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COMPUTING POWER INDICES FOR LARGE VOTING GAMES: A NEW ALGORITHM by
Dennis Leech, University of Warwick

ABSTRACT

Voting Power Indices enable the analysis of the distribution of power in a
legislature or voting body which uses weighted voting. Although the approach,
based on co-operative game theory, has been known for a long time it has not
been very widely applied, in part because of the difficulty of computing the
indices when there are many players. This paper presents new algorithms for the
classical power indices which have been shown to work well in real applications.
We suggest that the availability of such accurate and efficient algorithms might
stimulate further research in this under-researched field.
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CoMPUTING POWER INDICES FOR LARGE VOTING GAMES: A NEW ALGORITHM

Power Indices are an important value concept for simple co-operative
games with many applications to voting bodies which employ weighted voting.
Although the classical power indices due to Shapley and Shubik (1954) and to
Banzhaf (1963) have been applied to some well known cases, their wider
application has been to some extent limited by the comparative difficulty
encountered in computing them when the number of players is large. In this
paper we propose new algorithms which use an approximation method but for
which the error is very small and in practice appears to be negligible. We do not
address the open question of the relative merits of the respective indices for

measuring power but confine ourselves to computational aspects.

1. Power Indices: Notation

We assume a simple game of voting in a legislature with n members or
players represented by a set N = {1, 2, . . ., n} whose voting weights are w,, w,,
..., W, . The players are ordered by their weight representing their respective
number of votes, so that w; 2 w;,, for all i. We represent the combined voting
weight of all members of a coalition represented by a subset T, T < N by the

function w(T), w(T) = 2 w;. We will also have need of a sum of squares
ieT

function: we define this as h(T) = ¥ w/.
ieT

The voting decision rule is defined in terms of a quota, q. Thus a coalition

of players represented by a subset T is winning if w(T) > q and losing if



w(T) <q. It is customary to impose the restriction q = w(N)/2 to ensure the
legislature is decisive and the voting game is a proper game.

A power index is a n-vector whose elements denote the respective ability
of each player to swing a vote. In general a swing for a player, say player i, is a
coalition which is losing until i joins it and it becomes winning. This we
represent by a subset T, such that:

qg-w;<w(T)<q.

The power index for player i is defined as the relative number of swings
for i with respect to a coalition model where, in some sense, each possible
coalition is treated equally; if coalitions are regarded as being formed randomly
then each is equally likely. Although the two indices employ the same general
idea of a swing, they are mathematically distinct since they employ different
coalition models which differ in what is meant by "equally likely". The Banzhaf
index is based on considering coalitions as combinations of members in the sense
of a list arranged in no particular order; they might be arranged alphabetically,
or in any other arbitrary order: the ordering is irrelevant to the coalition. A
member's power index is then the number of such coalitions it can swing from
losing to winning, expressed as a proportion of either the total number of
coalitions or the total number of such swings when all members are considered.

The Shapley-Shubik index, on the other hand, counts coalitions on the
basis not only of swings, but also the order in which members are listed. Thus,
given a particular swing for a member, the index takes into account the number

of orderings of both the members of the winning coalition and the members not



in the coalition: every reordering is counted as a different swing. The index is
defined by expressing this number as a proportion of the number of orderings of
all members.

For a given swing for player i, the number of orderings of the members
of the subset T; and its complement (apart from player i ), N-T;-{i}, is
t!(n-t-1)! where t is the number of members of T, . (We can drop the subscript
here for convenience; we use n and s for the numbers of members of sets N and
S, etc.). The total number of swings for i defined in this way for this coalition

model is > ti(n—t-1)!. The index, ¢; , is this number as a proportion of the
T

number of orderings of all players in N,

0, = ZM (1)

T n!
The Banzhaf index assumes a coalition model in which orderings of
players do not matter. The appropriate measure of the number of swings is then

Y 1. Two versions of the index are defined by expressing this number over
T, ,

different denominators. The Non-Normalized Banzhaf index (or Banzhaf Swing
Probability), B,, uses the number of coalitions which do not include i , the

number of subsets of N -{i}, as denominator, 2™

B = Y1/2m. (2)



The Normalized Banzhaf Index, B, uses the total number of swings for all
players as the denominator in order that it can be used to give a power

distribution, in which the indices sum to unity over players:
Bi= YUTTI. 3)
T i

In the discussion of computation of the Banzhaf index we only need to

consider the details of computing the swing probability version, (2), since

Bi = Bi'/zﬁi, .

