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Abstract

A test of forecast rationality based on the weak efficiency of fixed-event forecasts has
recently been proposed by Nordhaus (1987). This paper considers the scope for pooling
fixed-event forecasts across ‘events’ to deliver more powerful tests of the weak-efficiency
hypothesis. In an empirical illustration we demonstrate the usefulness of this approach
when only a small number of forecasts are available. We also suggest an interpretation of
the rejection of the null hypothesis of weak efficiency in favour of negative autocorrelation
in series of revisions to fixed-event forecasts.

The relationship between weak efficiency and rationality when loss functions are asym-
metric and prediction error variances are time-varying is also considered.
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1 Introduction

There is now a large literature on assessing the ex post rationality of forecasts in the tradition of
the realization-forecast analysis of Theil (1958) (see Wallis, 1995 for a recent review). An early
application of this approach was Ball (1962), and since then progress has been made in improv-
ing the econometric implementation of realization-forecast analysis and the testing of various
forecast optimality conditions. The focus has typically been on what can be termed rolling-
event forecasts, so that the properties of a series of forecasts of fixed length & are analysed. If
we denote by P;; a forecast made at period ¢ about the value of the process in period ¢ + h
(denoted A;yr), and let ey ; denote the forecast error (eqyp)e = Agprn — Py ypt), then we might
run a regression of the form:

A = o+ BPinjs + Uit (1)

where the sample consists of {At+h, Pt+h|t} fort=1T,...,T+ H — h, say, where T is the first
forecast origin and we have realizations and forecasts of the process up to period T' + H. Tests

of unbiasedness and efficiency then relate to the estimated values of o and [, see, for example,
Mincer and Zarnowitz (1969), Zarnowitz (1985), Holden and Peel (1990) and Kirchgéssner

*“I am grateful to David Hendry and Ken Wallis for helpful discussions and comments. Financial support under
ESRC grant 1.116251015 is acknowledged.



2 Analysis of fixed-event forecasts 2

(1993). When the forecast horizon h exceeds the sampling frequency forecasts overlap in the
sense that they are made before the error in the previous forecast is known. In which case it is
necessary to allow for a moving-average process for the u;; of order A — 1, so that consist-
ent estimates of the covariance matrix of the coefficient estimates require the use of the Hansen
and Hodrick (1980) correction (see, for example, Brown and Maital, 1981). Other problems
arise when forecasts are pooled over individuals (see Zarnowitz, 1985) but in general the eco-
nometric implementation of tests of rationality based on fixed-event forecasts is reasonably well
developed.

An alternative type of forecast that has received scant attention in the literature are fixed-
event forecasts, where we consider the properties of forecasts of a given event (say, A; att = 7)
made at a variety of different times (variable ). Formally, the forecasts are denoted by Prir s,
where h € (1,..., ) gives I-step up to «-step forecasts of the value of the process in period
7. Fixed-event forecasts were discussed by Nordhaus (1987), and in contrast to rolling-event
forecasts, are a relatively unexploited resource for testing various notions of rationality. The
motivation for developing a framework for analyzing fixed-event forecasts is that in many cases
forecasts of the same event are made at a number of points in time. For example, many of the
major economic forecasting agencies produce forecasts either every month or every quarter of
the state of the economy two or three years ahead. Based on the analysis of Nordhaus (1987),
we wish to investigate whether such forecasts are rational in the sense that new information is
immediately and fully reflected in the latest forecasts. Since only a small number of forecasts are
typically available of the value of a variable at a given future date, the framework is extended to
allow the pooling of forecasts for a particular variable over a number of different target dates,
and the econometric issues that arise are discussed. Finally, some new interpretations of the
rejection of the weak efficiency version of rationality are offered.

In section 2 we briefly describe the notion of weak efficiency due to Nordhaus (1987), and
suggest extensions to the econometric implementation of tests of forecast rationality based on
fixed-event forecasts. Section 3 tackles one of the main obstacles to the more widespread use
of fixed-event forecasts in assessing the rationality of economic forecasts, which is to do with
the relatively short spans of data typically available (x small). We investigate the possibility of
pooling forecasts for a particular variable over different events (7), and of using the generalized
linear regression model. We discuss the extent to which this requires knowledge of the model
used to generate the sample of forecasts.

