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Abstract

We study dynamic price adjustment under imperfect competition when consumers have
non-time-separable breferences‘ In our model an intertemporal link arises in the consumers’
maximization problems because current consumption decisions affect the utility of future
consumption. Thus future »demand depends on the current price and firms must take this
into account when making their decisions. The main result is that equilibrium prices follow a
dynamic stochastic process in which the current price depends on past prices and on random
disturbances. The convergence of prices to the ‘long run expected price’ is monotonic if

current and future consumption are substitutes and oscillatory if they are complements.
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1 Introduction

A number of authors have proposed both competitive and non-competitive theories of dynamic
price adjustment. Examples of perfectly éompetitive theories include Carlton (1978, 1979, 1983)
and Deaton and Laroque (1992, 1996) who examine price dynamics using variations of the stan-
dard competitive setting. There is also a significant strand of literature studying price dynamics
under imperfect competition. For example, Green and Porter (1984) and Rotemberg and Sa-
loner (1986) have considered price movements under collusive supergame equilibria. Blanchard
and Kiyotaki (1987), Rotemberg (1982) and Taylor (1980), on the other hand, introduce market
imperfections such as menu costs, adjustment costs or price staggering. We use an alternative to
these imperfectly competitive approaches by examining a non-collusive equilibrium of a model
where the only additional ‘imperfection’ is that consumers have non-time-separable preferences.

When utility functions are not time-separable, current consumption affects the utility a
consumer gets from future consumption. Optimal consumption choices will depend on past
consumption choices and on expected future consumption. Thus, there is a link between time
periods for the consumers’ utility maximization problems—this yields dynamic demand func-
tions where market output depends on past as well as current prices. With dynamic demand
functions, an intertemporal link is introduced into the firms’ profit maximization problem. Given
these intertemporal linkages, past prices will affect current demand and the current price will
affect future demand. Thus firms must take into account the effect of their current choice on
expectations regarding future prices.

Within the context of non-time-separable preferences, there are two strands of related lit-
erature: durable goods monopolies and habit persistence. It is clear how durébility introduces
non-time-separability into the utility function—if one buys a refrigerator today, one’s utility
from another refrigerator tomorrow is very low. When consumers have habit persistence, their
utility functions also are not time-separable. With habit persistence, the more one consumes
of a good today, the more of that good one likes to consume in the future. The literature on
durable goods (Bulow (1982), Kahn (1986) and Stokey (1981)) focuses on the case when there
is a fixed set of consumers for the purpose of evaluating the Coase conjecture. The literature on
habit persistence and imperfect competition (Becker, Grossman and Murphy (1990) and Fethke
and Jagannathan (1996)) is non-stochastic and thus is limited in its ability to fully examine the

dynamics of price adjustment.



The main result is that equilibrium prices follow a dynamic stochastic process in which
the current price depends both on past prices and on random disturbances. In particular,
temporary shocks can have long lasting effects. VIn the absence of stochastic shocks, the price
would converge to a long run equilibrium (steady state) price. The nature of this convergence
depends on whether current and future consurhption are substitutes or complements. With
substitutes, current price depends positively on past prices and thus convergence is monotonic.
If current and future consumption are complements then the current price depends negatively
on the past price so convergence is cydical. In either case, shocks have a long lasting effect

on prices. Finally, price and output behave countercyclically in response to cost shocks and

-procyclically in response to demand shocks.

2 The Model

Suppose there are N infinitely lived firms that sell a good to overlapping generations of represen-
tative éonsumers. Assume that each generation of consumers lives for two discrete time periods.
In each period, given market demand, each firm chooses output to maximize the discounted
expected value of proﬁﬁs. Given the market price, consumers make consumption decisions to
maximize intertemporal utility.
Fach generation has a single representative consumer who is born with an endowment of
wealth @ which can be divided between consumption when young, consumption when old! and
- a numeraire that is perfectly substitutable between young and old age. Assume that a consumer

born in period ¢ who consumes X} when young, X? when old, and w, of the numeraire good

earns the following utility
b
UXY, X2, w) = a(XP + XP) - -2-(ng2 + X% — dXVXP +wy (1)

where a,b > 0 and |d| < b. The numeraire good can be interpreted as money spent on other goods
and its inclusion yields linear demand functions, making the model tractable. The parameter
b is an indicator of the elasticity of demand while the parameter d indicates the degree of

substitutability or complementarity between current and future consumption. Large values of

'A model where consumers live for M > 2 periods quickly becomes intractable. Even with M = 3, an

equilibrium, if it were solvable, would have prices that depended on every price from prior periods as well as the
random shock. '



d > 0 imply greater degre’es of substitutability with current and future consumption becoming
perfectly substitutable as d — b. Similarly, large negative values of d indicate a greater degree
of complementarity.

Suppose that p,(X;;ps—1) is the market invexjse demand function at time ¢ where X is total
industry output and p;—; is last period’s price. In each period, every firm has an identical
marginal production cost of ¢;. Given firm ¢’s output, zi, the output of other firms, X~ P

Z#i :rg , and last period’s, price, p;_1, ikts i period profit function is given by

'Rj(x;',Xt—ispt—la Cg) = (Pt(xi + Xt“ispt—-l) - ct)mf‘:‘ » (2)

Marginal costs are independently and identically distributed over time with ¢; = & + & and
Eietq1 = 0. Firms have discount factor A and in each period, t, choose output to maximize

discounted expected profits:

co

O =Ey A 'ri(zl, X7 proa,cy) (3)

T=t

where 7 is as in (2).

In addition to considering price responses to changes in costs, this formulation can also be
used to consider the problem of firms facing unpredictable tariffs or an unpredictable regulator.
Le., let ¢; = €+ T; where & is marginal cost and T} is the stochastic import tariff or regulatory
tax faced by firms.

