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Abstract
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1 Introduction

Over the past decade two strands of time series literature related to measuring comovements among

nonstationary variables and incorporating nonlinear behaviour into traditional linear models have

been put together, originally in Granger and Terasvirta (1993) and Balke and Fomby (1997). The

combination has a sound economic grounds. Although the concept of cointegration is related to the

long-run statistical equilibrium relationship between nonstationary variables and assumes linear

adjustment towards the attractor set in the presence of short-run deviations, economic behaviour

of agents may lead to a possibility that the adjustment process behaves di¤erently depending on

the size of deviation of the system from the equilibrium. The presence of (asymmetric) transaction

costs, heterogeneity of agents, institutional rigidities may all lead to such situations. For example,

in the framework of De Long, Shleifer, Summers and Waldmann (1990) with heterogeneity of

agents�expectations the evidence that noise traders generally engage in momentum trading (Hong

and Stain, 1999), may lead to market overreactions following the arrival of news. This in turn

pushes the asset values further away from the fundamental equilibrium. In their model, Campbell

and Kyle (1993) show that the larger the expected degree of arbitrage is, the faster the price

response to the disequilibrium will be, implying di¤erent rates of the error-correction. On the

other hand, a vast literature in macroeconomics also documents the presence of asymmetries in

the money-output and unemployment-output relationships when they are modelled in univariate

framework. Since the causality is expected to run in both directions the next step to investigate

is whether the nonlinearity is present in the system framework.

Estimation and inference in the class of stationary smooth transition autoregression models

has been thoroughly investigated and is extensively reviewed in Granger and Terasvirta (1993)

and Van Dijk, Terasvirta and Franses (2001). However, little was done in the nonstationary vector

framework. Popularity of smooth transition vector error correction models (STVECM) in applied

studies has grown over the past decade even though the underlying statistical theory was unde-

veloped. Swanson (1998), Rothman, Franses and Van Dijk (2001), Chen and Wu (2005) among

others, estimated the models assuming the existence of the VECM representation and employed
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the standard Luukonen, Saikkonen and Terasvirta (LST) (1988) type of test for nonlinearity,

which was developed in stationary univariate setting. The justi�cation in terms of stability of the

Markovian representation of the model and existence of the VECM representation came recently

in studies by Saikkonen (2005, 2008) and Kristensen and Rahbek (2008), but testing procedure

for detecting the presence of smooth-type nonlinearity is still an open area of research. Hansen

and Seo (2002) is an early contribution, although they consider threshold-type nonlinear VECM.

Kapetanios, Snell and Shin (2006) proposed Lagrange multiplier (LM)-type of test which is based

on the LST-type of Taylor series approximation of the nonlinear function. They derive a non-

standard limiting distribution of the test, but this is achieved under very strong assumptions on

the long-run and short-run exogeneity of all but one variable, hence their test is essentially single-

equation oriented. Moreover, their test is based on a polynomial approximation of the transition

function and statistical inference may be a¤ected by the approximation errors depending on the

true values of the nonlinear parameters (i.e., how distant the true data generating process is from

the local alternative). The proposed test also does not solve the non-indenti�ability of the delay

parameter related to the lag value of the variable within the nonlinear function under the null

hypothesis, where the standard suggestion in univariate stationary situation is to choose the value

of the parameter which minimizes the overall p-value from the linearity test. However, the limiting

distribution of the test statistic is obtained such that it does not take into account the nuisance

character of the delay parameter and Kapetanios, Snell and Shin (2006) set the value of the delay

parameter to be equal to one.

In the present paper we extend this literature by examining the LM-type test against exact

speci�cation of nonlinearity under the alternative in a more general setup. We consider the

generalized model with multiple cointegrating vectors and allow for di¤erent transition functions

across equations under the alternative, providing a lot of �exibility in the model design. Since

the transition parameters of the model cannot be identi�ed under the null hypothesis, this paper

proposes an optimal LM test in the spirit of Hansen (1996), also allowing to select the delay

parameter in a consistent way. The null asymptotic distribution is derived using empirical process

theory of Doukhan, Massart and Rio (1995) and bootstrap procedures were used to approximate
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the limit. Monte Carlo simulations show a relatively good performance of the test even for sample

sizes as small as 100 observations. In situations when the power of the test is small, the procedure

can also be seen as more conservative in a model building framework since the non-rejections

happen when the values of the parameters in the nonlinear function are such that the large

portion of observations is within one extreme linear regime. In such instances the parameters of

the nonlinear model will be estimated with a large error (for STVECM simulations see Kristensen

and Rahbek, 2008), which in turn results in an inferior forecast relative to linear models. The

bene�ts of using nonlinear models from the forecast perspective in such situations are rather small

(see for example Chapters 7 and 8 in Terasvirta, 2006) and the present procedure can be seen as

a useful �rst step in the model selection.

Another study that uses direct LM-type test for nonlinearity is Seo (2004), who considers test-

ing for nonlinearity in systems with a single cointegrating vector and unique transition function

across equations. Relative to their approach, we consider a more general model under the alterna-

tive, which results in a di¤erent formulation of the test statistic. But more importantly, we derive

the statistic under a di¤erent set of assumptions (with weaker conditions on the moments of the

error process, but assuming its independence), which are common in the nonlinear literature. This

allows us to obtain a test with respect to a well-de�ned nonlinear alternative, whereas the test

proposed in Seo (2004) does not have the same property since under the formulated assumptions

the stability and hence the existence of the nonlinear VECM is not ensured. Simulation evidence

also shows that the transformation of the nuisance space proposed in their paper does not a¤ect

the performance of the test, but that interpretation of the true value of the nuisance parameter

on the basis of transformation may be .

The structure of the paper is the following. Section 2 introduces the STVEC model and

discusses existing results on the stability of the model and asymptotic properties of the estimators.

In section 3 the LM test is formulated, asymptotic distribution of the test is derived and methods

for its approximation are discussed. Section 4 presents �nite sample properties of the test. Section

5 contains an empirical application and section 6 concludes. All proofs are presented in the

appendix.
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A few words on notation. In the following j � j denotes the scalar Euclidean norm, jj � jj denotes

matrix/vector Euclidean norm and jj � jjp denotes Lp-norm. For some matrix �, � = �
�
�0�
��1

and orthogonal complement of � is de�ned as �?: Also, to save space in all proofs unless stated

speci�cally Zt�1 = Zt�1(�0) is (r � 1) vector, 	t(
) = 	(Zt�1(�0); 
) is (k � k) matrix and zt�1

and  t(
) are respective scalar elements.

2 The Model

Let the k�dimensional discrete time vector process fXtg be generated on the probability space

(
;F ; P ) according to the following data generating process (DGP):

�xt= G(Zt�1(�); �)+

pX
j=1

�j�xt�j+�t (1)

or in an extended version:

�xt=

2664	
0BB@
2664 Ir

�0

3775xt�l; 

1CCA d+ �

3775
2664 Ir

�0

3775xt�1+ pX
j=1

�j�xt�j+�t (2)

where �xt; �t2 Rk and the (k � r) cointegrating vector �� is assumed to be uniquely normalized

such that �� =
�
Ir �

�0
and hence Zt�1(�) =

�
Ir �

�0
xt�1, and Zt�1(�)2 Rr. l is the delay

parameter which is assumed to belong to a compact set L. We set l = 1 in the subsequent analysis

since the simpli�cation does not a¤ect any of the results, but when performing the test, l should

be included in the nuisance parameter space.

