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Abstract 

This paper compares standard and local projection techniques in the production of impulse 

response functions both theoretically and empirically. Through careful selection of a 

structural decomposition, the comparison continues to an application of US data to the 

textbook ISLM model. It is argued that local projection techniques offer a remedy to the bias 

of the conventional method especially at horizons longer than the vector autoregression‘s lag 

length. The application highlights that the techniques can have different answers to important 

questions. 

  



1) Introduction 

Econometric application of macroeconomic models is one of the most important aspects 

within quantitative economic analysis. This paper works to explain what it believes to be the 

most significant and cutting-edge contributions in the field, combining them in an application 

of US data to the textbook ISLM model. 

Ever since the Cowles Commission was established in 1932, the development of related 

empirical techniques has drawn an increasing amount of attention. Perhaps the most 

important contribution was Sims (1980) and the inception of vector autoregressions (VARs). 

The VAR methodology offered a powerful new analytical weapon – the impulse response 

function (IRF). IRFs are used to track the responses of a system‘s variables to impulses of the 

system‘s shocks. Sims‘ paper spawned a wealth of literature applying the technique. However 

it was not long before a pertinent objection was made to the procedure. Orthogonalising the 

VAR‘s shocks is required so that the shocks tracked by IRFs are uncorrelated. Authors such 

as Cooley and LeRoy (1985) and Pagan (1987) pointed out that the original recursive 

structure of Sims to do this imposed arbitrary and potentially harmful restrictions on the 

system. To impose restrictions on which variables affect which others is a powerful statement 

about the underlying structure of the system, and will affect empirical output including IRFs 

and forecast error variance decompositions (FEVDs). Combining the needs of identification 

and non-arbitrary orthogonalisation has since become the focus of structural VAR (SVAR) 

analysis.  

Implementation of SVARs is far from uniform and there exists a vast literature debating how 

it should be done. Deliberation over this in order to select one for application constitutes the 

first component of this paper. The second component concerns the method of IRF production. 

The standard technique has undergone criticism from several angles. A recent contribution 



from Jordà (2005) aims to remedy some of these problems. Owing to its youth, how well this 

method competes in theory and practice is relatively unknown. This paper discusses the 

existing research and adds some of its own insights. Using software not previously used to 

carry out the procedure; an application of the ISLM model based on Keating (1992) is 

conducted. The application serves as the culmination of the two components of the paper, 

demonstrating both the ability of the ISLM model to describe the data and the implications of 

the IRF technique employed. 

Section 2 discusses the literature on competing SVAR methods; Section 3 qualitatively 

compares Jordà‘s IRF technique to the standard approach; Section 4 introduces the 

application and formalises the notions introduced in the preceding sections; Section 5 

provides the results; Section 6 concludes. 

2) Structural VAR Identification Schemes 

In their review of the VAR methodology twenty years after Sims‘ (1980) original paper, 

Stock and Watson (2001) conclude that VARs successfully capture the rich interdependent 

dynamics of data well, but that ‗their structural implications are only as sound as their 

identification schemes‘. This section looks at the attempts which have been considered to 

answer the pivotal issue of identification in the literature with an eye to selecting one for this 

paper‘s own application. 

2.1 The Cholesky Decomposition and Short-Run Schemes 

Sims (1980) speaks of ‗triangularising‘ the VAR as his method of orthogonalising the 

reduced form shocks, and is referred to as a Cholesky decomposition or a Wold causal chain. 

This triangularising achieves orthogonalisation but imposes a recursive structure on the 

contemporary relationships of the variables. Under a triangular scheme, how the variables are 



ordered in the VAR will determine which is affected by which in this recursive way. 

Cholesky decompositions are easy to implement and simple to understand. Stock and Watson 

explain how it was common for practitioners to justify recursive structures so that their 

structural scheme coincided with a recursive setup justified by ‗cobbled-together theories‘ 

that are only ‗superficially plausible‘.
1
 

SVAR studies with more carefully considered schemes quickly became widely used see, e.g. 

Blanchard and Watson (1984), Bernanke (1986), Sims (1986), Eichenbaum and Evans (1995), 

Sims and Zha (2006), Basher et al. (2010). Non-arbitrary orthogonalisation schemes which 

impose contemporaneous restrictions on the VAR are referred to as short-run identification 

schemes. Most short-run restrictions are zero restrictions e.g. that output reacts only with a 

lag to monetary shocks. Although a seemingly reasonable assumption, clearly the frequency 

of one‘s data is of vital importance; if one had annual data, a contemporaneous zero 

restriction is likely to be more debatable than if it were on quarterly or monthly data. It 

should be noted that restrictions are not confined to forcing parameters to be zero as in the 

Wold causal chain, other linear (e.g. Keating 1992) and non-linear (e.g. Galí 1992) 

restrictions are occasionally employed on the contemporaneous relations between variables. 

Restrictions can also be implemented depending on assumptions about what information is 

available to agents at the time of a shock e.g. Sims (1986), West (1990). Opinions concerning 

short-run restrictions are mixed. Faust and Leeper (1997) claim there is often simply an 

insufficient number of tenable contemporary restrictions to achieve identification. However, 

Christiano et al. (2006) argue that short-run SVARs perform ‗remarkably well‘ by way of the 

relatively strong sampling properties of the IRFs they produce.  

                                                 
1
 A bivariate or trivariate model may well be perfectly reasonably decomposed in a triangular fashion, although 

the level of caution arising from such a coincidence should rise as the dimension of the model increases. 



Short-run models can supply enlightening structural inference in a relatively straight forward 

way. However, they are sensitive to the exact scheme employed; justifying one‘s restrictions 

based on theory and available data should be a priority. This paper will adopt a short-run 

scheme. The relative merits of this choice for the present application are provided by the 

following review of other schemes. 

2.2  Long-Run Schemes 

Pioneering work by Shapiro and Watson (1988) and Blanchard and Quah (1989) described 

how restrictions could be placed on the long-run responses (at an infinite horizon) of 

variables to shocks e.g. in Blanchard and Quah‘s bivariate VAR of output and unemployment, 

they identify the shocks as  ‗demand‘ and ‗supply‘ shocks by restricting the ‗demand‘ shocks 

to have no long-run impact on real GNP.  

Bearing in mind the criticisms made against short-run restrictions, restricting long-run 

responses was a welcome extension to the tools available for identification. Short-run and 

long-run schemes can produce quite distinct sets of results on the same data as shown by e.g. 

Keating (1992), McMillin (2001). Lastrapes and Seglin (1995) boast the technique is 

advantageous because there is a greater consensus amongst theoretical models in terms of 

long-run results. It should be unsurprising therefore that the most common set of restrictions 

is to nullify the long-run response of output to monetary shocks. Ever since their introduction, 

long-run restrictions have been frequently employed, see e.g. King et al. (1991), Francis and 

Ramey (2004), Fisher (2006) among many others. It is also possible to adopt a combination 

of short and long run restrictions as originally demonstrated by Galí (1992), and Gerlach and 

Smets (1995), Peersman and Smets (2001) and Mamoudou et al. (2009). 

