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Abstract

We introduce the framework of parameterized collections of games with and
without sidepayments and provide three nonemptiness of approximate core the-
orems for games in parameterized collections. The parameters bound (a) the
number of approximate types of players and the size of the approximation and
(b) the size of nearly e®ective groups of players and their distance from exact
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e®ectiveness. The theorems are based on a new notion of partition-balanced
pro¯les and approximately partition-balanced pro¯les. The results are applied
to a new model of an economy with clubs. In contrast to the extant literature,
our approach allows both widespread externalities and uniform results.
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1 Introduction.
We introduce the notion of parameterized collections of games and show that, under
apparently mild conditions, approximate cores of all su±ciently large games without
side payments are nonempty. A collection of games is parameterized by (a) the num-
ber of approximate types of players and the goodness of the approximation and (b) the
size of nearly e®ective groups of players and their distance from exact e®ectiveness.
All games described by the same parameters are members of the same collection. The
conditions required on a parameterized collection of games to ensure nonemptiness
of approximate cores are merely that most players have many close substitutes and
all or almost all gains to collective activities can be realized by groups of players
bounded in size (small group e®ectiveness). For our strongest results, we also require
per capita boundedness, which simply rules out arbitrarily large average payo®. The
condition of small group e®ectiveness may appear to be restrictive but, in fact, in the
context of a \pregame," if there are su±ciently many players of each type, then per
capita boundedness and small group e®ectiveness are equivalent (Wooders [65]).1

As an application of our research, we develop a new model of an economy with
clubs and obtain analogues of our nonemptiness results for games. Following Buchanan
[8] and Shubik and Wooders [52], we allow individuals to belong to multiple clubs.
In contrast to prior research in this area, our model allows utilities from forming a
club to be directly a®ected by the size and composition of the economy containing
the club. For example, there may be widespread externalities.

Turning to the motivation for our research, it is well understood that except in
highly idealized situations cores of games may be empty and competitive equilibrium
of economies may not exist. For example, within the context of an exchange econ-
omy, the conditions required for existence of equilibrium typically include convexity,
implying in¯nite divisibility of commodities, and also nonsatiation. Even these two
conditions may well not be satis¯ed; goods are usually sold in pre-speci¯ed units
and there are some commodities that many individuals prefer not to consume. In
economies with congestion, even if preferences and production technologies are con-
vex, the core of the economy may be empty.2 In the context of economies with
coalition structures, such as economies with clubs and/or local public goods, the
added di±culties of endogenous group formation compound the problem; even if,
given club memberships, all conditions for existence of equilibrium and nonemptiness
of the core are satis¯ed in each club, the core may be empty. One possible approach
to the problem of existence of equilibrium is to restrict attention to models where
equilibria exist, for example, economies with continuums of agents. But a model with
a continuum of agents can only be an approximation to a ¯nite economy. Another
approach is to consider solution concepts for which existence is more robust, for ex-

1Similar results hold for games without side payments [62].
2An example making this point appears in Shubik and Wooders [54].
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ample, approximate equilibria and cores. It seems reasonable to suppose that there
are typically frictions that prevent attainment of an exact competitive equilibrium.
At any time, most markets may have some unsatis¯ed demand or supply and most
purchases might be made at prices that are only close to equilibrium prices. It also
seems reasonable to suppose that there are typically costs of forming coalitions. These
sorts of observations motivate the study of existence of approximate equilibria and
nonemptiness of approximate cores.

Besides assumptions on the structure of the economies or games considered, so-
lution theory also requires behavioral assumptions { the competitive equilibrium re-
quires that individuals take prices as given (by some unknown source) and optimize
while the core is based on the idea that if a group of individuals can be better o®
by forming a coalition and reallocating resources and activities within that coalition,
then they will do so. These behavioral assumptions are problematic, those of the core
perhaps no more so than those of the competitive equilibrium. An alternative to
the behavioral assumption of the core that may be easier for economists to swallow
is that entrepreneurs form coalitions whenever there exists an opportunity to pro¯t
from doing so; there is a long literature taking this approach or closely related ap-
proaches, for example, Pauly [42], Shapley and Shubik [49], [58] and Bennett and
Wooders [5].3 The literature on contestable markets, for example, Baumol, Panzer
and Willig [4] takes a similar approach; roughly this literature suggests that the
presence of entrepreneurs who are ever-ready to enter a market if there is an oppor-
tunity to pro¯t ensures that prevailing prices are perfectly competitive. Thus, there
is some motivation for both the core and the competitive equilibrium in the idea that
if prices/payo®s are not competitive, pro¯t maximizing ¯rms will enter. From the
viewpoint of the behavioral assumptions required, there are arguments in favor of
both the core and the competitive equilibrium.

Since the seminal papers of Shubik [50], Debreu and Scarf [17] and Aumann [3],
equivalence of the core and price-taking equilibrium and approximate equivalence has
been shown in a variety of contexts, including in economies with coalition production
(Hildenbrand [24] and BÄohm [6] for example), in economies with public goods (Conley
[9] and Vasil'ev, Weber and Wiesmeth [55] for example), economies with local public
goods or clubs (several papers referenced herein { see [66] for further references) and
in economies with ¯nite coalitions and widespread externalities (Hammond, Kaneko
and Wooders [23] and Hammond [22] for example). Indeed, with quasi-linear utili-
tities, large economies, including those with nonconvexities, indivisibilities, coalition

3Pauly treats the case of essentially identical players and economies with quasi-transferable utili-
ties. [58] treats multiple types; these results are applied in Bennett and Wooders to problems of ¯rm
formation. For NTU games, it can be shown that under certain conditions, the core is equivalent
to a \no-entry" equilibrium (a typescript with such results is available on request from the second
author).

Shapley and Shubik [49] made an important connection between games with side payments and
markets, de¯ned as economies with quasi-linear preferences and concave utility functions.
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production, public projects and clubs are equivalent to markets if and only if small
groups are e®ective for the realization of all or almost all gains to coalition formation
([65]). All these results suggest that in diverse large economies, approximate cores
are nonempty and close to competitive outcomes. These results also all depend on
structures of speci¯c economic models. The study of cores of general large games
allows us to demonstrate that certain properties of large economies depend only on
a few features of the model, most notably, small group e®ectiveness.4

The game theoretic environment we consider may be especially well suited to
the core. Since the games treated have many players of each of a relatively few
approximate types, informally, we might expect that some random sorting process
and bargaining may lead to optimal outcomes. In the context of exchange economies,
results in this spirit have been obtained by a number of authors, most recently Dagan,
Serrano and Volij [15].

To position our model and results in the literature, recall that Shapley and Shu-
bik [48] showed that large replica exchange economies with quasi-linear preferences
have nonempty approximate cores. Under the assumption of per capita bounded-
ness { ¯niteness of the supremum of average payo® { Wooders [59],[60] demonstrated
nonemptiness of approximate cores of large games with and without side payments.
Since then, there have been a number of advances in this literature, including Shubik
and Wooders [54], Kaneko and Wooders [27], and Wooders and Zame [67]. The prior
literature on approximate cores of large games all uses the framework of a pregame.
A pregame consists of a compact metric space of player types, possibly ¯nite, and a
worth function ascribing a payo® possibilities set to every possible group of players.
The worth function depends continuously on the types of players in a coalition. Note
that the pregame framework treats collections of games that can all be described by
a single worth function. This has hidden consequences; for example, as we will illus-
trate, the equivalence between small group e®ectiveness and per capita boundedness
noted above depends on the structure of a pregame. Moreover, the pregame frame-
work dictates that the payo® set of a coalition cannot depend on the total player set
of the game in which it is embedded; widespread externalities are ruled out.5

To illustrate how parameterized collections can treat a broader class of situations
than pregames, consider, for example, a sequence of economies where the nth economy
has n identical players. Due to widespread negative externalities, in the nth economy
each player can realize a payo® of 1 + 1=n. Also suppose, for simplicity, that in the
nth economy, a coalition containing m · n players can realize the total payo® of
m(1 + 1=n) { within each economy there are no gains to coalition formation. (It is
easy to modify the example to allow such gains.) The pregame framework rules out
such sequences of games. In contrast, parameterized collections of games incorporate

4This has been the motivation of a continuing line of research on large games. See, for example,
the discussion in [58], on-line on the second author's web page.

5An exception is [60], which allows positive externalities.
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games with widespread externalities and our results can be applied.6 This example
also illustrates that our club-theoretic results cannot be obtained in the pregame
context.

In the remainder of this introduction, we ¯rst discuss our game-theoretic frame-
work and results in more detail and then discuss economies with clubs. Related
literature is discussed in the body of the paper.

1.1 The game-theoretic model and results.
We provide three theorems showing nonemptiness of approximate cores of arbitrary
games. Given the speci¯cation of an approximate core { the particular approximate
core notion and the parameters describing the closeness of the approximation { we
obtain a lower bound ´ on the number of players so that any game in the class of
games described by the speci¯ed parameters with at least ´ players has a nonempty
approximate core. While our three theorems each use di®erent notions of approxi-
mate cores, both the notions of approximate cores and the theorems build on each
other. Our framework encompasses games derived from pregames with or without
side payments and our results encompass, as special cases, a number of nonemptiness
of approximate core results in the literature. In the concluding section of the current
paper we remark on other applications of the notion of parametrized collections of
games.

Our ¯rst result, for the "-remainder core, requires a ¯nite integer number T of
types of players and a bound B on strictly e®ective group sizes.7 Roughly, a payo®
vector is in the "-remainder core if it is in the core of a subgame containing all but
a fraction " of the players. Our result provides a lower bound, depending on T;B;
and ", on the number of players required to ensure nonemptiness of the "-remainder
core for all games with T types and bound B on e®ective group sizes: An important
aspect of this result, like the result of Kaneko and Wooders [27], is that the conclusion
is independent of the payo® sets for the games. The result is eminently applicable
to models with bounded coalition sizes, such as marriage and matching games (cf.,
Kelso and Crawford [32] or Roth and Sotomayor [44]).

