(:it, 79)}EL!. The players’ average payoffs over this finite sequence are denoted
by (Al,flg,B) where

. 1—=6 T-1 . . 1—6 T-1 .
(24) Ap = ——= > 8 A, 1), B .= = > 8°B(',7").
1-6T & 16T &

The properties of this finite sequence of actions are described in the lemma below which
shows that: (a) the sequence does hold type 1 close to or below her minmax payoff and
(b) that the convex combination of (A;, A;) and any eIR pair (a1, ;) is eIR for the
two types provided type 1 receives at least @, + . This second property guarantees that
provided the terminal equilibrium is e-IR then the terminal equilibrium preceded by any
amount of repeated play of this sequence is also eIR, provided type 1 gets more than
her minmax level. In the statement of the lemma below a parameter A > 1 is defined.
This parameter is used to define a linear upper bound a; + A¢ on the rate at which the
lowest e-IR payoff to type 1 increases as € increases. That is, we choose A to be a positive

constant so that
a1 + e > inf{ Ay(7) | 7 € AT, (Ax(7))kex is e=IR },

for all € > 0 for which the set on the right is non-empty and if the set is empty for all
e > 0 define A = 1. We now state the following result.

Lemma 4 Assume A.1 and let € > 0 sufficiently small be given. There exists
6 <1, a finite T and a sequence of profiles {24, 7)Yt such that if § > 6, the

players’ average payoffs (Ak)kek-, B over the sequence satisfy
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(a) Ay < dy+ 5\ +¢/2,

(b) If (a1, @2) is (Te/2)-IR then (1 — p) A1 + pay > &1 + (Te/2) and p € [0, 1]
implies (1 — p)(A1, As) + p(au, o) is (7e/2)-1R.

Proof: See Appendix.

The next step in the argument (Lemma 5) shows that given an arbitrary equilibrium
(e, @2, B) for the game I'(p, &) there is an equilibrium for I'(1 — rp,,rp;,8) where one
period of randomization and N repetitions of the sequence described in Lemma 4 are
played before the game settles down to (ay, s, 3). At this new equilibrium type 2 and
player 2 coordinate their actions for the first VT periods to repeat IV times the sequence of
actions described in Lemma 4; they then play the equilibrium strategies to get the payoffs
(a1, a2,8). Type 1, on the other hand, randomizes in the first period; with probability

~1 she plays 2o and then continues to mimic type 2 for NT periods,

g=r(1—p2)(1—rp2)
whereas with probability 1 — g she reveals her type by deviating from zq and then plays an
equilibrium of the complete information game I';(6). The players’ payoffs from playing

the finite sequence n times and then getting the equilibrium payoffs (a;, az, §) are denoted
(a1(n), az(n), b(n)) where

(25)  ak(n) = (1= 6")Ap+ 6Ty, k=1,2  b(n):=(1-6T)B +6"T5.

How do the payoffs at the equilibrium of I'(1 — rp,,7p;,8) described in Lemma 5
differ from those in the original game I'(p,§)? Type 1 randomizes so at the equilibrium
she is indifferent between mimicking type 2 and revealing her type; and thus her expected
payoff in I'(1 — rpy, Tps, 6) is a1 (V). Given A, is close to a; 1t is clear that as n increases
so aj(n) approaches a;. Thus in I'(1 — rpy, rps, §), type 1’s payoff is generally lower than
it is in ['(p, §). Player 2’s payoff is a combination of what he expects to get against type
2 and what he expects to get when type 1 reveals her type. When type 1 does reveal
her type she and player 2 will play out an equilibrium of the repeated game of complete
information I'(§) with the payoffs (a;(IV),b). (Type 1’s payoffs are determined by her
indifference between mimicking type 2 and revealing her type, but b is to some extent
arbitrary.) However, 7, the total probability that the sequence is played following the

randomization, can take any value in [0,1]. By a judicious choice of r we can ensure that
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player 2’s payoff in I'(1 — rp,,rps, 6) will approach b for any feasible b. In fact provided
(a1(N), b) € G1(2¢,€), any payoff b can be chosen, where the set G (2¢, €) consists of those

points that are at least € in distance inside the boundary of G1(2e):

(26) G1(2¢,€) := { (a1,0) [ {(z,9)] || (#,9) = (01,b) I €} C G1(2e) }.

