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Abstract

Much of the short—run movement in energy demand in the UK appears to be seasonal, and
the contribution of long—run factors to short-run forecasts is slight. Nevertheless, using a
variety of techniques, including a recently developed test that is applicable irrespective of
the orders of integration of the data, we obtain a long-run income elasticity of demand of
about one third, and we are unable to reject a zero price elasticity.

Periodic models that allow for a seasonally varying response of demand to its principle
determinants are shown to provide superior short—run forecasts to well-known seasonal
time series models, and to univariate periodic models, even ex ante, when the determinants
themselves have to be forecast. However, the relatively short data sample and small number
of forecasts suggests caution in generalising these results.

Keywords: energy demand, seasonality, cointegration, forecasting;

JEL Classification numbers: C52, Q41;



1 Introduction

Over the past decade a number of empirical papers in energy economics have applied coin-
tegration analysis to the modelling of energy demand, thereby accounting for the potential
non-stationarity of the data and simultaneously avoiding the loss of valuable long-run
information which would result from taking first differences (Table 1). The majority of
the studies have employed the two-step procedure of Engle and Granger (1987), where an
estimate of the cointegrating relationship is obtained by an ordinary least squares (OLS)
regression of the contemporaneous values of the variables. Some have used the potentially
more efficient systems approach of Johansen (1988, 1991), which amounts to reduced-rank
regression by maximum likelihood (ML) estimation. That the estimates from the ‘static
regression’ of Engle and Granger (EG) may be seriously biased in small samples is well
known (see, for example, Hargreaves, 1994, p.88). Equally, the estimates from the Jo-
hansen procedure may be difficult to interpret when the cointegrating rank is estimated at
greater than one, apart from the greater informational requirements of estimating a vector—
autoregression (VAR). For these reasons, we also consider a third approach which asks a
slightly different question: is there a long—run relationship between the variables of interest,
recognising that this does not pre—suppose that all the variables are integrated of order one,
I'(1). This is the approach due to Pesaran, Shin, and Smith (1996). It has several advan-
tages for the modelling of energy demand. Firstly, ‘temperature’ or ‘heating degree days’
is often found to be an important explanatory variable, so an approach that is agnostic
about the orders of integration of the explanatory variables should prove useful. Secondly,
the approach requires that there is one ‘fundamental’ long—run relationship between the
variables, which enters the equation for the variable of interest (here, energy demand), but
not the equations for the other variables (temperature, income, etc.), in which case we can
estimate and test for the long—run relationship using OLS in a single—equation analysis. In
the case of modelling energy demand, this assumption appears reasonable. There are few
grounds for believing that the main explanatory variables adjust to disequilibrium in the
long—run relationship governing the demand for energy.

As well as comparing alternative methods of estimating the long—run relationship for

energy demand, we also consider the usefulness of annual as opposed to quarterly data for
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empirical modelling. Due to the rather limited availability of historic time series data for
such modelling exercises, the number of annual observations available is often quite small
(see Table 1). Nevertheless, the use of higher frequency data tends to be the exception
rather than the rule. In particular, among the studies reported, only Engle, Granger, and
Hallman (1989) and Fouquet (1995) have used sub-annual data, and only the former has
investigated some of the implications of strong seasonal patterns for forecasting (the latter
was concerned with the impact of tax increases on energy demand).

By way of contrast, in the more mainstream econometrics literature there has been a
great deal of interest in the analysis and modelling of seasonality (see Hylleberg, 1992;
Franses, 1996, for a discussion of the concepts and the literature involved), though little of
this has as yet filtered down to the energy literature (Madlener, 1996a, provides a recent
survey of the methodologies used in the energy demand literature, focusing on studies of
residential energy demand). In order to redress this imbalance, in this paper we estimate
and generate short—term forecasts from a number of econometric models of quarterly energy
demand, which treat seasonality in different ways, and compare the results with forecasts
from traditional univariate time—series models.

The contribution of this paper is at least threefold: (i) we compare alternative ways
of estimating the long-run relationship for energy demand, and compare some of these
methods on annual and quarterly data; (ii) we formulate short-term forecasting methods
on the quarterly data; and (iii) we assess the forecasting performance of the econometric
and rival time-series models.

The structure of the paper is as follows: Section 2 investigates the time series properties
of the time series. Section 3 reports on the multivariate cointegration analysis and the
approach of Pesaran, Shin, and Smith (1996). Section 4 describes our econometric model

specifications, and Section 5 the time series models. Section 6 concludes.

2 Analysing the time series properties of the data

Four variables are used in this study (all in logarithms): domestic energy consumption,
g, real disposable income, y, real energy price, p, and the temperature variable ‘heating

degree days’, h. The data samples used are from 1975Q4 to 1996Q3 for the quarterly data
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and from 1976 to 1995 for the annual data (for a detailed data description see Appendix

1).