Section 4 reports an empirical illustration of some of these ideas, and interprets the find-
ing of negative autocorrelation in series of revisions as evidence of an absence of ‘significant
news’ over the period. Section 5 shows that the test for weak efficiency is robust to asymmetric
loss assuming a constant prediction error variance, but in general a rejection of weak efficiency
could be consistent with either irrationality or optimally biased forecasts in the presence of time-
varying prediction error variance. Section 6 concludes.

2 Analysis of fixed-event forecasts

Weak efficiency (due to Nordhaus, 1987) is the requirement that forecasts efficiently incorporate
new information as it becomes available. This is testable from series of forecast revisions vy,
defined as:

Urlj = Prij—1 — Pryjy
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which denotes (minus) the difference between the (7 — j)-step ahead forecast of the value of the
process in the future period 7, made at j, and the (7 ~ j + 1)-step ahead forecast of the process
at 7, made at § — 1. Thus it is the revision from period j — 1 to period j. Moreover, Py = A,
and for a given 7 we have a series of revisions {vﬂj} where j = k+1,...,7. vy, is the I-step
ahead forecast error, and v, 11 defines the first available forecast of period 7 (P.) as having a
length of 7 — k. Then one implication of weak efficiency is that the revision at j is independent
of all revisions up to j — 1:

E [v7|.f | Vrpjets - - - ,UT[KH] =0, j=K+2,...,7T. )

(2) implies that forecast revisions should be a white noise series, Prj;_; — Pr; = —¢;, where
g; ~ ID (0, 02), say. Thus, efficient forecasts follow a (possibly heteroscedastic) random walk®
with drift, where the drift term P, is the first available forecast:

J
PT|_7': T|K,+ Z Es.

s=x+1

If we assume the ¢; are approximately normal, then an obvious test for weak efficiency is to
calculate the first-order autocorrelation coefficient and test whether it differs significantly from
zero (using standard ¢-tables, assuming revisions are a stationary |(0) series). Equivalently, run
the regression:

Urlj = Urjj-1 + Grgy 3)

where the sample is over all the available 7, and test the null that o = 0 against o # 0. In
section 4 we discuss possible interpretations of rejecting the null in favour of o < 0.

More generally, if the v|; are found to have non-zero autocorrelations at any lag then this
contradicts the white noise hypothesis required for rationality. Sufficiently long time series on
revisions would allow more general forms of dependence to be investigated.

The ‘random walk’ hypothesis can be tested more directly than in (3). A general model that
embeds (3) is:

Prjo1— Prj =2 +nPrj—1 + 72 Prj—2 + G 4)

where we allow an intercept. Testing the null that o = 0 in (3) is equivalent to testing that
11 (==a) = 0and vy, (=a) = 0 against y; + v, = 0in (4), with y = 0 under both
the null and alternative hypotheses. The rationality hypothesis is essentially that the martin-
gale property, or the ‘law of iterated expectations’, applies to fixed-event forecasts. That is,
(= [PT| j] = Py, s < j - my expectation today of what my expectation will be tomorrow of the
outcome of the football match at the end of the week is simply the expectation I hold today of
the outcome of the match. This can be tested within (4) if we set 7, = 0. The nullis that v, = 0
and the alternative is that -; # 0 and we allow a non-zero intercept. If the null is rejected then
I know today that the forecast I will make tomorrow will differ in a known direction from the
forecast I hold today, contrary to the law of iterated expectations. Conducting the test within

! The ideas here parallel the random walk model of stock market prices, which states ‘that price changes in a
stock (or index) cannot be predicted from earlier price changes in this stock (or index).” Granger and Morgenstern
(1970), p.96. Granger and Morgenstern (1970) attribute the first statement of the random walk model of stock
prices to Bachelier in 1900, and reference some of the early contributions, including Samuelson (1965) (see their
section 3.3). More recently the random walk model has become influential in the consumption literature, beginning
with Hall (1978), and surveyed by Deaton (1992).
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(3) has the advantage that both the regressand and regressor are 1(0) so that the ¢-statistic has
a standard distribution, although critical values have been tabulated by Fuller (1976) for test-
ing for a unit root. In certain circumstances testing the random walk hypothesis within (4) may
be more natural if we harbour the suspicion that fixed-event forecasts may themselves be white
noise (rather than this being an attribute of the series of revisions to fixed-event forecasts, see
section 4).