Unfortunately, long-run schemes are far from critique-free. Faust and Leeper show that with 

finite data, the long-run effect of shocks is imprecisely estimated, and that this imprecision is 



exacerbated by long-run restrictions causing serious bias to IRFs even with large samples. 

Although the severity of this does depend on the assumptions made about the underlying data 

generating process (DGP).  

Taylor (2004) shows that under long-run restrictions, a  -dimensional model has    solutions 

for the matrix used to orthogonalise the shocks. Each of these solutions has its own distinct 

set of IRFs. This multiplicity of solutions is due to long-run models imposing a set of non-

linear equations which does not result in a unique set of contemporaneous relationships. 

There is often no way to choose between the solutions convincingly. One may look at all the 

possible sets of IRFs, but this quickly becomes a daunting task, e.g. a 5-variable VAR would 

give       sets. The multiplicity of solutions is sidestepped with short-run schemes 

because they have a unique solution by virtue of imposing the contemporaneous relationships, 

so it is known in which direction each variable should be moving immediately after the shock. 

Dupor and Kiefer (2008) claim that the term ‗long run structural VAR‘ is basically an 

oxymoron. They argue that long run schemes make restrictions on the cumulative response of 

a stochastic process so long lead and lag covariances are as important as the short. In practice 

however, the number of lags in a VAR is typically short, giving poor estimates of these long 

run properties.  

2.3  Recent Advances in Identification  

Sign restrictions were introduced by Faust (1998), Uhlig (1999), Canova and De Nicoló 

(2002). They restrict the response of some variable to some shock to be non-positive or non-

negative for a number of periods and are especially popular in the technology shock literatre 

e.g. Peersman (2005), Peersman and Straub (2009) and Berg (2010). Arguably less restrictive 

than the restrictions of short and long-run schemes, they are commonly referred to as a more 

‗agnostic‘ approach which is naturally appealing in an anti-restrictive environment. Sign 



restrictions have been imposed both to restrict the immediate response of a variable e.g. Faust 

(1998), and in the ‗medium‘-run e.g. Peersman (2005), or Uhlig (2005) who restricts 

variables to respond positively or negatively for six months. Sign restrictions are not only 

applicable to variables‘ responses. The method of Canova and De Nicoló and application of 

Canova and Pina (1999) introduced sign restrictions on the cross-correlations of variables in 

response to shocks.  

However, the less restrictive nature of sign restrictions is not catch-free. As Fry and Pagan 

(2007) show, the common methodology of implementing sign restrictions generates a 

multiplicity of models (instead of one). Tools such as FEVDs will give misleading results 

because the IRFs generated are not uncorrelated. They suggest a fix and demonstrate the 

difference it makes using Peersman‘s study as a case in point. They conclude by noting that 

to say sign restrictions are a panacea to the problems of previous identification methods is 

‗far from the truth‘. 

Herwartz and Lütkepohl (2010) suggest a novel way to utilise the information in the VCV 

matrices in different regimes for models with Markov switching (MS). A problem is that 

attaching structural interpretations to shocks is not possible, so they suggest combinations of 

this with the more established schemes described above to create a MS-SVAR model. One 

great advantage of this approach is that identification is achieved through restricting regimes‘ 

VCV matrices to be orthogonal. This means that the validity of any regime-invariant 

(conventional) restrictions can be tested. The approach is most promising although not 

without its own difficulties, but more application and investigation into the method is 

required to test its abilities. 

 

 



3) Impulse Response Functions 

3.1 The Standard Technique 

Standard IRF production uses estimates from the estimated VAR model. The usual 

methodology for generating IRFs involves non-linear (at horizons greater than one) functions 

of the estimated VAR parameters; hereon this method is called VIRF, and the resulting IRFs 

called VIRFs. As the horizon increases, so does the order of the polynomial. If the VAR 

coincides with the DGP this procedure is optimal for all horizons. If however it does not 

coincide, it produces biased IRFs. As   increases, this bias is compounded by the reliance on 

the set of estimated VAR parameters and through the non-linearity of VIRF. However, for 

   , a VAR will produce the optimal one-step ahead forecast. In fact, Stock and Watson 

(1999) show that even if the model is misspecified, an AR (and therefore a VAR) process still 

produces reliable one-step ahead forecasts outperforming rival, non-linear forecasting 

methods.  

Non-linearity is not the sole source of bias in VIRFs. VIRFs also typically suffer from large 

small-sample biases stemming from bias in the estimated autoregressive coefficients (see 

Pope 1990). The small-sample bias in the VIRF‘s confidence intervals is perhaps even more 

serious. As Kilian (1998) explains, most intervals for VIRFs are produced from 

asymptotically-justified formulae e.g. following Lütkepohl (1990). However, he finds that 

such intervals are ‗extremely inaccurate‘ in small samples.  

Naturally, one wants to approximate the DGP as well as possible. It is commonly expressed 

that the VAR‘s approximation is inadequate because it is more likely that a set of 

macroeconomic variables are better described by a vector autoregressive moving average 

(VARMA) process. Palm and Zellner (1974) and Wallis (1977) explain that even where 

variables are well described by a VAR process, the subset of variables that empiricists may 



utilise will in fact be a VARMA process. Cooley and Dwyer (1998) show that real business 

cycle models follow VARMA rather than VAR processes. By fitting data with a VAR, 

practitioners are likely to be poorly approximating the DGP and by using VIRF methods are 

likely to be producing inaccurate IRFs.
2
  

This paper offers an additional benefit of the LPIRF technique here. VARMA processes are 

closed with respect to linear-transformations (Lütkepohl 2009) meaning that any linear 

function of a finite VARMA process, is itself a finite VARMA process. This is a property 

that VAR processes do not have. Most data aggregations for macro variables are temporal 

(e.g. generating quarterly GDP from monthly) or contemporaneous (e.g. GDP as the sum of 

consumption, investment, government spending and net exports) linear transformations. 

Hence, if the underlying DGP is indeed a VARMA process, then any chosen linearly 

aggregated data will be too. If the employed technique for producing IRFs performs well for 

the VARMA class of models, then one has the added bonus of relaxing about aggregation 

issues. Indeed, Lütkepohl (2005) warns that differently-aggregated datasets can produce 

drastically different VIRFs, which is another reason to replace confidence with caution when 

viewing results from the VIRF technique. 

3.2 Local Projection 

Jordà (2005) introduced a technique designed to be more robust to misspecification of the 

DGP. Instead of using one set of VAR coefficients as in the VIRF technique, he proposes 

estimating a new set of estimates for each horizon. This avoids escalation of the 

misspecification error through the non-linear calculations of the standard VIRF technique as 

  increases and     (the techniques give the same IRFs at      ). The technique collects 

new estimates for each forecast horizon   by regressing the dependent variable vector at 
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 These points are made by Jordà (2005). 



    on the information set at time  . In other words, the projections of forward values of the 

dependent variable vector on the information set are local to each horizon. IRFs produced 

using this technique (hereon LPIRFs, and the technique LPIRF) are easily produced as they 

are simply a subset of the estimated slope coefficients of the projections.  