We consider other extensions to the basic model in Section 4.

3 Dynamic Oligopoly

We look for Markov perfect equilibria where the state variable is last period’s price and the
equilibrium price functions are linear. As is common with dynamic games, there may in principle
be Markov perfect equilibria with non-linear equilibrium price functions. We concentrate on
linear equilibria because they can easily be characterized. Since we are locking for equilibria
with linear pricing, it must be the case that demand functions and hence the expected price

functions must be linear.

The strategy we use to solve the model is as follows. First we derive the demand functions



by solving the young and old consumers’ problems, anticipating that the expected future price
will be a linear function of the current price. Next we solve each firm’s profit maximization
problem and confirm that the expected future price is indeed linear. Finally, we show existence

and uniqueness of an equilibrium in linear strategies and where the solutions to the consumers’

and the firms’ problems are consistent with one another.

3.1 Consumer Demand

First consider an old consumer’s utility maximization problem. Old consumers know the price
and their level of consumption when they were young. They also know the current price. Since
the numeraire good is perfectly substitutable between periods, consumption of the numeraire
can be determined in the second period of life. Hence, in period ¢, an old consumer, born in
period £ — 1 chooses X7 ; and w;_; to maximize utility, given py—;, XY ; and p;.

b .
max U(X! |, XP ,,wq) = a(X{ + X))~ §(Xf-12 + X2 .7 — aX{ X7+ wiy

X{ 1wi—y

subject to: pr_1 XY | +p X2, 4wy <@

Provided that w is sufficiently large to ensure positive consumption of the numeraire, this is a
straight forward maximization problem which yields old consumer demand as a linear function
of consumption from last period and the current price.
a d 1 ‘
Xto__l = -l; - ‘b"XéU__l - Ept ) (4)

Consumption of the numeraire is given by the remainder of the endowment which was not spent
on consumptioh (e, w1 =0 —p 1 X} | — p X2 ,).

Now consider the young consumer’s problem. The young consumer knows current price p,
has expectations over the future price p;y; and futui*e consumption. In equilibrium, expecta-
tions over the future price must be consistent with the ﬁrm"s profit maximization problem and
expectations over X? and w; must be consistent with the old consumer’s utility maximization
problem. Since we are only considering equilibria with linear pricing strategies, assume that
in equilibrium, the expected price is a linear function of last period’s price. In particular, let
Eipey1 = (1 = A)5 + Ape, where X and 5 are, for.the moment, constants where [A] < 1. These

will turn out to be the coefficients of the equilibrium price function which will be determined



once we solve the firms’ optimization problem.
The young consumer’s problem is:
o b
max BU(XY, X¢yw) = Bla(X} + XP) - 2 (X% + X¢2) — dX} X7 +wy)
; ,

subject to: p XY + Ei{p11X?} + Eyw, < @

where expectations over pyy; are as assumed above and expectations over X! are consistent

with (4). Solving this problem yields young consumer demand:

y__a , d1-Xp b—dA -
X =rraTEoe —Eopr QU

Given last period’s price, p;—; and assuming that old consumers behaved optimally when

they were young, we can substitute (5) into (4) to get old demand as a function of p¢ and p;_1.

o __a _PO-Np dp-d) 1
R R e e e LR )

Finally, summing young and old consumer demand yields aggregate consumer demand.
Xe=XP 1+ X! =a-bpy +dps (7)

where,

20 d1-Np ;_bb—dN)+(®-d?) . db-dN)
brd  W6rd) T e =d T e a) (®)

4=

As long as § > 0 and given that a,b > 0 and |d| < bthen &,b >0, |d| < b and sign(d) = sign(d).
For the present we will concentrate on the case where current and future consumption are

substitutes and defer to Section 3.4, a brief discussion of intertemporal complementarities in

consumption.

3.2 The Firms’ Problems

Since each period’s demand depends only on the current and last period’s price, p;..; summarizes
each firm’s relevant information in 2 Markov perfect equilibrium. In each period, given last

period’s price, p;_1, and the realized cost, ¢;, each firm chooses output to maximize discounted



expected profits (3).

To solve the problem, we first reformulate it as follows. First, note that given the total output
of the other firms, X" i firm i’s output choice uniquely determines the price and hence given
X !, firm 1 can instead choose price to maximize profits. Since in equilibrium, each firm’s output
will be a linear function of last period’s price and this period’s cost let X~ =4 gpe—1 — hey.

Using (7), firm ¢’s residual demand can now be written as follows:

$§=@“Bpt+gpt~1-xfi
A X (9)
= (&~ f) = bps + (d — g)ps—1 + hey

The single period profit function can thus be rewritten as a function of last period’s price, the

current price and marginal cost.

T (Dgy Pe-1,¢t) = (pr — ct)zh (10)

where z is given by (9).
The first derivatives of the single period profit function with respect to the current and

previous price are

or' (pt, Pt-1, ct)
Opt

= (&~ f) = 2bp + (d - Q)pt—1 + (b + h)cy

37fi(Pt,Pt—1,Ct) 3 '
= d — — .
s ( 9)(p: ct)

The Euler equation is thus

Bﬂi(Pz,Pt—-h ct) {aﬂi(PtH,Pt,CtH) }
+ BE
Op: PE: Op¢

(&—f)—2bps + (d = Q)pey + (B + h)e + B(d — 9) Ee(pey1 — cr1) = 0. (11)

Since X, has been assumed to represent the equilibrium outputs of all firms but 4, (11) deter-

mines the behavior of prices in equilibrium. This is a stochastic second-order linear difference



equation with a solution of the following form:

_ b+h
Per1 =P = (1= N~ p) — /\{2 (€= ci41) (12)

where p turns out to be the long run expected price and ) is the smaller of the roots found by
factorizing the difference equation. If we take expectations of (12), we see that Eyp;.; is in fact
a linear function of p; with the form assumed in Section 3.1.