The "-core of a game is the set of feasible payo® vectors that cannot be improved
upon by any coalition of players by at least " for each member of the coalition. A
feasible payo® vector is in the "1-remainder "2-core if it induces a payo® vectors
in the "2-core of a subgame containing all but a fraction "1 of the players. Our
nonemptiness theorem for the "1-remainder "2-core requires only that groups bounded

6In spirit, the pregame framework is similar to the economic frameworks of Kannai [31] and
Hildenbrand [24], for example, while our approach is more in the spirit of the economic models of
Anderson [2] and Manelli [36][37].

7We postpone discussion of the origins of approximate core concepts to their formal introduction,
later in the paper.
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in size are e®ective for the realization of almost all gains to cooperation. Instead of the
assumption of a ¯nite number of types, to show nonemptiness of the "1-remainder "2-
core we require only that there be a partition of the set of players into a ¯nite number
of approximate types. Such an assumption would be satis¯ed by games derived from
a pregame with a compact metric space of player types, for example.

Under two additional restrictions on the class of games, we obtain a nonemptiness
result for "-cores. The restrictions are that: (a) per capita payo®s are bounded; and
(b) the games are strongly comprehensive in the sense that the boundaries of the
total payo® set are bounded away from being \°at". A corollary relaxes assumption
(b).

1.2 Economies with clubs.
There are now numerous papers in the literature studying cores and equilibria of
economies with local public goods, where a feasible state of the economy includes
a partition of the set of agents into disjoint jurisdictions or clubs for the purposes
of collective consumption of public goods within each club or jurisdiction.8 There
have been far fewer works on economies where an agent can belong to multiple clubs.
In this paper we develop a model of an economy with clubs where: (a) a player
may belong to multiple clubs { indeed, as many clubs as there are groups containing
that player; (b) all players may di®er from each other; (c) each club may provide a
unique bundle of goods and/or services, including private goods, public goods subject
to exclusion, and conviviality; and (d) the payo® set of a club may depend on the
economy in which it is embedded { widespread externalities are permitted.

A club is a group of people who collectively consume and/or produce a bundle of
goods and/or services for the members of the club. Often clubs have been treated as
synonymous with groups/jurisdictions of players providing congestable and exclud-
able public goods for their members where, in addition, the production possibilities
and preferences may depend on the membership of the jurisdiction providing the pub-
lic goods, `Tiebout economies'. We observe, however, that clubs engage in a variety of
activities. These activities may or may not require input of private goods. The goods
provided by the club may include the enjoyment of the company of the other club
members. In clubs of intellectuals, the exchange of ideas may be the aspect of the
club that brings enjoyment to its members. Clubs may provide only private goods;
for example, many academic departments have co®ee clubs. Other clubs o®er some
goods and/or services to the general public. Some sorts of clubs o®er private goods
and/or services to their members in addition to public goods. There is frequently
no requirement that members of the same club consume the same bundles of goods.

8Some early papers include, for example, Wooders [57] and Greenberg and Weber [21]. See
Conley and Wooders [10] and Konishi, Le Breton, and Weber [33] for more recent references and
[66] for a short survey.
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Thus, in this paper for each club we assume that there is an abstract set of feasible
club activities.9

It may be the case that some sorts of clubs are ruled out for legal, technical, or
social reasons. For example, a marriage may be viewed as a club, and polyandrous
marriages may be illegal. Thus, for each coalition of players in the economy there is
an admissible club structure of that coalition. Admissible club structures are required
to satisfy certain natural properties. In addition, for our ¯nal result, our model is re-
quired to satisfy the conditions that: (a) average utilities are bounded independently
of the size of the economy; and (b) as the economy grows large, increasing returns to
club size must become negligible.

Although the conditions on our model are remarkably non-restrictive, by applica-
tion of our game-theoretic results we are able to show several forms of the result that
approximate cores of large economies { with su±ciently many players { are nonempty.
Our result applies simultaneously to all games in a parameterized collection.

1.3 Organization of the paper.
The paper is organized as follows. The next section introduces the basic de¯nitions,
including the notion of parametrized collections of games. Section 3 presents our
three theorems on nonemptiness of approximate cores in the order presented above.
Section 4 consists of our club model and results. Section 5 concludes the body of the
paper. Appendix contains the proofs that are based on a new mathematical result
on approximate balancedness of large pro¯les of player sets.

2 De¯nitions.

2.1 Cooperative games: description and notation.
Let N = f1; :::; ng denote a set of players. A nonempty subset of N is called a
coalition. For any coalition S let RS denote the jSj-dimensional Euclidean space
with coordinates indexed by elements of S. For x 2 RN ; xS will denote its restriction
to RS . To order vectors in RS we use the symbols >>; > and ¸ with their usual
interpretations. The non-negative orthant of RS is denoted by RS+ and the strictly
positive orthant by RS++. We denote by ~1S the vector of ones in RS , that is, ~1S
= (1; :::; 1) 2 RS . Each coalition S has a feasible set of payo® or utility vectors
denoted by VS ½ RS. By agreement, V; = f0g and Vfig is nonempty, closed and
bounded from above for any i. In addition, we will assume that

max
n
x : x 2 Vfig

o
= 0 for any i 2 N ;

9The notion of public projects, introduced in Mas-Colell [39] and extended, in 1992, to local
public projects in an unpublished paper due to J. Manning.
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this is by no means restrictive since it can always be achieved by a normalization.
It is convenient to describe the feasible payo® vectors of a coalition as a subset of

RN . For each coalition S let V (S), called the payo® set for S, be de¯ned by

V (S) :=
n
x 2 RN : xS 2 VS and xa = 0 for a =2 S

o
:

A game without side payments (called also an NTU game or simply a game)
is a pair (N; V ) where the correspondence V : 2N ¡! RN is such that V (S) ½n
x 2 RN : xa = 0 for a =2 S

o
for any S ½ N and satis¯es the following properties :

(2.1) V (S) is nonempty and closed for all S ½ N .

(2.2) V (S) \ RN+ is bounded for all S ½ N , in the sense that there is a real number
K > 0 such that if x 2 V (S) \ RN+ ; then xi · K for all i 2 S.
(2.3) V (S1) + V (S2) ½ V (S1

S
S2) for any disjoint S1; S2 ½ N (superadditivity).

We next introduce the uniform version of strong comprehensiveness assumed for
our third approximate core result. Roughly, this notion dictates that payo® sets are
both comprehensive and uniformly bounded away from having level segments in their
boundaries. Consider a set W ½ RS . We say that W is comprehensive if x 2W and
y · x implies y 2W . The setW is strongly comprehensive if it is comprehensive, and
whenever x 2 W; y 2 W; and x < y there exists z 2 W such that x << z:10Given
(i) x 2 RS , (ii) i; j 2 S, (iii) 0 · q · 1 and (iv) " ¸ 0; de¯ne a vector xqi;j(") 2 RS ;
where

(xqi;j("))i = xi ¡ ";
(xqi;j("))j = xj + q"; and
(xqi;j("))k = xk for k 2 Sn fi; jg :

The set W is q-comprehensive if W is comprehensive and if, for any x 2W , it holds
that (xqi;j(")) 2W for any i; j 2 S and any " ¸ 0.11 For q > 0 this condition uniformly
bounds the slopes of the Pareto frontier of payo® sets away from zero. Note that for
q = 0; 0-comprehensiveness is simply comprehensiveness. Also note that if a set
is q-comprehensive for some q > 0 then the set is q0-comprehensive for all q0 with
0 · q0 · q:

10Informally, if one person can be made better o® (while all the others remain at least as well
o®), then all persons can be made better o®. This property has also been called \nonleveledness"
and \quasi-transferable utility."

11The notion of q-comprehensiveness can be found in Kaneko and Wooders [30]. For the purposes
of the current paper, q-comprehensiveness can be relaxed on portions of the payo®s sets not contained
in the positive orthant.
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Now let consider V (S) =
n
x 2 RN : xS 2 VS and xa = 0 for a =2 S

o
: Given q, 0 ·

q · 1; let W qS ½ RS be the smallest q-comprehensive set that includes the set VS.12
For V (S) we de¯ne the set cq(V (S)) in the following way:

cq(V (S)) :=
n
x 2 RN : xS 2W qS and xa = 0 for a =2 S

o
:

Notice that for the relevant components { those assigned to the members of S {
the set cq(V (S)) is q-comprehensive, but not for other components. With some
abuse of terminology, we will call this set the q-comprehensive cover of V (S): When
q > 0 we can think of a game as having some degree of \side-paymentness" or as
allowing transfers between players, but not necessarily at a one-to-one rate. This is
an eminently reasonable assumption for games derived from economic models.

A game with side payments (also called a TU game) is a game (N; V ) with
1-comprehensive payo® sets, that is V (S) = c1(V (S)) for any S ½ N: This im-
plies that for any S ½ N there exists a real number v(S) ¸ 0 such that VS =n
x 2 RS :

P
i2S xi · v(S)

o
. The numbers v(S) for S ½ N determine a function v

mapping the subsets of N to R+. Then the TU game is represented as the pair
(N; v).

2.2 Parameterized collections of games.
To introduce the notion of parameterized collections of games we will need the concept
of Hausdor® distance. For every two nonempty subsets E and F of a metric space
(M; d); de¯ne the Hausdor® distance between E and F (with respect to the metric d
on M), denoted by dist(E;F ), as

dist(E;F ) := inf f" 2 (0;1) : E ½ B"(F ) and F ½ B"(E)g ;

where B"(E) := fx 2M : d(x;E) · "g denotes an "-neighborhood of E.
Since payo® sets are unbounded below and payo®s that assign any player an

amount signi¯cantly less than zero are not relevant for our results, we will use a
modi¯cation of the concept of the Hausdor® distance so that the distance between
any two payo® sets is the distance between the intersection of the sets and a subset of
Euclidean space bounded below. Let m¤ be a ¯xed positive real number. LetM¤ be a
subset of Euclidean spaceRN de¯ned byM ¤ :=

n
x 2 RN : xa ¸ ¡m¤ for any a 2 N

o
.

For every two nonempty subsets E and F of Euclidean space RN let H1[E;F ] de-
note the Hausdor® distance between E \M¤ and F \M¤ with respect to the metric
kx¡ yk1 := maxi jxi ¡ yij on Euclidean space RN .