Furthermore, as LPIRFs do not involve the same non-linearities as VIRFs, they are more 

likely to be well-approximated by Gaussian distributions and have more accurate confidence 

intervals. VIRF methods rely on ‗(not always reliable) delta-method approximations and 

considerably complex algebraic manipulations‘ (Jordà 2007 p20). The asymptotic 

distributions typically used are for the marginal IRF distributions e.g. Hamilton (1994) p336-

9. Jordà (2007) gives the joint distribution of the model‘s IRFs. The advantage of this is that 

the resulting distribution represents that IRFs are serially correlated and is able to answer 

questions about the collective shape of IRFs, rather than individual point IRF estimates – 

which is what a string of marginal confidence intervals would do.  

Jordà (2005) provides Monte Carlo evidence which shows that LPIRFs are more robust to 

lag-length misspecification, are consistent, and are only ‗mildly‘ inefficient compared to IRFs 

of the true DGP he uses. Other benefits of the technique are that they are easy to implement 

practically (simple univariate regressions suffice), and that it can be easily adapted to non-

linear specifications (a cubic specification is common). LPIRFs have been well-used since. 

Hall et al. (2007) produce LPIRFs in a DSGE context, Haug and Smith (2007) conduct a 

comparative study of structural VIRFs and LPIRFs and Ho (2008) investigates the 

relationship of exchange rates and monetary fundamentals.
3
 

However, the LPIRF approach has received criticism. The LPIRF and VIRF techniques are 

asymptotically equivalent if the DGP is stationary and linear e.g. a stationary VAR. A natural 
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 The reader is also urged to see related studies/extensions to the basic LP approach e.g. Projection Minimum 

Distance in Jordà and Kozicki (2006) and confidence regions for path forecasts in Jordà and Marcellino (2010). 



question is how well these methods compare in small samples. Kilian and Kim (2009) use an 

empirical exercise to show that the LPIRF‘s bias is greater than the VIRF‘s when the 

underlying DGP is a VAR process. Relatedly, they also find that the LPIRF asymptotic 

intervals are much wider than VAR-based estimators, and by virtue of that are more accurate. 

As the sample size increases (in their study from 100 to 200) the VIRF confidence interval 

estimator has similar accuracy as the asymptotic LPIRF interval estimator, although again the 

LPIRF‘s intervals are wider. The VIRF interval production referred to by Kilian and Kim is 

the small-sample bias correcting bootstrap method of Kilian (1998). It must be said that the 

LPIRF‘s intervals generally outperformed other VIRF interval estimators. Resting on the 

results of this ―best‖ VIRF interval estimator, and the usual VIRF point estimates, they 

conclude that there is no reason to abandon the VIRF method.  

That the bias of the VIRF lower is hardly surprising as the VIRF method is optimal when the 

underlying process is a VAR. What is more worrying is that they obtain similar results when 

the DGP is assumed to be a VARMA(p,q) process i.e. an infinite-order VAR process. 

Although for larger values of q (the MA order), and hence the poorer estimate a VAR is, the 

accuracy of the VIRF estimator and the asymptotic LPIRF estimator is similar. One would 

naturally conjecture that there would be a point where the DGP is far enough from a VAR for 

the LPIRF to become more attractive than the VIRF. Indeed, Kilian and Kim call for such an 

investigation, referring to their work on the VAR only approximating the DGP as 

‗preliminary‘. 

Although Kilian and Kim‘s evidence is persuasive, this paper offers some points in defence 

of LPIRFs. Jordà‘s (2005) Monte Carlo evidence showed was that the method is more robust 

to lag length misspecification. As Braun and Mittnik (2002) show, the same is far from true 

of the VIRF technique. They find that misspecification of lag-length causes a large 

inconsistency in innovation accounting exercises. Regarding the aforementioned discussion 



on the VAR‘s ability to approximate a likely VARMA DGP, Kilian and Kim did not use a 

specification that showed LPIRF to be strictly superior, although it was argued it seems likely 

that one could. Adding more lags to a VAR will naturally improve its fit to an underlying 

VARMA (or VAR(∞)) process. But because adding a lag to a  -variate system adds    

regressors, if many lags need to be added to make the VAR‘s approximation good in a 

multivariate model, the number of degrees of freedom is quickly reduced, and the required 

sample size quickly becomes unwieldy.  

Depending on the context, either VIRF or LPIRF methods could be argued superior. The 

properties of the VIRFs are much better documented owing to their longer history. However, 

there have been some substantial efforts into formalising and discussing its asymptotic and 

theoretical attributes, strengths and weaknesses.  

Due to the uncertainty in the underlying DGP of the macroeconomy and the similar 

performance of the LPIRF and VIRF estimators in non-small samples (approaching 200 

observations), the proceeding analysis estimates IRFs through both methods, facilitating 

comparison. The joint asymptotic confidence intervals for the LPIRFs of Jordà (2007) are 

applied due to the larger sample size and because they have been shown to be more accurate 

than the LPIRF‘s bootstrap method.
4
  

4) Methodology 

This section formalises the techniques discussed in the previous sections and provides the 

methodology used to produce the results of this paper which are presented and discussed in 

section 5. 
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 See Kilian and Kim. Again, note that this accuracy gain is arguably obtained because the asymptotic method 

produces wider intervals than the bootstrap. 



4.1  Structural Identification 

4.1.1 Theory 

Consider a structural vector autoregressive model, written as:
5
 

     ( )           (1) 

where    is a vector of variables of dimension   at time t,  ( )  is the p
th

 order matrix 

polynomial in the lag operator  ,   is the matrix of coefficients determining the 

contemporaneous relationships, and     (   )  is the vector of structural shocks. The 

reduced form (RF) estimable with data is: 

    ( )           (2) 

where          (   ) is the vector of reduced form residuals. The latter is more readily 

interpretable and is focussed on for identification.
6
 As can be seen in (1), the structural form 

(SF) has more parameters than the RF in (2). Table 1 counts the number of parameters in 

each form. 

Table 1 – Number of Parameters of Structural and Reduced Forms 

Structural Form Reduced Form 

Term # Individually Determined Elements Term # Individually Determined Elements 

       

 ( )      ( )     

  
    

 
   

    

 
 

Total        
    

 
 Total     

    

 
 

Note: VCV terms have 
    

 
 individually determined elements because covariance terms make VCV matrices 

symmetric. 

                                                 
5
 In the language of Lütkepohl (2005) this is an ‗A‘ model, where focus is solely on the matrix A in (1) in the 

link between reduced and structural forms. Often ‗B‘ or ‗AB‘ models are used which would specify     
 ( )         and identifying restrictions would be placed on A and B. One can think of A and B models as 

simplified AB models, with the non-stated matrix being set to be   .  
6
 Assume A is non-singular. 