In the equilibrium of Lemma 5 an important consideration is the punishments im-
posed when player 1 deviates. Since both her types’ equilibrium payoffs vary as the finite
sequence is played out so too do the punishments for deviation. During the early periods
of play type 1 faces heavy punishment for deviation (because she has a low equilibrium
payoff) whereas in later periods she has light punishment if she deviates (because her
expected payoffs from continuing with the equilibrium have grown). This varying punish-
ment is necessary because, as the discussion of approachability above implies, it is usually
impossible to heavily punish both types of player 1 simultaneously. The fact that it is

possible to punish deviations appropriately is ensured by Lemma 4(b).

Lemma 5 Assume A.1let: € >0, 6 > 67 :=max{ & , 6, (1—e/(4M))VT },
and an equilibrium (oy, a2, B) of [(p,8) with B > b+ 2¢ and (, @) (3€)-IR
be given. If there is an N and b so that

(27) B(N)>b+2,  (a1(N),b) € Gi(2¢¢),
then the game I'(1 — rpa,rp2,6), r € [0,1], has an equilibrium with the payoffs
(af, ab, B') where o = a1(N), ay > az(N), | —b| < 2Mr.

Proof: See Appendix.

By choosing r sufficiently close to zero in the above lemma we can find an equi-
librium of I'(1 — rp,,7p2, ) where the players get payoffs arbitrarily close to the point
(a1(N),b) € G1(2¢,¢€). Thus if the possible values of (a;(V), b) are close to all of the points
in G1(€) we would already have proved our folk theorem result. This is not true in general
for two separate reasons. The first is easiest to deal with: a;(N) < e for all N > 0 so
we must choose a; as large as possible for all possible points in Gy (¢€) to be approximated

by (a1(NV),b). Lemma 3 provides the obvious choice of (a1, a3, 8) in Lemma 5, that is
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(a1, @, B) = (@1, &2, ), because then a; = d@;(€). The second reason arises because the
lemma above ‘does place a restriction on which points in G;(€) can be approximated; it
requires that the constraint b(N) > b+ 2¢ be satisfied. That is, player 2 must receive
strictly more than his minmax payoff while the players play out the equilibrium after
the randomization and in general this will restrict how low a;(/V) can be made (see the
introductory example). Theorem 3 addresses this issue by allowing periodic randomiza-
tions by type 1 that increase player 2’s payoffs. Lemma 5 is used as an inductive step in
the proof of Theorem 3 , so if when (&;, &y, 3) is used as an initial equilibrium it is not
possible for a;(N) to be close to a;, choose instead the intial randomization in Lemma
5 so that B is large. Thus from the initial equilibrium (&;, &2, 8) a second equilibrium
(cfy, @5, 8') has been found with of < &y = &, and g’ > b+ 2. Now apply Lemma 5 a
second time to the new equilibrium with the payoffs (e, oy, f') and determine if it is now
possible to be close to all of the points in Gi(€). And if not define a second equilibrium
(ef,af,B") with of < o and B" > b+ 2. The proof of the theorem shows that only a
finite number of iterations of this argument are needed to ensure that any (a,b) € G1(e€)
can be approximated. As only a finite number of applications of Lemma 5 are necessary
there is a lower threshold p. <1, the lower threshold on the discounting in the theorem

comes directly from Lemma 5.

Theorem 3 Assume A.1 and let v > 0 sufficiently small be given. Then there
exist § < 1, p, <1 such that for allp > p , 6 > ¢ and (a7, b") € Gi(v) the
game I'(p, 6) has an equilibrium with the payoffs (on, oz, B) where |ay —a}| < v
and | —b*| < v.

Proof: See Appendix.