The equilibrium value of A must satisfy:

BAZ — 22-9—.)\ +1=0 (13)

Since we are looking for A € (0,1), solving this yields:

A

_bd-9) - /-9 -8

5 (14)

It is easy to see that for b > d > 0, if A € (0,1), the right hand side of (14) is in (0,1). Solving

for the long run expected price yields,

_ a—f i (b+h) —ﬁ(éh— 9) . (15)
2~ (1+p)(d-g) 26— (1+8)(d-g)

ﬁ:

Thus A and 7 are functions of model parameters and &, b, d, f, g and h which are in turn functions
of model parameters and A and p—in the remainder of this section, we find and characterize

their solutions.

Using (12) and summing (9) over all j # i, yields equations for f, g and h.

= (V=@ = 1)~ 7= 050 - D+ (v - ) 2P (16)
=—(N=1)Xb+(N-1)(d-g) (17)
h=(N~1)5—§;fi”l~(N;1)h (18)

d-g



We can then solve (17) and (18) for g and h.

N-1 . -
g="——(d-) (19)
N — 52
h = .(_.._____}_M_ (20)
d
Substituting (19) and (20) into A(b+ h)/(d — g) and then simplifying yields:
2LER N6 (21)
d—g d
Thus (12) becomes:
_ NXb
Pes1 = (1= A)p + Apy + el (22)

Note from (14) and (19), X depends on b and d which depends on A. As a result, we need to
prove the existence of such a A which solves these equations. In addition, we would like the

solution to be unique and to prove some additional properties of the result.

Proposition 1 For all admissible parameters the Markov perfect equilibrium in linear pricing

strategies exists, is unique, and has > & and N AE/G? <1
Proof: First we define some additional notation. For each N let:

NaAs s
1+(1-1/N)NXs’

b
Q""’ d‘"

Using the results above and this definition we can rewrite (13) as:
B —2Q+1=0

Solving this for A then yields:

_ [2@-1
A=y /=5

Note that, if we find a A € (0,1) that satisfies (13) the above implies that 1/2 < Q < (1+p)/2.

5



Now, define the following functions over 1 [2<¢<(1+8)/2

(23)

¥(9) = 1(g)v/29 — 1 = NA(g)s(q)

~(g) = y(9) - NA(g)s(q)
1+(1—-1/N)ylg) 1+ (1-1/N)NA(g)s(q)

k(q) = ¢~ v{q).

Suppose we knew an equilibrium value of A. This would imply a value for @ so that A = A(Q).
Then, by construction, b/d = 5(Q), NAb/d = y(Q) and Q = ~(Q). That is, the Q corresponding
to an equilibrium will be a fixed point of (-). Also, if ¢* is a fixed point of () it is easily
verified that A(g*) satisfies the equilibrium conditions. So equilibria will correspond one-to-one
with fixed points of () or, equivalently, to points at whicﬁ k{g*) = 0. Note that all the above
functions are continuous over the range of ¢ and all are increasing in g except k(-). With this
notation, we can now turn to the proof.

The strategy of the proof is to show that there is a unique ¢* € [1/2,(1 + B)/2] such that

k(g*) = 0 and y(¢*) < 1. Now, we can write:

g —n(g)v2¢=T1[1 - (1 -1/N)q]

e oy MW e

and this will be zero if and only if the numerator is zero. Define, for 1/2 < ¢ < (1+p8)/2 and

n > N//B (since n(q) > N//B):

p(g:n) = q—1v/2q = 1[1 - (1 - 1/N)q].



The following properties of 1 are impbrtant: 1 is continuous, strictly convex in ¢, and strictly de-
creasing in 7. By construction, an equilibrium corresponds to a point ¢* such that pu(g*, nb(q*)) =

0. Note also that the composite function u(g, n(q)) is continuous.

We next show an equilibrium exists. First:

#(1/2,9(1/2)) = 1/2 > 0.

Also:
1+8 N 148 1\ 1+
ﬂ(T,ﬂ)-T")\/E{lf (1_N T]
1+ 1 -+ N
<——-2-—N 1—~(1——— —— ’Vn>ﬁ
80

1+8 [(1+8 148 _n(1Et8 _
u(z m( 2))<jrﬂ+N—U-N—N<2 Q<o

since 8 < 1. By continuity, there exists ¢* € (1/2, (1 + 8)/2) such that plg*,n(g*)) =0.
We now show ¢* is unique. Take arbitrary q € (1/2,¢*). Since ¢* < (1+0)/2, take o € (0,1)
such that ¢* = ag + (1 — &) (1 + 8)/2. By convexity:

u@ﬁdfn=0<aMmM¢D+U~aM(£§ém@W>-

The second term on the right-hand side is negative (since the above argument showed this
was true for arbitrary 7), so the first must be positive. Therefore p(g,n(g*)) > 0. But n(q) is
increasing in g so n(g*) > 7(g). Since y is decreasing in 7, this implies r(a.n(q)) > plg,n(¢*)) >0
so ps(g,n(q)) > 0 for all g € [1/2,4%). That u(g,n(q)) is not zero for q € (¢*, (1 + B)/2] is now
obvious since otherwise the same argument would imbly u(g*,n(g*)) > 0.