Comparing the totals, unique identification of the SF parameters requires    restrictions.
7
 A 

standard assumption about the structural shock vector     (    ) is employed, i.e. that the 

structural VCV matrix is the identity. This makes 
 

 
(    ) distinct restrictions. Restricting 

     implies that structural shocks come from distinct sources as    is diagonal, and that 

each of the structural variances is unity as    has a unit diagonal. It can be of interest to allow 

  to have estimable diagonal elements, but this paper‘s employed software requires this 

assumption. 

The final 
 

 
(    ) restrictions are placed on the   matrix and are the more contentious 

restrictions which the discussion of section 2 focused on. As the elements of   determine the 

contemporaneous relations between the variables, restricting them will dictate the shape of 

the IRFs and must be theoretically justified. 

4.1.2 ISLM Application  

This paper utilises the structural identification scheme of Keating (1992). The dataset used 

comprises of quarterly US data for prices (CPI all items), interest rates (3-month rate), money 

(M1) and output (real GDP) (         and   ) from 1964:3 to 2009:3.
8
 Keating‘s restrictions 

appeal to the theory of the standard IS-LM model so that the resulting structural disturbances 

may be identified as: ―aggregate supply‖, ―money supply‖, ―money demand ‖ and 

―investment and savings‖ or AS, MS, MD and IS shocks. The 4-variate system requires 

 

 
(    )    identifying restrictions on   in order to just-identify all 4 shocks. The 

rationale for these is detailed in Table 2 below. 

 

                                                 
7
 More generally, the ‗AB‘ model requires     restrictions, but in the ‗A‘ or ‗B‘ model    restrictions are made 

implicitly through setting either A or B to be   . 
8
 This is OECD data accessed through the Economic and Social Data Service. 



Table 2 – Rationale of Restrictions 

Variable Restriction # Rationale Restriction on   

   1,2,3 

Contemporaneous price exogeneity: firms do not change price 

according to any shock other than one. This motivates 

interpreting that structural shock related to price as an 

aggregate supply (AS) shock. 

              

   4,5 

The short term interest rate is not allowed to move 

contemporaneously with prices or output; this is based on 

assuming that the Federal Reserve does not observe these 

when setting the rate. The Fed are assumed to change the rate 

due to changes in the stock of M1 money, hence the 

interpretation of the structural shock here as money supply 

(MS). 

          

   6 

The motivation for interpreting the third structural disturbance 

as money demand (MD or LM) through a buffer stock theory. 

This restricts movements in nominal money to be proportional 

to nominal output. As    and    are in logs, nominal output 

corresponds to      . 

          

   none 

Allowing output to respond contemporaneously to all 

variables seems reasonable and leaves the associated 

structural shock to be interpretable as the investment and 

savings (IS) shock. Indeed this fourth equation corresponds to 

a reduced form IS formula. 

none 

 

For clarity, (3) shows how the restrictions are placed on the impact   matrix: 
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)
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)

 
 

 

(

 
 

  
  

  
  

  
  

  
  

)

 
 

   (3) 

As (3) shows, the chosen IS-LM identifying restrictions cannot be imposed by a Cholesky 

decomposition, requiring estimation of  ‘s free parameters via full-information maximum 

likelihood.
9
 However, it will be useful for later to note that a Cholesky decomposition will 

allow interpretation of the AS and IS shocks in the same way, but lose the structural 

interpretation of the second and third equations‘ shocks. To see this consider the implications 

of a lower triangular   matrix, noting the similarities and differences with (3): 
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 Stata 10.1 is the employed software. It uses full information maximum likelihood to estimate the A matrix with 

its command ‗svar‘ used in conjunction with options ‗acns‘ and ‗aeq‘. For details of the procedure for those 

familiar with Stata coding, see the ‗svar‘ and ‗_svard2‘ ado files for confirmation. The procedure is also laid out 

in the ‗Methods and Formulas‘ section of the Stata Time Series Manual (2005). 
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4.2 Impulse Response Functions 

4.2.1 Definition 

The concept of an IRF is formalised in (4):  

   (      )   [     |     {
  

 

      

        (   )
    ]   [     |          (   )    ] 

That is to say IRFs measure the reaction of the system‘s variables at    , for         to 

a shock of the disturbance vector of   .    is the information available at   which is the set of 

lagged dependent variable vectors up to lag order  . In this 4-dimensional structural analysis, 

the shocks   ,         which correspond respectively to             shocks. The     

structural shock    corresponds to the     column of  ̂   where each row corresponds to the 

response e.g.  ̂   
   would be the response of    to an    shock at the time of the shock. 

Hence the matrix     is the ―impact matrix‖ that holds the information on    (      ) 

for        .  

Attention now turns to the two distinct methods of producing IRFs discussed in section 3. 

4.2.2 VIRF Theory 

VAR-based impulse response functions are found by noting that any VAR( ) model e.g. (2) 

has a VMA( ) representation:
10

 

    ̅   ( )   
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 I referred to Enders (2001) and Hamilton (1994) when needed. 

(4) 



 ( )  (         
   ) 

Note that we can split this into pre-shock, shock and post-shock components: 

      ̅  ∑    
       

 

     

      ∑    
       

   

   

 

Using this with the definition of an IRF in (4) and structural impulse vector   : 

   (      )   [ ̅  ∑    
       

 

     

      ]   [ ̅  ∑    
       

 

     

 ] 

   (      )          (5) 

Where (5) is the (   ) response vector of the systems variables at time     to the     

structural shock of time  . It may more clearly show the structural link to give the impulse 

response matrix by recalling that the    are the columns of    : 

   (       )          (6) 

Which reinforces why     is referred to as the impact matrix: 

   (       )      

To see how to derive the VIRFs from the estimated reduced form VAR for     explicitly, 

one should note the implied recursive relationship between the MA and AR ( ( )) operators 

because  ( )   ( )   or rather that  ( ) ( )   , implying unique coefficients on the 

lag operator terms. Hence the IRFs are generated recursively:
11
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 Note that the operator  ( ) differs subtly from  ( ) shown in (2) as  ( )  (         
       

 ) 

from  ( )     . In the formulae that follow, the distinction between the formulae for     and     is 

important as there are no AR coefficient matrices after   . This is sometimes overlooked, which is clearly 

inaccurate. For example, the Stata Time Series guide (2005) p128. Those authors give the first expression of (7) 

but for all  . Simple addition to the text of      for     would suffice for equivalence to (7). 



     

   ∑      

 

   

                               

   ∑      

 

   

                                 

Finally, to generate the structural impulse responses as in (6), the above set of derived MA 

coefficients (7) need to be post-multiplied by     – as it stands the impulse was not structural 

but the     shock comprises of a unit innovation to the     equation as shown by     .  

By the above derivations one can appreciate the non-linearity that was accused to be a source 

of the VIRF technique‘s bias. Expanding the expressions to state them in terms of the AR 

coefficients only:
12
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There are two relevant points of interest from (9). The MA coefficients are polynomials of 

the AR coefficients,   is a highly non-linear function.
13

 The order of the polynomial is 
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 Derivations are given in TA.1. 
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(9) 
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increasing one-for-one with the horizon. The number of, and complexity of the interaction 

terms following the lead term are also increasing. These highly non-linear polynomials show 

how any bias in the AR estimates will be magnified as the horizon increases.  