The form of the maintained hypothesis in (3) requires that the relationship between adjacent
revisions is constant and in particular does not depend upon | = 7 — j, the length of the forecast.
It may be that ‘forecast stickiness’ is more pronounced for large [, particularly if it is expected
that future events (or ‘news’) may suggest offsetting changes. With ‘credibility costs’ (loss of
credibility from often changing forecasts) some degree of stickiness may be rational.

As for rolling-event forecasts, we can define a notion of strong efficiency which requires that
revisions are an innovation against the forecaster’s information set. Tests of strong efficiency
can only ever refute the null since the information set of the forecaster, against which revisions
should be an innovation, is clearly open-ended. Failure to reject against a specific variable does
not rule out rejection for the next series tried. If forecasters efficiently utilise the latest available
information, then we would expect to find v = 0 in:

Urlj = ¥ Lijs + Unyj )

where Z;_, is known at period j — 1 for s > 1. Rejection of v = 0 is consistent with ‘partial
rationality’, defined as efficient use of the agent’s information, if that information is not com-
plete (some elements of Z;_ are not in the information set) and also with the inefficient use of
complete information.

We end this section by briefly reviewing the literature related to fixed-event forecast evalu-
ation.

Nordhaus (1987) finds evidence of positive correlations in revisions to forecasts of nuclear
capacity, energy consumption, and real GNP growth for four major U.S forecasting services. A
number of reasons as to why this might be expected to arise in general are given. These include:
the bureaucratic nature of forecast agencies that need to achieve a consensus view, so that there
is a degree of inertia in revising forecasts; forecasts are more credible and consumers happier
if forecasts change only slowly; and ‘a tilt toward wishing to hold on to old notions that are
relatively familiar rather than to adjust to surprises.” (p. 673).

Mankiw and Shapiro (1986) test the revisions of the BEA’s estimates of GNP for forecast
efficiency. However, they regress revisions of the estimates on earlier revisions, where in terms
of (3) j is fixed and the observations are generated by considering different 7. Thus their ap-
proach is in the traditional vein of evaluating fixed length forecasts. They find no evidence of
positive correlation of revisions.

Swidler and Ketcher (1990) also consider rationality in terms of forecasts (rather than fore-
cast revisions) by running regressions of the form:

Ar = oy + BiPry + e (6)

They implement (6) by running the regression across 7 for a fixed [: this is the traditional ap-
proach. They obtain estimates of the a’s and ’s for a number of [, and argue that since in-
formation accrues with time, later forecasts should be more accurate than earlier ones, so that
the R?’s of regressions should be inversely related to the lead time /. They consider forecasts
of real GNP growth and price inflation, and find that for both later forecasts appear to be more
accurate.
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Kirchgéssner (1993) considers testing predictions with different time horizons for weak ra-
tionality. For example, he tests the null hypothesis Hy : 4 = 0, I = I, in the equation:

vkt = M+ Lesyrjers + €

allowing for autocorrelation of up to 7 — 1 in the regression residuals (Kirchgissner, 1993 equa-
tion 7, my notation). Although the regressand and regressor are the errors in forecasts of the
same target date (¢ 4+ k) made at different origins (¢ and ¢ + ) the analysis is within the rolling-
event tradition since the sample is over ¢ for fixed & and j.

Finally, Clements (1995) runs regressions of the form (3) on fixed-event forecasts of UK
GDP growth and inflation, and fails to find positive autocorrelation of revisions.