Further, 	(Zt�1(�); 
) is a (k � k) diagonal matrix of transition functions:

	(Zt�1(�); 
) = diagf  1(Zt�1(�); 
1); :: k(Zt�1(�); 
k)g, where each  j is a (Borel) mea-

surable function:  j : R
r ! [0; 1]; and is assumed to be a three times continuously di¤erentiable

function bounded between zero and one. For example, in the case of most commonly used expo-
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nential transition function with two cointegrating vectors we have:

 j(Zt�1(�); 
j) = 1� expf�Zt�1(�)
0

2664 
j1 0

0 
j2

3775Zt�1(�)g; 
j2 Rr: (3)

Similarly, for the logistic function with two cointegrating vectors:

 j(Zt�1(�); 
j) =

�
1 + expf�

�

j1 
j2

�
Zt�1(�)g

��1
; 
j2 Rr (4)

The model parameters are then:

� 2 R(k�r)�r; d; � 2 Rk�r;�j2 Rp�p; 
 2 Rkr�1, such that parameter � de�ned in (1) is:

� = (vec(d)
0
; vec(�)

0
; vec(
))

0
; � 2 R3kr.

Finally, errors are assumed to be an i.i.d. process with E[�t] = 0 and E[�t�0t] = 
, where 
 is

�nite, k�dimensional positive de�nite covariance matrix.

The speci�cation in (2) and (3)/(4) shows that the model allows for a great source of �exi-

bility since each cointegrating vector may induce a di¤erent nonlinear response in variables and

the response can vary over the variables. For example, in the case of the monetary model of the

exchange rate determination, which is analyzed in section 5, it can be expected that the exchange

rate adjusts to disequilibrium in a symmetric manner since the agents should react in the same

way to overvaluation and undervaluation situations, implying exponential type of adjustment to

disequilibrium. On the other hand, changes in money supply in response to disequilibrium can be

asymmetric since the overvaluation and undervaluation of the exchange rate may have di¤erent

e¤ects given the state of economy, which gives a possibility for the logistic type of adjustment. An-

other di¤erence in comparison to conventional smooth transition type of models is that threshold

parameter is set to zero, which reduces the dimensionality of the nuisance parameter space. This

can be done since we analyze cointegrating setup where the transition variable is the lagged value

of the cointegrating relationship so that transition function should (in most of the applications)

be centered to the equilibrium in order to capture the e¤ect of deviations from the equilibrium

(see more in Van Dijk, Franses and Terasvirta, 2002). The cointegration space is assumed to be
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known and equal to r:

Stability properties of the model in (1) have been recently investigated by Saikkonen (2005,

2008) and Kristensen and Rahbek (2008). They show that under mild assumptions on bound-

ness and asymptotic domination of the nonlinear functions  (�) and existence of moments of

the random process f�tg, the stochastic process Yt= (X
0
t�
�;�X 0

t�
�
?; ::::X

0
t�p+1�

�;�X 0
t�p+1�

�
?)

0is

geometrically ergodic and consequently there exist a set of initial values of Yt such that the process

Yt is strictly stationary and absolutely regular with geometrically decaying mixing numbers. The

su¢ cient condition for stability is expressed in terms of the joint spectral radius �(M1;M2), where

(kp�kp) matrices M1;M2 are formed from transformation of the characteristic polynomials from

both extreme (linear) regimes, see Saikkonen (2008):

M1(L) =
h
(1� L)

�
Ik �

Pp
j=1 �jL

j
�
�
���L : (1� L)

�
Ik �

Pp
j=1 �jL

j
�
��?

i2664 ��0

��0?

3775
M2(L) =

h
(1� L)

�
Ik �

Pp
j=1 �jL

j
�
�
��(�+ d)L : (1� L)

�
Ik �

Pp
j=1 �jL

j
�i2664 ��0

��0?

3775.
The stability condition is that �(M1;M2) < 1:

Kristensen and Rahbek (2008) have derived asymptotic theory for the likelihood estimators of

STVEC models. They prove under mild restrictions, which are satis�ed by the transition functions

of the type under analysis, that the estimated parameter b� is superconsistent in all directions apart
from one where it is T

3
2 , whereas estimates of all other parameters are

p
T -consistent. In addition,

they showed that the short-run and long-run parameters are not asymptotically orthogonal unless

the su¢ cient (orthogonality) condition holds. The condition will be satis�ed provided that the

series are demeaned prior to estimation, as in De Jong (2002).

The maximum likelihood (ML) estimates can be obtained as follows. Let the set of all para-

meters in (1) be de�ned as # = (�; d; �; 
;
), where � = (�;�):The log-likelihood (abstracting

from constant term) is given as:

l(#) = �T
2
log j
j � 1

2

TX
t=1

�t (#)
0

�1�t(#) (5)
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ML estimation of STVECMs is non-standard due to the presence of cointegrating vector within

the transition function and due to a well-documented problem with estimation of the transition

parameters 
, see Van Dijk, Franses and Terasvirta (2002). The problem arises since the estimate

of 
 tends to be in�ated and convergence of the likelihood can be problematic if it is maximized

with respect to all parameters. To reduce dimensionality, the MLE estimates can be obtained

using either the grid search over the set of possible values of (�; 
) as in Hansen and Seo (2002)

or using the direct search methods such as the genetic algorithm or the simulated annealing,

and then other parameter will be obtained as a simple OLS estimates for the �xed (�; 
): The

procedure is repeated until convergence is achieved. Finally, note that even though we consider

the LM statistic which is based on the restricted linear VECM, the limiting distribution of the

test statistic is derived assuming the existence of the stable STVECM under the alternative and

the stability conditions should be checked prior to any further inference on STVECM following

the rejection of linearity.

3 Testing Procedure

The question of interest is whether the nonlinear part of the model is signi�cant, which can

be formulated as H0: d=0 in equation (2). However, under the null hypothesis the transition

parameter 
 will be unidenti�ed and likelihood function will be �at. As shown in Davies (1987),

Andrews and Ploberger (1994) and Hansen (1996) the classical likelihood ratio (LR), LM and

Wald statistics will not have the usual chi-square asymptotic null distribution in such a case.

In order to �nd the limiting distribution the general idea is to treat some statistic Qn(
) as a

random function on the space 
 2 � and then use a functional h(Qn) and the continuous mapping

theorem (CMT) to obtain the limit under the null, where h(�) : �! R is a random function on

�; continuous with respect to the uniform metric and monotonic in the sense that if some Y1(
) <

Y2(
), then h(Y 1) < h(Y 2) and if Y (
)!1 for some subset of � with a positive measure �,

then h(Y )!1. Davies proposed using sup
2�Qn(
) as h(�), whereas Andrews and Ploberger

suggested using average and exponential versions
R
�
Qn(
)dJ(
) and ln(

R
�
exp( 12Qn(
))dJ(
)) for
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some chosen integrable weight function of the values of 
 (see also Altissimo and Corradi, 2002 for

further extensions). In the present paper we apply their approach and provide conditions under

which the limiting distribution is derived for the STVEC models.