2.1 Annual data

Although we only have twenty observations we decided to test for the order of integration
of the four data series using the (Augmented) Dickey—Fuller tests. Perhaps not unsurpris-
ingly given the small sample period, the tests were in some cases unduly sensitive to the
deterministic terms (constant, linear trend) included in the regression. When we ran a
regression of the form

Az =p+yt+ ¢z + Zn: BiAz:_; + e (1)

j=1

for ¢ and h (with n set to a low number to preserve degrees of freedom), ¢ was clearly
significantly different from zero, using the appropriate critical values. Hence ¢ and & both
appear to be stationary around a deterministic trend. This appears somewhat implausible,
at least for h, and omitting the vt term from the above regression indicated that both
variables are I (1). For both p and y we failed to reject Hp : ¢ = 0 in Eq.(1). We also failed
to reject Hy : ¢ = v = 0, and then testing Hp : ¢ = 0 in Eq.(1) without the vt term also
failed to reject the null of I (1). Given the small sample size it seemed inadvisable to test
the variables for higher orders of integration. Consequently, y and p appear to be I (1),
which accords with the general body of evidence, at least for y. That the evidence for ¢
and h is less decisive is consistent with the fact that it can be very difficult to distinguish
between a trend-stationary and a unit root process in finite samples (see, e.g., Campbell
and Perron, 1991, p.157). After examining the quarterly series, we carry out a cointegration

analysis on the annual data to provide a rough check on the analysis on the quarterly data.

2.2 Quarterly data

The analysis of the quarterly data series requires that we find an adequate characterisation
of the strong seasonal patterns evident in ¢ and h, and to a lesser extent in y (see Figure 1).
Many of the studies on annual data have found unit roots in the series, i.e., the series appear

to be I (1). We wish to allow for the possibility that the seasonality in the series we analyse
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is stochastic and non-stationary, that is, there are unit roots at the seasonal frequencies.
A procedure for testing for roots at the seasonal frequencies (and also at the long—run, or
zero frequency) has recently been developed by Hylleberg, Engle, Granger, and Yoo (1990)
(HEGY), and we apply this to the four time series used in the study. The plots of the
series suggest that p is not seasonal, let alone a non—stationary stochastic seasonal process,
and moreover, it makes little sense for ~ to contain roots at any frequency. Nonetheless,
for completeness we report results for testing all the series.

In order to interpret the results of the unit root tests, a brief outline of the testing pro-

cedure suggested by HEGY is given. The procedure is based upon the regression equation
a(L)Ayzy = m121 41 + Taz24-1 + T3z -2 + TaZs iy + ps + €, (2)

where

3
po = p1 + pat + ) p21iQi,

1=1

a(L) is a stationary r** order lag polynomial, and

21t = (1 + L + L2 + L3).'I7t = S(L).’Et
Z9t = —(1 — L)(l + L2)$t
Z3t = —‘(1 - LZ).'L't = —(1 — L)(l + L)xt

The tests for unit roots at different frequencies are based on the significance of the esti-
mated 7; coefficients. For example, if 7 is significantly different from (typically being less
than) zero, then the null of a unit root at the zero frequency is rejected. A rejection of the
null that m3 equals zero indicates the absence of a unit root at the bi—annual frequency.
Roots at the annual frequency can be tested by an F-test of the null that 73 = m4 = 0.
The appropriate critical values are given in Hylleberg et al. (1990, pp.226-227, Tables la
and 1b).

The choice of n, the order of the polynomial (L), has to be made with care. Under—
fitting (n too small) can result in the unit root test statistics being substantially over—sized,
so that we may fail to find roots that are a feature of the data generating process (DGP).
Conversely, over—fitting may reduce the power of the test statistics, leading to the discovery
of spurious roots. Taylor (1997) considers a number of strategies that have been proposed in

the literature for determining the appropriate augmentation, such as general-to—simple and
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information criteria. In both cases he shows that there may be a tendency to underfit, and
this will be exacerbated when deterministic variables (e.g., constant, trend and seasonals)
are included. Our approach is to begin with n = 5 and consider the values of the test
statistics for all values of n down to zero. To save space, in Table 2 we only report the
results for the value of n obtained by sequentially simplifying the model by deleting the
longest lag whenever its t-value is less than 2 in absolute terms. But we also signal those
instances when inference appears to be sensitive to the lag order.

The results in Table 2 suggest that ¢, p and y have a zero—frequency root. Again, the
finding of a zero—frequency root for h as well is puzzling, and we explore this further below.
None of the series appear to have roots at the seasonal frequencies, except perhaps for ¢
at the bi—annual frequency when we keep in the lag with length three, n = 3, although
the sequential simplification procedure suggests that a zero augmentation is acceptable.
Nonetheless, as noted above, such procedures tend toward an under-fitting of the lagged
fourth—difference terms.

Figure 2 depicts UK domestic energy consumption, plotted for each of the quarters
separately. It is apparent that the underlying trend in energy consumption has been
positive in the first and fourth quarters, and the fourth—quarter quarterly growth rate is

the most pronounced.

3 Analysis of the long—run relationship

3.1 The Johansen ML procedure

Because of the two major drawbacks of the two—step EG procedure (i.e. the possibility of
seriously biased estimates in small samples and the requirement that all variables are I(1)),
we refrained from using their approach. However, we tested the quarterly and annual data
for cointegration using the maximum likelihood approach of Johansen (1988, 1991). For
the quarterly data we began with a third—order vector—autoregression (VAR), and for the
annual data a second—order system (as a compromise between whitening the residuals and
saving on degrees of freedom). In both instances ¢, y and p were treated as endogenous,

while A was assumed to be exogenous (entered unrestrictedly). Moreover, we included a



