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ABSTRACT

Previous sensitivity analysis procedures for applied general equilibrium models have focussed on
the values of exogenously assigned elasticity parameters, while the calibrated parameters - those
that are obtained from combining elasticity information with flow or stock data - have been largely
ignored. Calibrated parameters are central to a model's specification, and uncertainty surrounding
their values influences the credibility of the model's results. This paper introduces and illustrates
a calibrated parameter sensitivity analysis (CPSA) which, when combined with previous elasticity
sensitivity analysis procedures, allows modelers to undertake sensitivity analysis over the full set
of model parameters. The 'extended sensitivity analysis' methodology is illustrated for tax
incidence results from an applied general equilibrium model of Cote d'Tvoire.
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I. Imtroduction

Previous sensitivity analysis procedures for applied general equilibrium models (Pagan and
Shannon, 1985; Pagan and Shannon, 1987; Wigle 1991; Harrison and Vinod 1992; Harrison,
Jones, Kimbell and Wigle 1992; DeVuyst and Preckel 1997) have focussed on the values of
exogenously assigned elasticity parameters, while the calibrated parameters - those that are
obtained from combining elasticity information with flow or stock data' - have been largely
ignored. This omission stems partly from the perception that whereas a model's elasticity values
are often obtained through informed guesswork and can therefore be very uncertain, the calibrated
parameter values have a more solid empirical foundation in data. However, the considerable
uncertainty surrounding the data used for calibration introduces uncertainty into the calibrated
parameter values, making them also candidates for sensitivity analysis. This uncertainty arises
through measurement error and is augmented by the consistency adjustments made to the
observations so that they meet the equilibrium conditions of the model.

The main difficulty for calibrated parameter sensitivity analysis lies in the requirement that
the set of calibrated parameters be consistent with an observed 'benchmark' equilibrium. Unlike
the exogenously specified elasticities, the set of calibrated parameters in an applied general
equilibrium model is jointly determined by the benchmark equilibrium data. A given perturbation
to one calibrated parameter would require changes in other parameters to ensure that the system
remains a benchmark equilibrium. No such realignment of the remaining parameters is unique,
however, and therefore no single change to the model results can be determined from a given
perturbation. Thus the approach of perturbing individual parameters to observe the effect on
model results which has been adopted in previous elasticity-based sensitivity analysis procedures,
1s unsuitable for sensitivity analysis with respect to a model's calibrated parameters.

This paper proposes a calibrated parameter sensitivity analysis procedure (CPSA) which
circumvents the joint determination problem by conducting sensitivity analysis over sets of
calibrated parameters rather than individual parameter values. CPSA is based on the recognition
that for a given model, matrix balancing algorithms which provide a unique transformation from
an unbalanced ‘raw' data matrix into a benchmark equilibrium data set, also yield a fixed mapping

from a given set of raw data into a set of jointly determined calibrated parameters. Unlike the

! See Mansur and Whalley (1984) for a discussion of calibration.
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elements of the benchmark data set, the elements of the raw data matrix are independent of one
another and can be individually perturbed.

The CPSA methodology generates a random sample of unadjusted data matrices, each of
which is comprised of perturbed elements of the original data matrix. Underlying CPSA is the
assumption that the elements of the raw data matrix are observations of stochastically independent
random variables for which the modeler can determine a priori distributions. Where these random
variables are discretely distributed, the support of their joint distribution forms the population of
unadjusted matrices from which the modeler samples. If the random variables in the data matrix
are continuously distributed, discrete approximations to their distributions are found using the
Gaussian quadrature methodology, which specifies discrete approximations that match the lower
order moments of the original distributions.> The population from which the modeler then
samples, is given by the support of the ensuing approximate discrete joint distribution. Sampling
from the support of a joint distribution allows the modeler to attach a probability of being the true
data matrix to each unadjusted matrix in the sample.

A fixed algorithm transforms each sample matrix into a balanced benchmark equilibrium
data set. The subsequent benchmark data sets map into corresponding sets of calibrated model
parameters, which are used to solve the model. Each set of model results is weighted by the
probability attached to the unadjusted matrix used in its derivation. From the sample, modelers
can determine expectations, standard errors and confidence intervals for the solution values. Thus
CPSA translates the modeler's knowledge of uncertainty in the raw data, through the calibrated
parameters and into a measure of robustness for the model results. In doing so, it completes the
framework for reporting the model's sensitivity to its full numerical specification.

This paper is organized as follows. Section II elaborates on calibration in applied general
equilibrium models and on the problems associated with sensitivity analysis for calibrated
parameters. In Section III, the CPSA methodology is presented and illustrated using a simple
applied general equilibrium model. Section IV proposes and applies an extended sensitivity
analysis procedure in which CPSA is combined with elasticity sensitivity analysis. The application
examines the sensitivity of personal tax incidence results in a model of Céte d'Ivoire due to Chia,
Wahba, and Whalley (1992), to the parameters calibrated from the consumption expenditure
matrix and to selected elasticities. Section V concludes with comments on the limitations of the

procedure.

% The properties of Gaussian quadrature are discussed in Miller and Rice (1983).
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II. The Framework for Calibrated Parameter Sensitivity Analysis

An applied general equilibrium model can be written as a system of m simultaneous equations in
which a vector of parameters, o, and a vector of exogenous variables, w, generate a vector of m

endogenous variables, Y.? This relationship can be expressed in terms of an implicit mapping,

F:R™-R™, such that*

F(a,w,Y)=0. D

F can be considered to represent the chosen model structure and o to summarize its
parameterization. To parameterize a given model, modelers must specify values for the vector a.
Ideally, they should be able to draw on econometric estimates with well defined statistical
properties to assign values to these parameters,” but in practice the magnitude of the data

requirements make such an approach intractable.

* In a simple applied general equilibrium framework, the vector Y would include an income for each
agent, a price for each commodity and factor, and an activity level for each production sector. Agents' factor
and commodity endowments would be included in the vector w, while elasticities of substitution, input shares
and scale parameters in utility and production functions would comprise . Each value in Y is associated with
an equilibrium condition: equilibrium incomes are values that satisfy budget balance constraints for agents;
equilibrium prices satisfy market clearing conditions for commodities and factors; equilibrium activity levels
satisfy zero profit conditions in production sectors. These equilibrium conditions also form the basis of the
more sophisticated structures discussed in Shoven and Whalley (1992), including models with taxes, joint
production, nested functions, intermediate demands, decreasing returns to scale production and intertemporal
frameworks.

* A general equilibrium is characterized by a set of complementary slackness conditions where, if
equilibrium prices are zero, excess supply can be positive and where, if activity levels are zero, excess profits
can be negative. The discussion here is restricted to the case in which prices and activity levels are strictly
positive and the equilibrium conditions are satisfied with equality.

> Econometrically derived model parameterizations have been undertaken although the data
requirements make such an approach rare. Examples include Clements (1980), Jorgenson, Slesnick and
Wilcoxen (1991), and McKitrick (1995).