The standard LM statistics is de�ned as:

LMT (
) = vec(fsT (
))0 �eVT (
)��1 vec(fsT (
)) (6)

where fsT (
) is the (concentrated with respect to 
) score function evaluated at the null hy-
pothesis with the covariance matrix eVT (
). The score1 vector sT (
)(1x(k�r)r+(pk+2r)k ) for model
in (1) is de�ned as:

sT;�(
)(1x(k�r)r ) =
1

T

TX
t=1

�0t

�1

2664
�
	(Zt�1(�); 
)d+ �

� �
x02;t�1
Ir

�
+�

Z 0t�1(�)d
0
Ik

� �
x02;t�1


@vec(	(Zt�1(�);
)

@Z

�
3775

sT;�j (
)(1xk2 ) =
1p
T

TX
t=1

�0t

�1
(�x0t�j 
 Ik)

sT;�(
)(1xkr) =
1p
T

TX
t=1

�0t

�1 �

Z 0t�1(�)
Ik
�

sT;d(
)(1xkr) =
1p
T

TX
t=1

�0t

�1 �

Z 0t�1(�)
	(Zt�1(�); 
)
�

where the chain rule for matrix di¤erentiation is used to obtain sT;�(
) and vector of variables

xt is partitioned as xt = [x01;tx
0
2;t]

0 according to the normalization of the cointegrating vector.

Evaluated at the null hypothesis the only non-zero part of the score fsT (
) will be:
fsT (
) = 1p

T

TX
t=1

e�0te
�1 �Z 0t�1(e�)
	(Zt�1(e�); 
)� (7)

We impose the following assumptions:

Assumption 1:

1. The k-dimensional discrete time vector process f�tg is i.i.d. with E[�t] = 0 and E[�t�0t] =


, where 
 is a �nite, k-dimensional positive de�nite covariance matrix. The marginal

distribution has a (Lebesgue) density which is bounded away from zero on compact subsets

1 Note that the asymptotics of 
 are standard and does not in�uence the asymptotics of the mean equation
parameters so that for the sake of clarity we will not consider part of the score with respect to this parameter.
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of Rk and for all moments up to 4 + �, suptE
�
jj�tjj4+�

�
<1 for some � > 0;

2. fZt;�xtg is a vector sequence of strictly stationary absolutely regular random variables with

geometrically decaying mixing numbers: �n = O(bn); for some 0 < b < 1;

3. Let (�0; �0) be the true parameter value under the null for which the likelihood is uniquely

maximized. Then, under the null hypothesis



(e���0)


 and 


pT (e� � �0)


 are op(1);

4.  j(Zt; 
j) is three times continuously di¤erentiable in 
; Z and has bounded partial deriva-

tives such that: sup
2�� j j(Zt; 
j)j 2[0; 1]; sup
2�� jj5
 j(Zt; 
j)jj � cjjZtjj; sup
2�� jj5

0

 j(Zt; 
j)jj � cjjZtjj, sup
2�� jj 5Z  j(Zt; 
j)jj � cjjZtjj for di¤erent constants c;

5. V (�; d; �; 
) = UT
PT

t=1E
�
sT (
)sT (
)

0�
U 0T has the smallest eigenvalue bounded away from

zero in probability on a compact sets �0�0�B0 and �0�d0�B0 for all 
 2��; where �0 2 B0

and UT is diagonal normalization matrix containing convergence rates.

6. 1p
T
x[Ts] converges weakly to a vector Brownian motion W � with a covariance matrix ��,

which has rank equal to p � r: Further, 1p
T
x2;[Ts] converges weakly to a vector Brownian

motion W with a positive de�nite covariance matrix �.

All the assumptions will be satis�ed under both hypothesis. Assumption 1.1. is common

in the literature on stability of the nonlinear VECM. It allows xt to be embedded in a Markov

chain which can be shown to be geometrically ergodic under the joint spectral radius condition.

The condition translates to the standard eigenvalue condition on the characteristic polynomial for

the linear VECM. Assumption 1.2 follows from the stability of the Markov chain, as shown in

Doukhan (1994) and Saikkonen (2005, 2008). Moreover, stability of the Markov chain together

with Assumption 1.1. implies the existence of moments of the processes fZt;�xtg (Theorem 5

in Feigin and Tweedie, 1985, see also Kristensen and Rahbek, 2008) - suptE
�
jjZtjj4+�

�
<1 and

suptE
�
jj�xtjj4+�

�
< 1. Assumption 1.3. follows from the standard linear cointegration litera-

ture since the VECM estimates under the null do not depend on 
. Assumption 1.4. will always be

satis�ed by logistic and exponential functions given in equations (3) and (4). The de�nition of the

Eucledian (Frobenius) norm implies that sup
2�� k	(Zt;
)k2[0; r] and sup
2�� kr
	(Zt;
)k,
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sup
2�� krz	(Zt;
)k are O(kZk). Assumption 1.5. implies that the limit of the covariance ma-

trix of the score under the null for normalized cointegrating vector is positive de�nite, which

under suitable conditions speci�ed bellow ensures that eVT (
) is positive de�nite with probability
approaching 1. Under the null, the assumption follows from the results in linear cointegration

literature and imposes only an additional requirement that the diagonal elements of 	(Zt;
) are

not equal to zero in at least one point in time. Under the alternative, the results hold on the basis

of Theorem 5 in Kristensen and Rahbek (2008) under appropriate scaling. Assumption 1.6. under

the alternative follows from Theorem 3 in Saikkonen (2005) given that nonlinearity is present

only in the adjustment parameters and here we assume that the cointegrating vector is uniquely

normalized. Note that Assumptions 1.4. and 1.5. are imposed on ��, which is a compact subspace

of �. This is required in order to prove the tightness of the �nite dimensional distribution of the

score since contrary to threshold models the nuisance parameter space is in�nite. As discussed in

Hansen (1996), the validity of the assumption in applications depends on whether �� is su¢ ciently

dense in �, otherwise the power of the test may be signi�cantly a¤ected. Seo (2004) proposed a

one-to-one transformation of 
, which yields a compact subspace of the nuisance parameter by

de�nition (although the transformation implicitly restricts to subspace 
 2 [0:5;19]). The simu-

lation evidence, however, does not show any gain from using the aforementioned transformation.

On the other hand, if the transformation is applied following the rejection of linearity, then the

estimated values 
 are interpreted in the wrong way, since, as it will be shown in the simulation

section, the exponential-type nonlinearity is closely approximated by linear model for values of 


larger than 2 and even with the transformation the power of the test remains weak.

In order to obtain the asymptotic distribution of the test statistic, weak convergence of the

(normalized) score vector under the null hypothesis and uniform convergence of the covariance

matrix eVT (
) over 
 2�� are �rst established.
To establish weak convergence of sT (
); the score is seen as an empirical process indexed by


 2��: Su¢ cient conditions for convergence of the process (Andrews, 1994) are:

i. Finite dimensional convergence (�di) holds - for each �nite subset (
1; :::
j) of �
�,fsT (
1)::::fsT (
j)
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converge in distribution;

ii. For totally bounded (pseudo) metric space (��; �), stochastic equicontinuity holds: For all

' > 0;

lim
�!0

lim sup
T!1

P

 
sup

�(f1;f2)<�

ksT (f1)� sT (f2)k > '

!
= 0 (8)

for some f 2 z; where z is a class of functions to be restricted later.

The proof of the weak convergence is based on Doukhan, Massart and Rio (DMR) (1995)�s

invariance principle for �� mixing processes. The proof is essentially related to verifying sto-

chastic equicontinuity since �nite dimensional convergence readily holds from CLT for �� mixing

processes. First, we provide some preliminary results which will be employed to verify conditions

of DMR�s Theorem 1.

Proposition 1 Under Assumptions 1.1, 1.2 and 1.4 the following results hold:

1. E
h
sup
2�� jj�0t


�1 �
Z 0t�1
	(Zt�1; 
)

�
jj2+�

i
<1

2. supt
�
E sup
12��:jj
1�
jj<$ jj�

0
t


�1 �
Z 0t�1
(	(Zt�1; 
1)�	(Zt�1; 
))

�
jj2+�

� 1
2+�

< C$�, for

each 
 2 ��; some small positive constants C and � and for any $ > 0

Given the results of the proposition above, the following proposition characterizes the limiting

behaviour of the score under the null.