To illustrate the effect of the different coalition models on the two
indices, let us consider a voting body with 10 members. Suppose we wish to
measure the power of member i. Let us compare the effect of the size of the
‘coalition on the measurement of power according to the two indices. Consider
two swings, coalitions T, which are losing until i joins, one of 4 members and
one of 7 members. The Banzhaf index treats these two swings equally: each
counts as one swing. The Shapley-Shubik index, however, attaches different
importance to them. For the coalition of size 4, the number of orderings of its
members and the remaining 5 members is 4!5! = 2,880. The contribution of this
swing to the index is then 2880/10! = 2880/3628800 = 0.000793. For the other
coalition, however, its contribution to the index is 7!2!/10! = 10,080/3628800 =
0.002778. Thus the number of members in a swing coalition has a considerable
importance to the computation of the Shapley-Shubik index, cases where the
winning coalition and its complement are relatively equal being given much less

weight.



Despite being so different in the way they count swings, the two indices
have given results which have not been very different in some applications.
However they have given results which have differed considerably in others.
There is no clear guidance from the literature on the relative merits of the two
indices. While political scientists and lawyers have tended to prefer the Banzhaf
index and criticized the coalition model underlying the Shapley-Shubik index,
mathematicians and game theorists have tended to the reverse preference

ordering because of the uniqueness of the Shapley-Shubik index.

II. Computing the Indices by Direct Enumeration

Several methods are available to compute the Shapley-Shubik indices, with
simple modifications for the Banzhaf indices: Direct Enumeration; Generating
Functions (Mann and Shapley (1962)); Monte Carlo simulation (Mann and
Shapley (1960); Multilinear Extensions (Owen (1972, 1975)); MLE
Approximation (Owen (1972, 1975)).

The simplest method is Direct Enumeration, which is based on searching
over all possible coalitions and applying the basic definitions of the indices by
counting swings. We have implemented this method successfully by using an
algorithm which finds each subset of players once only, then for each subset it
finds all swings and updates expressions (1) and (2) repeatedly. That is, for a
given subset S ¢ N the procedure finds all T, ¢ S-{i} such that T, is a swing.
This is relatively straightforward but expensive in computer time. It is only

feasible for small and medium values of n. Experience suggests it is practical for



values of n up to about 25 but it very quickly becomes prohibitively slow beyond
that because computer time is an exponential function of n. This method has the
advantage that it can be applied not only to evaluating power indices for simple
games but more generally it can be easily adapted to find Shapley values (and
other value concepts for cooperative games which assign a characteristic function
to each coalition of players).

The method of generating functions of Mann and Shapley (1962) and
Owen's multilinear extensions (1972) are usually regarded as more suitable for
small (or medium sized) games than for large games. Undoubtedly the direct use
the latter very quickly runs into size constraints but we have not investigated the

feasibility of the former as a general method for when n is large.

III. Owen's Approximation Algorithm

The method we propose here is a mixed algorithm which combines direct
enumeration, described above, with the approximation method due to Owen
(1972, 1975). This latter method has been used for large games in a number of
studies. However, it is based on the central limit theorem for approximations to
expressions (1) and (2) using the normal distribution function on the basis of
assumptions of probabilistic voting. In order to develop our description of the

algorithm proposed in this paper, it is first necessary to describe it.



Expression (1) for the Shapley-Shubik index can be rewritten by noting
that the term inside the summation is a beta function:

ti(n—t—1)!
n!

= f;x‘(l——x)“""ldx (4)

The integrand on the RHS of (4), x'(1-x)™*", can be regarded as the
probability that the (random) subset T, appears, when x is the probability that
any member joins T, , constant and independent for all players j,j e N - {i}.
Summing this expression over all swings, T; , gives the probability of a swing

for 1. Let us call this probability f,(x):
fix) =3, x(1-x)"", (5)

T

Integrating x out of (5) gives the index, because, substituting (4) into (1) gives:

0:= Y [xa-ode= [ [T x(120"" ] dx

T, °

[ i) dx. (6)

We can approximately evaluate ¢, using a suitable approximation for f,(x). In
large games with many small weights, and no very large weights, this can be
done with reasonable accuracy using suitable probabilistic voting assumptions
and the normal distribution.