® Tractability issues surrounding the econometric estimation of applied general equilibrium models
are discussed in Mansur and Whalley (1984) and include the following: for most models of sufficient
dimensionality to generate insight to policy issues, the time series data requirements for an econometric
parameterization are prohibitive; econometric estimates would rely on sufficient excluded exogenous
variables to identify the equations in the system, belying the essence of the general equilibrium structure,
which is the interdependence of all the modeled variables; the physical units employed in applied general
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Instead, parameters are inferred from a set of known values for Y and w, Y and w which

solve

F(a,w, ¥)=0. @)

If the dimensionality of « is greater than m, model parameterization becomes the two
stage process discussed in Mansur and Whalley (1984) and Shoven and Whalley (1992). The
procedure partitions the vector of parameters a into two subsets: a,, a set of parameters which
the modeler is free to specify exogenously, and «,, the set of 'calibrated' parameters. Calibration
yields values for &, which ensure that for a given «,, &,, and W, the model produces Y as a
solution.” The vector of calibrated parameter values is a function of the exogenously specified

parameters and the known solution:

0,=G (&, w,Y), 3

where G is an implicit function of F.?

Sensitivity analysis provides a means of characterising the robustness of model results to

uncertainties in this model parameterization process. Typically, the choice of &, is surrounded by

equilibrium models are defined as the quantity that can be traded for one unit of currency (appropriately
adjusted for taxes and subsidies) and such a units convention, which depends on the price level in a base year,
presents a challenge to developing a set of units-consistent time series observations.

7 Once values for the calibrated parameters have been found, the vector of model parameter values
o, and the exogenous variables W, can be used in (1) to solve for Y in a 'replication test.' If the solution values
for Y are the same as Y, the calibration procedure has found parameters which are consistent. Policy analysis
is undertaken by perturbing some of the model parameters, computing a new equilibrium and comparing the
subsequent vector of endogenous variables to the base case vector.

¥ Calibration can only be undertaken if G satisfies the conditions of an implicit function, that is, if
the equations of F are continuously differentiable with respect to Y, w, and « and if at ¥, W, and &, the
determinant of the Jacobian matrix given by the derivatives of F with respect to o, is non-zero.
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a high degree of uncertainty.” In response to this uncertainty, sensitivity analysis procedures which
vary the values of a, to observe the effect on model results, have been developed. '

Ideally a sensitivity analysis procedure directed towards the vector of calibrated
parameters, a,, should also examine the link between the parameter values and the model results
directly. This approach, however, is infeasible. Because the calibrated parameters are jointly
determined through the requirement that the known values from which they are derived, w and
Y, satisfy the equilibrium conditions of the model, they cannot be individually perturbed; a change
to any single calibrated parameter would require other calibrated parameters to change to preserve
the equilibrium system. Since many such adjustments are possible, no unique effect on model
results can be observed from a specific change to single calibrated parameter.

The joint determination of the calibrated parameters is more evident if the vectors w and
Y are transformed into a square transactions matrix, termed a 'benchmark equilibrium data set'
(BED). In the BED, a row, representing receipts, and a column, representing outlays, are assigned
to each market, production sector, and agent defined in the model. If the Harberger (1962)
convention is adopted whereby units transacted are defined as that quantity which sells for one
unit of currency, the equilibrium conditions of the model are reflected in a 'biproportionality’

condition for the BED, that is, the BED must satisfy the condition that for a square matrix [x,],

P e A=Y @)

Biproportionality ensures that budget balance holds for agents (incomes equal expenditures),
sectors make zero profits (sales equal production costs), and because prices are unity, markets

clear, (quantities demanded equal quantities supplied).

? The vector «, is comprised largely of elasticities of substitution and transformation. The values
for these elasticities are obtained where possible, from literature based econometric estimates, but such
estimates are scarce and dated. Modelers occasionally undertake their own estimation for these values.
Typically, however, the number of elasticities in an applied general equilibrium model is prohibitively large
and insufficient data exists for their estimation. As a result, modelers often derive elasticity values using 'best
guesses.'

!0 Elasticities are not the only exogenous parameters for which sensitivity analysis has been
undertaken. Rutstrém (1991) conducts sensitivity analysis over the values of the minimum requirement
parameters in a linear expenditure system.,



A model's calibrated parameters are functions of ratios of elements of the BED, so that

for example, shares of commodity ¢ where ¢ = 1,...,C in the consumption of agent g are calculated
from the ratio of x,, to Y. x.,- Perturbing one calibrated parameter is tantamount to changing

a ratio or element in the BED. Changing one off-diagonal element'' violates the matrix
biproportionality condition, and for calibration, the modeler must rebalance the perturbed matrix
into a BED. This rebalancing process, however, is not unique.

Consider for example, a multi-sector model specification where the capital-labor ratio in
the agricultural sector is 1. To observe the sensitivity of the model results to a larger value of this
ratio, the benchmark data could adjusted in several ways: the overall endowment of factors could
be held constant, reducing the capital-labor ratio in one or all of the other production sectors; the
endowment of capital in the economy could be increased, increasing income and thus also
increasing the share parameter of agricultural sector output in consumption; the labor endowment
in the economy could be reduced together with the share parameter of one or all of the remaining
sector outputs in consumption; or any of an infinite number of combinations of altering the
remaining parameters in the model could be undertaken to rebalance the matrix. Because no
unique adjustment exists to rebalance the BED, no unique reconfiguration of the calibrated
parameters arises from perturbing a single element of the BED, and sensitivity analysis cannot be
undertaken for individual calibrated parameters.

Unlike the elements of the BED, the raw data from which is adjusted to form BED has no
consistency restrictions on the values it can assume. The following section describes a calibrated
parameter sensitivity analysis which circumvents the problem of joint determination by perturbing
the raw data set from which the calibrated parameters are derived. The procedure allows modelers
to observe the effect on model results of varying the entire vector of calibrated parameters, rather

than of perturbing individual elements of that vector.

"' Changing the ratio of a diagonal element of the BED would preserve the biproportionality
condition since rows and columns would be affected equally. Diagonal elements in the BED, however, denote
transactions from an agent, a market, or a sector to itself. Since such transactions are devoid of behavioral
significance in an applied general equilibrium model, the diagonal elements of the BED are defined to be zero.
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III. Calibrated Parameter Sensitivity Analysis

The issue of calibrated sensitivity analysis is addressed by turning to the derivation of the BED
from a matrix of initial, unbalanced estimates.'? At this level, the derivation of the BED falls into
the class of matrix balancing problems in which an initial, unbalanced matrix is transformed into
a balanced matrix which satisfies a set of linear restrictions and is close to the original matrix
under some metric. Many algorithms exist for undertaking such matrix balancing procedures,"
and the modeler must choose among these to derive the BED. In the sensitivity analysis which is
developed here, the adjustment algorithm remains fixed, but data used as inputs into that
algorithm are perturbed. The calibrated parameter sensitivity analysis maps perturbations in the
data through the fixed adjustment algorithm, through the resulting BED," through the

configuration of calibrated parameters, and ultimately into the model results.