Proposition 2 Under Assumptions 1.1, 1.2 and 1.4 and under the null hypothesis:

vec(fsT (
)) = 1p
T

PT
t=1

�
Zt�1(e�)
	(Zt�1(e�); 
)�
�1�t ) S(
); where S(
) is the Gaussian

process indexed by 
 with covariance matrix V (
) and a.s. uniformly continuous sample paths.

Uniform convergence of the covariance matrix eVT (
) over 
 2 ��follows by showing the point-
wise weak law of large numbers and stochastic equicontinuity of VT (
) over the set 
 2 ��and

verifying the uniform convergence of the sample analog eVT (
).
Proposition 3 Under Assumptions 1.1 - 1.6 and under the null:

sup
2��
������eVT (
)� V (
)������ = op(1)

Combining the results from Proposition 2 and 3 it follows that under the null hypothesis:
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LMT (
) =) (V (
)
� 1
2S(
))

0
�
V (
)

� 1
2S(
)

�
= G(
)

0
G(
)

This implies that by the continuous mapping theorem any functional h(LMT (
)):

h(LMT (
)) =) h(G(
)0G(
)),

where G(
)0G(
) is a chi-squared process for each 
.

Since the limiting process depends on the underlying distribution of the data fXtg and its mo-

ments through the covariance V (
), the asymptotic distribution cannot be tabulated and critical

values need to be obtained through simulations. Hansen (1996) provided a proof of asymptotic

validity of conditional transformation of the test statistic h(LMT (
)), which yields an approxima-

tion of the asymptotic p-values of the statistic via bootstrap. We employ residual bootstrap to

approximate the sampling distribution of the statistic. This is in line with the assumption that the

errors are i.i.d. and the procedure should perform well if the actual data is in fact homoscedastic,

as is commonly assumed in the nonlinear VECM literature (Kristensen and Rahbek, 2008).

However, if the true DGP is subject to conditional heteroscedasticity, the approximation may

be adversely a¤ected and in such cases the use of a heteroscedasticity robust statistic is recom-

mended. The standard residual bootstrap is replaced by the �xed design wild bootstrap presented

in Hansen (1996), Kreiss (1997) and Goncalves and Kilian (2004). The �rst order asymptotic

validity of the bootstrap is proven under assumptions of the present model in Theorem 4.2. in

Kreiss (1997, pp. 8). Note that the presence of ARCH type of conditional heteroscedasticity is

admissable for the presented test statistic provided that additional assumptions are imposed.

Assumption 2:

1. The k-dimensional discrete time vector process f�tg is i.i.d. with E[�t] = 0 and E[�t�0t] = 
,

where 
 is �nite, k-dimensional positive de�nite covariance matrix. The marginal distribu-

tion has a (Lebesgue) density which is bounded away from zero on compact subsets of Rk

and for all moments up to 8 + �, suptE
�
jj�tjj8+�

�
<1 for some � > 0;

2. The conditonal variance �t satis�es the condition k�tk � c k�tk2, for a generic constant c.

Assumption 2.1 strengthens Assumption 1.1. requiring boundness of the unconditional mo-

ments of the error process of order slightly higher than eight, which is a common assumption in the
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literature on bootstrapping the conditionally heteroscedastic models. Assumption 2.2. restricts

the class of permitted conditionally heteroscedastic models such that the model under alternative

exists (Saikkonen, 2005, 2008), which will be satis�ed for example by any BEKK (Engle and Kro-

ner, 1995) ARCH formulation (an example is given in Saikkonen, 2007). The heteroscedasticity

robust statistic is obtained by correcting the score vector in (7):

fsT (
) = 1p
T

PT
t=1e�0t �Z 0t�1(e�)
	(Zt�1(e�); 
)��e�0t eHt

� eH 0
t
eHt

��1 eH 0
t

�
Z 0t�1(

e�)
	(Zt�1(e�); 
)�,
where: eHt =

�
Z 0t�1(

e�)
 Ik �x0t�1 
 Ik

�
.

4 Finite sample properties

In this section the �nite sample performance of the statistic is examined via a Monte Carlo experi-

ment. The performance of three statistics - sup
2��LMT (
), ave
2��LMT (
) and exp
2��LMT (
)

is investigated using 1000 repetitions and 200 bootstrap replications within each experiment. The

number of bootstrap replications should be higher in practice, but the choice of 200 was made

in order to save on computation time. We restrict the nuisance parameter space to [0; 50],2 and

obtain the statistic via grid search with 60 grid points. The experiment is performed for sample

sizes T=100 and T =250. Sup statistic can also be obtained using simulated annealing procedure

instead of the grid search, but assessing the merits of such approach is beyond the current scope

of the paper.

First, the nominal size of the test is analyzed. We generate two-variable VECM(1) for sim-

plicity:

�xt= �

2664 1

�

3775xt�1+��xt�1+�t, with � =
2664 0:5 �0:2

0 0:5

3775 :
We set � = �1; �2 = 0:2 and vary �1 between (-0.1,-0.4,-0.7).

The errors are assumed to be homoscedastic �rst and drawn from the independent N(0; 1)

distribution. Since the model is rich in possibilities the nominal size is examined against all possible

speci�cations - ESTR (exponential smooth transition) and LSTR (logistic smooth transition)

nonlinearity in both variables as well as against the speci�cation that contains ESTR adjustment

2 We have also experimented as in Seo (2004) with restricting the grid search over the set [0:05; 1] with 60 grid
points and the obtained results were qualitatively similar to the ones presented here.
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in one and LSTR-type adjustment in the second variable.

P-values are obtained by a simple algorithm where the linear VECM is �rst estimated and

new samples of data xBt are constructed using the parameter estimates, resampled residuals and

initial values. The test statistic is calculated for each resampled data and p-values are obtained

as the percentage of times the bootstrap statistics exceeds the sample statistic.

The results in Table 1 show satisfying properties of the test since the simulated p-values are

close to its nominal size for both samples. There are no clear di¤erences between the speci�cations,

although the test tends to overreject slightly against both the models for high values of the linear

adjustment parameter. Sup statistic also slightly overrejects relatively to other two statistics in

the case of exponential model.

Next, the power of the test is examined by specifying the following simple two-variable DGP:

�xt=

2664	
0BB@
2664 1

�

3775xt�l; 

1CCA d+ �

3775
2664 1

�

3775xt�1+��xt�1+�t, � =
2664 0:54 �0:45

�0:4 0:45

3775 .
where diagonal elements of 	(�) are given in equations (3) and (4). The errors are again

�rst assumed to be homoscedastic and drawn from the independent N(0; 1) distribution. We

�x �=
�
�0:2 0

�0
, � = �1, and reported elements of � were chosen randomly such that the

stability condition is satis�ed for the choice of d.3 The nonlinear adjustment parameter in second

equation is set to (d2 = 0:3) and d1 varies between (-0.1,-0.4,-0.6). The experiment is designed

to capture the power of the test in a less than ideal situation when the adjustment parameters in

one (extreme) regime are small and the adjustment of one of the variables in the second extreme

regime is moderate. Transition parameter 
1 vary between (0:1; 0:4; 0:7; 1; 2) and we set 
2 = 0:2.

We do not consider higher values of 
 since they imply that a large portion of data is (or very

close) to one of the extreme regimes, which a¤ects negatively the power of the test and the general

intuition can be inferred from the present choice. The size is set at 5%.