As has been noted, VIRF produces optimal one-step ahead forecasts. The crux of the reason 

for this result can now be fully appreciated. As shown by (8) VIRF uses the AR(1) coefficient 

matrix estimate from a regression of the dependent variable vector one-step ahead of the first 

regressor. In other words, the VAR regression estimates coefficients local to the one-step 

ahead horizon, and thus suffers less from any misspecification of the underlying DGP. The 

same is not true at horizons     due to their reliance on the same set of coefficients local to 

   . 

4.2.3 LPIRF Theory 

Impulse response functions generated by local projection aims to eliminate the cause of the 

bias in the VIRF technique by estimating (projecting) locally to each forecast horizon, not 

just    . To conduct LPIRF one needs to run a collection of   ―forwarded projections‖ on 

the information set. By Jordà‘s (2005) original notation:
14

 

             
            

            
   (10) 

                         
    

The timing convention (denoting the coefficients as corresponding to the     horizon) may 

seem a little strange here. To explain, consider the first projection at    , which reduces 

(10) to a VAR. When using VARs to produce IRFs as in section 4.2.2 it was shown that 

                                                                                                                                                        
13

 The exact form of   (other than its non-linearity and increasing non-linearity with  ) is not necessary for the 

present discussion and points made. If interested, the reader is directed to TA.1 for a closer inspection of the 

recursive formula‘s expansion. 
14

 The superscripts refer to the local horizon, they are not powers. Note the apparent typo in Jordà‘s original 

equation on p163 (2) that has         which would entail     projections. 



   (      )           , the first AR coefficient multiplied by the shock. Hence the 

same is true of the VAR here (    in the language of (10) will give the first-horizon IRF) 

i.e.    (      )    
   . LPIRFs depart from VIRFs at     (   ). To derive the LPIRF 

it is simpler to adopt the clearer notation for the projections, adapted slightly from Kilian and 

Kim (2009):
15

 

             
        

               (11) 

                       
    

Using (11) and the definition of IRFs (4) the LPIRFs are derived as such: 

 

     (      )    
      (12) 

The LPIRFs of (12) are simply the first matrix of slope coefficients of the local projections. 

For    , (11) is a VAR and      (      )    
   , hence the LPIRF technique does not 

stray from the optimal one-step ahead forecast estimator.  

On a practical note, the nature of LPIRF generation means that one cannot forecast further 

than the sample size, and the sample size available for each projection falls one-for-one as   

(or  ) increases. VIRF only loses observations as   increases.  

The main arguments in the literature have been summarised in section 3, but can now be 

appreciated. The key difference between the procedures is that LPIRF directly utilises single 

coefficient matrices (12) instead of VIRF which relies on non-linear transformations (9). By 

producing coefficients local to each horizon, deviations of the DGP from the VAR in (2) will 
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 Giving Jordà‘s admittedly less clear expression is included because the technique is relatively new and is not 

standard in text books, so the original form is a good reference point. 
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not be magnified through a web of non-linearities. This is why Jordà boasts LPIRF is more 

robust to misspecification of the unknown DGP.
16

 

5) Estimation and Results 

This section deals with the standard issues involved in VAR analysis then presents and 

discusses the results. An original contribution of this paper is that it offers an application of 

the LPIRF technique in Stata.
17

 Jordà (2007 and 2009) offers a slicker way to proceed with 

the coding rather than following his original (2005) paper, which this paper adopts.
18

 A 

second original contribution of this study is that it combines structural identification with 

both the LPIRF and VIRF techniques. Although this has been done e.g. see Haug and Smith 

(2007), there are very few examples, and this is the first explicit ISLM application. 

5.1 Data Issues 

Generating results with appropriate standard errors requires the variables to be stationary. 

Under the assumption that our series are difference stationary, a series of unit root tests are 

reported in Figure A.1 in the appendix to ascertain the order of integration of          and 

  .
19

 The results suggest that the vector (              ) is stationary. 

Lag length selection criteria shown in Table A.2 initially suggest inclusion of 7 lags in the 

VAR (following the AIC and final prediction error). The Schwarz‘s Bayesian (SB) and 

Hannan-Quin information criteria do suggest fewer lags due to the way they penalise the 

                                                 
16

 Focus has been on the point estimates of the IRFs. VCV estimates are of course vital for inference but have 

not been explicitly derived and focused on beyond the qualitative discussion of section 3. This is both because 

the point estimate comparison highlights the main advantage and rationale for LPIRFs and because of limited 

space. However, TA.2 ii gives the formulae used for the asymptotic LPIRF VCV estimates. 
17

 Applications typically involve Gauss or Matlab, I was not able to find one in Stata. It is my hope that this 

effort can help to popularise the use of the LPIRF technique by using Stata. The current code is not available as 

a Stata download command as it is written specifically for my application. The file I used is available to 

download at http://www2.warwick.ac.uk/fac/soc/economics/staff/phd_students/dronayne it is not the most 

elegant or efficient, but I hope it will help anyone else interested in creating their own version. 
18

 The procedure for estimation does not add sufficient intuition to warrant inclusion in the main text, hence the 

skeleton of the procedure used is provided in TA.2. 
19

 Another equally valid approach would be to attain stationary combinations of said variables if cointegrated e.g. 

Gali (1992). 

http://www2.warwick.ac.uk/fac/soc/economics/staff/phd_students/dronayne


inclusion of extra lags. Although the SBIC is consistent, the AIC is often used as authors err 

on the side of caution wanting to avoid misspecification, albeit at the cost of inefficiency. The 

LM test shown in Table A.3 shows the presence of serial correlation at orders 1, 5 and 8 at 

the 10% level. Specifying 8 lags removes all rejections of the null (no serial correlation) at 

the 10% level. The price of one extra lag – 16 extra slope parameters for the VAR estimation 

and one fewer observation for the generating the LPIRFs – is not trivial, but to avoid the 

possibility of misspecification with a healthy sample size of 172, seems a worthwhile trade 

off. No time trend is included as it is insignificant in all the VAR equations except     where 

it was very small (-0.00003), and trend inclusion has a negligible impact on results. 

The stability condition for VAR estimation requires that the roots of the related characteristic 

equation lie within the unit circle (solutions can be real or imaginary). If satisfied, the 

variables will be jointly covariance stationary, or ‗non-explosive‘. In the present 4-variate 8-

lag model there are 32 roots to check, all of which lie within the unit circle as Figure A.4 

shows. 