A. Methodology

The general approach for the calibrated parameter sensitivity analysis procedure is one of
randomized sampling over alternative values of the initial raw data matrix. Randomized sampling,
the approach adopted for elasticity sensitivity analysis in Harrison and Vinod (1992), avoids the
prohibitive computational requirements of unconditional systematic sensitivity analysis discussed

in Wigle (1991). It has the additional advantage over the Pagan-Shannon sensitivity procedure'

12 The derivation of the matrix of unbalanced estimates itself can be a lengthy process. Modelers
typically begin with data from disparate sources of varying quality and the data within each source may also
vary in its reliability. Modelers are faced with missing values, conflicting data, and with measurement
classifications which are inappropriate to the model.

1 Giinliik-Senesen and Bates (1988) summarize the general approaches.

'4 The sensitivity of model results to alternative BEDs has been undertaken elsewhere. Roberts
(1994) examines the effects the choice of benchmark year for the BED. Adams and Higgs (1990) argue for
the use of a synthetic 'typical' BED rather than one derived from a particular 'year of record.’ Wiese (1995)
derives two BEDs using alternative accounting assumptions for employer contributions to health insurance
and traces the effects of these assumptions on model results. These all argue for particular incarnations of
the BED rather than providing a systematic analysis of the type proposed here.

1> This elasticity sensitivity analysis procedure, which relies on a linear approximation of the model
results as a function of the parameters, is discussed and applied in Pagan and Shannon (1985), Pagan and
Shannon (1987), and Wigle (1991).



of providing global rather than local analysis, which strengthens sensitivity results for non-linear
models with large uncertainties in the parameter values. The CPSA procedure employs Gaussian
quadrature to find a discrete population of matrices from which to sample, following the
methodology used for elasticity parameters in DeVuyst and Preckel (1997). Unlike the
methodology employed in Harrison and Vinod, Gaussian quadrature ensures that the moments
of the sampling distribution match those of the underlying distribution.'®

CPSA is a procedure in which the data in the initial matrix are considered observations of
random variables for which the modeler can determine an a priori distribution. Where these
distributions are continuous, each is approximated by a set of discrete points and associated
probabilities. Together, the distributions are used to form a discrete approximation to the joint
distribution for the set of variables comprising the data matrix. A sample of unbalanced data sets
is drawn randomly from the joint distribution. Each unbalanced data set in the sample is then
balanced using a fixed adjustment algorithm, resulting in a series of BEDs, each of which is used
to calibrate and solve the model.

Let Z be the true BED matrix with elements z,,, where h = 1,...,n, and i = 1,...,n. Let row
vector X with elements x5 J = 1,...,N, be the vector representation of the set of random variables
in Z and let the x; be stochastically independently distributed. Under this construction, each x;
represents a unique z,;,. The diagonal elements of Z are zero by definition, so that N< n*n. Let
vector A with elements 2 be the best initial estimate of X. The CPSA methodology is comprised

of the following four steps.

1. Specification of an a priori distribution for the random matrix elements

The modeler is assumed to be able to specify an a priori distribution for each x;, denoted here by
{x;} where {x;} is the probability density function if x; is a continuous random variable and the
probability mass function if x; is a discrete random variable. To undertake CPSA, the random
variable x; must have finite moments and the support of {x;} must be consistent with the model

structure, so that for example, it does not includes negative values for non-negative variables.

16 See DeVuyst and Preckel (1997) for a comparison of the two methods.
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The assumption that the  are the best initial estimates for x; implies that in the specified
distribution, E(x)) = 4. The variance, E(x; - zij)z, will be informed by the reliability of the data
sources as well as the prior modifications undertaken to form the unadjusted matrix. Because the
data in a BED represents transactions in a closed economic system, the modeler's specification

of the a priori distributions will typically be bounded.

2. Discrete approximation to the continuous probability density functions

If the specification of the distribution is continuous, the sampling methodology in CPSA requires
a discrete approximation to {x;}, where the discrete approximation is comprised of K pairs of
points, 4, k = 1, ..., K, and probabilities p}, such that X:,pf= 1. A discrete approximation is
obtained using the Gaussian quadrature approach discussed in Miller and Rice (1983), Preckel and

DeVuyst (1992), and DeVuyst and Preckel (1997). For each x;, Gaussian quadrature chooses K

pairs (&, p/) such that

i

K
E p]k (d]k)l = E (xl - ﬁj)lﬂ (5)
k1

where [ =0, 1, ....,2K-1. Thus Gaussian quadrature finds a discrete distribution which matches the
lower order moments of the original distribution.!’

Two, three, and four point discrete approximations arising from applying Gaussian
quadrature to uniform, normal and exponential distributions are given in Miller and Rice (1983),
and these provide the discrete approximations employed in the examples of CPSA that follow.'®

As an example, let the raw data vector be

A=[1 2]

17 The derivation and properties of Gaussian quadrature are given in Miller and Rice (1983).
18 Other procedures for undertaking Gaussian quadratures are cited in DeVuyst and Preckel (1997).
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where element 4 is distributed N(1, 0.02), and element &, is distributed N(2, 0.04). A three point

Gaussian quadrature would approximate the distribution for 4, by the three points and probabilities

4, =0.755 p.' =0.1667

a,2=1.000 P2 = 0.6666

4,=1.245 p=0.1667
and &, by

4, =1.654 p,'=0.1667

4, =2.000 p.>=0.6666

4, =2.346 P, =0.1667.

3. Construction of a joint distribution for the initial raw data set

The representation of the joint distribution for the elements of X, denoted here by {X}, is derived
from probability mass function representations of the elements in X. If the a priori distributions
are discrete, these probability mass functions are simply the {x;}, whereas if the a priori
distributions are continuous, the probability mass functions are given by the Gaussian quadrature
discrete approximations to the {x;}. Let each x;have a probability mass function representation
with K point and probability pairs. The joint distribution is given by the N* vectors and

probabilities: '

N
A N . K
Xy = (18, 4%, "L 1 2 V ks Lok, ke LK, o Ey LK. (6)

Where the x; are discretely distributed, {X} is the true joint distribution. If {X} is formed from
Gaussian quadrature approximations to continuous probability density functions for the x;, the
joint distribution also preserves up to and including the 2K-1 moments of the original, continuous
joint distribution. Because this joint distribution is formed under the assumption of stochastic

independence of the x; the covariances and higher order cross moments are zero.”

1 The derivation of the joint distribution here is taken from Preckel and DeVuyst (1992).

% The assumption of stochastic independence for such data is supported in applications of the Stone-
Byron adjustment algorithm in the social accounting literature, which requires an a priori specification of
the variance-covariance matrix for a social accounting matrix. For an example, see Crossman (1988). CPSA
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The joint distribution for the above example would then consist of the eight vectors and

probabilities:
[4,!, 4,'] = [0.755, 1.645] pip,! = 0.0278
[4,%, 4,%1 = [0.755, 2.000] ppt= 0.1111
[4,!, 4,°] = [0.755, 2.346] p.ip,t = 0.0278
[4,% 4,'1=1[1.000, 1.645] plp,t= 01111
[dlz’ dzz] = [1000, 2~000] p12p22 = 0.4444
[4,%, 4,°] = [1.000, 2.346] pp,° = 0.1111
[4,%, 4,'] = [1.245, 1.645] pp,t = 0.0278
[4,%, 4,°] = [1.245, 2.000] pipt= 0.1111
[4.°, 4,°] = [1.245, 2.346] p°p,° = 0.0278.