The results from Table 2a and Table 2b show distinct behaviour between the logistic and

exponential speci�cation. The test against ESTR-type nonlinearity has non-negligible power,

which increases when the nonlinearity is stronger (d1 is higher), but it falls down with the increase

3 Results in Seo (2004) were obtained without taking into consideration the stability of the underlying system.
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in the speed of transition 
1. This is a consequence of the model speci�cation since the higher

value of 
1 implies faster transition between the regimes and more data points at the extremes.

Unless the sample size is large, this will mask the presence of the two regimes�nonlinearity. For

example, when 
 is set to 
 = 0:7, on average roughly 70% of observations of  (Zt�1; 
) are very

close to 1, implying that the system is close to the extreme linear regime. On the other hand, the

logistic speci�cation by de�nition implies a slower rate of transition, although it may su¤er from

identi�cation problems on both ends, which explains the loss of power when 
! 0 and/or when


 increases. As 
 increases, the LSTR model becomes closer to threshold speci�cation, where

the data is concentrated at two extremes, although this happens at a much slower rate relative

to ESTR (for 
 = 0:7, 20 % of observations are close to the extremes). However, contrary to

ESTR, the LSTR model is subject to identi�cation problems when 
 is close to zero since the

logistic function becomes �at and concentrated around 1=2, implying the existence of one regime.

This in turn implies that identi�cation of LSTR models and hence ability to direct power against

them also requires a larger number of data points (although the problem is less severe relative to

ESTR), which was also documented in Kristensen and Rahbek (2008).

Four more points are noticeable from the simulation study. First, the power of the test increases

with the sample size and degree of nonlinearity (d1 higher), as expected. Second, the aveLMT (
)

and expLMT (
) formulations perform better than the sup test for ESTR speci�cation as 
1

increases. This is expected since as discussed in Andrews and Ploberger (1994) the former tests

direct power towards alternatives closer to the null, whereas the power of the sup test is with

respect to the distant alternatives. Since the ESTR model for larger values of 
 becomes closer

to the linear speci�cation, the former tests are expected to have a higher power. Third, the test

performs relatively well in choosing the correct nonlinear speci�cation. The additional experiment

is performed to illustrate this property of the test. The parameters of the model remain the same,

but the simulated model is now tested against all four possible speci�cations (ESTR-ESTR, LSTR-

LSTR,LSTR-ESTR,ESTR-LSTR) and the number of times the correct speci�cation is selected

given the rejection of linearity is reported in Table 2c. As we can see, the test performs well when

the generated model is logistic adjustment in both variables as well as when di¤erent adjustments
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across the variables are present, selecting the correct type of nonlinearity more than 90% of times.

The exponential adjustment is correctly selected in at least 80% of cases, where the selection

frequency decreases with the weaker evidence of nonlinearity and/or with the increase in the speed

of transition. This is expected since an ESTR models can be well approximated by an LSTR when

a large portion of observations is close to the upper (extreme) regime since then only the increasing

part of the transition function becomes relevant and hence closer to the monotonically increasing

logistic function. However, as discussed in previous section, the power of the test in such situations

is lower, decreasing the probability of selecting the LSTR model. The experiment thus implies

that in practice one should be relatively con�dent to run the test under di¤erent alternatives and

to choose the one which minimizes the p-value of the test. Fourth, the presence of conditional

heteroscedasticity in one of the series does not signi�cantly deteriorate the size of the test. The

simulation results available from the author show that the size of the test remains close to the

reported one in Table 1 for the range of ARCH(1) speci�cations in one of the residual series.

Next, we investigate the test properties under conditional heteroscedasticity in both residual

series. The mean parameters remain unchanged and we specify the conditional variance as a

simple diagonal BEKK ARCH (1) process:


tjt�1 = A00A0 +A
0
1�t�1�

0
t�1A1,

where the parameter matrices are set as A0 =

2664 1 0

0:5 1

3775 and A1 =

2664 a 0

0 a

3775 and we

vary a 2 [0:2; 0:5; 0:9]. We perform the experiment over the slightly restricted set of parameter

values (d1; 
1) compared to the previous experiment due to high dimensionality, but the results are

general enough to capture the main intuition. We consider the sample size T =250, since it can be

expected that for smaller samples in practice ARCH will not be present (corresponding to quarterly

frequency). P-values are obtained by resampling the estimated residuals from the linear VECM

and creating a new set of residuals �Bt = e�t�t, where �t v N (0; 1). The bootstraped residuals

are used to construct a new series of data �xBt given the estimated parameters from the linear

model, but keeping the observations �xt�1; eZt�1 �xed. The bootstrapped estimates are obtained
by regressing �xBt on �xt�1; eZt�1 and the test statistic is calculated using the boostrapped
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estimates for each resampled data where p-values are again obtained as the percentage of times

the bootstrap statistics exceeds the sample statistic.

The results in Table 3 and 4 show that the robust LM statistic possess good properties in the

presence of multivariate ARCH volatility. When the level of volatility persistence is moderate,

the empirical size is close to the signi�cance level for exponential model, but it tends to slightly

underreject the null hypothesis in the case of the LSTR model. On the other hand, for large values

of a = 0:9, size distortions are larger in the case of the ESTR model, where the sup statistic tends

to overreject more relative to other two statistics.

The power of the test remains slightly a¤ected relative to the white noise case. The power

to reject linearity in favour of LSTR nonlinearity remains high and decreases slowly only when

the nonlinearity parameters are small (d1 = 0:1). The power against exponential nonlinearity

decreases more with the level of persistence in ARCH speci�cation. The sup statistic dominates

other two statistics in terms of power against the ESTR, although the di¤erence decreases as the

nonlinearity becomes stronger and transition between the regimes faster, similar to the i.i.d. case.

5 An Application

The presence of smooth type nonlinearity in behaviour of the real exchange rate was heavily in-

vestigated over the past decade, as documented by Taylor and Taylor (2004). However, little was

progressed in examining whether the nonlinearity is present in the relationship between the nom-

inal exchange rate and macro fundamentals and whether this can help in solving a long-standing

puzzle in international economics related to the lack of strong empirical evidence on the rela-

tionship between �oating exchange rates and a set of underlying macroeconomic variables. Even

though theories of the exchange rate determination imply that the exchange rate is determined

by such fundamental variables, the empirical evidence on the existence of the relationship and/or

predictability of the future changes in exchange rate on the basis of fundamentals is still scarce

(Cheung, Chinn and Garzia-Pasqual, 2005).

One possibility is that the deviations of the exchange rate from the fundamentally determined

level may be governed by a nonlinear adjustment process which is di¢ cult to capture using linear
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methods. Thus, even though a stable long-run relationship exists, the short-run dynamics will not

be correctly modeled, which will a¤ect the obtained results. It is well-known that di¤erent types

of nonlinearity may arise in the foreign exchange market due to heterogeneity of agents. Overall,

when the exchange rate is close to its fundamental value the in�uence of technical analysis and

other types of trading strategies dominates the market. Conversely, when the exchange rate

becomes increasingly misaligned with the fundamentals, the pressure from both policy makers

and agents for returning the exchange rate to the neighborhood of the long-run level becomes

stronger and eventually dominates the market. Taylor and Peel (2000) found signi�cant evidence

of nonlinearity in the deviations from the monetary fundamental equilibrium, showing that the

exchange rate follows near-unit process for small deviations (implying lack of cointegration found

in previous studies), but fast mean-reversion for large departures from the long-run equilibrium.

