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Abstract

We consider the forecasting performance of two SETAR exchange rate models proposed
by Kréger and Kugler (1993). Assuming that the models are good approximations to the
data generating process, we show that whether the non-linearities inherent in the data can
be exploited to forecast better than a random walk depends on both how forecast accuracy
is assessed and on the ‘state of nature’. Evaluation based on traditional measures, such
as (root) mean squared forecast errors, may mask the superiority of the non-linear models.
Generalized impulse response functions are also calculated as a means of portraying the
asymmetric response to shocks implied by such models.

1 Introduction

While there is clear evidence of non-linearities in the even-ordered conditional moments of post-
War exchange rates (of the form that large /small changes tend to be followed by large /small
changes, but of either sign), the evidence for dependence in first moments is less convincing.
Thus ARCH (Engle, 1982) and GARCH (Bollerslev, 1986) models have claimed some success
for interval prediction, while the literature on conditional mean prediction over the post-war
period suggests it is difficult to better a random walk. For example, using a nearest-neighbor
technique of locally-weighted regression (see, e.g., Cleveland, Devlin and Grosse, 1988), Diebold
and Nason (1990) find no improvement over a simple random walk for predicting ten major
dollar exchange rates over the post 1973 period. The use of a non-parametric prediction method
is intended to guard against the failure to benefit from non-linearities due to the incorrect choice
of functional form. From a different standpoint, Meese and Rose (1991) allow for non-linear
extensions to a number of structural exchange rate models but with no significant improvement
in forecast accuracy.

However, Kriger and Kugler (1993) find that self-exciting threshold autoregressive models
(SETAR)! are able to describe the behaviour of five weekly dollar exchange rate series for 1980
- 90, and suggest that this might be expected in a period of managed floating. They argue that
threshold models of this sort may arise (approximately) as the outcome of a rational expecta-
tions monetary model with stochastic intervention rules (see Hsieh, 1989). The suggestion is
that the authorities react to large appreciations and depreciations (rates of change), whereas
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for the target zone approach to managed floating the level of the exchange rate (or rather, its
proximity to ceilings or floors) is relevant for signalling interventions.

The aim of this paper is to assess the usefulness of their models for out-of-sample forecasting,
and to address the closely related issue of the propagation of shocks implied by the models.
‘Out-of-sample’ is somewhat of a misnomer, in that as we explain in section 2, forecasting
performance is assessed by a number of simulation experiments designed to favour the non-
linear models. However, it distinguishes our approach from the in-sample evaluation of the
models undertaken by Kréger and Kugler (1993), noting, following Diebold and Nason (1990),
that a better forecast performance does not automatically follow from the rejection of the linear
null in-sample. In passing, we note that Krager and Kugler (1993) misinterpret their tests for
the statistical significance of more than one regime, and in fact there is no evidence against the
(linear) null. Their Table 3 which purportedly reports the ‘Chan-Tong test for linearity in the
estimated residuals of the SETAR models’ actually reports the test outcomes for the hypothesis
of a single regime (i.e., a linear model) versus more than one regime. We find that whether
the non-linear models are capable of out-performing a random walk depends crucially on the
way in which forecasts are evaluated. The results of the forecast comparison are presented in
sections 2 and 3. The former draws on the method of analysis in Clements and Smith (1996),
and the latter evaluates the whole forecast density.

The analysis of the propagation of shocks in section 4 is an application of the generalized
non-linear response function analysis of Koop, Pesaran and Potter (1996) to the Kriger and
Kugler (1993) models. This analysis allows us to measure the persistence of shocks implied
by the empirical models. Of particular interest is the extent to which the non-linearity of the
model gives rise to asymmetries, whereby the persistence of shocks depends on the regime in
force. Just as the non-linear models of US GNP of Beaudry and Koop (1993), Potter (1995) and
Pesaran and Potter (1997), for example, imply different degrees of persistence between shocks
occurring in recessions and booms, so the exchange rate models imply asymmetric responses to
shocks occurring at times of large appreciations (regime 1), large depreciations (regime 3) and
more settled times (regime 2). Finally, section 5 briefly summarises our findings.

2 Forecasting performance of non-linear models relative to a ran-
dom walk

We assess the forecast performance of the SETAR models relative to linear autoregressive
(AR) alternatives by means of Monte Carlo simulations specifically designed to cast the non-
linear models in their best possible light. By taking the estimated SETAR models as the data
generating processes (DGPs) we are able to ensure that the future has the same non-linear
imprint as the past, so that a poor performance of the non-linear models can not be attributed
to a failure of the non-linearity to persist into the future (e.g., Granger and Terasvirta, 1993,
p.164, Terasvirta and Anderson, 1992).