The derivation of the joint distribution for the elements of the entire BED, denoted here
by {Z}, is straightforward. The support of {Z} is given by the N* matrices formed when the set
of random variables in Z take on the values of each vector in the support of {X}, and the

probability associated with each matrix is that of the vector used in its formation.

4. Sampling

In most applications, the value of N¥is prohibitively large for the modeler to balance the matrix,
calibrate and solve the model for each of the matrices which form the points in the support of the
joint distribution, as would be the procedure in an unconditional systematic sensitivity analysis.>!
Instead, the CPSA methodology employs random sampling.

Let §,be a matrix drawn randomly from {Z}, and let P, be the probability mass of $,. The
modeler applies the fixed adjustment algorithm to 8, to generate a microconsistent BED, and
through calibration, a set of calibrated parameter values. The model is solved, generating a vector

of model results, R,.

can, in principle, be extended to the case where elements of Z are jointly distributed. Preckel and DeVuyst
(1992) give a Gaussian quadrature joint distribution for the case in which the x; are joint normally distributed.

*! For example, the BED for the Cote d'Ivoire model of Chia, Wahba and Whalley (1992) has 700
random variables. The support of the joint distribution formed from a 2-point Gaussian quadrature discrete
approximation to their distributions would have 27 points!
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The process is repeated T times to generate a sample of model results. 7 is chosen to be
sufficiently large that the sample moments are asymptotically consistent estimators of the
population moments. To ensure that all matrices in the support of {Z} have the same probability
of being sampled, sampling is undertaken with replacement allowing the possibility that the same
matrix may be drawn more than once. Each R, ¢ = 1,...,T, is weighted by P, to find the
expectations and standard deviations for the model results. These moments then allow confidence
intervals to be derived from the application of Chebychev's theorem.

While the values in the unbalanced, raw data matrix are the most likely candidates for
sensitivity analysis, the CPSA procedure can be generalized to other exogenously specified
- components of the adjustment process. For example, where the covariance between matrix
elements is zero, the adjustment algorithm developed by Stone (1978) and Byron (1978) is a
weighted least squares adjustment algorithm in which the weights are given by the variance of the
matrix elements. If the modeler is able to specify distributions for the variances of the matrix
elements,” CPSA can be applied to those variances used in the Stone-Byron adjustment
algorithm. The illustration of CPSA which follows, examines the sensitivity of model results to

uncertainty in the values of data variances.

B. An Illustration of CPSA Using a Simple Tax Model

The model used to illustrate CPSA is the simple 2x2x2 model used in Shoven and Whalley (1984),
with two consumers, rich and poor, two factors of production, capital and labor, and two
commodities, manufactured and non-manufactured goods. Table 1 summarizes the model
structure. The base case version of the model has no taxes. In the counterfactual experiment, a

50 percent tax is levied on the use of capital in the manufacturing sector, resulting in welfare

22 That modelers may be able to specify such a distribution has support in the social accounting
literature. For example, in undertaking the Stone-Byron adjustment for Australian data, Crossman (1988)
categorizes elements of the National Accounts as being of poor reliability with error margins greater than 10
percent, medium reliability with error margins of 3-10 percent, and good reliability with error margins 0-3
percent. These ranges could reasonably provide the mean and bounds for a uniform or triangular distribution.
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Table 1

Structure of the Simple, Illustrative Tax Model

Production . Output is produced using capital and labor combined in proportions implied by
CES technology in each sector.
. The elasticity of substitution in the production of manufactured goods is 2.0

and in that of non-manufactured goods, 0.5.

o Share parameters for the CES function are calibrated from the BED.
Consumption . The utility of each consumer is a CES function of manufactured and non-
manufactured goods.
. The rich consumer's utility function has an elasticity of substitution of 1.5 and

the poor consumer's has one of 0.75.

. Share parameters for the CES function are calibrated from the BED.
Endowments ° The rich consumer is endowed with capital and the poor consumer with labor.
Equilibrium . Markets clear for all goods and factors.
Conditions . Zero profits are made in each sector.

. Each consumer's expenditures equals his/her income.
Counterfactual . A 50 percent tax is levied on the use of capital in the production of

manufactured goods.
. The rich consumer receives 40 percent of tax revenues and the poor consumer

receives 60 percent.

J Welfare changes for each consumer are measured by equivalent variation as a
proportion of base income: EV' = (U', - U,) / U, where U', is the utility of
consumer 7 , i = {rich, poor} in the base case and U', is utility after the

imposition of the tax.
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changes for both consumers. These welfare changes, measured by the Hicksian equivalent
variation as a proportion of base income, provide the basis for the sensitivity analysis.

The initial, unbalanced data for the model is given in Table 2. Under the Stone-Byron
algorithm, each element of the unbalanced data set is weighted by its variance. In this example,
the variances are assumed to be one percent of the squared value of the initial estimate,” and are
given in parentheses in Table 2.

Two sets of experiments have been performed to illustrate the CPSA procedure. The first
set assumes that the modeler knows with certainty the aggregate incomes and output in the
economy as expressed by the row and column totals. These known totals are BED totals for the
Shoven and Whalley model and are given in the final row of Table 2. In this case, the constraints
in the Stone-Byron adjustment algorithm are that the values of the adjusted matrix sum to the
known totals and that the zero elements of the initial matrix are preserved. The second set of
experiments assumes that row and column totals are unknown, and the row and column totals are
allowed to adjust subject to the constraint that the matrix remains biproportional and zeros are
preserved. Both experiments are undertaken assuming a uniform distribution for the variances,
where the bounds of the distribution are +/- 20 percent of the central value. These continuous
distributions are represented by the three-point discrete Gaussian quadrature approximations given
in Table 3, which preserve up to and including the fifth moments of the original distributions.

In each experiment, the support of the variance joint distribution is given by the
combinations arising when each of the ten variances assumes one of the three values in the
support of its discrete distribution. The result is a set of 10° possible configurations, each of which
has a probability given by the product of the probabilities of its ten constituent points. A sample

of fifty configurations is drawn from this support. Each is used to derive a BED, calibrate and

% This assumption for the variances is derived from a time series of annual values for value added
in manufacturing for the United States which was found to have a standard deviation of 10.2 percent. The
time series was constructed using annual data for 1970 to 1992 taken from the International Bank for
Reconstruction and Development (1993) data base. The series "value added in manufacturing” given in
current USD was deflated by the ratio of current USD to constant 1985 USD GDP at factor cost to generate
a constant series.
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Table 2

Transactions Values! and Variances For the Illustrative Tax Model
(Variances are given in parentheses)

Rich Poor Manufactures Non-M'factures  Capital Labor
Rich 31.3 (11.8)
Poor 55.0 (36.0)
Manufactures 18.2 (2.6) 16.3 (3.5)
Non-M'factures 18.1 (3.3) 37.2 (17.0)

Capital 8.1 (0.7) 30.1 (6.7)
Labor 22.6 (7.0) 30.9 (11.3)
Known Total 34.3 60.0 34.9 59.4 34.3 60.0

1. Values were derived as random numbers drawn from a normal distribution with mean equal to the Shoven and
Whalley (1984) balanced values and standard deviation equal to 10 percent of the balanced value.