Assuming each player j # i votes the same way as i with probability x,
independently of the others, defines a random variable, v, with the following
dichotomous distribution:

Pr(vi=w) =x, Pr(v=0)=1-x, Pr(v;#w, and v;#0)=0
Therefore its first two moments are:

E(v) = xw,, Var(v) = x(1-x)w/’, all j.
7



The total number of votes cast by players j in the same way as that of player i is

a random variable v,(x) = Z"j' Then v,(x) has an approximate normal
jeN=(i)

distribution with moments:
E(vi(x)) = xw(N-{i}) = w(x), say, and
Var(v,(x)) = x(1-x) h(N-{i}) = 0,(x)?
Then the required probability,
fix) = Pr{q - w; < vi(x) < q] (7)
can be obtained approximately using the normal distribution function, ®(.) by

evaluating the expression:

P A B L1 GO AP . B (1€, B!
1i(x) = ©( . ) - O( 5.00) ). (8)

The Shapley-Shubik index in (6) is approximated by numerically
integrating out x in (8). The Banzhaf index is obtained by setting x = 0.5 in (8).

This method has been used in a number of studies but its accuracy depends
on the validity of the normal approximation. In many real world weighted
voting bodies the approximation is not good and consequent computation errors

are large because of the wide range of variation of the voting weights w..

IV. An Extended Owen Algorithm for Large Games

For games where n is too large for direct enumeration to be efficient (or
feasible, and where some of the weights too large for Owen's algorithm to be
accurate, an alternative can be used which combines the essential features of

both. The procedure is as follows.



The players are divided into two groups: sets of major players M = {1, 2,
..., m} and minor players N - M. The value of m is chosen for computational
convenience, along a tradeoff between accuracy and efficiency. The algorithm
finds all subsets of M in the same way as does the Direct Enumeration algorithm.
Given a particular subset, S ¢ M, it then evaluates the approximate conditional
swing probability for each player making the standard assumptions about
random voting by minor players only. This is used to find the joint probability
of the coalition represented by the subset and the conditional swing. The index is
obtained by summing these joint probabilities over all the subsets. There are two
cases to consider: (1) player i is a major player, i € M; (2) i is a minor player,
i eN-M

(1) Major Players

It is necessary to search over all subsets of M which do not include player
i and for each consider the probability of that subset and the probability of it
being a swing for i. Suppose S is a subset of M - {i}. We let the swing
probability be f,(x) as before. This can be written as:

fix) = Pr(swing for i) = Z Pr(S)Pr(swing for ilS)
S

Defining the conditional probability of a swing given S as the function g8, x),

and the probability of selecting S randomly by the function p(s, x), we can write:

fi(x) = Z p(S, X)gi(s’ X)°

The first factor inside the summation on the RHS is

p(s, x) = x*(1-x)™",



To find the second factor we define the random variable

vi(x) = z Vi

jeN-M .

where v; is as before, to represent the random number of votes cast by the minor

players.
So, E(vi(x)) = xw(N-M) = p,(x),
and Var(v,(x)) = x(1-x)h(N-M) = 6,(x)*.

Using these moments and the normal approximation to the distribution of vi(x),

we can obtain the required probability as:

£(S, %) = Pr{q - w(S) -w; < v,x) < q - w(S)]

=(D(Q“W(S)“}.LX(X)) _(D(q—W(S)“Wl"U,(X)). (9)

Gi(X) O'i(X)
Therefore,
fi(x) = Z x*(1-x)"*" (8, x). (10)
ScM—{i}

The required index is then:

o= [ fdx=[ [ 3 x(1-0™" g, x)ldx

ScM~{i}

S f; x*(1-x)™*'g(S, x)dx

SeM-(i}
which can be found by searching over all subsets of M-{i}, integrating out x by
numerical quadrature at each subset then summing. The Banzhaf index B', is
obtained from (10) on setting x=0.5 instead of integrating it out, then summing
to give B, = £,(0.5).

The search described here is over all subsets of M-{i}, but it is obvious

that we can include M itself since g(M, x) =0 foralli e M.