It is often claimed that ‘how well we can predict depends on where we are’ and that partic-
ularly for non-linear models there might be ‘windows of opportunity for substantial reduction
in prediction errors’ (Tong, 1995b p. 409 — 410). In an empirical study of US GNP Tiao and
Tsay (1994) find that the forecast performance of SETAR and AR models is broadly similar
for data points in the ‘boom’ (as opposed to ‘recession’) regime but that the SETAR model
records significant gains relative to the linear model at tiines when the economy is recovering



from recession. In general, without large samples of historical data there may be few episodes
of the phenomenon of interest and estimates of the gains achievable during these periods may
lack precision. Our simulation approach allows us to better explore the dependence of forecast
performance on the regime at the forecast origin.

Since regime-switching models may be better suited to predicting movements between re-
gimes, rather than small movements within a regime, we employ forecast evaluation criteria
based on the number of times the models correctly predict the right regime. The ‘Non-
Confusion’ Rate (NCR) is the number of times the regimes are correctly predicted divided
by the total number of predictions. We also report conditional probabilities of correctly -pre-
dicting each regime, defined as the number of times the model correctly predicts a regime
divided by the number of times the process was in that regime. These are referred to as CRPs
— conditional regime predictions. A value of unity indicates that the regime is always correctly
predicted (but note some caution is required — such an outcome would arise if the model always
predicted that regime regardless of which regime the process is actually in). We report CRPs
for the AR and SETAR models without conditioning on being in a particular regime.

Nevertheless, such criteria count one-for-one a forecast of a very small increase, when in fact
a small decline occurred, with a forecast of a large increase when a large decline occurred, (if
the regimes are positive and negative growth, say), so that we complement such measures with
more traditional squared error loss measures, such as the mean squared forecast error (MSFE),
for each horizon, using the variability over the replications of the Monte Carlo to obtain our
estimates. We also calculate a test proposed by Diebold and Mariano (1995) of whether the
differences in MSFEs between models are statistically significant.

Full details of the way in which the Monte Carlo was carried out are given in Clements and
Smith (1996), but briefly, on each replication of the Monte Carlo data is generated from the
empirical SETAR exchange rate models. We then estimate SETAR and AR models, holding
back observations for which forecasts are then computed. We then repeat, and build up a Monte
Carlo sample of multi-step forecast errors. The SETAR model forecasts can be generated under
a number of assumptions about what is known about the model - in one extreme the model
is assumed known and to coincide with the DGP (e.g., the number of regimes, lag orders,
autoregressive coefficients and threshold values are correctly specified), whereas at the other
a model selection strategy is adopted, assuming only the correct number of regimes. In the
discussion of the results the former is referred to as the ‘Known Model’ case, and for the latter,
‘Unknown Model’ is used as a convenient shorthand.

The exchange rate models estimated by Krager and Kugler (1993) are given in their Table
2, p. 200-2 for the German mark, the French franc, the Italian lira, the Japanese yen and the
Swiss franc against the US dollar. To economise on space, we report results for the yen and
deutschemark only. The models have three regimes and a delay of one period (so that the
current regime at ¢ is determined by the value of the process at t —1 in relation to the threshold
values). For both the yen and deutschemark the middle regime is a third-order AR in the
difference of the log of the exchange rate, and for the yen the first and third set the growth rate
equal to a constant, whereas the mark differs in that the first regime is a second-order AR. The
estimated standard deviations of the first and third regimes exceed that of the middle regime,
which is explained by central bank interventions in response to large appreciations (regime 1)
and depreciations (regime 3).

Table 1 summarises the results of our Monte Carlo evaluation of the multi-step forecast
performance of the SETAR yen and deutschemark exchange rate models. The linear competitor



is an AR(0) model with a constant for the differences (of the logs) — ie., a random walk
with drift. Higher-order linear models were generally dominated by the random walk (RW),
consistent with the view that changes are not serially correlated.