Table 3

3 Point Gaussian Quadrature Approximations for the Data Matrix Variance
Distributions in the Illustrative Model

Expected Value and 1st Point 2nd Point 3rd Point

Bounds of the (probability:  (probability:  (probability:
Uniform Distribution 0.278) 0.444) 0.278)
Rich-Capital 11.8,[9.4, 14.1}] 9.9 11.8 13.6
Poor-Labor 36.0, [28.8, 43.2] 304 36.0 41.6
Manufacturing - Capital 0.7, [0.6, 0.9] 0.6 0.7 0.8
Manufacturing-Labor 7.0, [5.6, 8.4] 5.9 7.0 8.0
Non-Manufacturing - Capital 6.7,[5.3, 8.0] 5.6 6.7 7.7
Non-Manufacturing-Labor 11.3, [9.0, 13.5] 9.5 11.3 13.0
Rich-Manufacturing 2.6,[2.1,3.1] 2.2 2.6 3.0
Rich-Non-Manufacturing 3.3,[2.6,4.0] 2.8 33 3.8
Poor-Manufacturing 3.5,[2.8,4.2] 3.0 3.5 4.1
Poor-Non-Manufacturing 17.0, [13.6, 20.4] 14.3 17.0 19.6
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solve the model. Attached to each result is the probability of the configuration used in its
derivation. The means, standard deviations and bounds for the results of both experiments are
given in Table 4. Where the control totals are known, the standard error in the results is higher
than where biproportionality is the underlying adjustment consistency condition. This result is
consistent with the additional constraints imposed on the system by control totals.

What emerges from Table 4 is that the central case model results from this experiment are
not robust to the range of variances imposed in the CPSA. Although the signs of the welfare
changes are preserved, the central case variants lie outside the 95 percent confidence interval. In
this case, the sensitivity analysis indicates that the modeler would be ill-advised to present the
model results as reliable inputs into the policy process. These sensitivity results are, of course,
dependent on the a priori specification for the distribution of the variances. If the modeler's a
priori information about the variances had led to a specification in which the bounds of the
uniform distribution for the variances were +/- 50 percent of their base values, the central case
variances would lie well within the 95 percent confidence interval as is evident in Table 5.

The mechanism by which the variance changes in CPSA affect model results is specific to
the model structure. In the illustrative example, the introduction of a tax on the use of capital in
the manufacturing sector causes the price of manufactured goods to rise relative to that of non-
manufactured goods, and subsequently results in a net decrease in the demand for manufactured
goods. The shift in production towards the more labor-intensive, non-manufactured goods forces
up the price of labor relative to capital. The rich consumer, who is endowed only with capital and
who receives 40 percent of tax revenues, experiences a loss in income. This welfare loss is
compounded by the increase in the price of manufactured goods which figure more prominently
in the rich consumer's utility function than in the poor consumer's. As a result, in the sensitivity
analysis, a higher share of manufactured goods in the constant elasticity of substitution (CES)

utility function of the rich consumer and/or a higher share of capital in the production
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Table 4

CPSA on the Welfare Effects of Imposing a 50 Percent Tax on the Use of Capital in
the Manufacturing Sector

Hicksian Equivalent Variations measured as a proportion of base income

1. Known Control Totals: Variances with Uniform Distribution

Central Case' Mean Standard Error 95% Confidence Interval?
EV Rich -0.1258 -0.1292 0.00062 [-0.1321, -0.1265]
EV Poor 0.0630 0.0649 0.00033 [0.0635, 0.0670]

2. Unknown Control Totals: Variances with Uniform Distribution

Central Case' Mean Standard Error 95% Confidence Interval®
EV Rich -0.1263 -0.1239 0.00053 [-0.1263, -0.1215]
EV Poor 0.0643 0.0707 0.00023 [0.0697, 0.0717]

1. The central case uses the variances given in Table A.2.
2. Confidence intervals are derived using Chebychev's Theorem.

Table 5
Sensitivity of CPSA to the Variance Probability Density Function

Hicksian Equivalent Variations measured as a proportion of base income

Known Control Totals: Variances with Uniform Distribution, Bounds 50 percent of base value

Central Case Mean Standard Error 95% Confidence Interval
EV Rich -0.1258 -0.1295 0.00180 [-0.1375, -0.1215]
EV Poor 0.0630 0.0651 0.00096 {0.0608, 0.0694]
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function for manufactured goods should result in a greater decrease in the welfare of the rich
consumer as the tax on the use of capital in the manufacturing sector is imposed.

This expectation is supported by evidence from a simple experiment. If all but one of the
variances are held constant at their central case value and the variance of the poor consumer's
consumption of non-manufactured goods, v, is allowed to vary,” the way in which the changes
in one variance lead to variations in the model welfare effects can be traced. This path is given in
Table 6 for three values of v,,. The first section in Table 6 demonstrates the link between the
initial value of v,, and final benchmark consumption values. The lowest value for v,, implies a high
reliability for the poor consumer's consumption of non-manufactured goods and yields the
adjusted BED value closest to the initial estimate. Increases in the variance cause the adjusted
value to move farther from the initial point.

These changes in the adjusted value for the poor consumer's consumption of non-
manufactured goods, together with changes in the remainder of the adjusted elements in the BED,
have consequences for the values of the calibrated parameters. As v, increases, the changes in the
BED imply that the calibrated share parameter for manufactured goods in the rich consumer's
CES utility function increases, while that in the poor consumer's utility function decreases. The
greater weight on the rich consumer's share parameter for manufactured goods yields the higher
equilibrium consumption values given in the third section of Table 6. These higher share
parameters lead to a greater disutility from the increase in the price of the manufactured good and
the consequent greater loss in welfare, as given by the rich consumer's equivalent variation in the
final section.

The opposite effect is evident for the poor consumer whose share of manufactured goods
in utility decreases as v,, increases, and whose subsequent counterfactual demands for
manufactured goods decreases with higher values of v,,.. Reductions in the credibility of the initial
estimate for the poor consumer's consumption of non-manufactured goods thus lead to higher

welfare gains for the poor consumer.