10



(2) Minor Players

Now we describe the computation of the indices for the smaller players,
i € N-M. The subset S is now any subset of M. Since we are now treating the
votes of all m major players as random (not just m-1 of them), we write the
probability of the subset S:
Pr(S) = p(S, x) = x*(1-x)™",
The behavior of the minor players other than i is described by a random

‘variable y(x) = Y v; which has an approximate normal distribution with
jeN-M-{i}

moments:
Hi(x) = xw(N-M-{i})
and 0,(x)* = x(1-x)h(N-M-{i}).
Hence we can evaluate the conditional swing probability g,(S, x) which
now 1is:
gi(S, x) = Pr[q - w(S) - w; S y,(x) < q - w(8)]
approximately by the normal probability in expression (9) again after making
the required notational substitutions.
Then, writing

fix = 3, pGs, x) (S, ),

SeM
the Shapley-Shubik index is found again by quadrature, and the Banzhaf index by
setting x=0.5, before summing, within the same subset search as before, S ¢ M.

This algorithm has proved to be efficient and accurate in large games with
n > 100 with a moderate and feasible choice of m. The obvious rule for choosing

the value of m is that it should be large enough to ensure accuracy without being
11



too large to permit all subsets of M to be enumerated feasibly in a reasonable
computing time. Some examples of the application of the approach are given in

the next section.

V. Some Examples

In this section we present the results of using the algorithm for practical
computations. Our implementation uses a subroutine which finds every subset of
a set exactly once, taken from Nijenhuis and Wilf (1983), a quadrature
subroutine due to Patterson (1968) in NAG(1997) and double precision
arithmetic throughout.

We present two examples: the United States Electoral College States game
as reported in Owen (1995), and an artificial example with randomly generated
weights. The application to the Electoral College States game is presented in
order to establish the accuracy of the algorithm against previously published
results. This example is a useful test case because we are in the fortunate position
of having exact Shapley-Shubik indices. For this case however the Owen
algorithm is reasonably accurate without the modifications proposed here. We
therefore present a second example in which the weights have been generated
randomly to be much more unequal and where accuracy is much improved by

the use of the algorithm.

Example 1: The US Electoral College States Game, 1970 Census

12



Owen (1995) presents results for both indices obtained using his
approximation method and also exact results for the Shapley-Shubik index
obtained using the method of generating functions. This is therefore a suitable
test bed to establish the utility of the algorithm. We have computed the power
indices for the 51 states for all values of m from 0 to 20. The results are shown
in Table 1 for the Shapley-Shubik index for m =0, 5, 10, 15 and 20. The
algorithm is very accurate (to the reported accuracy of the indices given in
Owen (1995)) for m=20; such slight differences as there are seem to be due to
rounding error in the earlier results.

Figures 1 to 3 show the effect of changing m on the accuracy of the
indices for certain states: those numbered i=1, 2, 3, 18 and 51. Figure 1 shows
graphs of the effect of changing m on the Shapley-Shubik indices for these states
in Figures 1(a) to 1(e) while Figure 1(e) shows the comparative computation
errors for the five indices. Figures 2 and 3 show the comparable graphs for the
Non-Normalized Banzhaf index and the Normalized Banzhaf index respectively.
The general conclusion is that the algorithm performs well and that there is very

little to be gained in improved accuracy by increasing m beyond 5.

13



Table 1: Shaplev-Shubik Index for the Electoral College Game

Votes States m=() m=5 m=10 m=15 m=20 Exact

45 1 0.08856  0.08838  0.08833 0.08832  0.08832 | 0.08831
41 1 0.07997  0.07979 0.07975 0.07974  0.07973 0.07973
27 1 0.05114 0.05100 0.05098 0.05097  0.05097 0.05096
26 2 0.04915 0.04901 0.04899 0.04898  0.04898 0.04898
25 1 0.04716  0.04702 0.04701 0.04701  0.04700 | 0.04700
21 1 0.03931 0.03919 0.03918 0.03917  0.03917 0.03917
17 2 0.03158 0.03148 0.03147 0.03147 0.03147 0.03147
14 1 0.02586  0.02578  0.02577 0.02577  0.02577 0.02577
13 2 0.02396  0.02390 0.02389 0.02389  0.02388 0.02388
12 3 0.02208  0.02202  0.02201 0.02201  0.02201 0.02200
11 1 0.02020  0.02015 0.02014 0.02014 0.02013 0.02013
10 4 0.01833  0.01828 0.01827 0.01827 0.01827 0.01827
9 4 0.01647 0.01642 0.01642 0.01641 0.01641 0.01641
8 2 0.01461  0.01457 0.01457 0.01456  0.01456 | 0.01456
7 4 0.01276  0.01273  0.01272 0.01272  0.01272 0.01272
6 4 0.01092  0.01089 0.01089 0.01088  0.01088 0.01088
5 1 0.009083 0.009059 0.009055 0.009054 0.009054 | 0.009053
4 9 0.007253 0.007234 0.007231 0.007230 0.007230 | 0.007230
3 7 0.005430 0.005416 0.005414 0.005413 0.005413 | 0.005412
q=269.5.