3 Pooling fixed-event forecasts

Consider pooling the v, over w in (3). Then we can write this as a system of equations:

oly; 0 .- 0
Vr—(S-1)|c 0 . 0 Vr—(S-1)|e-1 C1
. _ . : ' ; + | )
Vol : h : Vorle—
| 0 0 - agl, . &
where Vo, = [Volj—(-1) Velj—(=2) . Vulj-1 'Uw|j]la and ¢; = [Ca ... Gl

The formulation in (7) assumes that we have forecasts made at J different periods
v=(j—(J—1),...,7) of the value of the process at S targetdates w = (7 — (S — 1),...,7)
(a total of S x J forecasts). Thus the shortest forecast horizon is (7 — (S — 1)) — 7, and the
longest is 7 — (j — (J — 1)). The design is balanced in the sense that for each target data w we
have a forecast made at each origin .2

Forecast rationality in the sense of weak efficiency requires that o; = 0,7 € (1,...,5).
Separate regressions could be run for each value of w, but for small J this may generate impre-
cise results, and pooling the observations in some way may yield efficiency gains. We could

simply pool the observations over different w by imposing ; = «, i € (1,...,S) and then
estimate (7) by OLS, and base a test of weak efficiency on the ¢-value of Hy: o = 0. However
this assumes that £ =E [{¢'] is diagonal (67I5x,), where ¢ =[¢] ... (&' Thisislikely to

be a poor assumption since revisions to forecasts of different target dates but made at the same
time are likely to be highly correlated: news at period j that leads to a revision in the forecast
of the value of the variable at period 7 — 1 is also likely to lead to a revision in the forecast of
the value of the variable at period 7.

In order to estimate (7) by generalized least squares we need to be able to reduce the num-
ber of free parameters in {2 substantially. Below we derive the structure of {2 assuming that the
forecasting model is known and that the forecasts being assessed are unadulterated model-based
forecasts. Under the null hypothesis of interest (o; = 0 V%), the covariance matrix of errors
in the forecast revision regressions (£2 from (7)) is simply the covariance matrix of forecast re-
visions.

2 In practice this is unlikely, and the empirical example in section 4 is unbalanced. However, as indicated in
section 7, the necessary adjustments are straightforward. The simpler assumption is made here for expositional
convenience.
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3.1 The covariance structure of forecast revisions for an ARMA process

Suppose the process has the ARMA(p, g) representation:

¢(L)ye=0(L)e ®)
where ¢, ~ IN (0,02),and ¢ (L) =1—¢L—---— ¢, [P, 0 (L) =1~ 6 L---—--- 6,L%. The
infinite MA representation is:
Y = € + Z Pi€—j- )
7=1

From (9) we can obtain expressions for the fixed event forecasts:

)
P’I‘['T—h = E ¢j6T—j
i=h

and forecast revisions:

Vrlr—h41 = P1'|7'—h - P’T'|T—h+1 - _¢h—16T—h+1' (10)
Consider now the autocovariance function for the forecast revisions. Let:
Yr,Girai = E [vﬂljvﬁﬁ]
then:
0 jF1
Ol —jPrpmj J =
from which we can deduce that €2 is symmetric and that each of the $? blocks ;:

Qll QIS

77'1 2737258 =

)

Q= (11)

Qs1 -+ Qgg

’

is diagonal. The i** diagonal element of the 7, c block, £2,. is given by:

0-52,(\[]T+1—7'—i¢7'+1—-6—’i)i = .7 - (J - 1) G aj'
For the special case of an AR(1) model (p = 1,¢ = 0 in (8)) then ¢; = #!, and so for
example €2,. has diagonal elements given by:
glpArHli=i=r=e y — 5 _(J—1),...,§.