Table 2: Testing for roots at the zero and seasonal frequencies

lag augmentation try tr, brs (5o S t-values of lagged

depend. variables

q
lag 3 only —3.52  —2.82  —411* —158  10.48" 1.72
0 —3.03  —3.59* —4.42* 092  10.33"
p
0 177 =513  —4.58" _BET™  42.07**
y
lags 1 and 2 —2.81  —3.82* 430" -259*  15.11% —0.40, 2.51
h
0 —3.01  —3.86* —512* 105  14.25™
(g — 0.485h — 5.277)
0 ~3.70*  —4.95* —4.26*  0.12 9.07**

(NoTEs: * denotes significance at the 5% level, ** at the 1% level. Deterministic terms included:
constant, seasonals, non—seasonal trend. To see whether the inference of a zero frequency root
for h was due to low power of the test from the inclusion of the (unnecessary) linear trend, the
regression was run again omitting the trend term. The inferences were unaltered. Moreover,
dropping the first lag of the fourth difference for y did not change the test outcomes. The last

entry in the table refers to the regression reported in Section 4, Table 5.)
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Figure 2: UK domestic energy consumption, plotted for each quarter for 1975-96 (in logs)



deterministic trend, restricted to enter the long run only. As it turned out, the order of
both models could be reduced by one, and the deterministic trend was insignificant in both
cases.

The results for the quarterly data depicted in Table 3 indicate a single cointegrating
vector on the basis of the maximum eigenvalue and trace test statistics, regardless of
whether Reimers (1992) small-sample correction is employed. Both the estimated long-
run price and income elasticities have the expected signs, but the former is particularly
small in magnitude (—0.01 and 0.33 respectively).

The results of the cointegration analysis for the annual data are reported in Table 10 in
the Appendix. Apart from some evidence that there might be more than one cointegrating
vector, the results broadly corroborate the findings from the analysis of the quarterly data:

the estimated long-run elasticities for price and income are —0.06 and 0.49 respectively.

3.2 The Pesaran—Smith—Shin approach

A testing procedure for the existence of a long—run relationship that can be applied irre-
spective of whether the underlying variables are I (1) or I (0) has recently been introduced
by Pesaran, Shin, and Smith (1996). This procedure avoids the problems inherent in pre—
testing for unit roots prior to testing for cointegration (see, e.g., Cavanaugh, Elliott, and
Stock, 1995), and is particularly attractive in the present context. It is a bounds test pro-
cedure based on the usual F- or Wald—test of the lagged levels terms in an ‘error-correction
formulation’ (c.f., Kremers, Ericsson, and Dolado, 1992), and allows a conclusive decision
to be drawn, without needing to know the order of integration or cointegration rank of the
variables, whenever the test statistics falls outside the critical value bounds.

Because of the power and size problems of unit root tests alluded to above, the approach
may be informative when, as in our case, there are doubts as to whether the variables are
I(0) or I(1).1

The ‘unrestricted’ error—correction model (ECM) considered is

ni—1 ng—1
Ayt = ag + G,lt + stt—l + 5’Xt_1 + Z 'Sl)iAyt—i + Z (PiAXt—i + fta (3)
=1 1=0

10



Table 3: Cointegration statistics (quarterly data)

i {5 rankr
903.903 0
0.5834 939.364 1
0.0497 941.431 2
0.0049 941.629 3
Hg: ‘rank = r’ Maz Maz(7_pmn) 95% Trace Trace(r—mn) 95%
r<0 70.92** 65.67** 21.0 75.45** 69.86** 29.7
r<1 4.13 3.83 14.1 4.53 4.19 15.4
r<2 0.40 0.37 3.8 0.40 0.37 3.8
standardised 3’ eigenvectors q: Pt Yt
1=1 1.000 0.012 —-0.331
1=2 0.301 1.000 0.377
1=3 0.939 -3.714 1.000
standardised e coefficients 1=1 1=2 1=3
qs —0.975 -0.014 —0.002
Dt —-0.013 —0.039 0.001
Yt 0.026 —-0.007 —0.003

(NoTEs: r denotes the rank of the cointegrating space, m the number of variables (m = 3), and

n the lag order of the VAR (n = 2). ** denotes significance at the 1% level.)
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where ¢; is assumed to be an IN(0, ag) process and ag = 011 — 019855 091, With

v = 011 012
o1 Yz,
the covariance matrix of the errors of the joint (VAR) model of z; = [y; : x}]'.
If  # 0 and 6 # O there exists a long—run relationship between the levels of y; and x;

of the form:

yr = 6o + 01t + 0'x; + vy, (4)

where 0y = —ao/¢, 01 = —a1/$, 0 = —8 /¢ is the k-vector of long-run response parameters,
and v; a stationary process with mean zero. Note also that if ¢ < 0 then the long—run
relationship between the levels of y; and x; is stable.

Eq. (3) can be expressed as

’I‘L1-—-1 nz—l
Ay = ag + a1t + ¢ (ye—1 — 0'x41) + Z iy + Z P A% + &, (5)
=1 =0

Consequently, a test for ¢ = 0 may be interpreted as a test for the existence of a long-run
relationship.

The approach suggested by Pesaran et al. (1996) is to test for the non—existence of a
long-run relationship between y; and x; by testing the joint hypothesis ‘¢ =0 and § = 0’
in Eq. (3). This avoids the problem with Eq. (5) that when € is neither pre—specified nor
estimated the elements of 8 in the case when ¢ = 0 are not identified.

The asymptotic distributions of the Wald- and F- statistics are non—standard. Two
sets of critical values are provided: one which is appropriate when all the variables are
I(1), and the other for the case when all the variables are I(0), thus covering all possible
classifications of the variables into I(1), I(0), or mutually cointegrated. In the sense that
different orders of integration are allowed for, the approach is more general than the partial
systems cointegration analysis of, for example, Boswijk (1992), Johansen (1992) and Urbain
(1992).