5. Conclusion

This paper studies the Nash equilibrium payoffs that can arise in discounted repeated
games of one-sided incomplete information. We have isolated two polar cases. In the first

case the informed player is very patient relative to the uninformed player and the set of
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equilibrium payoffs is close to the set of equilibrium payoffs when there is no discounting.
In the second case both players are equally patient and the set of payoffs approaches the set
of equilibrium payoffs in the game of complete information as the common discount factor
approaches unity and the probability of all other types shrinks. In the first case the time
taken for play to converge to a stationary outcome is insignificant in the informed player’s
equilibrium payoff whereas in the second case it completely determines her equilibrium
payof; it is this that largely explains the difference between the two poles. Whether these
results also apply for the perfect Bayesian equilibria is a subject of our current work and

for a treatment of a special case see Cripps and Thomas (1995).
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Appendix

We shall need the following definitions. Let

(28) bmin = rtréllnrjnel}lB(za])

be the worst payoff player 2 can get in the stage game,
(29) bmas = max max B(i, j)

be the best payoff for player 2.

ProOOF OoF LEMMA 1:

To simplify notation let gV = qV(- | &) and §V = q"(- | k%, k). Choose N to be the

smallest integer such that

bmor — bmi €
. 5}\] maz min .
(30) * 125 S 21-6)
Next, define ‘72t+1(yN ) to be the payoff to player 2 over the next N periods discounted to

period t + 1, that is
t+N

(31) KRN = X &TTBST) .

r=i41
For probability distribution gV its expectation is Eqwv [V;“(yN)] = Y 'V (),
and since this is a continuous function of g/, with compact domain, there exists an n>0

such that || gV — §" || < 75 implies that

€

(32) IEqN [Vng(yN)] - EQN [V;H(yN)” < 2(1 = 6,) '

Let n be as in the statement of the lemma, and assume to the contrary of the lemma
e =&V || < n; then by (32)
B [oft | bt] — E [0+ | ', k]
< (1= 6)Eqn [ (™)) + 83 bmas — (1 = 82) Eqn [V (5™)] = 83 brmin
< (L= &) [Bgw [ W™N)] = Eqr [V (0™)]| + 6 (bmas — bin)
<

(&'5

(33)
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But using (15) this implies
(34) E[* h] < b
which is impossible. Q.E.D.

Proor orF LEMMA 2:

Fix an equilibrium and a type k and choose € = ¢/3 in Lemma 1; then there is an
N and an 7 such that (16) holds whenever (15) holds. Set % = 7 in Result 2, take any
integer n, 0 < n < N, and set ¢{ = bebr,,) (assuming that b > brin; the lemma is
trivial otherwise). Then by Result 2 there is an m (finite) such that the probability that
inequality (16) holds more than m times in T'(n, N) is less than £, so the probability that
inequality (15) holds more than m times in T'(n, N) must also be less than £. Hence,
considering all values for n, 0 < n < N, we have that the probability, conditional upon

type k, that the inequality

(35) E B |k k] <b—¢/3
holds more than Nm times is smaller than N¢ = :T(l:%n:;
Next,
(36) E[B* [ k] = E[(1 - &)BEH, 55 + 6,52 | K
so
(37) (1= &)E [BGE*, 1) | k] = B [B+ - 5,42 | B

Hence, player 2’s payoff against type k in the equilibrium, calculated using player 1’s

discount factor, is

B(ri(61)) = (1- &) i_}siE (BG4, ) | 4

I I G
_1_52;5@[&, 821 | k|

1—-6,
1 -6,

(38) = {E 6" 1K)+ E {i E [8(8y — 8)8+| *, k]

k]} |
Using the result on the number of times (35) holds, for §; > §, the random variable

fj E [8(8: — 62)b | b, k]
t=0

01—62,, & 5
(39) > {32206-9- - 8)(b )|
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with probability at least (1 — N¢) conditional on k, where we are using the fact that
in the event that (35) fails no more than Nm times, subtracting (b — bpin) Nm times
undiscounted yields a payoff lower than the minimum possible. The random variable is

at least %’_%;ilbmin otherwise.