Panel [A] reports, for the ‘Known SETAR Model’ case, unconditional (on the regime) MSFEs
for the RW model divided by those for SETAR for 1, 2 and 5-steps ahead. For longer horizons
the ratio is approximately unity. Panel [B] reports the ratio of the MSFEs, again for the ‘Known
SETAR Model’ case, but this time conditioning the forecast origin on each of the three regimes:
Lower, Middle and Upper. The p-values are of the Diebold and Mariano (1995) test of equal
forecast accuracy (as measured by MSFE), and are the probabilities under the null (of equal
accuracy) of obtaining lower test statistics than we record. The CRPs in panel [A] record
the proportion of times the regimes were correctly predicted when we do not condition on the
regime. The NCRs in panel [A] are the non-confusion rates. Finally, panels [C] and [D] repeat
the information in panels [A] and [B] for the case when the SETAR model is not known. The
CRPs and NCRs for the AR model are the same by construction in panels [A] and [C] and
hence are reported only once.

Japanese Yen. There is a gain of over 40%, conditional on being in the Middle regime, when
the SETAR model is known, and of 15% when it is estimated. However, even conditionally
there is nothing to choose between the models at further steps ahead, on the basis of MSFE.
The CRPs indicate that the SETAR is better at predicting the Middle regime even at 5 steps
ahead, getting it right nearly 40% of the time. The NCRs indicate that the SETAR is less
confused at 1-step ahead. For the Japanese Yen the qualitative and quantitative measures tell
a similar story. If the yen exchange rate was generated by the proposed empirical SETAR
model, then the inherent non-linearities could be exploited to do better than a random walk.

German mark. The same is not true for the mark. Relative to a R\ there is nearly a 5%
gain at h = 1 unconditionally when the SETAR model is known, but in the absence of this
knowledge of the DGP, one would not be able to do better than a random walk. Then, even
conditional on being in the middle regime, the SETAR is not statistically more accurate on
MSFE at the 10% level, judged by the Diebold and Mariano (1995) test.

3 Evaluating density forecasts

In this section we report the results of a comparison of the SETAR and random walk models
via an evaluation of the complete 1 and 2-step ahead forecast densities associated with each.
The approach is due to Diebold, Gunther and Tay (1997), and amounts to calculating the
probability integral transforms of the ‘actual’ values of the variable, over the forecast period,
(e.g., {we}iy, t=1,...,n) with respect to the forecast densities of the SETAR and AR models,
denoted by {p:(y:)};. That is, we calculate:

Yt T
(i =9 [ mewduf (1)
e t=1
When the model forecast density corresponds to the true predictive density (given by the DGP,
and denoted by fi(yr)), i-e., pe(ye) = fe(ye), then Diebold et al. (1997) show that {z, )}, ~
iidU[0,1]. The result that z, ~ U[0,1] can be found in, e.g., Kendall, Stuart and Ord (1987,



sections 1.27 and 30.36). Diebold et al. (1997) make the result operational in the time series
context by establishing that the z; sequence are independent when the true densities are used
at each ¢. Hence the idea is to evaluate the forecast density by assessing whether there is
statistically significant evidence that the realizations do not come from that density — this
amounts to testing whether the {z;} series depart from the iid uniform assumption.

The SETAR model densities are simulated, using 500 replications with gaussian errors, on
each of the 1000 replications of the Monte Carlo. The 2’s are calculated for the ‘Unknown
Model’ case.

We assess uniformity (conditional on the iid part) by plotting in figure 1 the actual cdf of
the z;’s against the theoretical cdf for the 1-step ahead forecasts. The 95% confidence intervals
drawn alongside the 45° lines are based on critical values tabulated by Miller (1956). 2

Figure 1 shows clear violations of the uniformity assumptions for the RW models of the yen
and DM (although visually this is less apparent for the latter due to scaling), while there is no
evidence against the SETAR models. Similar figures were plotted for 2-step ahead forecasts,
but in no instance was there any evidence against the null. So while there are minimal gains
to the SETAR relative to the RW models on MSFE, the two models can be distinguished on
the basis of their overall forecast densities.

4 Non-linear impulse response function analysis

Impulse response analysis traces the impact of a shock through time, assuming the model is
correct. Consequently, this analysis parallels forecasting in the ‘Known Model’ case. In this
section we illustrate the response to shocks implied by the SETAR models, and how these differ
from those for the linear (random walk) models. Koop et al. (1996) develop generalized non-
linear impulse response functions (GIs) (see also Gallant, Rossi and Tauchen, 1993) to analyse
the response of non-linear models to shocks. Their analysis recognises that the impact of the
shock is dependent upon the sign and size of the shock, and the position of the process when
the shock hits. To illustrate, figure 2 plots the standard impulse responses for the empirical
models of the yen and deutschemark estimated by Kriger and Kugler (1993), for both positive
and negative one standard deviation shocks at time ¢. As can be seen, the responses depend on
the regime the process is in at time ¢ — 1, and the positive and negative shocks are not mirror
images. Different patterns may emerge if the magnitude of the shock is scaled ﬁp (or down).