Our findings of applying the Pesaran-Shin-Smith procedure to the quarterly data are
summarised in Table 4. When four lags are included on all variables (n; = ny = n = 4), the

Wald statistic is below the lower bound, implying the absence of a long-run relationship.
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However, the trend appears redundant, and more importantly, the order of the model can
be reduced to n = 2 without any apparent signs of mis—specification (a test for serial
correlation is recorded, but the usual battery of tests failed to signal any problems) and
then the Wald test exceeds the upper value. If the price variable is omitted, the rejection
of the null for n = 2 is more decisive. Finally, we note the estimate of the long—run
relationship implied by the model is ¢ — 0.48h — 0.35y, which is similar to, and confirms,

that obtained from the systems cointegration analysis.

4 The econometric models considered

4.1 A short-run model of energy demand

Figure 3 plots the quarterly time—series for ¢ and h and suggests that part of the observed
seasonal pattern in g can be explained by the seasonal pattern in A. Visual inspection
indicates that to a first approximation the seasonal variation in g is roughly one half of
that in 4. Not surprisingly, given the visual correlation between the series, regressing ¢ on
h and a constant produces the relationship reported in Table 5.

Assuming g and h do not possess roots at the seasonal frequencies? but that they both
contain zero—frequency roots, the regression reported in Table 5 appears to constitute a
zero—frequency cointegrating vector, judged by the value of the DW statistic (see Sargan
and Bhargava, 1983). The last entry in Table 2 formally tests for unit roots in the residual
of this regression. The test for a zero—frequency root is close to the critical value reported in
Hylleberg et al. (1990), although these critical values are not appropriate for an estimated
residual, and would reject too often.

To briefly summarise: the results of the unit-root testing procedures carried out in
Section 2, and in this section, are difficult to interpret and lead to conflicting inferences
concerning the time—series properties of the variables. A can not be I(1) a priori, yet in
line with the studies cited in Table 1 we find that q appears to be I(1) and there appears
to be a perfectly sensible relationship between the levels of ¢ and h. Moreover, in the
multivariate cointegration analysis reported in Section 3, we find that we can only reject

the null of no cointegration between ¢, p and y, using the Johansen ML procedure, if either

13



Table 4: Test outcomes for the existence of a long—run relationship between energy demand

and the explanatory variables

n regressors AR(5) p-value Wald critical values
4 Bypct,s 0.081 3.18 16.26, 20.48
3 h,y,p;c,s 0.222 5.55 12.88, 17.51
2 h,y,p;c, s 0.096 18.98 12.88, 17.51
4 b, t,s 0.102 4.72 14.71, 17.62
3 h,y;c, s 0.258 8.88 11.38, 14.57
2 h,y;e, s 0.114 26.00 11.38, 14.57

(NotEes: The critical values of the Wald statistic are taken from Pesaran et al., 1996, Table A.
¢,t, s denote constant, trend and seasonals, respectively, and the third column is the p-value of a

test for serial correlation up to fifth order.)
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Figure 3: Time-series plots of ¢ and A (matching means)



h is included unrestrictedly in the VAR (i.e., partialled out of AX, and X;_,, along with
the AX;_j, 7 =1,...,n — 1, where X; = [qs, ps,y:]') or is restricted to the cointegrating
space (see, e.g. Johansen and Juselius, 1990).

Nevertheless, our aim is not to establish the orders of integration (zero—frequency and
seasonal) of the series once-and—for-all per se, but to use what we can learn about the
properties of the series to build useful forecasting models. The results in Table 5, for
example, suggest that a ‘short—run’ forecasting model that relates Ag to h (to eliminate
the zero—frequency root in ¢) may perform poorly relative to a model that allows for a
relationship in the levels of these two variables.

Starting from a general dynamic model for ¢ and h, and adopting the sequential
‘general-to—simple’ model design procedure advocated by David Hendry and his co-authors
(see, e.g. Hendry, 1995), we obtained the short-run model set out in Table 6. There, s; is
the seasonal dummy for quarter j (i.e. unity when ¢ falls in quarter j, and zero otherwise);
o is the residual standard deviation; the diagnostic tests are of the form F;j(k, T — [) which
denotes an F-test against the alternative hypothesis j for: 4**-order residual serial correla-
tion (F.: see Godfrey, 1978), 4**-order residual autoregressive conditional heteroscedastic-
ity (Farch: see Engle, 1982), heteroscedasticity (Fhet: see White, 1980), omitted powers of
s, ie. §2,42,...; (Freser: see Ramsey, 1969); and a chi-square test for normality (x24(2):
see Doornik and Hansen, 1994). * and ** denote significance at the 5% and 1% levels,
respectively. The in—sample diagnostic tests are satisfactory apart from that for normality.

The short-run response of Aq to a change in Ah is 0.38, a little less than the implied
long—run response of 0.45, which is close to the ‘static regression’ estimate of Table 5. Im-
posing the unit root in g and beginning again by testing down from a general specification
results in a model with a worse fit and poorer forecasts, which is unsurprising given the
magnitude of the ¢-value on ¢;—;. The time trend suggests annual growth of approximately
1% per annum in gq.