5.2 Impulse Response Functions 

Before turning to the IRFs, a few points require attention. The Cholesky scheme is an 

important and required component of the analysis. Jordà‘s asymptotic VCV derivations for 

short (and long) run schemes are valid for on recursive schemes only. Given the downsides 

expressed for recursive schemes in section 2 this is a nuisance, but confidence intervals are 

important for meaningful analysis if one can properly identify shocks.  Although the 

Cholesky decomposition still allows the AS and IS shocks to be identified (as noted in 

section 4.1.2), this paper uses the scheme to compare the IRF techniques rather than to make 

structural conclusions. There is nothing preventing LPIRFs to be produced without 

confidence intervals under the full ISLM scheme with all 4 structural shocks. Inference of 



these is of course hindered by the absence of standard errors, but they will allow statistically 

tentative but fully structural insight.  

The longest horizon is chosen to be     . As these data are quarterly, this provides a 6-

year horizon, a decent medium-long span. VIRFs can be estimated for any   (although with 

increasing bias and diverging confidence intervals) but LPIRFs are limited (as discussed in 

4.2.3). With a sample size of 180 and a VAR(8),      is selected so that each projection 

has              observations. 

5.2.1 Structure-Free Observations 

Figure 1 displays IRFs of both techniques along with confidence intervals for the LPIRFs 

from an IS shock using the recursive decomposition.
20
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 In the graphs, d stands for delta to signify that the variable is in first differences. The full set of IRFs for the 

recursive scheme is given in Figure A.6. 
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The LPIRFs are spiky over all horizons shown. This reflects that LPIRFs at each horizon are 

a distinct set of slope parameters. The VIRFs however, are non-linear combinations of the 

VAR parameters (9), recursively calculated (see (7)) which effectively smooths the relative 

spikiness of a collection of individual parameters. Hence they appear smoother than the 

LPIRFs. Further, note that this difference is only pronounced after 8 quarters. This is no 

coincidence, the VIRFs are based on a VAR(8) model. Noting the distinction between the 

equations of (7), VIRFs for   [     ] are based on increasingly non-linear functions of 

all the estimated VAR coefficients (excluding exogenous terms). As VIRFs receive no new 

estimates in this range the nature of the formulae dictate they become smoother with  . 

Within the range   [   ] one would still be likely see VIRFs becoming less spiky relative 

to LPIRFs due to their recursive nature despite VIRFs utilising a new set of coefficients with 

each  . What is pronounced is the speed at which VIRFs become smoother after the horizon 

surpasses the lag length.  

VIRFs are indeed typically smooth. While the specific dataset being used is of course 

influential, this paper suggests that this is typically an attribute for horizons   [     ]. If 

the DGP is a VARMA process then the LPIRFs are consistent, the VIRFs are biased, but 

yield a better fit with longer lag-lengths. This study‘s evidence shows that the VIRFs are 

seemingly good approximations to the specification-robust LPIRFs for   [   ], but that 

this similarity quickly becomes worse as   increases outside this range. A crude but 

illustrative way to demonstrate this is to show the pairwise correlation between the VIRFs 

and LPIRFs for both regions (for the IRFs in Figure 1) shown in Figure 2. Simple correlation 

is a crude measure because it only picks up linear associations. Nevertheless, it is testament 

to the argument developed above. The correlations between the VIRFs and LPIRFs for all 

four variables are near 1 (although the association for the change in money is a little lower) 

and are all significant at at least the 5% level. 



Figure 2 – Pairwise Correlation of VIRF and LPIRF within Different Regions 

Response Region 

   [   ]   [     ] 
     0.9663**  0.5361* 

    0.9645**  0.6826** 

     0.8970*  0.3270 

     0.9898**  0.4496 

  Notes: 1) ** (*) significantly different from 0 at 1% (5%) level. 

 2) The results from other shocks and identification 

schemes are similar. It would only be cluttering to report 

them all. 

As Figure 1 shows visually, the correlation worsens substantially after    , which is 

reflected in Figure 2. All correlations are substantially lower, half of them insignificantly 

different from zero. If VIRFs encompass misspecification bias which increases with forecast 

horizon which is mitigated by LPIRFs, this analysis suggests the VIRF‘s bias worsens 

substantially for horizons greater than the lag-length.  

This being said, Figure 1 shows no large practical difference in the prediction of the two 

techniques. This is not to be expected in general. Haug and Smith are a case in point. They 

compare results from a VAR(1) to LPIRFs. Their VIRFs are so smooth that the majority 

appear like a collection of straight lines relative to the spikiness of the LPIRFs (their results 

are copied in Figure A.5). Much of the inference from their graphs is very different 

depending on the IRF technique chosen. The present analysis using a VAR(8) displays VIRFs 

as a better approximation to LPIRFs and thus the results are often qualitatively similar. 

However, there are some differences in the techniques‘ predictions. Figure 3 shows an 

example of a significant difference in the techniques predictions. The shock does not 

correspond to any of the structural shocks identified by the scheme of section 4.1.2, hence it 

is inappropriate to interpret structurally. The IRFs of    after 13 quarters diverge, with the 

VIRF lying close to the LPIRF‘s upper confidence band ever after, and above it in quarter 20. 

The VIRF roughly predicts no long-run impact of the shock, whereas the LPIRF is 



significantly less than zero for all horizons (bar     ) shown 4 years after the shock‘s 

impact. 

That the IRFs produce similar predictions with these data is an interesting result. The 

aforementioned long lag length of this study allows the VIRFs to be closer to the LPIRFs for 

longer. As the VAR‘s order is a third of the maximum horizon, this gives the VIRF limited 

opportunity to diverge from the LPIRF. Although doubling the maximum horizon to 

investigate this still does not result in divergence. Figure 4 shows the same responses as 

Figure 3 but with     .  

In fact one could reasonably favour using VIRFs for this application. Firstly, the techniques‘ 

similarity of output could suggest that they both well represent the DGP and hence that the 

DGP is well approximated by a VAR process or by a VARMA process with relatively short 

MA component. In situations where the DGP is a VAR process, Jordà (2005) notes that VIRF 

is more efficient and Kilian and Kim (2009) argue that LPIRF intervals will be less accurate 

than the appropriate VIRF intervals. In situations where the DGP is a VARMA process, it 

was suggested there may well be a point where LPIRFs are more accurate than VIRFs. There 

is no definitive method to choose between them, and when they produce similar output as in 

the present application, the right choice is not obvious. Secondly, one may simply argue that 

the VIRFs are smoother (especially at    ) and hence supply clearer pictures upon which 

policy advice can be based. However, only producing VIRFs could well likely skip over 

many potentially important disagreements in short-run fluctuations and long-run results.  
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5.2.2 Structural Observations 

This section turns to culmination of the previous sections and discussions – IRFs generated 

via the structural ISLM scheme. As explained, the LPIRF‘s intervals cannot yet be provided. 

However, it is important and interesting to investigate whether there are any substantial 

departures from theoretical predictions using either technique. An important change in the 

output provided is that the responses of   ,    and    are in levels not first differences by 

generating cumulative IRFs. This is standard in VIRF analysis as it facilitates discussion of 

I(1) variables in levels. In fact, cumulating the responses has the effect of smoothing the 

spikiness of the differenced variables, making inference more comfortable. Figure 5 contains 

all the IRFs produced under the structural ISLM scheme. 