12Notice that there exist q-comprehensive sets that contain VS , speci¯cally RS : The set W q
S is the

intersection of all q-comprehensive sets containing VS .

11



The concepts de¯ned below lead to the de¯nition of parameterized collections
of games. To motivate the concepts, each is related to analogous concepts in the
pregame framework.

±¡substitute partitions: In our approach we approximate games with many players,
all of whom may be distinct, by games with ¯nite sets of player types. Observe that
for a compact metric space of player types, given any real number ± > 0 there is a
partition (not necessarily unique) of the space of player types into a ¯nite number
of subsets, each containing players who are \±-similar" to each other. Parameterized
collections of games do not restrict to a compact metric space of player types, but do
employ the idea of a ¯nite number of approximate types.

Let (N; V ) be a game and let ± ¸ 0 be a non-negative real number. A ±-substitute
partition is a partition of the player set N into subsets with the property that any
two players in the same subset are \within ±" of being substitutes for each other.
Formally, given a set W ½ RN and a permutation ¿ of N , let ¾¿(W ) denote the set
formed fromW by permuting the values of the coordinates according to the associated
permutation ¿ . Given a partition fN [t] : t = 1; ::; Tg of N , a permutation ¿ of N is
type ¡ preserving if, for any i 2 N; ¿ (i) belongs to the same element of the partition
fN [t]g as i. A ±-substitute partition of N is a partition fN [t] : t = 1; ::; Tg of N with
the property that, for any type-preserving permutation ¿ and any coalition S,

H1
h
V (S); ¾¡1¿ (V (¿ (S)))

i
· ±:

Note that in general a ±-substitute partition of N is not uniquely determined.
Moreover, two games may have the same partitions but have no other relationship to
each other (in contrast to games derived from a pregame).

(±,T )- type games. The notion of a (±,T )-type game is an extension of the notion of
a game with a ¯nite number of types to a game with approximate types.

Let ± be a non-negative real number and let T be a positive integer. A game (N; V )
is a (±; T )-type game if there is a T -member ±-substitute partition fN [t] : t = 1; ::; Tg
of N . The set N [t] is interpreted as an approximate type. Players in the same element
of a ±-substitute partition are ±-substitutes. When ± = 0; they are exact substitutes.

pro¯les. Another notion that arises in the study of large games is that of the pro¯le
of a player set, a vector listing the number of players of each type in a game. This
notion is also employed in the de¯nition of a parameterized collection of games, but
pro¯les are de¯ned relative to partitions of player sets into approximate types.

Let ± ¸ 0 be a non-negative real number, let (N; V ) be a game and let
fN [t] : t = 1; ::; Tg be a partition of N into ±-substitutes. A pro¯le relative to fN [t]g

12



is a vector of non-negative integers f 2 ZT+ and a subpro¯le s of a pro¯le f is a pro¯le
satisfying the condition that s · f . Given S ½ N the pro¯le of S is a pro¯le, say
s 2 ZT+, where st = jS \N [t]j : A pro¯le describes a group of players in terms of
the numbers of players of each approximate type in the group. Let kfk denote the
number of players in a group described by f , that is, kfk =

P
ft.

¯¡e®ective B¡bounded groups: In all studies of approximate cores of large games,
some conditions are required to limit gains to collective activities, such as per capita
boundedness and/or small group e®ectiveness, as in [59], [60],[64],[65], or the more
restrictive condition of boundedness of individual marginal contributions in bound-
edness of marginal contributions to coalitions, as in Wooders and Zame [67]. Small
groups are e®ective if all or almost all gains to collective activities can be realized by
groups bounded in size of membership. The following notion formulates the idea of
small e®ective groups in the context of parameterized collections of games.

Informally, groups of players containing no more than B members are ¯-e®ective
if, by restricting coalitions to having fewer than B members, the loss to each player is
no more than ¯: Let (N; V ) be a game. Let ¯ ¸ 0 be a given non-negative real number
and let B be a given positive integer. For each group S ½ N; de¯ne a corresponding
set V (S;B) ½ RN in the following way:

V (S;B) :=
[ "X

k
V (Sk) :

n
Sk

o
is a partition of S,

¯̄
¯Sk

¯̄
¯ · B

#
.

The set V (S;B) is the payo® set of the coalition S when groups are restricted to
have no more than B members. Note that, by superadditivity, V (S;B) ½ V (S) for
any S ½ N and, by construction, V (S;B) = V (S) for jSj · B. We might think of
cq(V (S;B)) as the payo® set to the coalition S when groups are restricted to have
no more than B members and transfers are allowed between groups in the partition.
If the game (N;V ) has q-comprehensive payo® sets then cq(V (S;B)) ½ V (S) for any
S ½ N: The game (N; V ) with q-comprehensive payo® sets has ¯-e®ective B-bounded
groups if for every group S ½ N

H1 [V (S); cq(V (S;B))] · ¯. (1)

When ¯ = 0, 0-e®ective B-bounded groups are called strictly e®ective B-bounded
groups.

parameterized collections of games Gq((±; T ); (¯;B)). With the above de¯nitions in
hand, we can now de¯ne parameterized collections of games. Let T and B be positive
integers and let q be a real number, 0 · q · 1. Let Gq((±; T ); (¯;B)) be the collection
of all (±; T )-type games that have q-comprehensive payo® sets and ¯-e®ective B-
bounded groups.
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Our results hold for all parameters ± and ¯ that are su±ciently small, that is,
2(± + ¯) < m¤; where m¤ is a positive real number used in the de¯nition of the
Hausdor® distance. (Since m¤ can be chosen to be arbitrarily large, this requirement
is nonrestrictive.)

3 Nonemptiness of approximate cores of games.
For TU games the concept of the core is attributed to Gilles [20] and unpublished
research of Lloyd Shapley. The "-core was introduced for TU games derived from
exchange economies in Shapley and Shubik [48].13 Notions of "-cores of balanced
NTU games with a continuum of players were introduced in Weber [56] and Ichiishi
and SchÄa®er [26].14 Wooders [60] introduced "-cores for NTU games with ¯nite player
sets.15

the core and the "-core. Let (N; V ) be a game. A payo® vector x is "-undominated
if, for all S ½ N and y 2 V (S); it is not the case that yS >> xS + ~1S". The payo®
vector x is feasible if x 2 V (N). The "-core of a game (N; V ) consists of all feasible
and "-undominated payo® vectors. When " = 0, the "-core is the core.

3.1 The "-remainder core.
The concept of the "-remainder core is based on the idea that all requirements of
the core should at least be satis¯ed for almost all players with the remainder of
players representing a small fraction of \unemployed" or \underemployed" players.
The "-remainder core was suggested in Shubik [51] for an example involving bridge
games and more generally in earlier, unpublished versions of Wooders [60].16 The
"-remainder core subsequently appeared in Shubik and Wooders [54], Kaneko and
Wooders [27], and other papers. This approximate core notion is frequently used as
a stepping stone to other notions of approximate cores. There are game-theoretic
situations, however, in which the notion of the "-remainder core may naturally arise

13Related constructs now appear in a number of papers for NTU economies, cf., Kannai [31].
14As Weber [56] demonstrates, for games with a continuum of players, extensions of the concepts

of balancedness (from ¯nite games) do not necessarily ensure nonemptiness of the core of the game.
Thus further conditions are required to ensure nonemptiness of approximate cores, even with a
continuum player set and with a balancedness condition.

15These ¯rst appeared in State University of New York at Stony Brook Department of Economics
WP # 216 (1979), \The "-core of an N -person game"

16The strategy of the proofs of [59], [60] is similar to that of this paper, except the results are
restricted to games with a ¯xed distribution of player types. Thus, to arrive at the ¯nal result of
the paper, the same sort of intermediate steps as in the current paper are used. From the Lemmas
in [60], analogues of the ¯rst two nonemptiness results of the current paper are immediate. Our
current results are much stronger since the framework of parameterized collections is broader and
we do not impose any relationships between individual games in a parameterized collection.
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{ for example, the demand games of Selten [46] or multi-sided matching games with
bounds on the numbers of players in an e®ective coalition

the "-remainder core. Let (N;V ) be a game. A payo® vector x belongs to the "-
remainder core if x is feasible and if, for some group S ½ N , jN j¡jSj

jN j · " and xS
belongs to the core of the subgame (S; V ).

Note that the following theorem requires no restrictions on the degree of compre-
hensiveness { the usual notion of comprehensiveness su±ces.

Theorem 1. (Nonemptiness of the "-remainder core). Let T and B be positive
integers and let q be any nonnegative real number. For any " > 0; there exists an
integer ´1("; T; B) such that if

(a) (N; V ) 2 Gq((0; T ); (0; B)) and
(b) jN j ¸ ´1("; T; B)

then the "-remainder core of (N; V ) is nonempty.

While the assumptions of Theorem 1 are strong { a ¯xed number T of exact
player types and strictly e®ective groups of size less than or equal to B; they provide
a strong conclusion. The Theorem states that for any " > 0 there exists a lower
bound ´1("; T; B) on the number of the players such that all games satisfying the
assumptions with more than ´1("; T; B) players have nonempty "-remainder cores.
Since the bound depends only on "; T; and B, the bound is uniform across all the
games characterized by the parameters; there is no restriction to replica games. Our
result extends the result of Kaneko and Wooders [27] from replication sequences to
arbitrary large games. As in Kaneko and Wooders [27] the result is independent of
the characteristic function of the games; the same bound holds for all games in the
collection parameterized by T and B.

To illustrate the application of Theorem 1, consider the collection of all games
with at most two types of players and with two-person e®ective coalitions { marriage
games, buyer-seller games, coalition production economies where two and only two
workers are required for a productive coalition, and so on. Note that this collection
of games cannot be described by a pregame { the collection is too large and cannot
be accommodated by one space of player types and one worth function. Our result
shows that given " > 0; provided the number of players in the game is su±ciently
large; any game in the collection has a nonempty "-remainder core.