To assess the adequacy of the model for forecasting, 15 observations were held back
at the model design stage. Ideally, if the sample were long enough we would generate
sequences of, say, j-step forecasts, by rolling the origin forward through the sample, as in,
e.g., Clements and Hendry (1997). However, we have to confine our attention to analysing

forecasts based on a single origin, which unfortunately limits the generality that can be

15



claimed for the results.

Although the parameter constancy tests suggest some problems with the model (see
Doornik and Hendry, 1997, for an explanation of these tests), the first plot in Figure 4 is
perhaps more informative of how well the model predicts over this period. The forecasts are
er post in that they are formed using the true values of h. Note that we consider forecasts of
g rather than Agq: Clements and Hendry (1993, 1995) discuss the role of the transformation
of the variable on which forecast accuracy is to be assessed, and show that assessing forecast
accuracy in terms of ability to predict differences of the data will tend to flatter poor
models. The multi-step forecasts naturally show a slightly worsening performance as the
horizon increases—here we continue to use the true values of h (i.e., hryj, hrij1,...)
for forecasting gr4;, but for horizons j > 1 explanatory variables involving lags of ¢ are

replaced by their forecasts.

4.2 A long—run model of energy demand

The short—run forecasting model in Section 4.1 accounts for the upward trend in g of
just under 1% per annum (cf. Figure 1) by a linear time trend. A more satisfactory
approach would attribute the long—run growth and any cyclical movements in g to economic
fundamentals, such as y and p, and that is the task of this section.

The systems cointegration analysis suggests a role for y in the long run, but is less
sanguine about the prospects of finding a significant role for p. In fact we were unable to
find significant price terms in either the long or short run, and such terms do not appear
in our preferred model given in Table 7, which was again obtained by a general-to—specific
simplification procedure. The ‘long—run’ model is very similar to the ‘short—run’ model,
except that a lagged income term y;_; replaces the time trend and now accounts for the
growth in g over time. Tying the long-run evolution of ¢ to y is obviously more satisfactory
than using a time trend, and improves the equation fit a little, but from comparing the
forecasts between the short-run and the long—run model we learnt that the forecasts were
not noticeably better.

The model is satisfactory within sample (apart from the test outcome for normality),

but there again appears to be evidence of parameter instability over the forecast period.
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Table 5: Regressing q on h by OLS, 1975(4) to 1996(3)

variable coeff. std.error t-value t-prob. part.R?
constant 5.277 0.103 51.19 0.00 0.970
hs 0.485 0.017 29.07 0.00 0.912
RSS = 1.008 6 =0.111 R? = 0.912 R? = 0.910 DW = 1.90
[[—u [[—q -~ PER(OMF _|
85 85
8 gk
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Figure 4: Multi-step forecasts from short-run model (Table 6), periodic model with ez

post forecasts (Table 8), periodic model with ez ante forecasts, and SARMA model
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Table 6: Short—run forecasting model for ¢

Modelling Ag; by OLS, 1977(1) to 1996(3) less 15 forecasts.
The forecast period is: 1993(1) to 1996(3)

variable coeff. std.error t-value t-prob. part.R?
Agiy 0.296 0.118 2.51 0.015 0.104
Agi—3 0.142 0.047 2.98 0.004 0.142
Agi—y 0.165 0.047 3.48 0.001 0.183
Ahy 0.379 0.030 12.45 0.000 0.742
Ahy_y —0.154 0.062 —2.47 0.017 0.102
gt—1 —0.976 0.149 —6.57 0.000 0.444
hi—q 0.445 0.093 4.80 0.000 0.299
$1 0.240 0.052 4.66 0.000 0.287
constant 5.161 0.912 5.66 0.000 0.372
trend 0.003 0.000 5.17 0.000 0.331
RSS = 0.082 o =0.039 R?2=0.990 R? = 0.988 DW = 1.95

1-step (ex post) forecast analysis 1993(1) to 1996(3). Parameter constancy forecast tests:
Forecast x%(15) = 41.141[0.00]**
Chow F(15,54) = 1.909[0.04]*

Model diagnostics:
Far(4,50) = 0.275 [0.89]
Farch (4,46) = 0.581 [0.68]
Fhet(17,36) = 0.792 [0.69]
Freset(1,53) = 1.142 [0.29]
x24(2) = 11.117[0.00]**
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Table 7: Long-run forecasting model for ¢

Modelling Ag; by OLS, 1977(1) to 1996(3) less 15 forecasts.

The forecast period is: 1993(1) to 1996(3)

variable coeff. std.error t-value t-prob. part.R?
Agiy 0.329 0.119 2.77 0.008 0.124
Ag;_3 0.145 0.047 3.09 0.003 0.150
Agi_q 0.162 0.047 3.47 0.001 0.182
Ahy 0.381 0.030 12.69 0.000 0.749
Ahi_q —0.166 0.062 —2.67 0.010 0.117
Gr—1 —1.023 0.151 —6.78 0.000 0.460
hi—1 0.471 0.094 5.03 0.000 0.319
Y1 0.360 0.067 5.40 0.000 0.350
S1 0.229 0.051 4.53 0.000 0.275
constant 3.898 0.792 4.92 0.000 0.310
RSS = 0.080 & =0.038 R? = 0.990 R? = 0.989 DW = 2.01

1-step (ex post) forecast analysis 1993(1) to 1996(3). Parameter constancy forecast tests:

Forecast x2(15) = 35.428[0.00]**
Chow F(15,54) = 1.690 [0.08]

Model diagnostics:
Far(4,50) = 0.424 [0.79]
Farch (4,46) = 0.927 [0.46]
Fhet(17,36) = 0.852 [0.63]
Freset(1,53) = 2.441 [0.12]
x24(2) = 7.025[0.03]*
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4.3 A periodic (econometric) model of energy demand

Following on from important papers by Tiao and Grupe (1980) and Osborn (1988), much
of the recent research on modelling seasonal processes has focused on periodic models. For
example, Birchenhall et al. (1989) consider a periodic model of consumers expenditure, and
it is natural to consider whether allowing periodic variation may yield improved forecasts
of energy demand.