The similarity in the VIRF‘s and LPIRF‘s unaccumulated responses naturally translates into 

similarity in their accumulated responses, but with a few interesting exceptions. On the whole, 

the results of both techniques seem to uphold the theoretical predictions of the ISLM model.
21

 

There is a strong consensus between techniques concerning MD and IS shocks. The positive 

IS shock is normalised to the output equation. After the initial shock, output falls but stays 

above the pre-shock level for the full 6 year horizon. The positive IS shock is analogous to 

the IS curve shifting outwards in the standard ISLM model, related to an increase of output 

and the interest rate. Indeed, the shock is associated with a rise of the interest rate of 

approximately 40 basis points, rising to nearly 85 points above the pre-shock level after 18 

months. Price and output settle at new higher levels while the interest rate returns to its pre-

shock level. 
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 An ordering of the variables was chosen such that the     structural shock is relatable to a positive innovation 

of the     variable. See TA.3 for discussion of this phenomenon. 



The positive MD shock is normalised to the money equation so nominal money rises. The 

money stock continues to rise at a decreasing rate until 4 years after the shock where it 

plateaus at a new higher level. The increased liquidity increases prices with a lag as one 

would expect. The shock decreases the interest rate and increases output. As the money level 

stabilises, prices continue to rise and the interest rate settles at a new higher level. Output 

peaks after 18 months before tending back to its pre-shock level in accordance with notions 

of monetary neutrality. 

The AS and MS shocks show some differences between the techniques‘ predictions. The AS 

shock related to the price equation is associated with a positive reduced form price shock or 

adverse AS shock. As expected, both VIRFs and LPIRFs show increasing price and 

decreasing output. 

The LPIRFs ability to capture fluctuations at longer horizons becomes evident here. The 

VIRF for the interest rate‘s response is more or less flat between 20-30 basis points above the 

pre-shock level after 18 months. However, the LPIRF darts sharply below the VIRF after 2 

years and below the pre-shock level 6 months later. This is particularly interesting because 

the divergence in IRFs occurs precisely at the 8
th

 horizon (the VAR‘s order) giving a 

structurally meaningful example of the phenomenon discussed in section 5.2.1. Of course, 

divergence can happen at any time e.g. the LPIRF for output‘s response significantly departs 

from that of the VIRF after 4 years.  

The tightening MS shock is related to an increase in the interest rate. Output is suppressed 

and settles at a new lower level after 2 years, although the LPIRF shows signs of tending 

back to the pre-shock level again supporting the notion of monetary neutrality whereas the 

VIRF is steady at a new lower level. The positive trend of money and prices is unexpected. 

However, the LPIRF shows that prices start to fall after about 3 years, and the nominal rate  



Figure 5 Structural ISLM LPIRFs and VIRFs 
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falls to fluctuate around the pre-shock level. The VIRF on the other hand shows a much more 

gradual decrease in the interest rate, and a monotonic concave path for prices stabilising at a 

higher level – a form of the ―price puzzle‖ which has hampered many SVAR applications. 

Again, the substantial difference of the techniques‘ predictions in the response of prices 

occurs approximately at the horizon equal to the VAR‘s lag order. 

6) Conclusions 

Through a careful selection of identification scheme and an understanding of the VIRF and 

LPIRF techniques, we have highlighted the importance to the answer of the question ‗which 

impulse response function?‘. Combining structural identification and LPIRFs to test the 

implications of the ISLM model was an original contribution of this paper, as was the use of 

Stata.  

Through theoretical and empirical work, this paper has suggested that the bias of VIRFs 

becomes more severe at horizons higher than the lag length and that LPIRFs offer a remedy 

to this. Divergence of the IRFs often occurs at, or soon after the lag length horizon. It was 

then highlighted that even when it is suspected that a VAR process well approximates the 

DGP so that both techniques give consistent estimates, the impact of choosing VIRFs or 

LPIRFs can have important implications. The ISLM application showed VIRF and LPIRF 

techniques produced similar macroeconomic dynamics broadly congruent with theoretical 

predictions, but there were some stark differences. The methods have the potential to give 

conflicting answers to big questions about both a variable‘s more short-run trends (e.g. the 

price-puzzle) and long-run responses (e.g. monetary neutrality). The message from this work 

to practitioners is that although relatively new, local projection techniques warrant inclusion 

in any thorough piece of work on macroeconometric dynamics.  
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Appendix 

Table A.1 – Augmented Dickey Fuller (ADF) Unit Root Tests 

Variable Lag Length for ADF test  
Lag Length Selection 

Criteria in agreement 

Approximate  

p-value 
Conclusion 

   6* FPE, AIC, HQIC 0.9839     ( ) 

    5* FPE, AIC, HQIC 0.0266      ( ) 

   5* LR, HQIC 0.0314     ( ) 

   8* FPE, AIC 0.9075     ( ) 

    7 LR, FPE, AIC 0.0033      ( ) 

   2* FPE, AIC, HQIC, SBIC 0.0574     ( ) 

    11 LR, FPE, AIC 0.0003      ( ) 

 

1) FPE – final prediction error, AIC – Akaike‘s information criterion, SBIC – Schwarz 

Bayesian IC, HQIC – Hannan Quinn IC, LR – sequential likelihood ratio test 

recommendation. 

2) Where there is profound disagreement amongst the criteria for lag length, then the higher 

of the indicated lengths is chosen. If too low, misspecification causes the Dickey Fuller 

distribution to be invalidated, and inference incorrect due to the serially correlated errors. If 

too high, we lose some power of the test, which is inefficient compared to the correct 

specification. I made the judgement call that getting the number of lags too high rather than 

too low seems a more reasonable inaccuracy. 

3) * means that the test was performed with a linear trend as an exogenous variable. Basic 

visual interpretation leads to the final inclusion of trends. All tests bar    (and    ) were 

invariant to trend inclusion, so no further mention is necessary. Without a trend   (   ) 

reported an approx. p-value of 0.0546 (0.0505), borderline for rejection of it being I(1). To 

discover if    (   ) has a trend or not, Ayat and Burridge‘s (2000) sequential procedure is 

followed, and we find evidence for trend inclusion, so that the reported approx. p-value is 

appropriate. 

4) The 5% significance level is used as basis for rejection of the null that the series has a unit 

root. 