To give some intuition into Theorem 1 and the following Theorems, consider a
particular game where all players are identical and only two-player coalitions are
e®ective. It is immediate that the core of the game is nonempty if there is an even
number of players. In fact, any even replication of a given game has a nonempty core.
This doesn't depend on the payo® sets of the games; instead, it re°ects the fact that
any set with an even number of players can be partitioned into two-person \optimal"

15



coalitions. When the total number of players is odd, one player can be assigned his
individually rational payo®; thus, given " > 0, for all su±ciently large total player
sets, the "-remainder core is nonempty.17 In Appendix we provide a general version
of the result that when e®ective group sizes are bounded and there is a ¯nite number
of types of players, large player sets can be partitioned so that most players are in
\optimal" coalitions. With this result in hand, Theorem 1 is immediate. Theorems
2 and 3 follow by approximation arguments.

3.2 The "1-remainder "2-core.
The requirements of the "-core were ¯rst relaxed to allow an exceptional set of player,
containing no more than the fraction " of the total player set in earlier versions of [60]
and in Shubik and Wooders [54] . We provide a small re¯nement of the "-remainder
core paper by allowing the fraction of players in the exceptional set to di®er from ".
For this less restrictive de¯nition of the approximate core we can treat a signi¯cantly
more general class of games than those of Theorem 1, in particular, we can allow
approximate types (± > 0) and almost e®ective groups (¯ > 0). For example, the
class of models covered by our next Theorem includes replica models of economies
with private goods as in Debreu and Scarf [17] and models of local public good
economies satisfying per capita boundedness, as in [61].

the "1-remainder "2-core. Let (N;V ) be a game. A payo® vector x belongs to the
"1-remainder "2-core if x is feasible and if, for some group S ½ N , jN j¡jSj

jN j · "1 and
xS belongs to the "2-core of the subgame (S; V ).

The following result extends the nonemptiness results of Wooders [59], [60], [63],
Shubik and Wooders [54], and Wooders and Zame [67], [68] from pregames to pa-
rameterized collections of games.18 For the same values of the parameters T and B
the bound on the sizes of games in the following theorem can be chosen to equal the
bound in the preceding theorem. Note that there are no restrictions on the value of
q except that it be greater than or equal to zero { strong comprehensiveness is not
required.

Theorem 2. (Nonemptiness of the "1-remainder "2-core). Let T and B be
positive integers. For any "1 > 0 and "2 ¸ 0; there exists an integer ´1("1; T; B) such
that if

17This intuition, for the case of identical players, already appears in Pauly [43] and, especially,
Shubik [51]. (Pauly's assumption in the two-type case, relating marginal contributions of players of
di®erent types to the worths of coalitions implies that there is no loss in e±ciency in mixing both
types. A paper demonstrating this result is available on request from the second author.)

18Further nonemptiness results for approximate cores of NTU pregames have been obtained by
Wooders and Zame in unpublished research. A copy of a typescript is available on request from the
second author.
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(a) (N; V ) 2 Gq((±; T ); (¯;B)) with ± ¸ 0; ¯ ¸ 0; (± + ¯) · "2 and
(b) jN j ¸ ´1("1; T; B)

then the "1-remainder "2-core of (N; V ) is nonempty.

To describe the intuition behind Theorem 2, we begin with the same sort of
example as discussed above where only two-player coalitions are e®ective. Suppose
now that only two-player coalitions are e®ective but that the players are not identical,
they are only all ±-substitutes for each other. Suppose that the total number of players
is even. Consider a feasible payo® vector x that assigns the largest possible amount
of payo® to each player, subject to the constraint that x has the equal-treatment
property. Since all players are ±-substitutes, no two players can improve on x by
more than ± for each player. Thus, x is in the ±-core. If there is an odd number of
players and if "1 > 1

jN j then the "1-remainder ±-core is nonempty; one player can be
assigned his individually rational payo®.

Now let us suppose that two-person coalitions are only ¯-e®ective. When jN j is
even, selecting x as in the preceding paragraph will lead to a payo® vector in the
(± + ¯)-core. When jN j is odd, the "1-remainder (± + ¯)-core is nonempty for any "1
satisfying "1 > 1

jN j ; again, one player can be assigned his individually rational payo®.
In e®ect, a parameterized collection of games Gq((±; T ); (¯;B)), by its de¯nition, can
be approximated by the collection Gq((0; T ); (0; B)):

Observe that by de¯nition the "-remainder 0-core coincides with the "-remainder
core. Therefore, Theorem 2 is a strict generalization of Theorem 1 (Theorem 1 is a
subcase for ± = ¯ = 0). But both Theorem 1 and Theorem 2 are based on the idea
that some small proportion of the players can be ignored.

3.3 The "-core.
Our third Theorem provides conditions for the nonemptiness of the "-core of large
games. The proof is based on the idea of compensating the \remainder" players
from the previous theorems, as in [60] and a number of subsequent papers. This
compensation is possible under q-comprehensiveness (with q > 0) and one more
condition, typically called per capita boundedness.

per capita boundedness. Let C be a positive real number. A game (N; V ) has a per
capita payo® bound of C if, for all coalitions S ½ N ,

X

a2S
xa · C jSj for any x 2 V (S).

Theorem 3. (Nonemptiness of the "-core). Let T and B be positive integers.
Let C and q be positive real numbers. For each " > 0 if

(a) (N; V ) 2 Gq((±; T ); (¯;B)) with ± ¸ 0; ¯ ¸ 0; (± + ¯) < " and
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(b) (N; V ) has per capita payo® bound C;
then there exists an integer ´2("¡ (± + ¯); T; B; C; q) such that the "-core of (N; V )
is nonempty whenever jN j ¸ ´2("¡ (± + ¯); T;B; C; q).

To describe the intuition behind Theorem 3, return again to the situation where all
players are identical, only two-player coalitions are e®ective and jN j is odd. Suppose
also that this is a game with side payments and any two-person coalition can earn 1;
thus, the payo® vector (12 ; :::;

1
2 ; 0) is feasible. Then for any " satisfying " jN j > 1

2 the
payo® vector (12¡"; :::; 12¡"; y) is in the "-core where y = (jN j¡1)". Informally, we can
make transfers of " from each of jN j ¡ 1 players in optimal coalitions to the reminder
player so that every player has a payo® of at least (12 ¡ "). It follows that no group
of players can signi¯cantly improve (by more than " in this case) upon such a payo®.
The feature that per capita payo®s are bounded puts an upper bound on the required
transfer to the remainder players. In games without side payments, the feature that
q is greater than zero means that a small amount of payo® can be transferred from
players in optimal coalitions to remainder players (but not necessarily at a one-to-one
rate) until the remainder players are as well o® as those players in optimal coalitions,
with the consequence that no group of players can signi¯cantly improve upon the
resulting payo® vector.

Now return to the situation where two-player coalitions are ¯-e®ective and all
players are ±-substitutes for each other, ¯ + ± < ". As we've observed, if jN j is odd,
the (± + ¯)-core may be empty. When per capita payo®s are bounded and there is
some means of making transfers (q > 0) then, for su±ciently large jN j ; it's possible
to begin with some payo® vector in the ("¡ ±¡¯)-remainder (±+ ¯)-core, and make
transfers to the remainder players so that, no coalition could improve on the resulting
payo® by " for each player.

We note that the assumption of per capita boundedness is actually stronger than
required. For our proofs (as the proof of [60]) we may use only the fact that the set
of equal-treatment payo® vectors satisfy the per capita boundedness condition.

An example in Appendix shows indispensability of the condition in Theorem 3
that q is greater than zero, thus clarifying the need for this condition in Theorem 3
in contrast to our previous theorems. Indispensability of the other conditions of The-
orem 3 is demonstrated by the examples in Subsection 3.6. The following Corollary
shows that Theorem 3 can be applied to obtain nonemptiness of approximate cores
of games that are \close" to q-comprehensiveness games (with q > 0).19 The proof of
this result is left to the reader.

Corollary. (Nonemptiness with near q-comprehensiveness). Let (N;W ) be a
game. Suppose that for some and " > 0 there exist a game (N; V ) 2 Gq((±; T ); (¯;B))
with q > 0; ± ¸ 0; ¯ ¸ 0; (± + ¯) < " such that:

19Any comprehensive payo® set can be approximated arbitrarily closely by a q-comprehensive
payo® set, for q small ([60], Appendix).
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(a) (N; V ) has per capita payo® bound C,
(b) H1[W (S); V (S)] · °

2 for all S ½ N; where ° < "¡ (± + ¯), and
(c) jN j ¸ ´2("¡ (± + ¯ + °); T; B; C; q).

Then the "-core of (N;W ) is nonempty.

We remark that in [60], to obtain nonemptiness of approximate cores, q-comprehensiveness
is not required. To obtain her equal-treatment result, however, Wooders employs ap-
proximating games satisfying strong comprehensiveness. A similar idea is at work in
our Corollary. If there is another game (N; V ) with payo® sets close { within °

2 {
to those of (N;W ) and (N; V ) satis¯es the conditions of Theorem 3, it is not nec-
essary that the game (N;W ) itself satis¯es those conditions. In these circumstances,
we can ¯nd a payo® vector that is in the ("¡ °)-core of (N; V ) and adjust this payo®
vector so that it is in the "-core of (N;W ). In essence, this is similar to the sort of
approximation technique used for our Theorems 2 and 3.

3.4 A simple example of a production economy.
The following example illustrates the application of our results to a familiar sort of
situation { one with ¯rms and workers. The example also illustrates the application
of our results to situations where there is a compact metric space of player types,
essentially a special case.

Example 1. Suppose a pregame has two sorts of players, ¯rms and workers.20 The
set of possible types of workers is given by the points in the interval [0; 1) and
the set of possible types of ¯rms is given by the points in the interval [1; 2] :
To derive a game from the information given above, let N be any ¯nite player
set and let » be an attribute function, that is, a function from N into [0; 2]. In
interpretation, if »(i) 2 [0; 1) then i is a worker and if »(i) 2 [1; 2] then i is a
¯rm. Firms can pro¯tably hire up to three workers and the payo® to a ¯rm
i and a set of workers W (i) ½ N , containing no more than 3 members, is given
by v(fig S

W (i)) = »(i) +
P
j2W (i) »(j): Workers and ¯rms can earn positive

payo® only by cooperating so v(fig) = 0 for all i 2 N . For any coalition S ½ N
de¯ne v(S) as the maximum payo® the group S could realize by splitting into
coalitions containing either workers only, or 1 ¯rm and no more than 3 workers.
This completes the speci¯cation of the game.