We now show that NAb/d < 1. Note that NXb/d = y(¢*) and if ¢* = 7(g*) < NJ/(2N - 1)
it must be that y(¢*) < 1. So it suffices to show ¢* < N/(2N —1). If N/(2N — 1) >(1+p8)/2

10



we are done. Otherwise:

N N _ N N 1 _[,_N-1 N
fav-r"\avo1)) Tav s T\ oT) e N aN-1

N
VAN =I-
_ NV "(2N-1>
N —1 VON =1
N V2NZ1-N

<0
where the inequalities hold since n > N and N/(2N - 1) <1, N > 3N = 1.2
Finally, solving (16) for f and using (18) yields:

_N-1
N N

B(1 - N\)p+ he

Substituting this and & into # and solving yields:

1 2 . .
=2 _hz+ (b+h)e— B(d - g)e
5= Nb+d (24)
2 (1+p)d-g) - I _NoTp,
Nbb+d) N
It is easy to show that
.. . - 1d(1-)) N-1, -
b= (=) > 2= (14 A ~g) - 3 5 - i -
and therefore 5 > é. ' E

That is, prices follow a first-order autocorrelation process.> Thus the equilibrium price has
properties that match stylized facts of price fluctuations. Shocks to costs are not fully reflected
as changes in price (i.e., NAb/d < 1)* and price changes persist into the future. Thus our results

look remarkably similar to models of adjustment costs and price staggering (e.g., Rotemberg

>This can easily be derived from the fact that (N —1)? > 0.

#With more complicated shocks and additional information and behavioral assumptions to ensure solvability,
prices can be shown to follow more complicated stochastic processes. We examine one such extension in Section 4.1.

“This incomplete passthrough result may admittedly be dependent on the linearity of the model. Indeed, with
a static oligopoly model, if demand is linear and marginal costs are constant, there is also incomplete passthrough
of cost changes—a constant fraction of cost changes are passed on as price changes. Once linearity is eliminated,
prices can change by more than costs, both in absolute and relative terms (see Carlton (1989)). However, due to
the difficulty involved in finding an analytic solution to most non-linear dynamic problems, it is unclear whether
or not this static argument extends to our dynamic problem.

11



(1982) and Taylor (1980))‘without réquiring such restrictions.

In order to examine the cyclical behavior of output, substitute the equilibrium price into

aggregate demand.

o e s NP? .
Xt = (& —b(1 = A\)p) + (d — Ab)psy — i (25)

This reveals that equilibrium output depends positively on past price but negatively on the cost
shock. Since price is increasing and output is decreasing in cost shocks, price and output behave
countercyclically. '

We now demonstrate some of the convergence properties of the equilibrium. In particular,
Corollary 1 As N tends to infinity, X tends to zero, N )\B/cz tends to one and p tends to &.

Proof: Since 1/2 < Q@ < N/(2N —1), Q must tend to 1/2 as N tends to infinity. Since
A = A(Q) and this function is continuous, A tends to A(1/2) = 0. Note @ is a one-to-one,
continubus function of y = N s, so the fact that Q converges implies y converges to some limit
point 3. But then it must be that 1/2 = y/(1 + /). Solving this yields ¢ = 1.
Note that as N — 0o, h — b and g — d. Thus from equation (24),
_0-—be+2bc—-0

lim p= — — = .
N=co 26—-0-0-1b

Hence as the number of firms becomes large, the equilibrium price approaches marginal cost
and persistence becomes negligible. This concurs with the standard intuition that as the number
of firms grow large, the market approaches perfect competition.

3.3 Comparative Statics

We can also use a subset of the system which was constructed to prove Proposition 1 to demon-

strate some comparative static properties of the equilibrium. Write X, s and ¢ from (23) as

12



follows:

A=my/2¢~1, m= 1//8

8_282—-/\6-—1
- e— A

Nais

=TI - Dax

This three equation system determines the three endogenous variables A, s, and ¢, given the
~ three exogenous variables e, m, and N. While none of these equations have any structural
economic interpretation, we can exploit the fact that this system’s solution corresponds one-
to-one with our economic model’s solution. It is, however, important to bear in mind that the
above is an artificial system of equations. For example, application of stability conditions to
establish properties of the solution (i.e., the correspondence principle in macroeconomics) would
be a mistake since stability in the artificial system is meaningless.

To sign partial derivatives of these endogenous variables with respect to exogenous vari-
ables, linearize the equations in a neighborhood of an equilibrium by taking the following total

differentials:

dX = 61dq + 6dm
ds = 03d\ + f4de

dq = 05d)\ + Bgds + 67dN.

It can be shown that all the 6;’s are positive. Writing this system in matrix form:

1 0 —91 dA 92 6 0 dm
-4 1 0 ds | =1 0 8y 0 de
-0 —6s 1 dg 0 0 4 dN

The determinant of the matrix on the left is D =1 — 01(83686 + 85). Now:

> V2N ~-1

6, =



since m > 1 and ¢ < N/(2N ~1).

Ns N N3

bs = I+ (T-1/N)Nasp ~ [oN = 1)/N2 ~ (2N —1)2

since s > 1 and Ns < 1. Therefore 6,65 > N3/(2N — 1)3/2. 1t is possible to show that the last

expression equals one when N = 1 and is greater than one for N > 1. This guarantees that D

is negative.

We can now sign the partial derivatives of ) using Cramer’s rule:

0 0 -4
d\ 1 | 6:6,
aNn=p|0 1 0 |=—F<0
6; —0s 1

s0 A is decreasing in N. To see why, consider the optimal price path, from the point of view of the
firms. Since single period profits are concave in prices, optimality requires some price smoothing.
When there is more than one firm, each firm’s output decision exerts an externality on other
firms by reducing price smoothing. That is, in addition to the static externality one firm’s
decision imposes on other firms, there is a dynamic externality. As a result of this externality,

the degree of price smoothing falls as the number of firms rises,

92 0 —-91
a1 6
am~D|0 1 0 |=5<0

0 -6 1

s0 A is decreasing in m, which implies it is increasing in f, the discount factor. That is, the
more patient the firms, the greater the degree of persistence in prices. This is because optimality
requires price smoothing. The more patient firms are, the more important are dynamics and
thus price smoothing. Therefore, as the discount factor increases, last period’s price will have a

greater effect on the current price.