Periodic models have parameters that vary across the seasons (here, quarters). While
such models often admit shorter lag lengths than non—periodic models, they are often
of a high dimension. For instance, if there were no offset in overall lag lengths and all
parameters were periodic, there would be four times as many parameters to estimate.

Our relatively short sample limits the generality of the periodic model that we entertain
at the outset as the ‘general’ model. In fact, the most general model we allow is that
given in Table 7, with all the parameters allowed to exhibit seasonal variation. We then
consider each parameter in turn, and test whether it exhibits seasonal variation using a
conventional F-test (with 3 degrees of freedom). The model is then re-estimated, imposing
‘no—variation’ for particular parameters where this is not rejected, and allowing periodic
variation otherwise. A final step is to delete insignificant variables. The results are shown
in Table 8, the associated multi—step forecasts in the second plot in Figure 4. In Table 8
s;jz, 3 =1,...,4, denotes s; X  for a variable z.

The periodic model has a better in-sample fit (the standard error of the regression
is around 8% lower, as compared with the long-run model) and visually the forecasts
are markedly better. A feature of the equation is that the coefficent on ¢;—; appears to
depend on the season. We can constrain the first and fourth quarter effects to be equal
(x%(1) = 0.323 [0.57]), but no further simplifications are data admissible (e.g., testing the
first, second and fourth quarter coefficients for equality yielded x2(2) = 22.030 [0.00]).

The parameter constancy forecast tests reported in Table 8 show that the hypothesis
of parameter constancy is rejected at the 1% level for the forecast x? test and at the 5%
level for the Chow test, possibly indicating over—fitting in—sample. None of the in-sample
diagnostics indicate mis—specification at the 1% level.

In order to mimic a more realistic situation for the energy analyst, we generated one—
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Table 8: Periodic econometric forecasting model for ¢

Modelling Ag; by OLS, 1977(1) to 1996(3) less 15 forecasts.
The forecast period is: 1993(1) to 1996(3)

variable coeff. std.error t-value t-prob. part.R?
Ahy 0.441 0.039 11.42 0.000 0.711
53AGs—1 1.163 0.223 5.22 0.000 0.339
s9Ah—1 —0.486 0.126 —3.87 0.000 0.220
81G¢—1 —0.884 0.123 -7.19 0.000 0.494
S2Gt—1 —0.912 0.122 -7.49 0.000 0.514
S3Gt—1 —1.397 0.188 —7.43 0.000 0.511
S4qi—1 —0.880 0.126 —-7.00 0.000 0.480
hi—1 0.445 0.070 6.33 0.000 0.431
Yi—1 0.391 0.057 6.87 0.000 0.471
83 4.384 1.503 2.92 0.005 0.138
constant 2.895 0.761 3.81 0.000 0.215
RSS = 0.066 & = 0.035 R? = 0.992 R? = 0.991 DW = 2.07

1-step (ez post) forecast analysis 1993 (1) to 1996 (3). Parameter constancy forecast tests:
Forecast x? (15) = 41.210 [0.00]**
Chow F(15,53) = 1.885[0.05]*

Model diagnostics:
Far(4,49) = 0.653 [0.63]
Farch(4,45) = 0.332 [0.86]
Fhet(19,33) = 0.960 [0.52]
Freset(1,52) = 5.461[0.02]*
x24(2) = 7.073[0.03]*
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step and multi—step ahead forecasts gr4; based on forecast values of Ar4;. The results for
the multi-step forecasts are reported in graphical form in the third plot in Figure 4, and
are compared to those obtained from the other models in Table 9. The model for h; was

of the form
he = pis + 7t + €5, (6)

which proved to be a data admissible simplification of a general fourth-order PAR model
(see below, Eq.(9)). Here p, varies across the seasons (equivalent to a constant and three
seasonals), and ¢t is a linear trend. The equation standard error was 0.125, the adjusted
R? 0.971. The calculation of true ez ante forecasts from the periodic econometric model
necessitates an equation for y;. In the event, a first-order autoregression in first differences

proved adequate, with an equation standard error of 0.020, and an adjusted R? of 0.981.

5 The time—series models considered

We also estimated a number of univariate time—series models in order to provide a bench-
mark against which to evaluate the forecasts from the econometric models of . Two classes
of models were considered: seasonal autoregressive-moving average (SARMA) models from

the time-series modelling tradition of Box and Jenkins (1970), and periodic autoregressive

(PAR) models.