Using this in (38) gives a lower bound, say ®(4y,82), so that B(m(61)) > ®(6y,6,),
and notice that ®(é;, 82) is independent of the particular equilibrium studied. Next, taking
the limit as §; — 1 yields

(40) Jim @(8,6) = (1-N¢) (3 - -‘g) + Nébpin ;
g — é
hence, since V¢ = ey e get

lim &(8,,6;) = b—2_ % (i,_ bonin — é)
b1t min)

(41) > b-

Choosing &) such that ®(6;,8,) is within £ of its limit (8() depends only upon py, ¢ and
8,), we have for 6, > égk)
s B(ri(8)) > b5

Set §;, = maxkex{égk)} and the result follows. Q.E.D.

Proor oF THEOREM 1:

The strategy of the proof is to show that for player 1 sufficiently patient, the average
frequencies over action profiles in a Nash equilibrium, calculated using player 1’s discount
factor, must approximately satisfy individual rationality and incentive compatibilty. We
take 6, and p to be fixed throughout the proof. First consider condition (i) of Definition
1 of Ilp, individual rationality (for player 1). Let (o,7) be a Nash equilibrium pair of
strategies for the game I'(p, 61, 6,), and suppose that the equilibrium payoff profile for
player 1, a = (Ag(7mk(61)))kex, is not individually rational. Then by (7), there exists
q" € AK such that q* - a < a(q*). By the minimax theorem,

(43) q"-a < max min Z G Ax(f,9) ,
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so that if player 1 plays a mixed action f* which attains the maximum in (43),
(44) q a<Zqufg

for all g € A7. Denote by o the repeated game strategy in which player 1 plays the
mixed action f* each period and independently of type k. Then

(45) Ep,a‘,r [ 10 ‘51 25 Zq;Ak(itsjt) > q* *a,
t=0 k

(Nb. k is not a random variable) so that

(46) S qiBpoen (e |K = 3 aiBpaen [(1—61>25:Ak<if,f)|k > qa
k k

t=0

since given that o* does not vary with type, conditioning on k& does not affect the distri-

bution over histories. Because q* € A¥ it follows that
(4:7) Ep,o—‘,‘r [&k | k] > ak

for at least one k, contradicting the definition of equilibrium. Hence individual rationality
must be satisified for player 1 for any value of 6y; that is, a satisfies (7). Next, condition
(ii) of Definition 1 (incentive compatibility) must be satisfied for any 6;, 0 < & < 1,
since in any Nash equilibrium Ag(w(61)) > Ak(7(61)) for all &, &’ by the definition of
equilibrium (recall that Ag(7x(61)) is the equilibrium payoff of type k of player 1, and
Ag(m1(61)) is the payoff type k would get from following the strategy of type k).

Finally, individual rationality for player 2 must be dealt with. Define
(48)I1 := {r € 1 | Ax(ms) > Aw(mr) all k, k'and(Ax(mk))rex is individually rational} |
and define the compact valued correspondence ¥ : [0, 00) —— II by
(49) U(g) = {r|Bu(mi) 2b—¢ allke K} .

Since ¥ is clearly an upper hemi-continuous function of ¢, it follows that the correspon-
dence given by WNTI, which is non-empty (Shalev (1994)), is also upper hemi-continuous.
Moreover, if the linear function A(x) := (Ai(m1), A2(m2),..., Ax(7k)) is defined on II,

the correspondence given by A[¥(¢)N1I] is an upper hemi-continuous function of ¢, with
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value A* at ¢ = 0. Hence given ¢, there is a ¢ > 0 such that for 0 < ¢ < @, all payoffs in
A[¥(4) N ] lie within € of A*. Choose ¢ in Lemma 2 to be ¢; the corresponding §; is
therefore as required for (21) to hold. Q.E.D.

Proor orF LEMMA 3:

By (A.1) there exists (74 )rex and IR payoffs (& )rex such that Ag(#4) > & and B(#) > b
for all k. Choose € so small that: Ag(#x) — &k > 5e; B(itx) — b> 5efor k € K; there
exists 71 satisfying (A1(71), B(71)) € Gi(e) and A;(#1) < Ai(71) = a1(¢). Let 75 = #, if

Az(%2) > Aa(71) and let 2 = 7, otherwise.