0 0 -8
1 016406
d D|% 1 =-p <0
0 -8 1

14



so that A is decreasing in ‘e. Note thé.t e = b/d, so the larger e is, the less important is the
term d, which is a measure of the strength of substitutability. This makes perfect sense—it is
substitutability between consumption when young and when old that drives the persistence in
prices. That is, the less important is intertemporal substitutability, the less the persistence in
prices.

In order to get some idea as to the behavior of the term NAb/d, we will need to get similar

comparative static results on s. These are:

1 6, -6
ds 1 ’ _ 6203
dm~Dp| % 0 0= <O
6; 0 1
1 0 -8
ds 1 64(1 + 6105)
%-D| 0 6 0 o <0
8 0 1
1 0 -6
ds 1 _ 616367
aN=p| 0% 0 0 =75 <0
g 6; 1

Now, differentiating y = N As with respect to m, e and N yieldsiz

dy N ds
% "NSE+N)\% <0

W N2 & <o

de de de
dy d\ ds
EN——/\.S‘*'NSBTV- N)\dN

Thus prices are more responsive to shocks if firms are more patient or if intertemporal substi-
tutability of consumption becomes more important. A clear-cut result for the final comparative
static is not trivial. It is possible to show that it is strictly positive for N > 3 (the following
proposition), however, for N < 3 we can only say that based on extensive simulation exercises,

NXb/d appears to increase as N changes from 1 to 2 to 3. In any case, NAb/d is strictly in-

15



creasing in N > 3. This is consistent with the Carlton (1986) evidence which shows that price

sluggishness is correlated with industry concentration.
Proposition 2 dy/dN > 0 for N > 3.

Proof: First:

dy ds dA
6,66, 6,6,
= A8 — NA—— = Ng—2’
- |D 1D

where |D| = 6,(6306 + 05) — 1 > 0. Factoring out |D|, we get:

d 1
'&}%‘ = l~I.).I(el [63(8s)s — 87N ) + 855 — 67N's] — As)

Using the definition of the 8s:

dy 1 0. g N/\28~N/\28(1“-)\3) +N)\32“_N/\32(1——/\s) ——,\s)
dN T D[\ "M |\ TR H? H? H?

where H =1+ (N —1)Xs. So,

dy 1 NX3s2  NAZg®
——— 2 s - A
d ] ‘ (91 {03 g -+ 72 S

_ 1 P N)2g2 + NXs® ——As)
T D]\ BET T BH?

since 6y = 1/BX. Factoring out As/H? yields:

dy _ X 93N.X3+N32__H2>
N " DIEE\ B T

A sufficient condition for this to be positive is that: -

Ns?
— > H?
B

or

8

\/ﬁxfﬁﬂ?
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Now:

%W~H>W~H_(since%>l)

=vVN-1-~ .N_:iN)\s
N
N-1
=vVN-1-2"2
1 N Y
>\/N—1—N1:J-1 (since y < 1)

_NVN-2N+1
h N

The term in the numerator is negative for N between one and two. However, it is positive

for N = 3 and is strictly increasing in N for N > 3, so dy/dN is positive for N > 3. L

3.4 Intertemporal Complementarity of Consumption

When d < 0, rather than being substitutes, current and future consumption are complements.

When there is complementarity,

b/(d~g)+1/(b/(d - g))2 - B

A= B

(26)

It is easy to see that —1 < A < 0. Now, alter a few of the definitions in (23) as follows:

2g -1

Ag) =~ T € [Oa 1]
_ _Ns(gg N
77(4) - \/B > \/E > N

In addition, it can be seen that s(¢g) < —1 and e < —1. It is easy to see that the proofs of
Proposition 1 and Corollary 1 corresponding to the case when d < 0 are identical. Since ) < 0,
in the absence of cost shocks, price will converge to while osciﬁating around the long run steady
state price. Since d < 0 the sign of N Ab/d and NAB? /d are positive and so (22) and (25) show
that price and output again behave countercyclically.

Similarly, employing the same method for comparative statics, it can be shown that 8y, 6,

04, 05, B < 0, 83, 6 > 0, 6,05 > Na/(QN - 1)3/2 and D < 0. Thus, dk/dm, d}\/de, d)\/dN,
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ds/dm, ds/de, ds/dN, dy/dm, dy/de > 0. Similar to the case when d > 0, although the sign of

dy/dN is ambiguous, it converges to 1 from below and thus as N grows, it must have a tendency

to be increasing in N.

4 Extensions and Applications

4.1 Correlated Shocks

To this point we have considered shoci{s_ which are i.i.d. over time. We now briefly consider
the case in which there is correlation in the cost shocks. As a simple case, suppoée there is
first-order autocorrelation in the cost-shock series. In this case, the same method of solving for
a Markov-perfect equilibrium with linear pricing strategies does not work. If young consumers
form expectations of the next period’s price as a linear function of the current price, the firms’
problem would be the same as in Section 3.2 and equation (22) would still give the equilibrium
response of firms to such a strategy by consumers. However, the last term in equé,tion (22)
involves the term &;.; which will not have expectation of zero unless the current cost shock
is zero. Thus, if consumers were to form expectations of the future price assuming the price
sequence is first-order autocorrelated, the price sequence firms would choose would be second-
order autocorrelated.