They used a LST type of the test applied on the implied cointegration residual and their results

are univariate. Given the level of interrelations in macro series, imposing a priori exogenenity may

seem as a strong assumption. We, therefore, consider testing for the presence of nonlinearity in

the system framework, providing at the same time the robustness check of the above results.

We consider a classical monetary model of the exchange rate determination, which implies the

existence of the relationship between the exchange rate, money di¤erential and output di¤erential

between two countries. Monthly data on the nominal exchange rate, monetary aggregate and

industrial production for the United States, the United Kingdom and Japan is collected from

the IMF�s International Financial Statistics for the period 1980-2006. The sample includes 324

observations.

All series are expressed in logarithmic terms and they are �rst checked for a unit root, which,

as expected, shows evidence of the nonstationarity. The VAR is then �t to the data, where the

number of lags is computed using AIC criterion, which implied choosing 4 lags for the United

Kingdom and 5 lags for Japan.4 Johansen�s cointegration test �nds (weak) evidence of the unique

cointegrating vector5 for both countries.

4 Multivariate LM tests were also performed to ensure that VAR residuals are indeed white noise.

5 The results for both unit root tests and Johansen�s cointegration test are not reported in order to save space,
but are available from the author.
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We then apply the test for nonlinearity. We allow for the presence of both types of "usual

suspects" nonlinearity (exponential and logistic) in all variables. Although the logistic speci�cation

is less likely to be present in the exchange rate adjustment due to a lack of theoretical underpinnings

as discussed in section 2, we still consider this as an additional check of both model and test

properties. We consider all possible combinations within the system yielding in total 8 di¤erent

alternatives and results are obtained through the grid search with 60 grid points over the nuisance

transition parameter space to [0; 50], and over the delay parameter set between [1; 12]. The p-

values are obtained using 1000 i.i.d. bootstrap replications. On the basis of simulation results,

the non-robust statistic was employed given that multivariate ARCH LM test did not �nd an

evidence of ARCH e¤ects and univariate ARCH LM tests showed some evidence of conditional

heteroscedasticity only in the money di¤erential series.

Table 5 shows the p-values from performing all three tests. We only report the minimum p-value

per each speci�cation. The number in brackets corresponds to the lagged value of the transition

variable (cointegrating relationship) for which the minimum is attained. As we can see, linearity

is rejected for the monetary model of the British pound using three di¤erent speci�cations, but

the strongest rejection is obtained for the ESTR type nonlinearity in all variables. Following the

evidence from the simulation study, we can be relatively con�dent to conclude that the previously

obtained result by Taylor and Peel (2000) are con�rmed in a more direct way, but, in addition, the

results imply that macro fundamentals also respond in a nonlinear manner to the disequilibrium

in the long-run relationship from 10 months before, where the response in monetary and real

variables depends on the magnitude of over/under pricing of the exchange rate. These links can

be exploited further to investigate whether the evidence of nonlinearity can be used to improve

the forecast of the exchange rate and, at the same time, whether this also helps in predicting

future levels of fundamentals, adding to recently proposed theoretical approach of Engel and West

(2005). On the other hand, no evidence of nonlinearity is found for the Japanese yen, implying

that the nonlinear response in variables is not general and hence the bene�ts of employing the

nonlinear analysis for forecast purposes may di¤er on a country basis. The raised issues warrants

further analysis which is beyond the scope of the paper and is left for future research.
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6 Conclusions

In this paper we have proposed a direct test for the presence of nonlinearity in the adjustment terms

of the cointegrating systems that is consistent under the nonlinear alternative. The critical values

are obtained via bootstrap simulations. Monte Carlo simulations show encouraging results in the

presence of homoscedasticity and certain types of heteroscedasticity, but future work is required

to incorporate the broader volatility models, both in terms of the statistical representation of the

nonlinear system and for testing against nonlinearity in such framework.

Another possible extension in both directions is to allow for the richer dependence structure

in the errors of the process. This does not represent a serious de�ciency of the current testing

procedure since choosing the appropriate VAR order will "whiten" the errors. However, once the

progress is made in terms of the Markovian representation of the system under such an assumption,

the changes in the testing procedure would be straightforward using the battery of asymptotic

results for dependent (but not necessarily absolutely regular with geometrically decaying mixing

numbers) processes. The robust type of tests following White (1994) could also be considered in

such framework.

Relaxing the assumption of the known number of cointegrating vectors and testing directly

for it is another fruitful area of research. Some progress has been made for threshold vector

error correction models by Gonzalo and Pitarakis (2006) who proposed the model selection based

approach for determining the rank of the system. In the present context this also requires the "full

representation" proof on the number of nonstationary elements, which is available from Saikkonen

(2005) under the assumption that the nonlinearity is present only in the adjustment term.
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Appendix I: Results:

Table 1: The size of the test:

Modeln�1 -0.1 -0.4 -0.7

Size sup ave exp sup ave exp sup ave exp

T=100:

ESTR 2 0.05 0.063 0.052 0.049 0.060 0.054 0.057 0.069 0.073 0.072

ESTR 2 0.10 0.118 0.103 0.101 0.117 0.111 0.111 0.124 0.132 0.126

LSTR 2 0.05 0.060 0.057 0.059 0.042 0.042 0.042 0.040 0.041 0.039

LSTR 2 0.10 0.104 0.100 0.101 0.095 0.088 0.090 0.082 0.080 0.080

Estr-Lstr 0.05 0.047 0.048 0.045 0.045 0.047 0.044 0.044 0.040 0.041

Estr-Lstr 0.10 0.111 0.108 0.106 0.122 0.115 0.112 0.105 0.102 0.106

T=250:

ESTR2 0.05 0.055 0.047 0.054 0.064 0.055 0.055 0.072 0.054 0.053

ESTR2 0.10 0.108 0.102 0.102 0.122 0.120 0.117 0.128 0.121 0.121

LSTR2 0.05 0.058 0.057 0.057 0.064 0.067 0.065 0.067 0.068 0.067

LSTR2 0.10 0.119 0.121 0.122 0.125 0.124 0.122 0.116 0.116 0.115

Estr-Lstr 0.05 0.059 0.061 0.062 0.058 0.051 0.048 0.060 0.065 0.064

Estr-Lstr 0.10 0.104 0.102 0.101 0.125 0.124 0.123 0.102 0.114 0.116

Notes: ESTR2: Estr adjustment in both equations; LSTR2: Lstr adjustment in both; Estr-Lstr: Estr
adjustment in one and Lstr adjustment in the other variable.
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Table 2a: Power of the test against a speci�c nonlinear alternative:

Modelnd -0.1 -0.4 -0.6

T=100: 
 sup ave exp sup ave exp sup ave exp

0.1 0.113 0.097 0.096 0.616 0.522 0.527 0.873 0.808 0.817

0.4 0.113 0.103 0.103 0.175 0.166 0.165 0.238 0.275 0.277

ESTR2 0.7 0.101 0.090 0.089 0.128 0.117 0.119 0.166 0.188 0.181

1 0.112 0.109 0.107 0.116 0.115 0.113 0.146 0.146 0.144

2 0.118 0.096 0.098 0.128 0.107 0.111 0.123 0.115 0.114

0.1 0.748 0.730 0.730 0.791 0.772 0.770 0.815 0.799 0.797

0.4 0.784 0.753 0.752 0.911 0.878 0.875 0.939 0.910 0.909

LSTR2 0.7 0.776 0.743 0.743 0.877 0.831 0.831 0.865 0.822 0.082

1 0.756 0.723 0.723 0.853 0.812 0.813 0.844 0.814 0.813

2 0.773 0.749 0.748 0.847 0.793 0.793 0.883 0.843 0.843

0.1 0.229 0.233 0.233 0.742 0.733 0.733 0.868 0.862 0.862

0.4 0.618 0.616 0.614 0.996 0.996 0.996 1 1 1

EstrLstr 0.7 0.717 0.707 0.707 1 1 1 1 1 1

1 0.710 0.705 0.704 1 1 1 1 1 1

2 0.757 0.758 0.758 0.999 0.999 0.999 1 1 1

Notes: ESTR2: Estr adjustment in both equations; LSTR2: Lstr adjustment in both; Estr-Lstr: Estr
adjustment in one and Lstr adjustment in the other variable.
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Table 2b: Power of the test (continuation):