The strategies in I'(p, ) are as follows: In period zero player 2 plays j = 1 and type
2 plays a best response to j = 1 while type 1 plays a different action to signal her type. If
type 1's signal is observed then the players play a deterministic sequence of action profiles
that mimic 7;. If type 2’s signal is observed they mimic 7, in a similar fashion. Player 1
minmaxes 2 if he deviates and player 2 uses a punishment strategy to hold player 1 to at

most (g )ker + €1 if she deviates.

It is clear that type 2 does not gain by mimicking type 1 and nor does type 1 gain
by mimicking type 2 (by definition of @,(¢)). By construction Ax(#%) — (% + €) > 4e and
B(7) —b> eso the players lose at least é¢ in total when they deviate, but any gains from
deviation are bounded above by 2M(1 — 6) and 2M (1 — §) < ée by assumption. Q.E.D.

ProOOF OF LEMMA 4:

Blackwell’s (1956) result implies the set {y|y < (wk)kex} is approachable by player 2 if

for any vector z > (wi)rex he has a stage-game mixed strategy g, so that
(50) (z - (wi,w2))( Al(i,gz)‘, As(t,92) ) <0 Vie I,

(see for example Zamir (1992)). This condition amounts to the requirement that the plane
through (wi,w;) orthogonal to the vector (z — (wq,w;)) separates the point z from the

points { (A1(%,9z2), A2(¢,92)) | 1 € I }. Now by (A.1) there are two cases.

(1) Ai(7) > 61 & Ax(m) < @2 : In this case the set { y |y < (a;,a;) } is approachable.
(This follows by either choosing g, to be the strategy that minmaxes type 1 or the strategy

that minmaxes type 2, where appropriate, in (50).) Let §; be a strategy that minmaxes
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type 1 and let 2’ be one of type 2's best responses to §; so: A;(¢',§;) < &, and As(t' g1) >
a;. Define 7 to be a rational approximation to the distribution over action profiles induced
when player 1 uses ¢ and player 2 uses §;. Choose # so that A4;(%) < &, + ¢ and
Ag(*) = @2 + 4e which is possible by (A.1) and for € sufficiently small. Now choose an
integer T and a finite sequence {(¢,7%)}75! so that each profile (2,7) occurs T#;; times
in it. By continuity there exists a § so that ]Ak — Ai(®)] < €/2 for all k € K and
|B — B(#)| < ¢/2 for any 6 > 6. Then for any & > 4 it is true that A; < &, + 3¢/2 so (a)
in the lemma is certaintly true. Moreover, since Ay > &y + 7¢/2 and qq > dg + 3¢ taking

punishments (wy,ws) = (41, &2) implies (b) is also true.

(2) There exists 7~ such that Ag(7") > a, for £ € K : Define #° so that it maximizes type
2’s payoff given type 1 receives her minmax payoff: 7% € argmax{ As(x) | A;(x) = 4, }.
(Note Ay(r®) > d,, because if =’ represents the correlated strategy played when type 2
plays a best reponse to player 2’s mixed strategy that minmaxes type 1 (A,(n') < &, and
Az(7’) 2 as), then the convex combination 7 = pr’ + (1 — p)x~ can be chosen so that
Aq(7?) = @y and Ay(x?) > @a.) The point (a1, A3(x°)) is individually rational. This again
follows by showing that the set { y | y < (a,, A2(x®)) } is approachable by taking g, to
either be the strategy that minmaxes type 1 or the strategy that minmaxes type 2 in (50)

above, see the figures below. Choose 7 to be a rational approximation to 7° so that there

z ’Z
1,A2(r%)
(a1, 22)
(21,22 \
(A1(,22), A2(i,22)) (A1(i.g2), A2(i.g2))
minmaxes type 1 minmaxes type 2

Figure 2 — { y | y < (&, A2(x°)) } Approachable



exists an individually rational (wy,w;) satisfying
Ar(F) > wi + 4e, Vk € K; Ay () < @y + 5Xe.

Again mimic 7 by playing a finite deterministic sequence of actions; there exists an integer
T and a finite sequence {(z¢,7!)} ! so that any profile (¢,7) occurs T'#;; times in this
sequence. By continuity, there exists a é such that for § > & the total payoffs over the
sequence are close to those for #, that is, |4, — Ax(%)| < €/2 for § > 6 and k = 1,2. This
implies statement (a) in the lemma and (b) follows from the convexity of the (7¢/2)-IR.

set. Q.E.D.