Consider the case of S = 2, so that there are only two target dates or fixed-events for which
we have forecasts, w = 7 — 1, 7, and consider the AR(1) model again. Then (7) has the form:

[ vr_1j—(7-1) ] Vr—1lj—J |
Vr—1|; Vy—1]i—
S PG B I (12)
0 OZQIJ C2
Ur|j—(J—-1) 2Tx2J Urlj—J
L Ur|j i L Urjj—1

2J
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. Q1 912]
and (11) is given by 2 = :
(Disgivenby 2= | g O
HAEHT-1) ¢2(l+J—%) 1
0 0
¢2(l+1)
0 o 0 $2(-3)
_ 2
=0, ¢2(l+J—g) P2(+I=2) (3)
0 0
.. ¢2l
0 ¢2(l—%) 0 ¢2(l—1)

where l =7 — j.
3.2 Informational requirements

The above model-based analysis appears to run counter to the spirit of realization-forecast ana-
lysis as discussed in section 1 which requires knowledge only of the predictions and realizations.
In many cases we may wish to analyse forecasts which are not model-based, or only loosely
model-based, where we do not know the model being used. However, it is evident from the ana-
lysis of the general ARMA process that the error-covariance structure of the pooled regressions
is likely to have a fairly simple form, and we conjecture that it may be possible to approximate
this structure sufficiently accurately for there to be benefits to pooling when the forecast model
is not known.

Moreover, a standard result is that the OLS estimator of o: will be consistent in the presence
of untreated heteroscedasticity, but the properties of tests of the significance of o will depend
on the assumptions made concerning the covariance structure. Using the above analysis we can
impose sufficient restrictions on €2 to enable the free parameters to be estimated from the OLS
residuals of the pooled regression.

3.3 Testing for weak efficiency by pooling

The above discussion suggests a number of possible approaches, which we now briefly sum-
marise:

A The first method is to run OLS on the S x J observations in (7) assuming «; = «, Vi, and
test Hy : @ = 0. This implies 2 proportional to the identity matrix, and serves as the
benchmark case.

B Next, we consider GLS whereby each block €2, is diagonal with equal elements for that
block, but varying over blocks. Thus, in terms of the example with S = 2 we obtain:

Q= [ ouly o121y ]
oly o9ly |

If the diagonal elements are equal across blocks (011 = 013 = 039) €2 is singular. Nord-
haus (1987) footnote 5. p.669 argues that heteroscedasticity is unlikely to be a problem in
the fixed-event model if large forecast revisions are associated with major external events
(which are randomly spaced) and not with the distance from the target. The assumption of
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equal elements within blocks corresponds to the assumption of homoscedasticity in Nord-
haus’ analysis of a single fixed event at a time. However, when the time frame is relat-
ively short and forecasts are made at short intervals, say every month, then relatively few
major events may occur, and the assumption of homoscedasticity may be more question-
able. Moreover, monthly revisions may be greater in the months that quarterly national
accounts data appear.

C We could allow for this possibility by imposing the diagonal structure on each €2,., to capture
the effect of the same news item leading to revisions in the forecasts of all target dates,
but also attempt to model the heteroscedasticity within blocks in a way which reflects the
‘exponential decay’ in (13) for the AR(1) process but that is likely to arise more generally
for this type of model. The heteroscedasticity within blocks will arise whenever the in-
formation content of news is inversely related to the length of the lead time (w — ¢). These
considerations suggest approximating €2 for S = 2 by:

Pfl 0 [ sz 0
0 P11 0 P12
Q=1 r o] [p 0 ]
P12 P23
| [ O p2 | | O p22 | |

where |p;;| < 1,4,5 =1, 2.

4 Empirical illustration

As an illustration, we consider forecasts made by the National Institute of Economic and Social
Research of GDP growth and consumer price inflation in the UK for 1993 and 1994. Forecasts
of these variables are given every quarter in the ‘Medium term projections’ table of issues of the
National Institute Economic Review. For 1993, we have forecasts made in 90:1 to 93:4 (exploit-
ing the lag in data availability), and for 1994, forecasts made in 91:1 through to 94:4. Appendix
7 sketches the necessary changes to the ‘balanced’ case of section 3.

Series of forecasts of economic variables made every month are available, although it was
felt that revisions to forecasts made every quarter would be more likely to embody useful in-
formation. Using forecasts made at higher frequencies (such as every month) is appealing as
it generates many more observations to analyse, and this is the approach adopted in Clements
(1995). A readily available source of economic forecasts made on a monthly basis by a large
number of forecasting groups is the HM Treasury’s monthly publication ‘Forecasts for the UK
economy: A comparison of independent forecasts’.