We leave it to the reader to verify that for any positive integer m every game
derived from the pregame is a member of the class G1(( 1

m ; 2m); (0; 4)) and has
a per capita bound of 2. Theorem 3 states that given 1

m < "; if jN j ¸ ´2(" ¡
20We refer the reader to Wooders and Zame [67] or Wooders [63] for a de¯nition of a pregame

(with side payments) with a compact metric space of player types. For games without side payments,
see Kaneko and Wooders [30] or Wooders [62], for example.
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1
m ; 2m; 4; 2; 1) then the game (N; v) has a nonempty "-core. In fact, Theorem
3 states this conclusion for an arbitrary game (N;V ) described by the same
parameter values, T = 2m; B = 4; ± + ¯ = 1

m ; C = 2 and q = 1:

3.5 Per capita boundedness and small group e®ectiveness.
Our ¯nal result, Theorem 3, requires both per capita boundedness and small group
e®ectiveness. As noted previously, in the context of pregames with side payments,
when arbitrarily small percentages of players of any particular type is ruled out, then
these two conditions are equivalent. But in important economic contexts, neither
condition implies the other. The next example illustrates a voting games satisfying
per capita boundedness. There is only one player type in each game so the \thickness"
condition of the equivalence result of [65] is satis¯ed. But small group e®ectiveness
does not hold and Theorem 3 does not apply.

Example 2. Voting games. Consider a sequence of games (Nm; vm)1m=1 with
side payments and where the mth game has 3m players. Suppose that there
are widespread positive externalities so that in the mth game, any coalition
S consisting of at least 2m players can get up to 2m units of payo® to divide
among its members, that is, vm(S) = 2m. Assume that if jSj < 2m; then
vm(S) = 0.

We can think of the games as a sequence of voting games where a winning coali-
tion must contain 2

3 of the population, for example, impeachment of a President
of the United States or rati¯cation of a treaty in some parliaments.

Observe that each game in the sequence has one exact player type and a per
capita bound of 1. That is, q = 1; T = 1; C = 1; and ± = 0: However, the 1

7-core
of the game is empty for arbitrarily large values of m:

To see that the 1
7 -core is empty, observe that for any feasible payo® vector there

are m players that are assigned, in total, no more than 2m
3mm = 2

3m: There are
another m players that get in total no more than 2m

2mm = m: These 2m players
can form a coalition and receive 2m in total. This coalition can improve upon
the given payo® vector for each of its members by 1

6 ; since (2m¡ 5
3m) 1

2m = 1
6 :

The following example, of matching games with widespread positive externali-
ties, illustrates economic situations where, because of small group e®ectiveness, "-
remainder cores are nonempty for positive ", but per capita boundedness does not
hold and Theorem 3 does not apply.

Example 3. A matching game with widespread positive externalities.21 The eco-
nomic situation we've in mind is one where any two players can carry out

21A similar example in Wooders and Zame [67].
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some job but their reward from the job depends on the size of the economy in
which they live. (It would be easy to modify the example to become a two or
many-sided matching game.) Consider a sequence of games with side payments
(Nm; vm)1m=1 where the mth game has 2m+ 1 players: Assume that any player
alone can get only 0 units or less, that is vm(fig) = 0 for all i 2 N . Also
assume that any two-player coalition can get up to 2m units of payo® to divide;
vm(S) = 2m if jSj = 2. An arbitrary coalition can gain only what it can obtain
in partitions where no member of the partition contains more than two players.

The games (Nm; vm)1m=1 are members of the collection of games with one exact
player type and strictly e®ective small groups of two. That is, q = 1; T =
1; B = 2; and ± = ¯ = 0: Given " > 0 the "-remainder core of the game
(Nm; vm) is nonempty for all m satisfying 1

2m+1 < ". However, the 1
7 -core of the

game is empty for arbitrarily large values of m; the remainder player cannot be
compensated by the sum of taxes on the players in two-person coalitions:

To see that the 1
7 -core is empty, observe that for any feasible payo® vector

there is a player whose payo® is no more than 2m2

2m+1 : There is another player
whose payo® must be no more than 2m2

2m = m: These two players may form a
coalition and realize 2m: Thus they gain m ¡ 2m2

2m+1 = m
2m+1 ¸ m

3m = 1
3 : Obvi-

ously, together this two-player coalition can improve upon the given payo® by
1
6 for each member of the coalition:

3.6 Remarks.
Remark 1. q-comprehensiveness or convexity? It is possible to obtain a result
similar to Theorem 3 using convexity of payo® sets and \thickness" instead of q-
comprehensiveness (see [34]). Strong comprehensiveness, however, can be naturally
satis¯ed by games derived from economies. Moreover, \1-strongly comprehensive
games" are games with side payments, so we can incorporate this important special
case. Furthermore, in models of economies with local public goods or with clubs,
convexity may be di±cult to satisfy. Although examples show that none of the
assumptions can be omitted, our Corollary relaxes q-comprehensiveness.

Remark 2. Exact bounds. It may be possible to compute the bounds on the size
of the total player sets given in Theorems 1, 2, and 3 in terms of the parameters
describing the games. A simple bound is obtained in [35]), although under somewhat
di®erent assumptions. Also, the proofs of that paper, relative to those of this paper,
are quite complex.

Remark 3. Absolute or relative sizes? It is possible to obtain similar results with
bounds on relative sizes of e®ective coalitions. In a ¯nite game with a given number of
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players, assumptions on absolute sizes and on relative sizes of e®ective coalitions are
equivalent. We have chosen to develop our results using bounds on absolute sizes of
near-e®ective coalitions since this seems to re°ect typical economic and social situa-
tions. Examples include: marriage and matching models (see Kelso and Crawford [32]
and Roth and Sotomayor [44]); models of economies with shared goods and crowding
(see Conley and Wooders [13]) for a survey); and private goods exchange economies
(see Mas-Colell [38] and Kaneko and Wooders [29] for example). In fact, assumptions
on proportions of economic agents typically occur only when there is a continuum of
players, cf. Ostroy [41]).

Remark 4. Limiting gains to coalition formation. In the pregame framework sev-
eral di®erent conditions limiting returns to coalition formation have been used. For
situations with a ¯xed distribution of a ¯nite number of player types, Wooders [59],
[60] and Shubik and Wooders [54] require per capita boundedness. To treat com-
pact metric spaces of player types, Wooders and Zame [67], [68] require boundedness
of marginal contributions to coalitions while Wooders [63], [64] requires the less re-
strictive condition of small group e®ectiveness. As noted in the introduction, in the
context of games derived from pregames, small group e®ectiveness and per capita
boundedness are equivalent. In Subsection 3.5, we have shown that in the broader
framework of parameterized collections of games both ¯-e®ective B-bounded groups
and per capita boundedness are required.

Remark 5. Relationships between the Theorems. The notions of the "-core and the "-
remainder core are conceptually independent of each other, while the "1-remainder "2-
core combines features of both. One may wonder if nonemptiness of the "1-remainder
"2-core (Theorem 2) can be deduced from the nonemptiness of the "-core and the
"-remainder core (Theorems 1 and 3). The assumptions required for Theorems 1 and
3, however, are strictly stronger than those for Theorem 2; thus, while a less general
nonemptiness result for the "1-remainder core "2-core can be deduced from the other
two results, Theorem 2, requiring weaker assumptions, cannot be. Indeed, none of
the Theorems can be deduced from the others.

4 Economies with clubs.
We de¯ne admissible club structures in terms of natural properties and take as given
the set of all admissible club structures for each coalition of players. Generalizing
Mas-Colell's [39] notion of public projects to club activities, there is no necessary
linear structure on the set of club activities. Indeed, our results could be obtained
even without any linear structure on the space of private commodities. We remark
that it would be possible to separate crowding types of players (those observable
characteristics that a®ect the utilities of others, or, in other words, their external
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characteristics) from taste types, as in Conley and Wooders [11], [12], and have
players' roles as club members depend on their crowding types. In those papers,
however, the separation of crowding type and taste type has an important role; the
authors show that prices for public goods { or club membership prices { need only
depend on observable characteristics of players and not on their preferences. The
current paper treats only the core; at this point separation of taste and crowding
type would have no essential role.

agents. There are T \types" of agents. Let ½ = (½1; :::; ½T ) be a given pro¯le, called
the population pro¯le. The set of agents is given by

N½ = f(t; q) : q = 1; :::; ½t and t = 1; :::; T g;

and (t; q) is called the qth agent of type t. It will later be required that all agents of the
same type may play the same role in club structures. For example, in a traditional
marriage model, all females could have the role of \wife". De¯ne N½[t] := f(t; q) :
q = 1; :::; ½t g. For our ¯rst Proposition members of N½[t] will be exact substitutes
for each other and for our next two Propositions, approximate substitutes.

commodities. The economy has L private goods. A vector of private goods is denoted
by y = (y1; :::; y`; :::; yL) 2 RL+.

clubs. A club is a nonempty subset of players. For each club S ½ N½, a club structure
of S; denoted by S, is a set of clubs whose union coincides with S: The set of admissible
club structures for S;denoted by C(S); is assumed to be nonempty for any S 6= ;. This
assumption ensures that a club of one player has a unique admissible club structure -
a singleton set. The sets C(S) are also required to satisfy the following two properties:

1. If S and S 0 are nonempty disjoint subsets of players and S and S 0 are club
structures of S and S 0 respectively, then fC : C 2 S S S0g is a club structure
of S

S
S 0 (unions of admissible club structures of disjoint coalitions are club

structure of the unions of the coalitions).