ProOF OF LEMMA 5:

First define an infinite sequence {(z}, 7t)}32, by repeating the finite sequence of actions
{(2*,7°) Y= of Lemma 1, that is, for t > T—1 define (2%, %) := (3, j*) where s = ¢ mod 7.
We also use At := ((2°,7°)):Z} to define the history that arises if the players play out this
infinite sequence for t periods. The players’ equilibrium strategies in I'(1 — rp, rp,, §) are

now described.

Type 1

t = 0; play :° with probability ¢ := r(1 — po)(1 — rpy)~! and i # i° with
probability (1 — q).

0 <t < NT —1; if the history is A then play 3¢ in period ¢, if the history is
(h*=1,(2*=1, 7)) but j # 7*~! minmax player 2 thereafter.

If the history is A7 then play the equilibrium strategy in I'(p,6) to get the
pa.yoffs (ala G, IB)

If the history is (2°, 50) then play pure strategies in the repeated game of
complete information T'i(8) to achieve the payoffs §=*(ai(V),d) — §71(1 —
6)(A1(1%,7°), B(:°,7°)) and minmax player 2 if he deviates. If the history is
(1%, 7) but j # 7° then minmax player 2.

Type 2

0 <t < NT —1; if the history is A’ then play ¢! in period t. If the history is
(ht-1, (2+1,7)) and j # 7*~! minmax player 2 thereafter.

In period NT play the equilibrium of I'(p, §) to get the payofls (a1, a2, B).
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Player 2

0 <t < nT — 1; if the history is _izt then play 7% in period t. If the history is
(ht=1,(3,5%Y)) and ¢ # 1" and 1 <t < NT play a strategy to ensure that
player 1’s types receive no more than w wi(t) + efor k € K.

If the history is ANT then play the equilibrium strategy in I'(p,6) to get the

payoffs (a1, a2, B)-

If the history is (z°, J ) then play the pure strategy equilibrium in the repeated

game of complete information I'1(8) to achieve the payoffs 67" (a1(N),b) —
5711 — 6)(A1(z ,7%), B(&® ,7%)). If player 1 deviates from this equilibrium or

plays i # 1%, 1% then play a strategy to ensure that player 1’s types receive no
more than w,(0) + € for k € K.

(The payoffs from following these strategies certainly satisfy the conditions described in

the Lemma. The punishment payoffs (wi(t))sex fort =0,1,2,... will be defined below.)

Players’ strategies are optimal in period t 2> NT: Type 1 reveals herself by playing the
action ¢° with probability 1 —r so player 2’s priors are revised upwards if the history ANT
is played out. By Bayes’ Rule his priors are revised from rp, to p; because rpa(rps +
(1 —rpy)q)~! = p2. If the history ANT occurs, the players thus play the game T'(p,6). By
assertion (a1, s, B) are equilibrium payoffs for I'(p, §) so the strategies described above

certainly consitute an equilibrium given the history ANT,

Players’ strategies are optimal in periods t < NT : We begin by considering player 1. In
period zero type 1 plays a mixed strategy. Her strategy is optimal if she is indifferent
between the actions 2°,1° and provided the payoff from 20 is no less than that from any
other action i # 1°,1°. By construction her expected payoft from the actions 2°,1° is a1 (V)
so she is indifferent. It is not obvious, however, that an equilibrium of I';(6) can be found
with the payoffs 6~ (a(N),b) — 6711 — 8)(A1(z ,]0) B(°,7°%)) required by her strategy.
To verify this notice that