* The adjustment process also assumes that the control totals are known and are the same as those
given in Table 2.
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Table 6

The Path by which Changes in the Variance of the Poor Consumer's Consumption

pn

17
25

pn

17
25

pn

17
25

pn

1
17
25

of Non-Manufactured Goods (v,,) Lead to Changes in the Model Results'

1. BED Consumption Levels®
(values are in currency units)

RichsManufactures RicheNon- PoorsManufactures Poor*Non-
Manufactures Manufactures
14.87 19.43 20.03 39.97
17.37 16.93 17.53 42.47
17.47 16.83 17.43 42.57
l
2. Utility Function CES Share Parameters Implied by Alternative BEDs
RicheManufactures RichsNon- PoorsManufactures Poor*Non-
Manufactures Manufactures
0.308 0.402 0.390 0.778
0.358 0.349 0.338 0.818
0.360 0.347 0.336 0.819
l
3. Counterfactual Demands
Rich*Manufactures RicheNon- PooreManufactures Poor=Non-
Manufactures Manufactures
11.66 18.44 19.97 43.86
13.76 16.20 17.47 46.50
13.84 16.11 17.34 46.61
|
4. Equivalent Variation as a Proportion of Base Income
Rich EV Poor EV Rich Base Poor Base Rich Poor
Utility Utility Counterfactual ~ Counterfactual
Utility Utility
-0.1249 0.0623 17.25 32.29 15.10 34.30
-0.1292 0.0649 17.15 33.65 14.94 35.84
-0.1293 0.0650 17.15 33.71 14.93 35.90

1. The variance of the poor consumer's consumption of Non-Manufactured Goods is 17 in the central
case. The value 1 is chosen to represent a low value and 25 a high value.

2. The values shown here are those which change as a result of altering V,,,. The remaining elements of
the BED are the same throughout.
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IV. Extended Sensitivity Analysis

While CPSA introduces a means for modelers to undertake sensitivity analysis with respect to the
calibrated parameters, the elasticity parameters remain a highly uncertain component of the
modeling process. The strength of CPSA, therefore, lies in its contribution to a comprehensive
sensitivity analysis - one which addresses uncertainty in the full vector of model parameters. The
comprehensive procedure proposed here and termed 'extended sensitivity analysis, combines the
CPSA procedures described in Section IIT with the elasticity sensitivity methodology advocated
in DeVuyst and Preckel (1997).

As in Section III, let N be the number of random variables in the BED but let J be the
number of exogenously specified parameters, where those parameters are also stochastically
independently distributed. In the first step of extended sensitivity analysis, the modeler specifies
a priori distributions for both the random matrix elements and the exogenous parameters. Where
these distributions are continuous, have finite moments, and where the model is soluble over their
supports, the second step uses Gaussian quadrature to construct discrete approximations. If K is
the number of points in the support of each discrete distribution, the joint probability density
function found in the third step contains (N+J)* points. Each point in the support of the joint
distribution is comprised of an unadjusted matrix and a set of exogenous parameter values. Its
probability mass is given by multiplying the product of the N probabilities of the elements in its
unadjusted matrix with the product of the J probabilities in its vector of exogenously specified
parameters.

The final step of extended sensitivity analysis samples randomly with replacement from
the joint distribution. The unbalanced matrix of each point in the sample is adjusted under a fixed
algorithm and the ensuing BED is used together with the exogenous parameter values of the
point, to calibrate and solve model. The probability weighted sample of model results generate

expectations for the result means, standard deviations and confidence intervals.
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This extended sensitivity analysis methodology is illustrated using an existing model
developed by Chia, Wahba, and Whalley (1992) for tax incidence analysis in Céte d'Ivoire. The
incidence analysis of Chia, Wahba, and Whalley is undertaken for six taxes/subsidies by replacing
each with an equal yield, neutral tax on consumption, and finding the associated welfare change
for each of seven household types.” The illustration which follows examines the sensitivity of the
personal income tax incidence results to uncertainty in the consumption expenditure data and to

the values of consumption and production elasticities of substitution.

A. An Illustration of Extended Sensitivity Analysis Using the Céote d'Ivoire Model

Welfare changes on which tax incidence results are based, derive from household utility
functions defined over the consumption of goods and services in the model.® The CPSA
component of the extended sensitivity analysis is undertaken for this consumption expenditure
matrix. Changes in utility arise directly from changes in consumption levels, but the extent to
which a change in the consumption of a particular good translates into a change in utility is given

by the share parameter of that good in the CES utility function. Through calibration, the values

%5 The original model is calibrated to a 1986 BED and solved using MPS/GE (Rutherford, 1989),
but it has been rewritten in GAMS (see Brooke, Kendrick and Meeraus, 1988) to allow simple incorporation
of matrix adjustment, and to facilitate the CPSA component of extended sensitivity analysis.

% The Cbte d'Tvoire model identifies seven socio-economically based household types, each of which
receives utility from the consumption of ten goods and services. Incomes derive mainly from capital and labor
endowments, as well as interhousehold transfers. Households pay personal income tax and make social
security transfers to the government, but also receive income from the government in the form of education
and other transfers. The model distinguishes fifteen productive sectors, each of which produces output using
value added and intermediate goods. All twelve formal sectors pay production taxes and all formal sectors
except the government services sector and the gas, electricity and water sector, also receive subsidies. Eight
of the formal productive sectors trade internationally, and since Cote d'Ivoire is modeled as a small, open,
price-taking economy, exporters face a perfectly elastic demand function for their output. Traditional exports
and exports of primary processed goods are taxed. Imports, used in the production of intermediate goods and
in household consumption, are subject to tariffs. The Ivorian price stabilization policy for coffee, cocoa and
other exports is captured in the model. In 1986, the benchmark year, the fund experienced a net inflow of
revenues and thus the traditional export sector pays into the stabilization fund, while the non-traditional
export sector receives only a proportion of those revenues.
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in the consumption expenditure matrix”’ (together with the elasticity of substitution in
consumption), determine the values of these share parameters.

An absence of unadjusted data and information about the construction of the Cote d'Ivoire
model BED? requires the sensitivity analysis to be based on a data set which has been artificially
unbalanced from the microconsistent data.”® The unbalanced data is adjusted using two prevalent
adjustment algorithms - the Stone-Byron algorithm and RAS.* Extended sensitivity analysis is
undertaken twice - once on the variances used in the Stone-Byron adjustment algorithm and once

on the matrix elements which are adjusted using the RAS adjustment algorithm.*! To derive the

2" The data used to generate the consumption matrix is assumed to have been obtained from a
household survey which reports mean consumption by household type and Chia, Wahba, and Whalley are
assumed to have derived an unbalanced estimate of total consumption expenditure by each household type
from scaling the survey data by the number of households in each group (given in Table A.2 of Appendix A).
In the illustration, the calibrated parameter sensitivity component of the model results is assumed to emanate
primarily from uncertainty in the values associated with the household survey data, and it is to values in this
matrix that the uncertainty used in CPSA is attached. The household survey data is approximated by the
artificially constructed household survey data set given in Table A.1. The elements of this artificial unbalance
matrix are randomly drawn from a normal distribution with expected value equal to the known, adjusted value
and standard deviation equal to the proportions of the base case given in Table A.1.

%% Chia, Wahba, and Whalley list their primary data sources as the national accounts, the Banque de
données financieres (from which balance of payments data was obtained), tax data and household budget
survey data, but do not state explicitly which elements of the BED derive from which sources.

29 As a result, the sensitivity analysis presented here provides an illustration of the methodology
rather informed insight into the Céte d'Ivoire model results. Under current practise modelers do not provide
sufficient documentation for outsiders to specify the necessary distributions, and meaningful extended
sensitivity analysis can therefore only be undertaken by the modelers who have assembled the data.