2. Let S and S 0 be subsets of players with the same pro¯les, let S be a club
structure of S and let ' be a type-preserving 1-1 mapping from S onto S 0 (that
is, if (t; q) 2 S then '((t; q)) = (t; q0) for some q0 = 1; :::; ½t). Then

S0 = fC ½ S 0 : '¡1(C) 2 Sg

is a club structure of S 0 (admissible club structures depend only on pro¯les,
that is, all players of the same type have the same roles in clubs).
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The ¯rst property is necessary to ensure that the game derived from the economy
is superadditive. It corresponds to economic situations where one option open to
a group is to form smaller groups. Since the singletons are always admissible club
structures for clubs of one player, this property implies that the partition of any set
S ½ N½, S 6= ;, into singletons is an admissible club structure for S. The second
property corresponds to the idea that the opportunities open to a group depend on
the pro¯le of the group.

club activities. For each club C there is a given set of club activities A(C): An
element ® of A(C) requires input x(C; ®) 2 RL of private goods. For any two clubs
C and C 0 with the same pro¯le we require that if ® 2 A(C), then ® 2 A(C 0) and
x(C; ®) = x(C 0; ®): For 1-player clubs f(t; q)g, we assume that there is an activity
®0 with x(f(t; q)g; ®0) = 0, that is, there is an activity requiring no use of inputs.

preferences and endowments. Only private goods are endowed. Let !tq 2 RL+ be the
endowment of the (t; q)th participant of private goods.

Given S ½ N½, (t; q) 2 S, and a club structure S of S, the consumption set of the
(t; q)th player (relative to S) is given by

©tq (S) := Xtq(S) £
Y

C2S
A(C);

where Xtq(S) ½ RL is the private goods consumption set relative to S, assumed to be
closed. Note that the private goods part of the consumption set of a player, Xtq(S),
may depend on the club structure; one function of a club may be to provide certain
private goods to its members. The entire consumption set of the (t; q)th player is
given by

©tq :=
[

S½N½:(t;q)2S

[

S2C(S)
©tq (S) :

We assume that the (t; q)th player can subsist in isolation. That is

(!tq; ®0) 2 ©tq (f(t; q)g) :

It is also assumed that for each (t; q); each S ½ N½; (t; q) 2 S, and each club
structure S of S, the preferences of the (t; q)th agent are represented by a continuous
utility function utq(¢;S) de¯ned on ©tq(S).

states of the economy. Let S be a nonempty subset ofN½ and let S be a club structure
of S. A feasible state of the economy S relative to S, or simply a state for S, is a pair
(yS ; ®S) where:

(a) yS = fytqg(t;q)2S with ytq 2 X tq(S) for (t; q) 2 S;
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(b) ®S = f®CgC2S with ®C 2 A(C) for C 2 S; and

(c) the allocation of private goods is feasible, that is,
X

C2S
x(C; ®C) +

X

(t;q)2S
ytq =

X

(t;q)2S
!tq:

feasible payo®s vectors. A payo® vector U = (¹utq)(t;q)2N½ is feasible for a coalition S if
utq = 0 for all (t; q) 2 N½nS and there is club structure S of S and a feasible state
of the economy for S relative to S; (yS ; ®S); such that utq = utq(ytq; ®S ;S) for each
(t; q) 2 S.

the game induced by the economy. For each coalition S ½ N½; de¯ne

V (S) = f(butq)(t;q)2N½ : there is a payo® vector (¹utq)(t;q)2N½
that is feasible for S and butq · utq for all (t; q) 2 Sg:

It is immediate that the player set N½ and function V determine a game (N½; V ) with
comprehensive payo® sets.

"-domination. Let N½ be a club structure of the total player set N½ and let (yN½; ®N½)
be a feasible state of the economy N½ relative to N½ . A coalition S can "-dominate
the state (yN½; ®N½) if there is a club structure S = fS1; :::; SKg of S and a feasible
state (y0S ; ®0S) for the economy S such that for all consumers (t; q) 2 S it holds that

utq(y0tq; ®0S ;S) > utq(ytq; ®S ;N½) + ":

the core of the economy and "-cores. The state (yN½; ®N½) is in the core of the econ-
omy if it cannot be improved upon by any coalition S. It is clear that if (yN½; ®N½) is
a state in a core of the economy then the utility vector induced by that state is in the
core of the induced game. Similarly, if (¹utq)(t;q)2N½ is in a core of the game then there
is a state in the core of the economy (yN½; ®N½) such that the utility vector induced by
that state is (¹utq)(t;q)2N½. Notions of the "-remainder core, the "1-remainder "2-core,
and the "-core of the economy are de¯ned in the obvious way.

4.1 Nonemptiness of approximate cores.
To obtain our results we require few restrictions on the economy. Our ¯rst Proposition
requires exact player types and strictly e®ective small groups. It applies naturally
to the sorts of matching models considered in Roth and Sotomayer [44] or Crawford
[14], for example.
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(A.0) For each t and all q; q0 2 f1; :::; ½tg; utq(¢) = utq0(¢) and !tq = !tq0: In ad-
dition, in the game induced by the economy the players (t; q) and (t; q0) are
exact substitutes. (All players of the same type are identical in terms of their
endowments, preferences and crowding types { their e®ects on others.)

(A.1) There is a bound B such that for any population pro¯le ½; any coalition S ½
N½; and any club structure S of S, if U = (¹utq : (t; q) 2 S) is a feasible payo®
vector for the club structure S then there is a partition of S into coalitions, say
fS1; :::; SKg and club structures of these coalitions, fS1; :::;SKg such that for
each k,

¯̄
¯Sk

¯̄
¯ · B and U k := (utq : (t; q) 2 Sk) is a feasible payo® vector for Sk:

Our approach requires that for each coalition S, the set of individually rational
and feasible payo®s is compact, (A.2) below. This can be ensured by assuming, for
example, in addition to (A.1), that: (i) there is a bound on the number of clubs to
which an agent can belong; (ii) for any club in any admissible club structure, the set
of club activities A(C) is compact and (iii) the consumption of private goods sets
Xtq(S) are bounded below for any admissible club structure S of S. More general
economic environments will also ensure compactness but for the purposes of this
example, we prefer to keep the assumptions relatively simple.

(A.2) For each subset of players S ½ N½ the set V (S) \RN+ is compact.22

The following result is an immediate application of Theorem 1.

Proposition 1. (Nonemptiness of the "-remainder core). Let T and B be
positive integers. Assume (A.0)-(A.2) hold. Given " > 0; there exists an integer
´1("; T; B) such that if ½, the pro¯le of the economy, satis¯es the property that k½k ¸
´1("; T; B) then the "-remainder core of the economy is nonempty.

Proposition 1 is most natural if there is some composite commodity { one private
good or, given prices of private goods, money { or if private goods are indivisible so
that all gains from trade in private goods can be realized by trade within coalitions
of bounded sizes. If we require only nonemptiness of the "1-remainder "2-core we
can weaken the restrictions on the economy { players of the same type need only be
approximate substitutes and small groups need only be nearly e®ective. For brevity,
these assumptions will not be made on the primitives of the economy. Thus, instead
of (A.0) and (A.1), for the following two Propositions, we will assume (A.00) and
(A.10):

22Note that for those results which require q-comprehensiveness for q > 0, the sets V (S) cannot
be compactly generated. But had we de¯ned q-comprehensiveness only for each set V (S) \ M¤,
then instead of assuming (A.2) we could assume instead that V (S) is compactly generated. In fact,
other than for further notational complexity, our theorems would remain unchanged by requiring
q-comprehensiveness only on the sets V (S) \ M¤.
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(A.00) For some ± ¸ 0 the players in the set N½[t] = f(t; q) : q = 1; :::; ½tg are
±-substitutes for each other in the game induced by the economy.

(A.10) There is an ¯ ¸ 0 and an integer B so that the game derived from the economy
has ¯-e®ective B-bounded groups.

Then the following result, for the "1-reminder "2-core, follows from Theorem 2.

Proposition 2. (Nonemptiness of the "1-remainder "2-core). Let T and B be
positive integers. Given "2 ¸ 0; assume (A.00), (A.10) and (A.2) hold and (±+¯) · "2.
Given "1 > 0; there exists an integer ´1("1; T; B) such that if ½, the pro¯le of the
economy, satis¯es the property that k½k ¸ ´1("1; T; B) then the "1-remainder "2-core
of the economy is nonempty.

To motivate the above result, one might suppose that, in general, coalition, ¯rm or
club sizes are not bounded nor is there only a bounded number of player types. Even
if group sizes are strictly bounded, all players may di®er. One may view Proposition
2 as providing justi¯cation for the study of the situations described by Proposition 1.

For our next result, to ensure q-comprehensiveness for some q > 0, we assume that
the Lth commodity is a sort of \quasi-money" for which everyone has a separable
preference. Let ytq¡L; and X

tq
¡L(S) denote the restriction of ytq 2 RL and X tq(S)

respectively to their ¯rst (L¡ 1) coordinates. We assume that, for some real number
q¤ 2 (0; 1], the marginal utility of the Lth commodity, for all su±ciently large amounts
of the commodity, is greater than or equal to q¤:

(A.3) ( q¤-comprehensiveness): For good L and all players (t; q) 2 N½; for any state
of the economy (yS ; ®S) it holds that :

(a) X tq(S) = Xtq¡L(S)£R (the consumption set is separable and the projection
of the Lth coordinate is R),23

(b) utq(ytq; ®S ;S) = utq¡L(ytq¡L; ®S ;S)+utqL (ytqL ; ®S;S) for some functions utq¡L(¢; ¢)
and utqL (¢; ¢) (utility is separable),

(c) for a real number q¤; 0 < q¤ · 1; for all players (t; q) the marginal utility of
the (t; q)th player for the Lth good is between q¤ and 1.

(A.4) (per capita boundedness): There is a constant C such that the condition of
per capita boundedness is satis¯ed by the games derived from the economies.

23The condition that the Lth commodity can be consumed in arbitrarily large negative amounts
signi¯cantly simpli¯es the example. This condition could be relaxed but at some cost in terms of
complexity and the length of this paper.
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Assumption (A.3) ensures that starting from any allocation, through redistribution of
good L the wealth can always be transferred to the \remainder players" at a rate that
is allowed to depend on the allocation but is restricted to be between q¤ and 1. This
assumption implies q¤-comprehensiveness of the game derived from the economy.24

A simple example of (A.3) is that utility functions are linear in the Lth commodity
with some positive slope. Speci¯cally, for some positive constant btq for each type t,
q¤ · btq · 1;

utq(xtq; ®S;S) = utq¡L(xtq¡L; ®S ;S) + btqxtqL :
If btq were equal to one for each player then the economy would have \transferable
utility."25 Notice however that our conditions allow much more general forms of the
utility of the Lth commodity, for example,

utq(xtq; ®S;S) = utq¡L(x
tq
¡L; ®

S ;S) + (btq1 + btq2 )x
tq
L for xtqL · 1;

= utq¡L(x
tq
¡L; ®

S ;S) + btq1 xtqL + btq2 (x
tq
L )

1
2 for xtqL ¸ 1

for any values btq1 and btq2 , where q¤ · btq1 · 1 and 0 · btq2 · 1¡btq1 for each (t; q) 2 N½.
The most restrictive part of condition (A.3) may be that there is no lower bound

of the amount of the Lth commodity that can be consumed. It is possible to weaken
(A.3) to the sort of assumption introduced in Hammond, Kaneko and Wooders [23],
that the endowment is preferred to any bundle containing only indivisible (in our case,
club) goods but, for our purposes here, we prefer to avoid this additional complexity.26

The next result follows from Theorem 3.