Table 1 reports the results of testing the National Institute forecasts for weak efficiency by
running regressions of the form of (3).

Without pooling, there are 14 forecast revisions in each case, and we obtain negative values
of o, although only one of these has an absolute ¢-value in excess of 2. Nevertheless there is

3 Although this reports the latest forecasts of the main macro aggregates for a number of city and non-city
forecasters, the horizon is only up to two years ahead, so that even selecting agencies that produced new forecasts
nearly every month, there are generally fewer than 20 forecasts by an agency of a particular event.
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Table 1 Testing the weak efficiency of National Institute forecasts of GDP growth and inflation.

Estimated « coefficient Standard Error t-value

GDP growth

OLS: 1993 -0.483 0.240 -2.015
OLS: 1994 -0.324 0.262 -1.236
OLS: Pooled -0.441 0.171 -2.578
GLS; -0.412 0.178 -2.315
GLS, -0.411 0.178 -2.315
CPI inflation ,

OLS: 1993 -0.261 0.219 -1.192
OLS: 1994 -0.171 0.267 -0.641
OLS: Pooled -0.219 0.169 -1.296
GLS; -0.284 0.142 -2.003
GLS, -0.225 0.170 -1.326

no evidence of revisions being ‘smooth’ as would be suggested by positive correlations. The
rows entitled ‘OLS: Pooled’ pool the observations assuming €2 is proportional to the identity
matrix, as in [A] in section 3.3. We then calculate two variants of GLS. The first, GLS; is [B]
in section 3.3. The precise form of (2 is given in the Appendix, but essentially we allow the
diagonal elements of €2;; and €25, (relating to the 1993 and 1994 target years, respectively)
to differ, and these are estimated from the residuals of [A] at 0.119 and 0.052, for GDP, and
0.378 and 0.500, for inflation. We also allow £2;5 (= §29;) to be diagonal, with elements given
by 0.007 for GDP, and 0.391 for inflation. The rows entitled GLS, are as for GLS; but with
912 = 921 =0..

There are a number of interesting features to comment upon. For GDP growth the correl-
ation in the errors for the revisions to forecasts for 1993 and 1994 made at the same time is
negligible, and so GLS; and GLS, are very similar. Relative to OLS on the pooled observa-
tions, GLS results in a larger standard error on ¢, but the ¢-value is still significant, suggesting
« is negative. For inflation the correlation of the errors for different targets at the same forecast
date is large, and neglecting this as in GLS, suggests we are unable to reject o being zero. For
GLS; the ¢-value is borderline but larger than OLS because the coefficient is larger (more neg-
ative) and its associated standard error smaller. Given the small number of observations we did
not attempt to allow for heteroscedasticity as in [C].

Nordhaus (1987) only found evidence of positive autocorrelation in revisions, which can
readily be interpreted as slow adjustment to new information, for whatever reason, and did not
consider the meaning of rejecting the null of weak efficiency because of negative autocorrel-
ation. One possibility is the following. Suppose little relevant information becomes available
between forecasts made at time j;_; and j; where [j;_; J;) is a time interval so that:

P'le = P,r{J} + v (14)

and for j € [fi—1  Ji)s Pyt = P, ;, where the period during which forecasts are made (j =
K,...,T—1, say) consists of I (possibly unequal) time intervals. In the extreme case, let I = 1,
and let PT{’} = P, say, then P,; = P, +v;, 5 = k,...,7 — 1, so that each forecast has in
common P, and a specific white noise element v;. This might be a reasonable characterisation
if the forecast agency takes an initial view at j = k, denoted P;|«, and then sees no reason to
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change it in subsequent forecasts, save for some white noise component. But then the series of
forecast revisions are differenced white noise:

Urlj = —AV;

for which the theoretical first-order autocorrelation coefficient is —%. In terms of testing the
random walk hypothesis within (4) we would find v; = 1, indicating that P,; follows an AR(0),
that is, is white noise. If the forecasts are white noise then the formulation in (3) induces a
negative autocorrelation in revisions by ‘over-differencing’.