Because linear response analysis is inappropriate, we analyse the distribution of responses
using GIs. Linear impulse responses follow immediately from the moving-average representation
of the process, but exact analytical representations are not available for SETAR processes. In
the previous section we calculated multi-step forecasts by Monte Carlo, to allow for non-zero
values of the future disturbances (see, e.g., Granger and Terasvirta, 1993), and it is important
to also integrate out the effects of future shocks in the present context.

The estimated time series model is used to produce simulated realisations of the series,
{y1,.-.,yt-1}. The maximum horizon of interest is assumed to be 5, so we analyse the response
of the process in periods {t + 1,...,¢ + 5} to the shock v, applied in period ¢t. The shock, v, and
all future innovations for {¢t +1,...,¢ + 5} are assumed to be drawn from a normal distribution,

*Miller (1956) reports exact critical values of Kolmogorov Statistics for small sample sizes, n. We have
n = 1000, so use the asymptotic critical values of Smirnov reported in Miller (1956, eqn.3, p.115) -

(In(l/a)/2 x n) = 0.0429 for a 95% confidence level (o = 0.025). The 95% confidence intervals are then
the 45° line £0.0429.



with mean zero and variance given by the pooled variance across the three regimes. For a given
shock, v;, the shocked series is obtained by averaging across all possible future realisations
(estimated by R = 500 simulated paths) of the non-linear process, so the shocked series is
obtained as:

JRH_l(ut,wt 1) Rzym(”t""t 1 t1=1,...,5
j=1

where the notation denotes that we are conditioning on the shock v; and the past set of disturb-
ances w¢—1, and the variation over j arises from the different future sets of disturbances. The
impulse response function is then obtained by comparing the shocked series with a base sim-
ulation. The base simulation uses the same innovations as 'y‘fzyt +i(vt,we—1) but averages across
all possible realisations of the shock v, in period ¢. That is, on each of the j replications, the
period ¢ shock is drawn along with the future shocks: '

~ 1 & .
Uhri(wi-1) = B Zyg+i (we-1), 1=0,1,...,5

The difference is then:

Ip(vi,wi—1) = yf{,wi(l’t’wt—l) - yg,t-}-i(wt—l): 1=0,...,5,

which constitutes a single realisation of the GI. The Monte Carlo estimate of the distribution
of the GI is given by repeating the above 1000 times, where on each replication we make a
different drawing of {v;,w;-1}, and then another R drawings of the current shock and future
disturbances.

The distributions of the GI for 1, 3 and 5-steps ahead are reported in figures 3 and 4 for the
yen and deutschemark, respectively. The unconditional distributions as well as the distributions
conditional on the process being in each of the three alternative regimes at time ¢ — 1 are also
reported. In each case, as described above, we are assessing the persistence of the shock for all
possible histories (unconditional), or for all histories for which ¢ — 1 falls in a particular regime
(conditional). The Epanechnikov kernel, defined as:

Klum s = { T} 2B nm s < 8

otherwise

was used to estimate the graphed densities.

The impulse responses are calculated for the first differences of the logarithms of the ex-
change rates, so that the relevant linear model is of white noise plus a constant, for which
the entire distribution of the GI is at zero for all horizons. The GIs for the non-linear models
become less dispersed at 3, and then again at 5-steps ahead, compared to at 1-step. If the
process were stationary then in the limit the distribution becomes concentrated on zero - see
Potter (1994). Longer horizons would allow us to explore this further, which might be of inter-
esting given that stationarity conditions for general SETAR models are not known (see, e.g.,
De Gooijer and De Bruin, 1997 for a review of what is known).

For the yen, 1-step GIs are bi-modal in the extreme regimes, but not in the middle regime,
and the lower regime has a long left tail, and the upper a long right tail. By 3-steps ahead, the
GIs are unimodal and appear symmetric and very similar no matter where the process was at
t — 1. By contrast, even at 3-steps ahead the lower regime GI for the deutschemark looks quite
different than those for the other regimes, and all appear asymmetric.