5.1 A SARMA model of energy demand

The general class of SARMA models can be written as
(L)1 -L)(1— Lz = p+ (1—0:L) (1 6sL%) e, (7)

where €¢; ~ IN(0,02), |01] < 1, |04] < 1. When ¢ (L) = 1 this model is sometimes known
as the ‘airline’ model, following the application to airline data of Box and Jenkins (1970).
The rationale for the model is straightforward. The filter Ay = (1 — L*) captures the
tendency for the value of the series in any quarter to be highly correlated with the value in
the same quarter a year earlier, while A = (1 — L) relates to the non-seasonal part of the

model and specifies a stochastic trend in the level of the series (with drift when p # 0).
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The MA terms are usually found to be negative (and possibly quite close to unity), so
that the impact of the unit roots tends to be moderated. This model has proved useful
empirically (see Franses, 1996, pp.42-46, for references to empirical studies). Often there
is a tension between the two zero—frequency roots implied by the AR polynomial (AA,)
and the outcome of unit root testing procedures, which may suggest only a single root
at the zero frequency (see, e.g., Osborn, 1990; Hylleberg, Jgrgensen, and Sgrensen, 1993;
Clements and Hendry, 1997).

For the sample period 1975:4-1992:4 we estimated the following model for g, where

standard errors are in squared brackets:

(1-L)(1-L*) g = (1-0946L)(1 —0.816L%)¢ (8)
[0.034] [0.089]

and ¢ = 0.069, R? = 0.596, DW = 1.67.
As expected, 6; and 64 are both close to unity. There is some evidence of serial cor-
relation in the disturbances, but nevertheless the forecasts from Eq.(8) serve as a useful

benchmark.

5.2 A PAR model of energy demand

Some success has been claimed for univariate periodic models for short—term forecasting.
For example, Osborn and Smith (1989) found that periodic models offered some improve-
ment in forecast accuracy for the components of seasonal UK consumption at short time
horizons, although such a conclusion is not supported by the analysis of Clements and
Smith (1997) based on an extended sample period. Franses (1996) cites empirical work
and evidence from Monte Carlo studies attesting to the usefulness of periodic models for
forecasting. Empirical evidence suggests that in many cases PAR models of low order,
by contrast to periodic moving average (PMA) or periodic ARMA (PARMA) models, are
sufficient to describe periodic time series (cf., McLeod, 1994).

Univariate periodic time—series models simply allow the slope or autoregressive param-
eters of the model to vary with the seasons, as well as the intercept (which is commonplace

in non—periodic models of seasonal variables). Thus, the periodic autoregressive (PAR)
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model can be written as

Yt = s + P1sYim1 + - - - + Ppslhsn + €, (9)

where the intercept, p,, and the autoregressive parameters, ¢y,, ..., dns, may vary with
the season s = 1,...,4. It is implicit in the formulation in Eq.(9) that ys = p; and
¢js = ¢;1 when t falls in season s = 1, etc. The disturbance term is assumed to be

2

normally independently distributed with zero mean and variance o?. n is chosen so that

the last assumption approximately holds in the empirical model. We can also consider
‘restricted” PAR (RPAR) models with holes in the lag distribution.
The hypothesis of no periodic variation in the slope parameters is a simple F-test of

the nested non-periodic (in the slopes) AR(n) model

Yt = Hs + qblyt—l +...+ ¢nyt—'n, + €t, (10)

that is, that ¢;, = ¢;, s = 1,...,4, 7 = 1,...,n, which has an F3, 7_4,—4 distribution
under the null.

We can reparameterise Eq.(9) as

n—1
Yt — QsYp—1 = s+ Z Bis(Yij — CojYt—j-1) + € (11)
i=1
n—1
(1—- a;L)y: = ps+ Z Bis(1 — s L)ys—j + €, (12)
=1
where a;_4; = 0,0 =1,2,..., and test whether ayasa304 = 1, in which case the periodic

filter (1 — a,L) removes the stochastic trend, and the variable is said to be periodically
integrated. An interesting feature of such series is that they can not be decomposed
into seasonal and stochastic trend components—the two are inextricably linked (see, e.g.
Franses, 1996, Ch. 8).

The order of the unrestricted PAR model we estimated for ¢ was n = 4. We could set
the lag 2 and lag 3 terms to zero: Fg 45 = 0.793[0.61]. Testing for periodic variation within
the RPAR model Hy : ¢js = ¢j, s =1,...,4, j = 1,4, rejected the null: Fg53 = 5.562[0.00].
We were able to impose the restriction that ojasasay = 1 in the unrestricted PAR model

Eq.(11), and we then deleted insignificant regressors at conventional critical values. This
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led to a model in the form of Eq.(11) but with us = 0, s = 1,2,4, 812 = B2z = P23 = 33 = 0,
which we call the RPIAR model. The individual coefficient estimates and standard errors
are not very informative, and are not reported, but for the RPTAR model we obtained
& = 0.057, R? = 0.978, and DW = 2.18, and for the RPAR model a similar fit: & = 0.058,
R? = 0.979, and DW = 1.99.

Table 9 shows a comparison of the forecast errors. On the basis of RMS forecast errors,
the SARMA model is the best of the time series models. Compared with the econometric
models, however, they generally forecast less accurately. For the three periodic models
analysed, the deterioration of forecast precision when producing true ex ante forecasts is

also evident.