(1= 8)|a(V) - 4@ (1 -6)2M
5 < 5 < €

ay(N) — (-la—al(N) - S A, 3°)>

(The last inequality follows from 6§ > 2M/(e+2M)~1.) By assertion (ai(N),b) € G1(2e, €)
so this establishes that Result 3 can be applied to these payofis.
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We now show that type 1 and type 2 do not benefit by deviating from the sequence
{(2%,3%)}. To do this it is first necessary to define the punishments (wi(t))kex- By assertion
in the lemma (a1, @2) is (3¢)-IR and a;(N) > &, + 3¢, now from Lemma 4(b) with p = §VT
it follows that (a1(V),as(NN)) (defined in (25)) are (3¢)-IR. The set of (3¢)-IR payoffs is
convex, so for any 0 < n < N the pair (ar(n))kex is also (3¢)-IR. This means that for

any 0 < n < N there exists an IR vector of payoffs, (wx(n))rex, such that
(51) (ak(n))eer = (wi(n))rex + 3el.

ax(n) is type k's equilibrium payoff if she expects to play n times through the finite se-
quence {(z*,7%)}E=!, before reaching the equilibrium with payoffs (ay, az, ). In general,
however, her expected payoff from abiding by the strategy above is (1—8) ©°75 6" A (2%, 79)+

67ar(n) where r < T'. The difference between this and ax(n) satisfies

T-1
(1=6) > 6 A", 5%) + 8 ax(n) — ak(n)

t=r

T-1
[(1 L83 8T A ) — (1= 8 )ax()

t=r

(1-=8M+(1-6)M
(52) < 2M(1—-6T) < ¢/2

IN

(The last line of (52) follows from the assumption made on é.) Combining (51) and (52)
implies that at for any 0 <¢ < NT —1 where (NT —1 —¢ = nT +r) player 1’s expected
payoffs are at least (5/2)el above some vector (wi(n))kex of IR payoffs defined by (51).
We will choose these to be the punishments (w,(t))rex described in the strategies above.
Since (a) we have chosen § small in the Lemma, (b) k’s maximum payoff from deviation
in period t is (1 — §)M + 6(w,(t) + €) and (c) from above, her payoff from continuing
is at least w;(t) + (5/2)e type k never benefits by deviating from the sequence at time
t<NT —1.

Now also consider the equilibrium of I'; (6) that is played out when (z°, 7°) happens in
period zero. Since (a) we have chosen 6 small in the Lemma, (b) a;(&V) > wi(N)+5¢/2 and
(c) by Result 3 the strategies giving the payoff 6-1(a; (V) — (1 —6)A4;(:°, 7°)) can be chosen
so that type 1’s continuation payoff is never less than §7*(ay(N) — (1 — §) A1 (s% 7%)) — /2
it follows that type 1 never benefits by deviating from this equilibrium.

Type 2, however, may prefer to deviate from the equilibrium strategies above by

mimicking type 1 and playing action i° in period zero. If she does prefer this, there is
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an equilibrium where types 1 and 2 both play z° in period zero and then play out the
equilibrium of I'; (§) described above whilst player 2 uses the above strategy. At this new
equilibrium the payoffs to type 1 will not have changed, although type 2’s payoff is now
greater than ay(V). Player 2’s payoff is not (1 — )b+ rb(N) but instead is b. So player

2’s payoff 3’ certainly satsifies

| 8/ =b| <r|b(N)—b|<2Mr.

Player 2 is minmaxed whenever he deviates and b(N) > b+ 2¢ it is simple to show

that it is never optimal for him to deviate. Q.E.D.

PROOF OF THEOREM 3:

Let (a},b*) € Gi(v) and choose € so that v > 5eX + ¢ > 6¢, where A is defined in
Lemma 4. The first step in the proof is to show that given an equilibrium (e, @z, §)
of I'(p,6) that satisfies the conditions of Lemma 5, we can find a range [a(e,B), o]
such that for any (a},b*) with aj € [a(cu,B), 0] there is an equilibrium (e, a5, 8)
and a game ['(p’,8) so that |of —aj| < v, |8 — b"| < v provided § > § = §; and
py > p,, where & is defined in Lemma 5. Define N to be the largest integer N such
that (ay(N),b(N)) € Gi1(2¢). Define a(a1,8) = a1(N), then a;(N) € [a(en, B), eu] for
0 < N < N. By (52) |ai(n) — ai(n + 1)| < €/2 so for any aj € [e(e1, B), 1] there exists
a1(N) so that |a;(IV) — a*| < €/4. By using Lemma 5 again it is possible to choose b so
that [b — b*| < ¢, but then

18" = 6| < |8 — b+ |b— b < 2Mr + € < 2,

by Lemma 5 and by choosing = so that 2Mr < €. Since 2Mr < ¢ implies p < €/(2M) we
have that provided p} > 1 —¢€/(2M) and & > § the game I'(p’, §) has an equilibrium with
the payoffs (o, o, B) so that |of —aj| < €/4, |8’ — b*| < 2¢. Now because our choice of €
we have the completed the first step.