To avoid this problem, we instead assume the young consumers observe only the current
price and not the cost shock or the history of prices that occurred before they were born. Even
with this simple information set, the expectation of the next-period’s price will not generally be
linear (this depends on the distribution that generates the shocks), so we assume consumers use
a least-squares projection to form forecasts of the future price.

Given that consumers use linear forecasts, the firms’ problem remains the same and has a
solution of the form given in equation (22). Letting z; denote the deviation in the price at time
t from the long-run expected price. That is, 2,41 = preq — p = Aps — 7) + M(Nb/d)ess1. This

can be rewritten in the form:
241 = Az + Aepy

where e, is proportional to the cost shock in period t. By assumption the cost shock follows a
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first-order autocorrelation process, so that:

Et41.= P€; + Uty

where the scalar p is less than one in absolute value and u; is white noise. Let P(z;.11]z;) be the
projection of 24 given z. Since z; is known by consumers born at date t, in order to compute

P(2441|2t), we need to find the projection of e;1 given 2z, P(ess1]2;). This takes the form:

Pletii]z:) = 02

" where

o= GOV (2, e11)
VAR(z)

It can be shown that

g 1=2p
AL+ pA)

so that the projection of z;.; on z is:

A+
Plztpi]z) = A1+ 8)z = T )5)74 =(z

It is easy to show that ( as defined above is in the interval [~1,1] whenever p € [~1,1]
and A € [0,1]. To show existence of an equilibrium when d > 0, define the function G :

[~1,1] x [0,1] = [~1,1] x [0,1] as follows. For any given p, let:

616N = {55

and let G be the right-hand side of (14) where for the solution to the consumers utility max-
imization problem, we have replaced the A's appearing in (8) with ¢’s.> Here the subscripts
index the two arguments of G. It is straightforward to show that G is continuous and maps the
compact, convex set {—1,1] x [0, 1] back into itself. Therefore G has a fixed point. By construc-

tion, fixed points of G correspond to Markov perfect equilibria, so an equilibrium exists. The

$For d < 0, similarly define G5 as the right-had side of (26) so that G : (~1,1] x [~1,0] = [~1,1] x [~1,0].
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primary difference is that‘prices now follow a second-order autocorrelation process.

Using similar informational and behavioral assumptions, other stochastic processes can lead
to similar results. For example, if shocks are instead assumed to follow a first-order moving
average process, it can be shown that prices will then follow an ARMA(1,1) process. Of course

more complicated stochastic shocks lead to more complicated price processes.

4.2 Demand Shocks

Suppose that there is no cost uncertainty but that demand is subject to observable, additive
stochastic demand shocks. That is, let X; = &wgpt+cfptm1 +a; where a; = a+¢; and E;_ &, = 0.
For ease of notation, let @ = 0 and & = 0. If we now define the equilibrium output of rival firms

as X; f=fbgpr + k€; then firm ¢’s residual demand can be written as

i = (& f) = bpe + (d = g)ps—1 + (1 - k)& (27)

The Euler equation is

(@—f)—2bps +(d ~ g)prey + (1 — k)& + B(d - g)Eipr1 =0
and has solution

prer—pr = (1= X)(B —pe) + AS L) et . (28)

Using (28) and summing (27) over all j # i, we solve for k (the solutions for f and g remain

unchanged):
k=—(N- l)i\b—g—:-k—) + (N = 1)(1 - k).
d—g ,
Solving this for & yields:
120
k= —9.
N X
N-1 d-g4

v

We know from the earlier discussion in Section 3.2 that Ab/(d—g) < 1 and so k > 0. Furthermore,
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by examination it is easy tb see that k < 1 and that as N tends towards infinity, & tends towards
1. Using the system of equations constructed in the proof of Proposition 1 (23), the shock
coefficient of the equilibrium price process, A(1 — k)/(d — g), can be rewritten as q(1 = k)/b.
Since g and b are bounded, as N tends to infinity, this tends to zero. Since the limiting behavior
of A and p are the same as before, prices approach marginal cost.

Again substituting the equilibrium price into aggregate demand,

Xo= (& b1 - Np) + (d = Ab)py—1 + (1 - :\%(Z]:—:;-)') &
Since Ab/(d—g) < 1 and 0 <k <1,1~ Ab(1— k)/(d—g) > 0 and positive demand shocks result
in increases in output. Thus in contrast to a model with cost shocks, output is increasing in
the demand shock and thus price and output behave procyclically both when current and future
consumption are substitutes (d > 0) and when they are complements (d < 0). Further, in the
limit, as N tends to infinity, the shock coefficient of the output process, 1 — Ab(1 - k)/(d - g),
tends to 1.

Because of the similarity of Bils (1989) to the current model when N = 1 and when current
and future consumption are complementary,® the procyclical behavior of prices and output in
response to demand shocks is somewhat puzzling. Bils shows with his model of customer markets
that prices and output behave countercyclically. This is due to the fact that with Bils’ model, the
old generation’s demand is invariant to small increases in the price. As a result the monopolist
recognizes that its current price fully determines its sales to the soon to be older generation.
Thus in periods of high demand, the monopolist charges a low current price, sacrificing profits
from the relatively smaller customer base in order to capture a larger customer base which can
be exploited in the future. With the current model, there is also an incentive to increase sales
in response to an increase in demand. However, the monopolist recognizes that she must still
price low enough in the next period in order to sell to the older generation and thus price and

output behave procyclically.