% For an initial matrix with non-negative elements 4, and variances ¢°;, known row totals R, known
column totals S, and zero covariances, the Stone-Byron algorithm finds a matrix with elements a;; that
minimizes; (Z; - a;)’ 0, subject to the constraints that a,; > 0, ¥, a; = §; and ¥, a,; = R,. The RAS algorithm,
attributed to Bacharach (1970) is a scaling algorithm in which each row of the initial matrix is scaled by the
ratio of the known control total to the actual total. The columns of the ensuing updated matrix are scaled by
the ratio of the known column totals to the updated matrix column totals. This process is applied iteratively
until the deviation of the updated matrix totals from the control totals is deemed to be sufficiently close to
zero. In the limit, RAS converges to an optimization algorithm that minimizes the logarithmic objective
function X; 4,In (4, a;™).

3! The values in the consumption expenditure matrix are assumed to have been derived in a two stage
process. In the first stage, aggregate values for total final household consumption of each good consistent
with the values for total production, exports, government consumption and intermediate demand would have
been found. Similarly, aggregate household consumption expenditure would also have been specified. In the
second stage, an adjustment algorithm would have been applied to the initial, unbalanced estimate of the
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central case variances used in the Stone-Byron adjustment algorithm, the assumption is made that
the reliability of the data differs by good, rather than by household: rice, construction, and
financial services are assumed to be the most reliably reported with standard errors of 10 percent
of their base value; transportation and non-financial services the least reliably reported with
standard errors of 30 percent of their base value; and the data on the remaining goods is assumed
to be of intermediate reliability with standard errors of 20 percent of their base value.

Using the variances implied by these standard errors, the Stone-Byron adjustment is
applied to the matrix in Table A.l, subject to the consistency constraints that i) the total
consumption of each good by each household type, summed across household types is equal to
the aggregate final household consumption and ii) the sum across goods of total consumption
expenditure by household type is equal to disposable income of each household type, net of
interhousehold transfers and savings. These aggregate control totals are given in Table A.3 and
are the values used in the original model. Together with the original elasticity values, the resulting
balanced matrix is used to calibrate and solve the model to obtain incidence results for the
personal income tax. These central case results are given in column (1) of Table 7.

In the first step of the extended sensitivity analysis, a uniform distribution for the variances
is assumed. The bounds for the standard errors of the most reliable data in the consumption matrix
are assumed to be 5 and 15 percent of the base value, for the data of intermediate reliability, 10
and 30 percent of the base value, and for the least reliable data 10 and 50 percent of the base
value. Thus as data becomes less reliable, so too does the modeler's ability to assess the
unreliability. As an example, the variance for the first element in the matrix - the consumption of
rice by export cropper households - has a value of 7941.36 million CFA* francs, derived from an
average of 3260 CFA francs per export cropper household over 2.436 million households. Its

standard deviation assumed to be uniformly distributed and bounded between 5 and 15 percent

consumption matrix under consistency conditions implied by the aggregate values from the first stage.

32 The CFA franc is the currency of the Colonies Francaises d'Afrique of which C6te d'Tvoire is a
member.
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Table 7

Extended Sensitivity Analysis Results for Personal Income Tax Incidence in a Model of
Cote d'Ivoire For Alternative Adjustment Algorithms

Hicksian Equivalent Variations expressed as a percentage of benchmark gross income

Unbalanced Matrix Adjusted Using the

Unbalanced Matrix Adjusted Using

Stone-Byron Algorithm RAS Algorithm
Central Expected Standard 90% Confidence Central Expected Standard 90% Confidence
Case  Value Error Interval Case  Value Error Interval
1) (2) 3) “) ) (6) (7 (8)

Export Croppers -0.225 -0.197 0.015 (-0.244,-0.150) -0.224 -0.214 0.013 (-0.282, -0.200)
Savannah Croppers -0.709 -0.708 0.020 (-0.771,-0.645) -0.685 -0.690 0.019 (-0.750, -0.630)
Other Food Croppers  -1.632 -1.636  0.023  (-1.709,-1.563) -1.600 -1.603  0.020 (-1.666, -1.540)
Government Employees 3.516  3.504  0.015 (3.457, 3.551) 3.493 3490 0.009 (3.462, 3.518)
Formal Households -0.587 -0.594 0.013 (- 0.635,-0.553) -0.605 -0.607 0.007 (-0.629,-0.585)
Small Businesses -1.617 -1.618 0.006 (-1.637,-1.599) -1.617 -1.614 0.006 (-1.633,-1.595)
Inactive 2.651 2.650 0.018 (2593, 2.707) 2.666 2.661 0.015 (2.614, 2.708)
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of the base value consumption value, implying a variance which is uniformly distributed between
26569 and 239121 with an expected value of 106276.

The extended sensitivity analysis considers the calibrated parameters given by the
consumption expenditure matrix together with three sets of elasticities used in CES functions in
the model; the elasticity of substitution of consumption goods in preferences,” the Armington
elasticity of substitution between domestic and imported goods in consumption and the elasticity
of substitution between capital and labor in production. As with the variances, the elasticities are
assumed to be uniformly distributed. Table A.4 gives their central case values and bounds.

These uniform distributions for the variances and the elasticities are then approximated
with three-point discrete approximations obtained from Gaussian quadrature. The support of each
approximate distribution has a low, middle and high value. The low value in each approximation
is given by the lower bound of the distribution plus 11.27 percent of the range and is associated
with a probability of 0.28. The middle value is the lower bound plus 0.5 percent of the range (the
central case value) with a probability of 0.44, and the high value, the upper bound minus 11.27
percent of the range, is associated with a probability of 0.28. The three points which comprise the
discrete approximation for export croppers' rice consumption variance are 50524 with probability
0.28, 106276 with probability 0.44, and 215166 with probability 0.28.

With 31 elasticities and 70 variances in the consumption expenditure matrix, the support
of the discrete joint probability distribution approximation has 3'°! points. The probability
associated with any one of those points is given by the product of the probabilities of its
components. Thus the probability of the variance/elasticity configuration in which all values
assume the low value in their discrete approximation is 0.28'”". A random sample of 500 points
is drawn from the joint probability distribution on the assumption that this number is sufficiently
large that the sample mean and variance will be consistent estimators of the population mean and

variance.

% In the central case, these are all 1 implying Cobb-Douglas preferences for households. Sensitivity
analysis with respect to this value can therefore also be interpreted as sensitivity over the choice of functional
form.
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In each case, the variances in the Stone-Byron algorithm are used to adjust the unbalanced
matrix. The ensuing BED values are used together with the sample elasticity configuration to
calibrate and solve the model, and the expected value for household welfare changes as a result
of replacing the personal income tax with a neutral consumption tax is given in column (2) of
Table 7. The standard error for the results is given in column (3) and the 90 percent confidence
interval in column (4).