14




Power index

Powar index

Power index
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Figure 1 (Continued): Electoral College: Shapley-Shubik Indices
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Figure 2 Electoral College: Non-Normalized Banzhaf Indices
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Figure 2 (Continued): Electoral College: Non-Normalized Banzhaf Indices
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Figure 3: Flectoral College: Normalized Banzhaf Indices
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Figure 3 (Continued): Electoral College: Normalized Banzhaf Indices
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Example 2

The second example is a game with artificially generated weights intended
to capture the characteristic pattern often encountered in real voting bodies with
a large number of members where there are a number of relatively large
weights. The presence of these large players mean that the Owen algorithm is
likely to be inaccurate. Very good results are obtained using our algorithm,
however.

We have chosen n=100, g=55% and the weights have been generated at
random (before being expressed as percentages) from a suitable distribution: w;,
Wy, . .., Wyg are a sample from the lognormal distribution A(4.3, 3). The
resulting distribution of votes is relatively concentrated. Although this
concentration makes it necessary to choose a value of m greater than zero to get
reasonable accuracy, for the same reason it is not necessary to use a large value
of m. The results in Table 2 have been obtained using m=12. Table 2 shows the
results for the players with the largest 10 weights and for i =30, 60, 100. It
shows the two power normalized power indices, which sum to 1 over the
players, and the power ratios, power index/ weight, which measure the
discrepancy between voting weight and voting power.

The relative computation errors for various arbitrarily chosen players are
shown in Figure 4. It is clear that while there are large errors for m=0 (the
Owen MLE approximation) and for small m, they disappear quite quickly. For

the large players the errors in all the indices are negligible for m>5. For the
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small players the errors in the Shapley-Shubik indices and the Non-normalized
Banzhaf indices become negligible for m>5 and those in the Normalized Banzhaf
indices for m>7 in the case of the smallest player, i=100.

Table 2: Selected Voting Weights, Power Indices and Power Ratios

Voting Normalized Banzhaf Shapley-Shubik Shapley-Shubik

i Weights  Banzhaf Index Power Ratio Index Power Ratio

1 0.2915 0.3522 1.2083 0.3506 1.2025

2 0.1960 0.1711 0.8733 0.1850 0.9440

3 0.1170 0.1147 0.9801 0.1142 0.9762

4 0.0970 0.0930 0.9588 0.0898 0.9262

5 0.0640 0.0708 1.1064 0.0566 0.8845

6 0.0248 0.0205 0.8276 0.0217 0.8742

7 0.0222 0.0185 0.8349 0.0194 0.8731

8 0.0200 0.0168 0.8394 0.0175 0.8717

9 0.0179 0.0151 0.8432 0.0156 0.8701

10 0.0168 0.0142 0.8449 0.0146 0.8692

30 0.0855 0.00073 0.8549 0.00073 0.8544

60 0.00636 0.000054 0.8550 0.000054 0.8535
100 0.0000001 0.00000009 0.9000 0.00000009 0.9000
Sum 1.0000 1.0000 1.0000

q=0.55
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Figure 4 Relative Approximation Errors

Figure 4 (a): Relative Errors: Shapley-Shubik Indices
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Figure 4 (b): Relative Errors: Non-Normalised Banzhaf Indices
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Figure 4 (c): Relative Errors: Normalised Banzhaf indices
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VI. Conclusion

We have described a new algorithm for computing values of voting games
enabling the easier and better application of classical power indices to the kind of
large weighted voting bodies which often occur in reality. An example is the
Board of Governors of the International Monetary Fund, which has nearly 200
members, and employs weighted voting with weights varying over a wide range
reflecting the financial quotas of each member country; an analysis of the
resulting distribution of voting power has been made using the algorithm and is
reported in Leech (1998). The method is capable of achieving a high degree of
accuracy without excessive cost in terms of computing time in real applications.
We suggest that advances in computing of this type might facilitate further
analyses of power in weighted voting bodies and legislatures which could not
only enhance our understanding of voting systems but also contribute to advances
in the understanding of the relative properties and utility of the different indices.
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