Let (&1, &z, ), defined in Lemma 3, be the initial equilibrium of I'(p,6). Then from
above if at € [a(&y, B), @1(5¢)] then for (a},b*) € G1(2¢) the theorem above holds. So, if
o(@y, B) = @, + 2¢ we are finished, because the theorem holds for all (a7, b") € G1(2€) with

a; € [& + v,@1(5¢)]. If, however, a(&1, ) > a1 + 2¢ then the line segment in (ay, b)-space
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defined by the convex combination
(a1(n), b(n)) = (1 — 6"T)(Ai, B) + 8" (&, B)

intersects b = b-+2e before it hits a; = a;+2¢. In this casefor all § > &, p} > (1/2)+(1/2)ps
we can choose an equilibrium (¢}, o, 8') of T'(p’,6) such that |of — a(a, B)| < €/4,

18" — f(a(&1,B))] < 2¢ where
(53) fla) = %(?H- 2¢) + %max{ b| (o, b) € G1(2¢) }.

This is achieved by choosing a payoff pair (a1, b) so that a; = a1(N), bso that |b— f(ay)| <

e and r = 1/2 in Lemma 5.

Given the equilibrium (¢, o, 8') described in the previous paragraph we can repeat
the above argument and find a new range [a(o], ), @] such that if (a7, b*) € G1(2¢) and
a; € [a(c, B),@1(5€)], then for 6 > § and P’ > (1/2) + (1/4) + (1/4)p: the game I'(p”, 6)

has an equilibrium (o, a4, 3”) such that: |of — aj| < v, and 18" — b < v.

If o, B') = a + 2¢ this is sufficient to prove the theorem; otherwise for all § > §,
p’ > (1/2) + (1/4) 4+ (1/4)p1 we can choose an equilibrium (of, a3, 8") of I'(p”,8) such
that |of — a(c,, 8)] < €/4, 18" — f(a(ah, B))] < 2¢. And the entire argument above can
be repeated once again. Provided it is possible to approximate any (aj,b*) € G1(2¢) in 2
finite number of iterations of this argument we have proved the theorem. To show that

this is possible define the sequence { Xy} as follows

Xo = 5.1(56),
Xigp1 = (1—P4)A1+PdXd,

where
pa = min{ p | (1 — p)(A1, B) + p(Xa, f(Xa)) },

and f(.) is the function defined in (53). This sequence defines how the lower thresholds
of.) evolve as the iterations are repeated. We need only consider the case where b+2e =
(1— p)B + pf(X4), (as otherwise the result is trivial) but then it is possible to solving for

p and to calculate X;.

. b+2-B . b4 2+ M
54 X — A= T Z (X — Ay) € e
(54) 141 — A (X4 — Ar) "

FXo)~ B (a=b)
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The bound on the right follows from B > —M and F(Xq) > b+ 5¢ (because we are only
interested in-approximating points Gy(v)). If we define Q = (b + 2¢ + M)/(b+ 5¢ + M)
then Xy — A; < Q% & — /11), where ) < 1. Since, by Lemma 4(a), A1 < @) +5e) + €/2
and from above v > 5e)\ + ¢ there is a finite number D so that &; + v — /11 > QP (- Al)
Thus only a finite number of iterations of the above argument are needed for the intervals
above to reach the point where a(.) < a@; + v. Thus there exists D finite so that for
any (af,6") € Gi(v) any §' > § and p} > 7., (3)? + p1(3)P the game I'(p', ') has an
equilibrium that satisfies the conditions of the theorem. Q.E.D.
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