5 Conclusions

We have shown that the Krager and Kugler (1993) SETAR model of the dollar - yen exchange
rate, if taken to be a good approximation to the process that generated the data, would suggest
some predictability in the exchange rate over the period of managed floating in the 1980s. Our
Monte Carlo study has quantified the size of the potential gains on MSFE, and the extent to
which the achievable gains depend on where the process is at the time of forecasting. We have
also shown that an evaluation of the whole forecast density may reveal gains to the non-linear
model which are not apparent on MSFE measures. )

In this paper the non-linear model is the data generating process by construction. The
question we posed is whether the non-linearity is sufficiently pronounced that a non-linear
model that has to be specified and estimated from the data can better a linear model. Judged
by conventional criteria, the answer would appear to depend on where the process is at the
time of forecasting. Evaluation of the whole density of the two models indicates a clearer
discrimination may be possible.

The information recorded in this paper complements that in the original study, which con-
centrated on in-sample testing of the models and any residual (higher-moment) non-linearities
in the models’ residuals. As we noted, judged by some of those criteria the models have little
to commend them.

The generalized impulse response analysis of Koop et al. (1996) was applied to the einpirical
SETAR models. The non-linearities were apparent in the dependence of the shapes of the
estimated densities on the regime.
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Figure 1 CDF’s for probability integral transforms.
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Table 1 Forecast evaluation of Krager and Kugler (1993) exchange rate models.

. Japanese Yen

[A] Known SETAR Model - Unconditional

Horizon MSFE : AR/SETAR CRPs: AR CRPs : SETAR
RW p-value Lower Middle Upper Lower Middle Upper
1 1.046 0.000 0634 0344 0.000 0.643 0.521 0.069
1.003 0.340 0.647 0333 0.000 0611 0455 0.000
5 0.997 0.774 0643 0.318 0.000 0.663 0.374 0.000

AR
.367
372
.347

NCRs
SETAR
415
370
.363

[B] Known SETAR Model - Conditional. MSFE : AR/SETAR
Lower Middle Upper
RwW p-value RW  pvalue RW  p-value
1 1.028 0.000 1411 0.000 1.024 0.010
1.006 0.141 1.005 0.210  1.001 0.438
5 1.011 0.021 1.004 0.198 0.999 0.605
[C] Unknown SETAR Model — Unconditional
Horizon MSFE : AR/SETAR CRPs : SETAR NCR
RwW p-value Lower Middle Upper SETAR
1 '1.011 0.192 0.603 0.469 0.072 .390
2 0.993 0.877 0.602 0.402 0.011 .362
5 0.995 0.958 0.620 0.393 0.000 344
[D] Unknown SETAR Model - Conditional. MSFE : AR/SETAR
Lower Middle Upper
RwW p-value RW  pvalue RW  p-value
1 1.001 0.466 1.149 0.000 0.994 0.673
2 1.000 0.478 1.005 0.204 1.003 0.271
5 1.004 0.085 0.999 0.594 1.000 0.557
Deutschemark

[A] Known SETAR Model — Unconditional

Horizon MSFE : AR/SETAR CRPs: AR CRPs : SETAR
RwW p-value Lower Middle Upper Lower Middle Upper
1 1.048 0.000 0.000 1.000 0.000 0.014 0995 0.000
2 1.010 0.109 0.000 1.000 0.000 0.000 - 1.000 0.000
5 0.997 0.734 0.000 1.000 0.000 0.000 1.000 0.000

NCRs

AR

.556
.567
.544

SETAR
.557
567
.544

[B] Known SETAR Model — Conditional. MSFE : AR/SETAR
Lower Middle Upper
RW  pvalue RW  p-value RW p-value
1 1063 0.000 1.073 0.000 1.001 0.426
2 1015 0.029 1.005 0.254 1.017 0.008
5 1.005 0.130 1.002 0.346 0.996 0.816

[C] Unknown SETAR Model - Unconditional
Horizon MSFE : AR/SETAR CRPs : SETAR CRP
RW p-value Lower Middle Upper SETAR
1 0.978 0.913 0.024  0.829 0.007 551
2 0.987 0.950 0.002 1.000 0.000 867
5 0.995 0.945 0.000 1.000 0.000 044
(B] Unknown SETAR Model - Conditional. MSFE : AR/SETAR
Lower Middle Upper
RW  p-value RW  p-value RW p-value
1.018 0.104 1.019 0.124 0.969 0.997
0.987 0958 1.004 0.287 0.995 0.695
0.999 0.647 1.001 0.255 0.997 0.808
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Traditional impulse responses to positive and negative one standard deviation shocks.
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Generalized impulse responses for the DM/US.
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