More generally, if we suppose that forecasts follow the AR(1) process:

P‘r|j =% + ’Y,lkpﬂj—l + CT,j

(7 = (1 — ) in (4)) where —1 < ~f < 1, then the value of « in (3) will be given by:
o= (2t -+ - 1) (2- )™

so that « takes on values in the range [—%, O]. As described above, « = 0 when 7 = 1 and
o= —% when 77 = 0. The former is the random walk hypothesis and the latter may also be
viewed as being consistent with weakly-efficient behaviour. For the National Institute forecasts
of GDP growth and inflation we were never able to reject both the hypothesis that vi = 0 and
that v = 1, but this must be partly due to the small sample size (only 14 observations).

Finally, if a,‘j’j = 0 in (14) so that the same value is forecast at each point j (assuming I = 1)
then all revisions are identically equal to zero. v; could be interpreted as a form of measurement
erTor.

The forecasts are shown in figure 1. Notice the sharp rise in the forecasts of inflation for 1993
and 1994 made in the fourth quarter 1992 (observation 12) following the departure of sterling
from the European Monetary System on the 16 September 1992. The last points in the graphs
are either the forecasts made in 93:4 of the percentage rate of change of 1993 over 1992, or in
94:4 for the annual rate of growth in 1994 relative to 1993.

Figure 1: Fixed-event forecasts of GDP growth and consumer price inflation.
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3 Forecasts of GDP growth 1993: 90:1 to 93:4 35- Forecasts of GDP growth 1994: 91:1 to 94:4
AL L
L 25
1 ' " s 1 ] L 1 L L | L s 3 I T S SR N T SR SR S NN T T S S R S S SV SR SN T
0 5 10 15 0 5 10 15 0
_ Forecasts of CP inflation 1993: 90:1 to 93:4 _ Forecasts of CP inflation 1994: 91:1 to 94:4
asf S
4k L
L 4
35 I
i 3L
3r |
L I I 1 [ | 1 I !
0 5 10 15 0 5 10 15 20

5 Asymmetric loss functions

Zellner (1986) has criticised the interpretation of rejecting unbiasedness as implying irrational
behaviour. The argument is that the conditional mean predictor is not optimal for asymmet-
ric loss functions. Thus the finding of biased predictions based on regressions such as (1) for
rolling-event forecasts could either be evidence of irrationality or of optimal biased forecasts be-
ing used (see the comments in Zellner, 1986 on the evidence for biased inflation and real output
growth forecasts in Zarnowitz, 1985).

Granger (1969) has shown that under certain circumstances the optimal predictor is the con-
ditional expectation with a simple fixed adjustment, which depends only on the form of the loss
function and the forecast error variance. The circumstances are that the process is Gaussian, and
that the loss function is defined over forecast errors, rather than the realizations and forecasts
more generally. More recently, Christoffersen and Diebold (1994) have extended Granger’s the-
orem to allow for processes which are only conditionally Gaussian, which include processes
which exhibit autoregressive conditional heteroscedasticity (ARCH) * and its generalizations.
They show that if the prediction error variance is time-varying, then the adjustment to the con-
ditional expectation required to deliver the optimal predictor will no longer be constant, since
it depends on the conditional error variance.

In this section we consider the implications of asymmetry in the loss function and time-
varying prediction error variances for the interpretation of weak efficiency tests of fixed-event
forecasts. We proceed by a specific example. Following Christoffersen and Diebold (1994),

4 ARCH was introduced by Engle (1982). There are a number of good surveys of the literature on ARCH
and related models: Engle and Bollerslev (1987), Bollerslev, Chou and Kroner (1992), Bera and Higgins (1993),
Shephard (1996). Engle (1995) contains an edited selection of some of the key papers.
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who extend the analysis of Zellner (1986), we consider the ‘linex’ loss function of Varian
(1975), defined by:

C(epn) =blexp (aey) —aer, — 1}, a#0,06>0

where e, = Y. —Yr|r—n 18 the forecast error and A, and P;|,_, are replaced by 4 and Urjr—n for
notational convenience. When a > 0 the loss function is approximately linear for e;, < 0, ‘over-
predictions’, and exponential for e;, > 0, ‘under-predictions’. For small a, the loss function is

approximately quadratic:
ba ,
C (e) ~ ?6 h
(from the first two terms of the Taylor series expansion). The advantage of the linex loss function
is that the optimal predictor is easily obtained - in general analytic solutions are not available
for arbitrary loss functions and it is necessary to resort to numerical methods (see Christoffersen

and Diebold, 1994). The optimal predictor h-steps ahead solves:

argmin E._; {b[exp (aen) — aep, — 1]} (15)

y‘r|‘r—h

where y7,._,, is the optimal predictor, and is assumed to have the form:
y:]f_h = Urjr—h + Orjr—n

where the process is conditionally Gaussian, y, | Z,_5 ~ N (/J,.,-|T_h, 02¢|r—h), so that g, _p
is the conditional mean predictor and 02T|T_h is the conditional variance. Substituting for e;, =
Yr — (,ll,q-|7-_h + 5T]T_h) in (15) and using the result that:

2,2
a~o ‘r]'r-—h:|

E;_x [exp (ay,)] = exp [aum_h L

gives:

. a20.2TIT_h
agg min E‘r—h b €Xp T - a6t+h —a (yT = Kr|r—n — 6’r|'r—h) -1 C (16)
r|r—h

The first-order condition is satisfied by:

a
2
5‘r|7'—h = 50- TlT—h

so that the optimal predictor becomes:

y:|'r—h = Hr|7—n + g'azT|T—h- (17)

To interpret (17), assume that a >> 0 so that a is not close to zero and being positive implies
that costs to under-prediction are weighted more heavily than those to over-prediction. The op-
timal predictor then exceeds the conditional expectation, so that the conditionally expected er-
ror will on average be negative, that is, there will be a tendency to over-predict. The greater the
conditionally expected variation around the conditional expectation the greater the tendency to
over-predict. As the degree of asymmetry lessens (¢ — 0) so the optimal predictor approaches
the conditional expectation.
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Consider now the effect of the additional term in (17) on the properties of the series of fore-
cast revisions defined by (10). Denoting the revision to the optimal forecast under linex loss by
Ur|r—h+1, then from (10) and (17) we obtain:

~ a
Vr|r—h+1 = Urjr—h+1 + 5 (U2TIT—h - 02T|T—h+l) (18)
and hence (2) only holds when the prediction error variance is not time-varying. The test for
weak efficiency is robust to asymmetric loss assuming a constant prediction error variance, but
in general a rejection of weak efficiency might indicate either irrationality or optimally biased
forecasts in the face of time-varying prediction error variances.

6 Conclusions

We have applied tests of weak efficiency to series of fixed-event forecasts of GDP growth and
consumer price inflation and explored the possibility of pooling the series of revisions over tar-
get dates to obtain more powerful tests. An explanation has been offered of the finding of neg-
ative serial correlation in forecast revisions. Finally, we argue that asymmetric loss may in prin-
ciple divorce the concept of weak efficiency from that of rationality.
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7 Appendix

For the analysis of the National Institute forecasts in section 4 the regressand and regressor in
(7) are given by Y and X below, as is the structure of the covariance matrix Q:

[ V93)90:3 | [ v93)90:2 |
’ ) 140%1 0 0 0
V93]93:4 V93|93:3 2 2
Y=| - X=| -.. Q= 0 Iy Lo, O (19)
o ’ B ! o 0 1100'%2 :[100'%2 0
V94/91:3 Vo4|91:2 0 0 0 14032
| Vg4|94:4 | | Vg4/94:3

A -1 A
The GLS estimator and the asymptotic covariance matrix are given by (X’ Q‘IX) (X’ ﬂ‘1Y>

A -1 A
and (X’ Q‘1X) , where €2 is  with the o, replaced by 67, estimated from the OLS residuals

of the pooled regressions: e = Y — X (X'X) ™" X'Y. Thatis: 63, = e[l:14] e[l : 14],
62, = Le[15: 28] e[15: 28] and 6%, = e [5: 14] e[15 : 24], and [z : y| denotes elements z
through to y of the vector.