Proposition 3. (Nonemptiness of the "-core). Let T and B be positive integers.
Let a per capita bound C and q¤ be positive real numbers. Given " > 0; assume
that (A.00), (A.10), (A.2)-(A.4) hold and (± + ¯) < ". Then there exists an integer
´2("¡ (± + ¯); T; B; C; q¤) such that if ½; the pro¯le of the economy, satis¯es k½k ¸
´2("¡ (± + ¯); T;B; C; q¤) then the "-core of the economy is nonempty.

4.2 Further applications.
The class of economies de¯ned above is very broad. The results can be applied to
extend results already in the literature on economies with coalition structures, such

24Such an assumption, in the literature on private goods economies with indivisibilities, goes back
at least to Broome [7]. It was introduced in the club/local public good literature in several papers
due to Wooders, for example [61].

25It would be more appropriate, in some respects, to reserve the term \games with side payments"
to the situations permitted by (A.3) since, according to the common usage of the words, (A.3)
permits side payments while \transferable utility" requires that the side payments can be made at
a one-to-one rate.

26Were we to weaken (A.3) we could also modify our notion of q-comprehensiveness so that it is
required only on the sets V (S) \ M¤ for some appropriate set M¤. See also footnote 20.
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as those with local public goods (called club economies by some authors), cf., Shubik
and Wooders [52].27

For example, there are a number of papers showing core-equilibrium equivalence
in ¯nite economies with local public goods and one private good and satisfying strict
e®ectiveness of small groups, cf., Conley and Wooders [10] and references therein.
In these economies, from the results of Wooders [60] and Shubik and Wooders [54],
existence of approximate equilibrium where an exceptional set of agents is ignored
is immediate. (Just take the largest subgame having a nonempty core and consider
the equilibria for that subeconomy; ignore the remainder of the consumers.) Our
results allow the immediate extension of these results to results for all su±ciently
large economies { no restriction to replication sequences is required.

5 Conclusions.
Except in certain idealized situations, cores of games are typically empty. This has the
consequences that important classes of economies typically have empty cores and a
competitive equilibrium does not exist. Examples include economies with indivisibil-
ities and other nonconvexities, economies with public goods subject to crowding, and
production economies with non-constant returns to scale. The standard justi¯cation
for convexity, assumed in Arrow-Debreu-McKenzie models of exchange economies, is
that the economies are \large," rendering nonconvexities negligible { the convexifying
e®ect of large numbers. Similarly results on nonemptiness of approximate cores rely
on large numbers of players and the balancing e®ect of large numbers. An important
aspect of our results in this paper is that they are for arbitrary games and the bounds
depend on the parameters describing the games; the compact metric space of player
types assumed in previous work is a special case. Moreover, our approach allows both
widespread externalities and uniform results.

It appears that the framework of parametrized collections of games and our ap-
proach will have a number of uses. In ongoing research this framework is used to
demonstrate further market-like properties of arbitrary games28: approximate cores
are nearly symmetric (treat similar players similarly); arbitrary games are approxi-
mately market games and; arbitrary games satisfy a \law of scarcity," dictating that
an increase in the abundance of players of a given type does not increase the core
payo® vectors to members of that type. In addition, some initial results have been
obtained on convergence of cores and approximate cores. A particularly promising
direction appears to be the application of ideas of lottery equilibrium in games of

27The results of this paper are easily available in Shubik and Wooders [53], on-line on the second
author's web page.

28See Shapley and Shubik [48], [49] for seminal results of this nature and Wooders [64], [65] for
more recent references to related results in the context of pregames and economies with clubs/local
public goods.
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Garratt and Qin [19] to parameterized collections of games. Another possible appli-
cation is to games with asymmetric information, as in Allen [1], for example, and
Forges, Heifetz and Minelli [18].29

6 Appendix.

6.1 Mathematical foundations: Partition-balanced pro¯les.
This subsection formalizes a key idea about pro¯les that underlies the nonemptiness
of approximate cores of large games. Throughout this subsection, let the number of
types of players be ¯xed at T . Thus, every pro¯le f has T components and f 2 ZT .
Our key de¯nitions follow.

B{partition-balanced pro¯les. A pro¯le f is B-partition-balanced if any game (N; V ) 2
Gq((0; T ); (0; B)) where the pro¯le of N is f (that is, jN [i]j = fi for any i = 1; ::; T )
has a nonempty core.

replicas of a pro¯le. Given a pro¯le f and a positive integer r; the pro¯le rf is called
the rth replica of f:

The Lemma 1 below is a very important step. It states that, for any pro¯le
f; there is a replica of that pro¯le that is B-partition-balanced. The smallest such
replication number is called the depth of the pro¯le.

Lemma 1. (Kaneko and Wooders, 1982, Theorem 3.2 - The partition-
balancing e®ect of replication). Let B be a positive integer and let f be any
pro¯le. Then there is an integer r(f;B); the depth of f , such that, for any positive
integer k, the pro¯le kr(f;B)f is B-partition-balanced.

We refer the reader to Kaneko and Wooders [27] for a proof.30 For a recent discussion
and an interesting application of this sort of result to dynamic matching processes,
see Myerson [40]. The following concept of "-B-partition-balanced pro¯les completes
our construction.

"-B-partition-balanced pro¯les. Given a positive integer B and a non-negative real
number "; 0 · " · 1; a pro¯le f is "-B-partition-balanced if there is a subpro¯le f 0 of
f such that kf 0k

kfk ¸ 1 ¡ " and f 0 is B{partition-balanced.

The next result is key: given " > 0 and B; any su±ciently large pro¯le is "-B-
partition-balanced. Note that this result is uniform across all large pro¯les.

29We are grateful to Francoise Forges for pointing out this possible application.
30The reader may also derive the proof from [60], Lemmas 3 and 5.
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Fundamental Proposition. (The partition-balancing e®ect of large num-
bers). Given a positive integer B and a positive real number "; 0 < " · 1; there is a
positive integer k("; B) such that any pro¯le f with kfk ¸ k("; B) is "-B-partition-
balanced.

A technical lemma is required. Denote by k¢k the sum-metric in RT , that is,
for x; y 2 RT ; kx¡ yk :=

P
i jxi ¡ yij. Let us consider the simplex in RT+: 4+ :=n

¸ 2 RT+ :
PT
i=1 ¸i = 1

o
: For any positive integer ´; let us de¯ne the following ¯nite

set in the simplex:
4´ :=

n
x 2 4+ : ´x 2 ZT+

o
:

Finally, let us de¯ne ´(") = min
n
´ 2 Z+ : ´ ¸ T

"

o
. Now we can state Lemma 2.

Lemma 2. For each " > 0 and for any f 2 RT+ there is a vector g 2 RT+ satisfying
g · f; kfk ¡ kgk = kf ¡ gk · " kfk and g

kgk 2 4´("):

Proof of Lemma 2: Let us ¯rst prove that (1+")4+ ½ 4´(")+" 4+: Consider any
a = (a1; ::; aT ) 2 (1 + ")4+: (That is

PT
i=1 ai = 1 + " and ai ¸ 0 for each i = 1; ::; T:)

Now for any i let us consider ai = li
´(") + pi, where li is a nonnegative integer and

0 · pi < 1
´(") : Then

PT
i=1 pi <

T
´(") · " and hence

PT
i=1 li > ´("). Now consider any

vector of nonnegative integers (l¤1; ::; l¤T ) such that l¤i · li for any i and
PT
i=1 l¤i = ´(").

By construction ( l
¤
1
´(") ; ::;

l¤T
´(")) 2 4´(") and (a1 ¡ l¤1

´(") ; ::; aT ¡ l¤T
´(")) 2 "4+. Therefore

a = (a1; ::; aT ) = (
l¤1
´(")
; ::;

l¤T
´(")

) + (a1 ¡ l¤1
´(")
; ::; aT ¡ l¤T

´(")
) ½ 4´(") + "4+:

Now given a pro¯le f , observe that f
kfk 2 4+ ½ (4´(") + " 4+) 1

1+" . Therefore
there exists h 2 1

1+"4´(") such that f
kfk 2 (fhg + "

1+"4+): Now, de¯ne g := h kfk :
Then g · f and, by construction, g

kgk = (1 + ")h 2 4´("): Moreover kfk¡kgk
kfk =

1 ¡ 1
1+" =

"
1+" < ":

Proof of Fundamental Proposition: Given a positive integer ´; we ¯rst de¯ne
an integer that will play an important role in the proof. Arbitrarily select x 2 4´
and de¯ne y(x) := ´x 2 ZT+: Since y(x) is a pro¯le, by Lemma 1 there is an integer
r(y(x); B) such that for any integer k the pro¯le kr(y(x); B)y(x) is B-partition-
balanced. There exists such an integer r(y(x); B) for each x 2 4´: Since 4´ contains
only a ¯nite number of points, there is a ¯nite integer M(´;B) such that M (´;B)

r(y(x);B) is
an integer for any x 2 4´.
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By Lemma 2, given "2 > 0; there exists a positive integer ´0 := ´( "2); such that for
any f 2 RT+ there exists a vector g 2 RT+ satisfying

g · f;
kfk ¡ kgk = kf ¡ gk · "

2 kfk and
g
kgk 2 4´0:

Arbitrarily select f 2 RT+ and let g 2 RT+ be a vector satisfying the above condi-
tions. De¯ne y¤ := ´0 gkgk . Since g

kgk 2 4´0 ; it holds that y¤ 2 ZT+: Therefore y¤ is a
pro¯le. Moreover, by the choice of M(´0; B); the kM(´0; B)th-replica of the pro¯le y¤
is B-partition-balanced for any positive integer k:

Observe that there is an integer k0; possibly equal to zero, such that

k0M(´0; B)y¤ · g < (k0 + 1)M(´0; B)y¤:

De¯ne
f 0 := k0M(´0; B)y¤ = k0M(´0; B)´0

g
kgk:

Obviously, f 0 is a pro¯le (f 0 2 ZT+) and f 0 · g · f: Suppose that k0 > 0: (This is the
only relevant case since we are conerned only with \su±ciently large" pro¯les { that
is, those pro¯les for which k0 is greater than zero. See below.) Then

f 0

kf 0k =
g

kgk and kgk ¡ kf 0k = kg ¡ f 0k ·M(´0; B)´0:

Moreover, the pro¯le f 0 is B-partition-balanced since it is a replica of the pro¯le y¤:
Now, de¯ne k("; B) :=M(´0; B)´0 2" : If kfk ¸ k("; B); then

k0 > 0; f 0 · g · f ,
kf ¡ gk · "

2 kfk ; and
kg ¡ f 0k ·M(´0; B)´0 · "

2 kfk :

Therefore kfk ¡ kf 0k = kf ¡ f 0k · " kfk : Thus f 0 is a subpro¯le of f , kf 0k
kfk ¸ 1 ¡ ";

and f 0 is B-partition-balanced.

6.2 Proofs of the Theorems.
Proof of Theorem 1: Fix the number of types T and consider the bound k("; B)
from the Fundamental Proposition. Let ´1("; B; T ) := k("; B): Let (N;V ) be a game
with jN j ¸ k("; B). Denote the pro¯le of N by f: By the Fundamental Proposition,
f is "-B-partition-balanced. That is, there is a B-partition-balanced subpro¯le f 0

of f such that kf 0k
kfk ¸ 1 ¡ ": Now select some S ½ N such that jS [i]j = f 0i for any
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i = 1; ::; T: Then jN j¡jSj
jN j · " by choice of S and the subgame (S; V ) has a nonempty

core. Thus the "-remainder core of (N; V ) is nonempty.

Proof of Theorem 2: For any S ½ N de¯ne V 0(S) :=
T
¾¡1¿ (V (¿ (S))); where

the intersection is taken over all type-preserving permutations ¿ of the player set
N . Then (N; V 0) 2 Gq((0; T ); (¯;B)). Moreover, from the de¯nition of V 0(S) it fol-
lows that V 0(S) ½ V (S): (Informally, taking the intersection over all type-preserving
permutations makes all players of each approximate type no more productive than
the least productive members of that type.) From the de¯nition of ±-substitutes, it
follows that H1[V 0(S); V (S)] · ± for any S ½ N .

Now for any S ½ N , de¯ne V 00(S) := cq(V 0(S;B)). Then, by construction,

(N;V 00) 2 Gq((0; T ); (0; B)):
Moreover,

V 00(S) ½ V 0(S) ½ V (S)
and

H1[V 00(S); V (S)] · H1[V 00(S); V 0(S)] +H1[V 0(S); V (S)] · ¯ + ±:
By Theorem 1, if jN j ¸ ´1("; T; B) then the "1-remainder core of the game (N; V 00)

is nonempty. That is, there exists S ½ N such that jN j¡jSj
jN j · "1 and such that (S; V )

has a nonempty core. Let x be a payo® vector in the core of the game (S; V 00). Since
V 00(S) ½ V (S), the payo® vector x is feasible for (S; V ). Since H1[V 00(S); V (S)] ·
¯ + ± and x is in the core of (S; V 00), x is (¯ + ±)-undominated for the game (S;V ).
Since (¯ + ±) · x2 and jN j¡jSj

jN j · "1, x is in the "1-remainder "2-core of (N; V ).

Proof of Theorem 3: As in the proof of Theorem 2 ¯rst construct the game
(N; V 00) 2 Gq((0; T ); (0; B)). As noted in the proof of Theorem 2, V 00(S) ½ V (S) and
H1[V 00(S); V (S)] · ¯ + ± for any S ½ N . In addition, the game (N; V 00) has a per
capita bound of C. To simplify notations let us de¯ne "1 = "¡(¯+±) > 0. Recall that
we required 2(¯+ ±) < m¤. Assume ¯rst that 2"1 · m¤: Thus " = ("1+¯+ ±) < m¤.

Applying Theorem 1 for "0 := q
BC "1 to the game (N; V 00) we found that for

jN j ¸ ´1("0; B; T ) there is some subset of players S ½ N with jN j¡jSj
jN j · "0 such that

the game (S; V 00) has a nonempty core. Let x be a payo® vector in the core of (S; V 00).
We now construct a payo® vector y 2 RN for the game (N; V 00): For i 2 S, de¯ne
yi := xi ¡ "1 and for i =2 S, de¯ne yi := BC ¡ "1. Observe that y is in the "1-core of
the game (S; V 00).

We next need to show that y 2 V (N). Since jN j¡jSj
jN j · "0 = q

BC "1, it holds that

q"1 jN j ¸ BC(jN j ¡ jSj):
Since q · 1, it follows that

q"1 jSj ¸ (BC ¡ "1)(jN j ¡ jSj):
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Informally, this means that we can take "1 away from each player in S, transfer this
amount to the players in NnS at the rate q; and increase the payo® to each player
in NnS to BC ¡ "1: Therefore since x 2 V 00(S) ½ V (S); by superadditivity and by
q-comprehensiveness of payo® sets it holds that y 2 V (N ).

We now prove that the payo® vector y is "1-undominated in the game (N; V 00).
(We then proceed to show that y is "-undominated in the game (N; V )). The strategy
of the proof is to show that if y is "1-dominated in the game (N; V 00) then it can be
"1-dominated by some coalition (to be called) A ½ S:We thus obtain a contradiction.
The proof proceeds through two steps.

The ¯rst step is to construct the coalition A. Suppose that y is "1-dominated
in the game (N; V 00) by some coalition W: Speci¯cally, suppose there exists a payo®
vector z such that

z 2 V 00(W ) = cq(V 0(W ;B)) and

zW >> yW + ~1W "1:

Since z 2 V 00(W ) there exists some partition
n
W k

o
of W;

¯̄
¯W k

¯̄
¯ · B and some payo®

vector z0 2 P
k V 0(W k) such that z can be obtained from z0 by making \transfers" at

the rate q between players in W: Let

A :=
[ n
W k :W k ½ S

o
and let AL :=

[ n
W k :W knS 6= ;

o
;

that is, A consists of those members of subsets in fW kg that are contained in S and
AL consists of those members of subsets of fW kg that contain at least one player
from NnS:

The second step is to show that the setA is nonempty and the player set [Wk2A can
"1-dominate the payo® vector y. Since y is in the "1-core of the subgame (S; V 00) it is
clear that the coalitionW must contain at least one member of NnS; if not, a contra-
diction is immediate. Therefore the set AL must be nonempty. Observe that for any
W k ½ AL and x0 2 V 0(W k); since

¯̄
¯W k

¯̄
¯ · B it holds that

P
i2Wk x0i · BC: From the

assumption that 0 2 V (fig), the construction of y and the fact that zW >> yW+~1W "1,
it follows that zi >> 0 for all i 2 W k. Since there exists, however, i 2 W knS such
that zi >> yi + "1 = BC, we have

P
i2Wk0 zi > BC

¯̄
¯W k0 \NnS

¯̄
¯ > BC: From per

capita boundedness, supx002V (Wk0)
P
i2W k0 x00i · BC. This is a contradiction. Thus, z

can be feasible in V 00(W ) only by some transfers from the players in the set [Wk2AW k
to the players in the set [Wk2ALW k: This implies that the set A is nonempty. More-
over the coalition A is not a net bene¯ciary of transfers: This implies that there is a
payo® vector z00 2 V 00([W k2AW k) such that for all players i 2 [Wk2AW k;

z00i ¸ zi > yi + "1:
Since A ½ S; this is a contradiction to the construction of y as a payo® vector in
the "1-core of the game (S; V 00): We conclude that y is "1-undominated in the game
(N; V 00).
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Since the payo® vector y is "1-undominated in the game (N; V 00), for jN j ¸
´1( qBC "1; B; T ) the payo® vector y is in the "1-core of the game (N; V 00). This implies
that y is feasible and ("1 + ¯ + ±)-undominated in the initial game (N; V ), providing
that jN j ¸ ´1( qBC "1; B; T ). Let ´2("1; B; T; C; q) := ´1( qBC "1; B; T ). Thus, we proved
that for jN j ¸ ´2("¡ (¯ + ±);B; T;C; q) the "-core of the game (N; V ) is nonempty.

For "1 > m
¤
2 let us de¯ne ´2("¡ (¯+ ±); B; T; C; q) := ´2(m

¤
2 ; B; T; C; q). Then for

jN j ¸ ´2("¡ (¯ + ±); B; T; C; q) again the "-core of the game (N; V ) is nonempty.

6.3 Final Example.
This example shows indispensability of the condition in Theorem 3 that q is greater
than zero, thus clarifying the need for this condition in Theorem 3 in contrast to
Theorem 1 and Theorem 2.

Example A. The positivity of q. Consider a sequence of games without side pay-
ments (Nm; V m)1m=1 where the mth game has 2m+1 players: Suppose that any
player alone can earn only 0 units or less. Suppose that any two-player coalition
can distribute a total payo® of 2 units in any agreed-upon way, while there is no
transferability of payo® between coalitions. Suppose only one- and two-player
coalitions are e®ective. Then the game is described by the following parame-
ters: q = 0; T = 1; B = 2; ± = ¯ = 0: Moreover, the game has per capita bound
C = 1: Thus the game satis¯es strict small group e®ectiveness and per capita
boundedness. However, the 1

3-core of the game is empty for arbitrarily large
values of m: (At any feasible payo® vector, at least one player gets 0 units and
some other player no more than 1 unit. These two players can form a coalition
and gain 1

2 each.)
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