 

 



Table A.2 – Lag Length Selection Criteria 

Lag FPE AIC HQIC SBIC 

0 6.00E-16 -23.698 -23.668 -23.623 

1 2.20E-17 -27.018 -26.867 -26.646* 

2 1.90E-17 -27.173 -26.901 -26.504 

3 1.50E-17 -27.389 -26.997* -26.422 

4 1.30E-17 -27.501 -26.988 -26.237 

5 1.30E-17 -27.554 -26.921 -25.992 

6 1.30E-17 -27.570 -26.815 -25.710 

7 1.20E-17* -27.592* -26.716 -25.435 

8 1.30E-17 -27.577 -26.581 -25.123 

9 1.40E-17 -27.459 -26.342 -24.707 

10 1.40E-17 -27.493 -26.255 -24.443 

11 1.40E-17 -27.482 -26.124 -24.135 

12 1.50E-17 -27.435 -25.956 -23.791 

Table A.3 – LM Tests for Serial Correlation 

 VAR with 7 lags VAR with 8 lags 

Lag 
Chi-Squared 

test stat 
p-value 

Chi-Squared 

test stat 
p-value 

1 24.73 0.075 7.40 0.965 

2 18.53 0.294 14.30 0.577 

3 18.41 0.300 20.22 0.211 

4 22.82 0.119 20.66 0.192 

5 23.68 0.097 23.18 0.109 

6 21.66 0.155 20.16 0.213 

7 15.14 0.515 9.31 0.900 

8 25.12 0.068 20.21 0.211 

H0 : No autocorrelation at lag order 

Figure A.4 – Roots of the Characteristic Equation 
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Figure A.5 – LPIRFs and VIRFs of Haug and Smith (2007) 

 

1) Results are those of Haug and Smith (2007) Figure 1 p23. 

2) The black line is the VIRF based on VAR(1), the blue dashed line is the LPIRF, and the red short-dashed lines are the LPIRF confidence 

intervals. 

 

 

 

 

 



Figure A.6 Recursive LPIRFs and VIRFs 
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Technical Appendix 

TA.1 MA Coefficients’ Recursive Formula Derivations 

The points made in the text requiring proofs are:  

i) The highest-order term of the polynomial expression of    for         is   
 . 

ii) The lowest-order, single term of the polynomial expression of    for         is   . 

iii) The non-linearity and increasing non-linearity in   of  . 

Proof of i) 

This is shown by recursive substitution: 

            

   [        ]     

   [[        ]    ]     

  

   [ [[    ]    ] ]     

   [ [  ]   ]     

     
    

This involved substituting from      to    which is   substitutions, hence the final line 

raises    to that power. 

 

 



Proof of ii) 

Two parts to this: a) showing that the claim is true for         and b) showing that it is 

not for          . 

a) Simply expanding the recursive formula in the text: 

                 

               

b)                     

The least recursive substitutions are required to expand the final term        hence the 

lowest-order term will be   . Focusing on expanding that term and assume for illustrative 

purposes that      and that 
 

 
    , explained ex-post: 

     [         ]   

     [  [         ]  ]   

  

     [ [  [  ]  ] ]   

     [ [    ] ]   

       
  

Because     ,    . Hence the lowest-order single term has order   . 

The choice of    , made showing this easier. If     then the lowest-order term in the 

expression for    will be an interaction of    and various    ,           terms. 



Proof of iii) 

By substituting various terms between the first (as done in proof of i) and the last (as done in 

the proof of ii), one will see how the number of interaction terms, number of terms making up 

the interaction terms, and order of these terms, all increase at different rates with  . The basic 

idea can be seen from the example of         and     in the main text. 

TA.2 Practical Application of LPIRFs i) point and ii) VCV estimates 

i) Point estimates 

The following method is adapted from Jordà (2007). LPIRFs are the first matrix of 

coefficients for the   projections of (11) denoted  ̂ 
 . Let    for                be the 

(     )    matrix of observations for time  ; denote   (         ) ;     ; 

  (               )  ;    (   (   )    ) , where 1 is a column of ones (the 

constant). A slick way to generate the LPIRFs (although one could go one single line 

regression at a time) is by: 

 ̂(   )  [

 
 ̂ 

 

 
 ̂ 

 

]  [     ][     ]   

I find the intuition for this expression is clearer if re-stated by noting that    is the symmetric, 

idempotent projection matrix, define       and transposing: 

 ̂(   )  [     ][       ]   [   ][   ]   

 ̂(   )  [[   ][   ]  ]
 
 [   ]   [   ]  

 [   ]  [   ] 



This is clearly analogous to the OLS estimator.  ̂(   ) is the collection of slope parameters 

from the regression of    on each of           having removed the effect of the other     

regressors via pre-multiplication by   . By allowing the first regressor   to be in   allows us 

to generate the     projections with the first being the identity. To get the structural IRFs, 

all we need is to post-multiply  ̂(   ) by our estimate of the matrix     from maximum 

likelihood. Stata estimates this by maximum likelihood automatically with its ‗svar‘ 

command. 

ii) VCV estimate 

This paper uses the asymptotic estimate of the VCV matrix. As footnote XXX explains, focus 

has not been on confidence intervals so only a basic level of intuition is provided here, Jordà 

(2007, 2009) and Kilian and Kim (2009) are recommended readings for the curious. The full 

formula for the joint asymptotic VCV for the LPIRFs   is: 

  (       (   ))  (      (   ))

  (    (   ))   
 (     )  

    (    (   ) ) 

    
 (  (      )( 

     )  
 )   

The first additive component reflects the uncertainty in the IRF estimates, the second the 

uncertainty surrounding the estimate of    .Where    is the elimination matrix such that for 

some square (   ) matrix  ,     ( )       ( ) i.e. gets from the vectorisation to half-

vectorisation form; where    is the communication matrix    (  )       ( )  i.e. gets 

from the vectorisation of a square matrix to the vectorisation of the transpose of said matrix; 

where    is the duplication matrix    ( )        ( ) i.e. gets from the half-vectorisation 

to the vectorisation form and   
  (  

   )  
  so that   

    ( )      ( ) . Note that 

  
     iff   is symmetric.    is the marginal asymptotic VCV of the IRFs.    is the VCV 



of the underlying error, assuming the DGP is covariance-stationary so the standard Wold 

decomposition applies, estimated by the residuals from the VAR as shown below.    is the 

VCV of the residuals shown in (11).  

   [  
     ] 

     (       )  
  

   

[
 
 
 
 
     
      

   
     

     
   

     
      ]

 
 
 
 

     
     

     
                 

  

Note that    are the VAR residuals   . Replacing the above expressions with sample 

estimates derived from the estimated IRFs  ̂(   ) will generate the desired estimate of  . 

Within this matrix, the standard error of the response of variable   to the     shock in period   

is the square root of the (   ) element of        ( ) where     (   )      .  

TA.3 The Effect of Ordering 

Identification is unique up to multiplication of the rows of   by -1. Each ordering of the 

variables in the underlying VAR will be associated with a different   matrix, in that some 

rows will have their signs switched. The interpretation of the structural shocks depends on 

this, which allows the practitioner to effectively choose the sign of the structural shocks. Each 

of the decompositions has its own set of IRFs in so far as they comprise of the responses 

being reflected in the x-axis. There is therefore no meaningful difference in relative 

interpretations, one simply has to flip interpretation e.g. from a contractory to expansionary 

monetary shock. This paper‘s estimated impact matrix is: 

 ̂   (

          
                             

                              
                            

) 



The diagonal of which determines the relation between the     reduced shock and     

structural interpretation. For example, this implies the contemporaneous relation: 

  
           

   

This says that the AS shock is one that raises price i.e. an adverse AS shock. A different 

ordering would change at least one of the diagonal‘s signs and hence demand flipping this 

interpretation.  

 