Modelnd -0.1 -0.4 -0.6

T=250: 
 sup ave exp sup ave exp sup ave exp

0.1 0.438 0.446 0.447 0.995 0.996 0.995 1 1 1

0.4 0.359 0.385 0.381 0.579 0.628 0.627 0.747 0.819 0.811

ESTR2 0.7 0.355 0.373 0.378 0.458 0.519 0.52 0.530 0.614 0.611

1 0.376 0.396 0.398 0.439 0.475 0.475 0.446 0.508 0.507

2 0.352 0.362 0.364 0.434 0.455 0.457 0.442 0.455 0.456

0.1 0.988 0.987 0.987 0.996 0.995 0.995 0.996 0.996 0.995

0.4 0.999 0.999 0.999 1 0.999 0.999 1 1 1

LSTR2 0.7 0.996 0.994 0.994 1 1 1 1 1 1

1 0.996 0.993 0.993 1 1 1 1 0.999 0.999

2 0.996 0.996 0.996 1 1 1 1 0.999 0.999

0.1 0.467 0.458 0.455 0.983 0.979 0.979 0.998 0.998 0.998

0.4 0.949 0.942 0.941 1 1 1 1 1 1

EstrLstr 0.7 0.984 0.981 0.981 1 1 1 1 1 1

1 0.978 0.978 0.978 1 1 1 1 1 1

2 0.986 0.986 0.986 1 1 1 1 1 1

Notes: ESTR2: Estr adjustment in both equations; LSTR2: Lstr adjustment in both; Estr-Lstr: Estr
adjustment in one and Lstr adjustment in the other variable.
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Table 2c: Empirical frequency of choosing the nonlinear model:

Modelnd -0.1 -0.4 -0.6

T=250: 
 sup ave exp sup ave exp sup ave exp

0.1 0.833 0.833 0.830 0.992 0.992 0.992 1 1 1

0.4 0.785 0.799 0.797 0.864 0.894 0.891 0.923 0.952 0.951

ESTR2 0.7 0.833 0.838 0.837 0.841 0.848 0.847 0.870 0.898 0.897

1 0.793 0.812 0.812 0.835 0.861 0.861 0.828 0.851 0.854

2 0.807 0.810 0.810 0.839 0.858 0.855 0.832 0.850 0.852

0.1 0.914 0.909 0.907 0.938 0.922 0.924 0.958 0.930 0.929

0.4 0.953 0.942 0.942 0.989 0.965 0.965 0.998 0.975 0.975

LSTR2 0.7 0.947 0.930 0.930 0.982 0.954 0.953 0.992 0.964 0.965

1 0.924 0.918 0.918 0.961 0.936 0.936 0.968 0.942 0.940

2 0.920 0.909 0.910 0.950 0.933 0.933 0.960 0.936 0.936

0.1 0.594 0.551 0.549 0.935 0.933 0.933 0.977 0.976 0.977

0.4 0.852 0.849 0.845 1 1 1 1 1 1

EstrLstr 0.7 0.906 0.902 0.903 1 1 1 1 1 1

1 0.917 0.913 0.911 1 1 1 1 1 1

2 0.920 0.914 0.913 0.995 0.994 0.992 1 1 1

Notes: ESTR2: Estr adjustment in both equations; LSTR2: Lstr adjustment in both; Estr-Lstr: Estr
adjustment in one and Lstr adjustment in the other variable.
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Table 3: Size of the test in the presence of ARCH e¤ects:

Modeln� -0.1 -0.4

T=250: a size sup ave exp sup ave exp

0.2 0.05 0.060 0.055 0.059 0.073 0.071 0.074

0.2 0.10 0.094 0.112 0.101 0.141 0.123 0.128

ESTR2 0.5 0.05 0.058 0.055 0.053 0.064 0.055 0.060

0.5 0.10 0.116 0.105 0.108 0.115 0.114 0.112

0.9 0.05 0.082 0.071 0.070 0.070 0.051 0.066

0.9 0.10 0.138 0.110 0.114 0.148 0.114 0.130

0.2 0.05 0.040 0.033 0.033 0.033 0.029 0.030

0.2 0.10 0.082 0.073 0.073 0.067 0.063 0.063

LSTR2 0.5 0.05 0.052 0.045 0.045 0.025 0.028 0.028

0.5 0.10 0.079 0.076 0.077 0.067 0.059 0.060

0.9 0.05 0.042 0.041 0.040 0.055 0.046 0.047

0.9 0.10 0.088 0.072 0.071 0.101 0.086 0.085

�

Notes: ESTR2: Estr adjustment in both equations; LSTR2: Lstr adjustment in both.
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Table 4: Power of the test in the presence of ARCH e¤ects:

Modelnd -0.1 -0.4 -0.6

T=250: a 
 sup ave exp sup ave exp sup ave exp

0.1 0.680 0.350 0.518 1 0.919 0.997 1 0.999 1

0.2 0.4 0.514 0.304 0.428 0.898 0.704 0.833 0.982 0.914 0.970

0.7 0.518 0.303 0.431 0.781 0.535 0.677 0.879 0.726 0.822

0.1 0.556 0.289 0.399 1 0.850 0.984 1 0.994 1

ESTR2 0.5 0.4 0.417 0.247 0.343 0.801 0.566 0.711 0.931 0.807 0.893

0.7 0.372 0.242 0.317 0.609 0.405 0.542 0.796 0.617 0.747

0.1 0.259 0.145 0.190 0.779 0.420 0.643 0.948 0.691 0.889

0.9 0.4 0.199 0.130 0.156 0.375 0.216 0.310 0.591 0.387 0.509

0.7 0.228 0.137 0.168 0.292 0.162 0.227 0.387 0.233 0.311

0.1 0.942 0.898 0.902 0.977 0.946 0.949 0.988 0.977 0.978

0.2 0.4 0.993 0.976 0.978 1 1 1 1 1 1

0.7 0.987 0.972 0.972 1 1 1 1 1 1

0.1 0.964 0.933 0.935 0.993 0.980 0.981 0.995 0.984 0.986

LSTR2 0.5 0.4 0.982 0.969 0.972 1 1 1 1 1 1

0.7 0.991 0.978 0.979 1 1 1 1 1 1

0.1 0.993 0.986 0.987 0.997 0.995 0.995 0.998 0.998 0.998

0.9 0.4 0.989 0.980 0.982 0.991 0.988 0.988 0.985 0.981 0.981

0.7 0.987 0.977 0.977 0.988 0.986 0.986 0.975 0.967 0.967

Notes: ESTR2: Estr adjustment in both equations; LSTR2: Lstr adjustment in both.
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Table 5: Testing the monetary model of exchange rates:

UK Japan

Model sup ave exp sup ave exp

Estr Estr Estr 0.023(10) 0.026(10) 0.025(10) 0.595(12) 0.679(12) 0.690(12)