®In Bils (1989), aggregate quantity demanded, D; falls with increases in either the current price or the future
price while with the current paper, the same is true for d < 0.
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4.3 Infinite Horizons and Inirentories

There is a large body of evidence which suggests that most goods are habit goods (see for
example, Blanciforti and Green (1988), Browning (1991) and Pollak and Wales (1969)). On the
other hand, there is also evidence which suggests that prices are positively autocorrelated, even
for goods that most would agree are habit goods (coffee and tea).” This evidence contradicts
our result that there is negative autocorrelation in prices when consumption is intertemporally
complementary. One hypothesis is that prices may be determined in the commodity ﬁxarket
rather than the final consumption market. To exé,mine this possibility, we construct a model
with écnsumers who get utility (or profits) from consumption (or an intermediate good) and
can hold inventories.- |
Suppose we have an infinitely lived, representative agent who gets utility from consumption
and from holding inventories. For example, this agent might be thought of as a firm that
purchases an intermediate good to be used in its production process.® Since this firm may have
long term commitments which need to be fulfilled, it must hold inventories to ensure a supply
of the intermediate‘good. To be more specific, suppose that the total period ¢ revenue from
‘consuming’ y; and holding i; inventories is given by: a;i; +ayys — (bi/2)if — (by /2)y? + digy;. We
assume that d > 0 under the following interpretation: one would expect the marginal product of
inventories to increase as the rate of consumption increases. Single period profits are therefore

total revenue, less the cost of purchases, p;(is41 — 3¢ + yt). Therefore, the representative agent

maximizes:

0 t
1 . big b , L
U= ; (-———-—1 7 r) (ai’lt + Ayl — -2122 - -égyf + dztyt - pt(2t+1 — 14 yt)>

where r is the per-period rate of interest and p; is the price of the good in period t.

In each period ¢ the agent chooses y; and 4. The first-order conditions are:

oy = by +diy—p =0 (29)

"Most notably Deaton and Laroque (1992, 1996) however the now accepted empirical regularity that prices
behave sluggishly implies positive correlation over time.
8This production process may be nothing more than a wholesale stage of the product’s distribution. A more

in depth analysis where each of the various stages of a product’s distribution are modelled is beyond the scope of
the current analysis.
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Pty +r (@i = biitr1 + dEyeq1 + Eypysr) = 0

(30)

These first-order conditions can be taken without regard to expectations over future choices

because of the envelope theorem. Now, solving (29) yields:

...9}_’__}...4.{ — 1
yt—.by b&'t bypt

Shifting (31) forward one period and substituting into (30) yields:

. a d. 1
~(1+7)pt + a; — biiryr +d (-gz R Sl
o AN y

As before, assume Eypyy1 = (1 — A)f + Ap;. Using this to solve (32) yields:

i = ai+day+(by —d)(1 - N5 by(l+7)=A(by—d)
1 biby — &2 biby—d2

From (33) and (31):

1 dby(1+7)— Alb, — d))

Yt = BO - 'l;;pt - by(biby _ d-z) Pt—-1

where By is a constant. Total demand for the good, X;, is therefore given by:

Xi = g1 — i+ y

=4 — bpy + dpy_;

where
» 1
b=+ 5;' -
y B
Q= by(1+ 1) = A(by — d)
biby — d?
It can then be shown that:
b b 1
i ¥ +

Ezpt+1) + Eypry1 =0

(32)

(33)



On the assumption that the revenue function is concave in y; and ig41, Q is positive (i.e.,
differentiate (32)). We cannot sign b, — d from concavity. However, it would seem this should
be positive. To see this, note that the change in y; with respect to ¢ is d/b, (see (31)). If this
were bigger than 6ne it would mean that an exogenous increase in inventories would lead to a
larger increase in consumption of the intermedié.te good. This would seem implausible, so we
assume by — d > 0. Note this implies that 13/ d>1anditis increasing in A. Thus, this problem
yields dynamic demand that has the same properties as the overlapping generations problem.
Thus, nearly all of those results go thréqghg when this infinite horizon consumer replaces the
ovérlapping generations of consumers.

Note also that the autocorrelation in prices is positive here, even though inventories and
consumption are complements. The reason is as follows: if the current price is low, the firm
increases its inventories. Other things being equal (as long as the increase in y in the next period
is smaller than the increase in i) this lowers purchases in the next period. Thus, current and

future demand for the intermediate good are intertemporal substitutes.

4.4 Exchange Rate Passfhrough

Suppose that firms sell the product in a foreign market at foreign price p; and receive pym; in
domestic currency. Because exchange rates enter the per period profit function multiplicatively,
solving a model where they behave as a stochastic process becomes extremely difficult. However,
one can model exchange rates as being more or less permanent which are occasionally subject to
unanticipated changes. For example, although exchange rates are in most cases ‘flexible,” they
are often kept within a na.rrowx}, fixed band. This band might be occasionally be moved due to
exogenous pressures. Thus assume that n; = 7 so that there is no uncertainty.

Solving the problem yields price and output dynamics, identical to those in Sections 3 and

4.2 with the exception that there are no error terms and the long run equilibrium price is given

by

Now suppose that there is an unanticipated and permanent depreciation of the domestic

®The sole exception is the comparative static results with respect to ¢ = b/d as the by, b; and d parameters
are not strictly comparable to b and d.
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currency (i.e., an increase from 7 to #'). This will result in a fall in the long run price at which
firms are able to sell their product. To see the degree of pass-through, compute the elasticity of

the long run price with respect to the exchange rate:

___ b-Bd-g)
np i—f b—pd-g)

%-(1+A)d-g) 2B-0+HE-9)

This is less than one, in absolute value, and therefore we have the result that there is incomplete
passthfough of exchange rate changes. In addition, we know from the dynamic process éxamined
- earlier tha.t an unanticipated and permanent depréciation will be followed by a slow process of
adjustment where the price falls from § to #'. In particular, when current and future consumption
are substitutes, this adjustment will be monotonic. When they are complements, this adjustment
process will be one of overshooting so that after an unanticipated depreciation, price converges
to o', with price alternately falling below 7’ and rising above #. Not only is there inéomplete
long run exchange rate passthrough but this passthrough is spread over many periods.