The second extended sensitivity analysis is undertaken for the case in which the RAS
algorithm is applied to balance the consumption expenditure matrix. The central case results,
given in column (5) of Table 7, have the same sign and similar magnitudes to the central case
Stone-Byron results. The extended sensitivity analysis procedure using RAS assumes that the
elements of Table A.1 are uniformly distributed with the same variances as those used in the
central case Stone-Byron algorithm. Thus the example matrix element, export croppers' rice
consumption, is distributed uniformly with lower bound 2696 CFA francs, expected value 3260
CFA francs, and upper bound 3825 CFA francs. As in the previous case, a three-point discrete
approximation is found for each element in the consumption matrix as well as for each of the
elasticities. A joint distribution is derived, and a sample comprised of an unbalanced consumption
matrix and an elasticity configuration, is drawn from the support of that joint distribution. The
sample unbalanced matrix is adjusted using RAS. The model is calibrated using the ensuing BED
and the sample elasticity configuration, and solved. As in the Stone-Byron case, the sensitivity
results reported in columns (6), (7), and (8) of Table 7 are built from 500 random samples.

The confidence intervals in Table 7 suggest that under the distributional assumptions
made, the model results are robust to uncertainty in the parameters in the sense that the signs of
the welfare changes do not change. Furthermore, at the 90 percent confidence interval, the
ranking of household groups which benefit from the Ivorian personal income tax remains the same
as in the central case. Under both sensitivity experiments, government employees bear most of the
burden of the tax with inactive households assuming a secondary burden. Thus if the many
assumptions made about the source and nature of uncertainty in the data for the Cote d'Tvoire
model hold, the central case model results could be confidently presented as inputs into a debate

on tax policy reform.
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V. Conclusions

Among the criticisms levelled against applied general equilibrium models is one of empirical
weakness - model parameterization relies on point observations which lack the statistical rigour
of time series data. One means of addressing this criticism is for modelers to incorporate whatever
information they do have about the quality of those single observations into the modeling process
via sensitivity analyses. Existing sensitivity analysis methodologies, however, are restricted to the
set of exogenously specified parameters. In contrast, the CPSA methodology presented here
provides measures of the sensitivity of model results to uncertainty in the data used to derive the
benchmark data set, and hence, to uncertainty in the values of the calibrated parameters. When
CPSA is combined with existing exogenous parameter sensitivity analysis procedures in an
‘extended sensitivity analysis,' modelers can undertake sensitivity analysis for the full set of model
parameters.

Extended parameter sensitivity analysis has been described and implemented for the
reconciliation of unbalanced matrices into microconsistent data sets using formal matrix
adjustment algorithms. In practice, modelers make limited use of such algorithms. Much of the
adjustment to the values found in primary data sources occurs in the ad hoc procedures used to
derive consistent control totals for submatrices, which are then 'fine-tuned' via formal adjustment
algorithms. The next challenge would be to capture the sensitivity of model results to these larger
adjustments. While the approach of the extended sensitivity analysis procedure is sufficiently
general to address such issues, it would require parametric representations of those larger
adjustments to do so. Since many of these adjustments are ad hoc, records of how and why the
data has changed are scarce. Paradoxically, broader sensitivity analyses will require modelers to
take greater notice of how they adjust their data, but will dispense with the need to describe that
process in detail by summarizing the uncertainties in those adjustments via terse confidence

intervals over the model results.
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Extended Sensitivity Analysis Specifications for the Cote d'Ivoire Model

Appendix A

Artificial Household Survey Consumption Expenditure Data

Table A.1

Annual Consumption Expenditure' in CFA Francs

Household Type

Export Savapnah Other Food Government Formal

Small  Imactive

Consumption Good Croppers Croppers Croppers Employees Sector Businesses

Rice 3260 4054 1970 10000 18014 8879 10635
Other Subsistence Agr. 35669 52039 47922 35616 40742 35082 27816
Traded Agr. Products 218 0 307 7815 8790 4265 8796
Primary Processed 35651 36759 41063 56167 105131 58828 51389
Manufactures 20209 13847 12817 40251 64624 29694 21507
Electricity, Gas, Water 1817 2530 1659 5401 5965 1951 1884
Construction 2460 1871 1784 6340 5103 3956 2214
Transport 6171 0 9450 34028 30515 12630 34329
Financial Services 576 353 385 4757 2916 1214 1165
Non-Financial Services 6392 7723 6904 18904 34329 1086 13319

1. Unbalanced data were derived as random numbers drawn from a normal distribution with mean equal
to the balanced value in the Chia, Wahba, and Whalley model and standard deviation as the following:
Rice, Construction and Financial Services, 10% of the balanced value, Other Subsistence Agricultural
Products, Traded Agricultural Goods, Primary Processed Goods, Manufactures, and Electricity, Gas,
Water, 20% of the balanced value, Transport and Non-Financial Services, 30 % of the balanced value.
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Table A.2

Number of Households by Type

Export Croppers 2 436 000
Savannah Food Croppers 1320 000
Other Food Croppers 1524 000
Government Employees 1416 000
Formal Sector Households 912 000
Small Businesses 2 580 000
Inactive 1812 000
Table A.3

Control Totals Used for the Consumption Expenditure Matrix in the RAS and
Stone-Byron Adjustment Algorithms

1. Column Control Totals: Aggregate Consumption Expenditure by Household Type
(million CFA francs)

Export Croppers 296186
Savannah Food Croppers 157369
Other Food Croppers 185213
Government Employees 375647
Formal Sector Households 285345
Small Businesses 418530
Inactive 334426

2. Row Control Totals: Aggregate Consumption by Product

(million CFA francs)
Rice 86484
Non-Rice Subsistence Agricultural Products 516210
Traded Agricultural Products 50164
Goods from Primary Processing 617750
Manufactured Goods 341565
Electricity, Gas, Water 30864
Construction 37600
Transport 201072
Financial Services 17509
Non-Financial Services 153498
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Table A4

Elasticities of Substitution and Bounds Used in the Systematic Sensitivity Analysis

1. Elasticity of Substitution Between Capital and Labor in Production Sectors
(bounds are central case value +/- 0.35)

Central Value Lower Bound Upper Bound

Food 0.4 0.05 0.75
Traditional Exports 04 0.05 0.75
Non-Traditional Exports 0.5 0.15 0.85
Formal Sector Primary Processing 0.8 0.45 1.05
Formal Sector Manufacturing 0.8 0.45 1.05
Gas and Electricity 0.8 0.45 1.05
Transportation 0.5 0.15 0.85
Formal Sector Services 0.8 0.45 1.15
Financial Services 0.8 0.45 1.15
Informal Sector Services 0.9 0.55 1.25
Informal Sector Primary Processing 0.9 0.55 1.25
Informal Sector Manufacturing 0.9 0.55 1.25
Informal Sector Construction 0.4 0.05 0.75
Formal Sector Construction 04 0.05 0.75

2. Elasticity of Substitution Between Goods in Utility
(bounds are central case +/- 40 percent)

Central Value Lower Bound Upper Bound
All Households 1 0.6 1.4

3. Elasticity of Substitution Between Imports and Domestic Goods in Consumption
(bounds are central case +/- 40 percent)

Central Value Lower Bound Upper Bound
All Goods 2 1.6 24
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