Estr Estr Lstr 0.055(7) 0.052(7) 0.052(7) 0.287(3) 0.322(3) 0.305(3)

Estr Lstr Estr 0.066(3) 0.042(3) 0.043(3) 0.645(1) 0.521(12) 0.521(12)

Estr Lstr Lstr 0.067(4) 0.044(4) 0.045(4) 0.310(3) 0.307(1) 0.294(1)

Lstr Estr Estr 0.384(3) 0.263(3) 0.284(3) 0.213(1) 0.231(1) 0.231(1)

Lstr Lstr Estr 0.301(3) 0.239(3) 0.239(3) 0.263(1) 0.178(1) 0.181(1)

Lstr Estr Lstr 0.385(2) 0.305(3) 0.311(3) 0.262(4) 0.247(4) 0.247(1)

Lstr Lstr Lstr 0.248(3) 0.170(3) 0.170(3) 0.255(3) 0.250(3) 0.264(12)

Notes: The variables are in the following order: exchange rate, money di¤erential, output. The number
in brackets signals the delay parameter at which the p-value is minimized.
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Appendix II: Proofs

To keep exposition simpler, all proofs are stated for the case of conditional homoscedasticity, but

can be easily amended using the triangular inequality to include permitted classes of conditionally

heteroscedastic models under the existence of higher moments of the error process and using the

facts that the processHt is stationary, ergodic with �nite moments and that
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tHt)

�1
H 0
t�t
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k�tk by the standard result for projection matrices. In the following to save space

P
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and K is a generic constant.

Proof of Proposition 1.1. Consider �rst expression within the norm. Since Z 0t�1Zt�1 is a
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Substituting back into expression and using the Cauchy-Schwarz (C-S) inequality:
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Boundness of the �rst term in (10) now follows from Assumptions 1.1 and 1.2 given the existence

of moments of the Markov chain and choosing � arbitrarily. Consider the second term:
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Substituting back in (10):
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Given the independence of errors, constancy of the error�s covariance matrix and boundness of

	(Zt�1; 
) between [0; r], Proposition 1.1. then follows provided that supt Ejj�tjj
2(2+�) is bounded,

which follows from Assumption 1.1. choosing � arbitrarily.

Proof of Proposition 1.2. First we will show su¢ cient condition to satisfy the Proposition

and then prove that the condition is satis�ed in current model. Set � = 1
2+� and similarly to the

proof of Proposition 2.1. rearrange the norm using properties of trace of the Kronecker product:

jj�0t

�1 �

Z 0t�1
(	(Zt�1; 
1)�	(Zt�1; 
))
�
jj2+� =

= jjZt�1jj
2+�jj�0t
�1

�
	(Zt�1; 
1)�	(Zt�1; 
)

�
jj2+� (10)

Consider only the second norm. By the mean value theorem for 
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for matrices with s slightly higher than 1 and q large:
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De�ne the �rst term above as �(Zt�1;
), such that we can write:
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Substituting (11) in (10) and using (10) the condition can be expressed as:

supt E
h
jjZt�1jj

2+�
sup
12��:jj
1�
jj<$ �(Zt�1;
) jj(
1 � 
)jj

2+�
i
�

6 Note that Hölder�s inequality holds only for positive semi-de�nite matrices of the same order.
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)0

�

�10�t�0t


�1 
 Ik
�
5	(Zt�1;
) is positive de�nite since by construction (k2 x kr) matrix

5	(Zt�1;
) is of full column rank and positive de�niteness of the middle term follows from Assumption 1.1.
and the fact that if matrices A and B are positive de�nite A
B is positive de�nite by Theorem 1 in Magnus and
Neudecker(2007, pp.33).
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Hence, Proposition 1.2. follows by setting � = 1
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By C-S inequality boundness of the �rst term again follows from assumptions 1.1 and 1.2:
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where the last line follows from the error independence assumption. The boundness of the �rst

term above now follows using Assumption 1.1, while the boundness of the second term follows

from assumptions 1.1. and 1.2.

Proof of Proposition 2. First, note that due to superconsistency of e� :
1p
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remaining part of the proof only the score evaluated at Zt�1 is considered.

The proof follows by verifying the �nite dimensional (�di) convergence of fsT (
) and stochastic
equicontinuity of the empirical process. Both follow from the Theorem 1 Application 1 of DMR

(1995). First note that choosing �(x) = x1+
�
2 , x > 0, in DMR it can be shown (Cho and White,

2007, pp.1705) that condition (2.9a) in Lemma 2 of DMR will be satis�ed for �-mixing processes

with geometrically decaying numbers. Lemma 2 of DMR then implies that the conditions on

the class of functions of the empirical process and entropy with bracketing can be established
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with respect to the k�k2(1+ �
2 )
= k�k2+� norm instead of the k�k2;� norm proposed in their paper.

Fidi convergence then follows from Theorem 1 of DMR given the Assumption 1.2, if the class

of functions z of the empirical process belongs to the class whose envelope has bounded 2 + �

moments. Proposition 1.1. ensures that the condition is satis�ed in our case.

Furthermore, condition (2.4) in DMR on summability of �-mixing coe¢ cients
P

t �n is trivially

satis�ed by Assumption 1.2. on the rate of mixing numbers:
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1�b < 1: It remains to show that the entropy with bracketing satis�es the integrability

condition (2.11) in DMR. This follows from Theorem 5 in Andrews (1994, see also Andrews, 1993,

pp.201) if the Lp-continuity condition holds which is established in Proposition 1.2. for p = 2+ �.
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Using the fact that tr fA
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By repeated application of the Hölder�s inequality7 with s; w slightly higher than 1 and q and

m large:

7 Note that C(
) has full rank given the Assumption 1.1. using the fact that rank(A
B) = rank(A)rank(B).
Full rank of C(
) implies that C(
)C(
)0 is positive de�nite.
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Since C(
) consists of elements which are constant and bounded between zero and one, sto-

chastic equicontinuity follows by letting $! 0 under assumptions 1.1 and 1.2. which establish

boundness of the last term.

It remains to show that the �rst term is op(1) uniformly in 
. This follows easily under
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short-run parameters as in Saikkonen (1995).
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Now we need to show that each term is op(1).

Using the properties of the trace of Kronecker product tr fA
 Cg = tr fAg tr fCg and of
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Frobenius norm for matrices kACk�kAk kCk, the �rst term can be rearranged as:
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which is op(1) since the �rst term in (16) is op(1) under Assumption 1.3, the second is Op(1)

by Assumption 1.6. and CMT applied to continuous functional x !
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By the same norm properties, applying C-S and noting that X 0
2;t�1X2;t�1and Z 0t�1Zt�1are

scalars, the second and third term can be rearranged to obtain:
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(17)

which is op(1) since the �rst term in (17) is op(1) under Assumption 1.3, the second is Op(1)

by Assumption 1.6. and CMT applied to mapping x !
R 1
0
kx(u)k du, the third is Op(1) by the

law of large numbers for ergodic processes under Assumptions 1.1. and 1.2. and the boundeness

of the last is established above.

Similarly, the fourth and �fth term can be rearranged as:
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(18)

The �rst and the last term in (18) are Op(1) by the law of large numbers for ergodic processes

under Assumptions 1.1. and 1.2. for the former and previous argument for the latter. Consider

only the remaining part. By the mean value theorem, C-S and using Assumption 1.4:

sup
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which is op(1) by the previous arguments. Finally, the last term above is op(1) by the same

arguments.
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