We can also consider the effect of an unanticipated temporary depreciation of the domestic
currency. That is, suppose that in the #*! period, the exchange rate rises from 7 to o/ but returns
to n forever after. By examining the period ¢ first order condition and using the equilibrium
price adjustment process (pg+1 = (1~ A)p+ Ap;), it is easy to confirm the natural intuition that
the period ¢ price falls from $ but not by as much as it would under a permanent depreciation.
This difference in the effect of a permanent vs a temporary exchange rate shift is similar to
that found in Froot and Klemperer (1989) but in addition, our model is fully dynamic and as a
result, we show that even temporary shocks can have long lasting effects.

Under either permanent or tempérary changes, we get incomplete exchange rate passthrough.
With a permanent shift, the adjustment process for this incomplete passthrough is spread
through time. With a temporary shift, there is a small immediate change in the price which

then slowly returns to its steady state.

5 Related Literature

We examined a Markov perfect equilibrium of a simple dynamic model of oligopoly where con-

sumer utility functions are not time-separable. That is, there are intertemporal linkages in the
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utility that consumers get from consumption. With such linkages and 1.1.d. shocks, equilibrium
prices follow a first-order autoregressive stochastic process so that temporary shocks can haffe
long lasting effects on prices. This generalizes to more complicated stochastic processes. Fur-
thermore, price and output behave countercyclically in response to cost shocks and procyclically
in response to demand shocks. |

Models of ‘customer markets’ (Bils (1989)) or ‘consumer switching costs’ (Beggs and Klem-
perer (1992) and To (1996)) have some similarity to the current paper when there are intertem-
poral complementarities in consumptioﬁ. With customer markets or consumer switching costs,
oﬁce a consumer has purchased from a particular producer, they prefer to continue purchasing
from the same produ_ce;_:. This brings about an intertemporal link where the higher is a firm’s
current sales, the greater is its future demand (i.e., there is intertemporal complementarity of
consumption for the product of a particular firm). With the model of the current paper, dif-
ferent firms produce homogeneous products for which there is intertemporal complementarity
in the consumption of any firm’s product. However, since Bils (1989) assumes the industry
is monopolistic, his model has a similar interpretation to the current one. In this regard, his
countercyclical price and output result is dependent on the fact that the demand of the older
generation is invariant to small increases in price. When the demand of the older generation is
not perfectly inelastic, this result is reversed.

The evidence from a number of empirical studies show that prices tend to be slow to change
(Blinder (1994), Carlton (1986), Cecchetti (1986), and Lach and Tsiddon (1992)). With in-
tertemporal substitutability, the price process is similar to those generated by a number of
models with imperfect price adjustment (e.g., adjustment costs, menu costs and price stagger-
ing). However, these models have a number of empirical problems. For example, like the other
studies, Kashyap (1995) also finds evidence of sluggish price movements but in addition, argues
that various theoretical explanations of sluggish price movements are inconsistent with his evi-
dence from retail catalogs. Menu costs can explain sluggish price movements only if menu costs
vary over time—both relatively small and relatively large price changes are frequently observed,
implying either a small or a large menu cost. The fact that his data also shows prices can change
with different magnitudes and with a large change quickly followed by another smaller change
is also inconsistent with these theories. Furthermore, in his data, price changes did not occur

at fixed intervals and as a result, staggered price models are ruled out.
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Furthermore, models with staggeréd price adjustment, as in Taylor (1980), have two further
criticisms. First, when firms prices are fixed for several periods, if firms can choose when to
set their prices, the only stable Nash equilibrium occurs when they all choose to set prices
at the same time (Fethke and Policano (1986)). Second, in price-setting periods, if firms can
predetermine prices for 7' periods,!? the effects of temporary shocks will only have price effects
for exactly T periods (Fischer (1977)).

Finally, there is a significant body of empirical literature estimating dynamic demand equa-
tions where many goods are found to exhibit habit persistence in consumption (e.g., Blanciforti
and Green (1988), Browning (1991) and Pollak and Wales (1969)). There is also evidence which
- suggests that the prices of many goods, ihcluding habit goods such as coffee and tea, exhibit
positive autocorrelation (Deaton and Laroque (1992, 1996)). This would seemingly contradict
our theory which predicts that for habit goods, prices should follow a negative autocorrelation
process. What we would éuggest is that perhaps prices and consumption of certain products are
determined through separate processes. In particular, suppose that for these products tvhere is a
commodity market where commodity traders determine the prices at which commodities trade.
Given these prices, consumers make their purchases. The fact that commodity traders (who
are consumers of a sort) can store their purchases (possibly at some cost) for later resale (as
in Deaton and Laroque (1992, 1996)) introduces intertemporal substitutability into the decision
making process, resulting in positive autocorrelation in prices. Viewed in this way, the evidence
that commodity prices are positively autocorrelated is not inconsistent with our theory of price
formation. To this end, we consider an infinite horizon consumer who can hold inventories
(Section 4.3) and show that our results under intertemporal substitutability extend to this case.

As with a number of the models discussed, ours is partial equilibrium and thus we can only
look at the process of real price adjustment. Nevertheless, our approach has the advantage that
we have a dynamic model of imperfect competition where all agents have rational expectations.
We fully characterize the unique linear Markov perfect equilibrium. This equilibrium has the

property that temporary shocks have long lasting effects.

That is, when firms choose prices, they choose them for T periods, allowing prices to be different in different
periods.
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