Table 9: Comparison of the root mean square (RMS) forecast errors

RMSFE econometric models time—series models
ST l-r PER (1) PER (2) PER (3) SARMA RPAR RPIAR
1-step 0.0646 0.0591 0.0585 0.0715 0.0715 0.0737 0.0779 0.0862

multi-step 0.0758 0.0713 0.0501 0.0736 0.0784 0.0755 0.0904 0.0728

(NoTES: (1) refers to the ex post periodic forecasting model (i.e. where the true values of h are
used), (2) to the periodic model where the values of h are forecast (i.e. with y known), and (3)

to the ez ante periodic forecasting model (i.e. where both k and y are forecast).)
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6 Conclusions

A large number of empirical papers in energy economics have sought to obtain estimates of
the long—run elastieities of the determinants of the demand for energy, primarily using ei-
ther the Johansen ML systems approach, or the Engle-Granger static regression approach.
Neither is particularly satisfactorily, for the reasons explained in the paper, but neverthe-
less we find that the Johansen estimates are broadly similar to those obtained using an
approach due to Pesaran, Shin, and Smith (1996), which tests for a long-run relationship
between the variables of interest, without the pre—supposition that all the variables are
I(1). Formally this is attractive, since it turns out that we can be fairly ambiguous about
the time series properties of the temperature variable, which is often found to be vital in
studies of energy demand that seek to estimate a cointegrating relationship. We find a
long—run relationship irrespective of what we assume about this variable.

However, incorporating an estimate of the long—run relationship adds little to the short—
run forecast performance of the model, over and above using a linear trend, and seasonal
univariate time series models (such as the ‘airline’ model and periodic models) provide
competitive forecasts, particularly when we allow for the additional uncertainty from fore-
casting the explanatory variables of the econometric models. Allowing for seasonally vary-
ing responses of demand to its principle determinants does establish the primacy of such
models over the univariate time series rivals, but we caution against reading too much into
this, given the fairly short sample period and the single epoch over which forecasts are

evaluated.
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Notes

!Note that the Pesaran-Shin—Smith approach is appropriate when there is only one
‘fundamental’ long-run relationship between the variables, and that relationship enters
the conditional model for the chosen dependent variable. Thus the approach places more
‘structure’ on the problem than the VAR-based approach of Johansen(Johansen, 1988), in

terms of notions such as causality and exogeneity—see Pesaran et al. (1996) for details.

’If they do, the Theorem in Engle et al. (1989, p.50) shows that the zero—frequency
cointegrating vector can still be consistently estimated by first prefiltering both series
with S(L) =1+ L + L? + L. This is approximately what the annual data does, and in
the absence of seasonal roots it is unsurprising that the systems cointegration analyses on

the quarterly and annual series in Section 3 yield similar results.
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Appendix 1: Data description

The UK quarterly data set used is for the time period 19756Q4 to 1996Q3, the annual data cover
the years 1976 to 1995. All variables are expressed in logarithms, where applicable [ ] denotes
the appropriate filename on the CSO (or better: ONS) tape.

q denotes the log of final domestic energy consumption (not temperature corrected). The
values for the period 1992Q2 to 1996Q3 have been converted from the new reporting unit 1,000
tonnes of oil equivalent (toe) to million therms (conversion rate 1 toe = 396.8 therms). (DATA
SoURCE: FEnergy Trends, various issues)

y is log of real personal disposable income (indexed), not seasonally adjusted and revalued
by the implied consumers’ expenditure deflator (1990=1). (DATA SouRrcEs: CSO tape [CECQ],
Monthly Digest, various issues)

p denotes the retail price index (RPI) for fuel and light, relative to the seasonally adjusted
CDP deflator at market prices. From 1994Q2 the series includes 8% VAT for coal and coke,
electricity, and heating oils, respectively. (DATA SOURCES: CSO tape [CHBC'], Monthly Digest,
various issues)

h stands for log of heating degree days (HDD), a series constructed from published monthly
HDD data for 18 regions in the UK (corresponding to 18 measurement points, base temperature
15.5 °C), annual population data by county for England, Wales and Scotland, as well as for
Northern Ireland (with estimates used for 1995 and projections for 1996, respectively), and a
region—county match table kindly supplied by the Department of Trade and Industry (DTI).
(DATA SOURCES: (i) population data: OPCS and Cen. Reg. Office for Scotland, as provided by
DTI; Northern Ireland Abstract of Statistics (until 1981 Digest of Statistics Northern Ireland).
1995 and 1996 data have been kindly provided by ONS, the ("eneral Register Office for Scotland,
and the Statistical Directorate of the Welsh Office, respectively; (ii) monthly HDD data: 1975—
94 data kindly supplied by DTI; 1995 and 1996 data obtained from the Department of the
Environment).

The complete data set used is available from the authors upon request.
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Figure 5: Annual data plots (all series in logs)
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Appendix 2: Cointegration test results (annual data)

Table 10: Cointegration statistics (annual data)

i 5 rankr
196.341 0
0.8222 211.886 1
0.6336 220.921 2
0.0395 221.283 3
Hy: ‘rank = 1’ Max Max(1-mn) 95% Trace Trace(r_mn) 95%
r<0 31.09** 25.91** 21.0 49.89** 41.57** 29.7
r<i1 18.07* 15.06* 14.1 18.80* 15.66* 154
r<2 0.73 0.60 3.8 0.73 0.60 3.8
standardised @' eigenvectors g Py s
1=1 1.000 0.057 —-0.495
1=2 2.202 1.000 0.498
1=3 3.107 —30.310 1.000
standardised e coefficients 1=1 1=2 1=3
g —0.821 —0.023 —0.001
Pt 0.020 —0.090 0.003
Ye 0.139 —0.014 —0.002

(NoTE: ** denotes significance at the 1% level, * at the 5% level.)
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