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Abstract

The recent literature has suggested that macroeconomic forecasters may have asymmetric loss

functions, and that there may be heterogeneity across forecasters in the degree to which they weigh

under and over-predictions. Using an individual-level analysis that exploits the SPF respondents’

histogram forecasts, we find little evidence of asymmetric loss for the inflation forecasters.

Journal of Economic Literature classification: C53, E31, E37

Keywords: Disagreement, forecast uncertainty, asymmetric loss, Survey of Professional Forecast-

ers.

1 Introduction

In this paper we examine US inflation expectations over the last forty years (1969 to 2010) making

use of the Survey of Professional Forecasters data. Our particular interest is in whether the forecasters

have asymmetric loss functions. In the extreme case, asymmetric loss permits forecasters to be ‘full-

information rational-expectations’(FI-RE) forecasters while still accounting for the empirical observation

that ‘forecasters disagree’, provided that their loss functions exhibit different degrees of asymmetry.
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There are a number of other explanations of why forecasters disagree, such as sticky information (see,

e.g., Mankiw and Reis (2002), Mankiw, Reis and Wolfers (2003) and Coibion and Gorodnichenko (2011)),

noisy information (Woodford (2001), Sims (2003)) as well as different views about the long-run values

of variables like inflation and output growth (e.g., Patton and Timmermann (2010, 2011)) and different

signals and interpretation of those signals (e.g., Kandel and Zilberfarb (1999), Lahiri and Sheng (2008)

and Manzan (2011)). Our focus is the explanation proposed by Capistrán and Timmermann (2009)

which stresses heterogeneity in the degree of asymmetry in loss functions, whereby individuals weigh

costs to over and under-predictions differently.

We consider the evidence for asymmetric loss using a testing procedure originally applied by Clements

(2009) to the output growth forecasts. This approach makes use of the inflation histograms reported by

the SPF respondents. Clements (2010) applies the approach of Clements (2009) to the SPF inflation

forecasts but in a panel data context. That analysis generally was not supportive of the hypothesis

that the SPF respondents are FI-RE forecasters with asymmetric loss functions. We re-visit the issue

of the inflation forecasts and asymmetric loss using an individual-level analysis (as in the application

by Clements (2009) to the output growth forecasts) and allow the degree of asymmetry to differ across

respondents. A second innovation is to fit the generalized beta distribution to the histograms to calculate

forecast moments, as opposed to normal distributions as in earlier work. This should lessen possible

distortions to the moment estimates from fitting a symmetric distribution such as the normal. As argued

by Giordani and Söderlind (2003), a normal distribution may provide a reasonable approximation to the

aggregate histograms, but may be less appropriate for the individual histograms. We follow Engelberg,

Manski and Williams (2009) in fitting generalized beta distributions to the SPF histograms, which we

regard as current ‘best practice’, in recognition that our results on the empirical relevance of loss function

asymmetry may be sensitive to the way in which forecast moments are calculated from the histograms.

We also consider only those histograms which provide enough information on the underlying subjective

distribution to enable such a distribution to be fit. We would expect this to further reduce measurement

error in our estimates of forecast moments. We also check the sensitivity of the results to the distribution

we fit to the histograms. Thirdly, we consider the point predictions and histogram means as rival forecasts

in a forecast encompassing framework, where the expectation is that the latter should forecast encompass

the former in terms of predicting outcomes, if agents have asymmetric loss.

The SPF is chosen because it is provides information on individuals’forecast moments, which will
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be shown to greatly facilitate the testing of the asymmetry hypothesis, and because it has been running

for long enough to support an individual-level analysis with a reasonable number of respondents.

The plan of the rest of the paper is as follows. Section 2 sets out the Capistrán and Timmer-

mann (2009) explanation of the empirical correlation between disagreement and uncertainty (see, e.g.,

Zarnowitz and Lambros (1987)), and the framework for testing for asymmetric loss of Clements (2009).

Section 3 describes the SPF forecast data, and how it is used to test the asymmetric loss hypothesis.

Section 4 describes the results, and section 5 concludes.

2 Asymmetric Loss

The Capistrán and Timmermann (2009) explanation of the observed correlation between disagreement

and uncertainty rests on the SPF point forecasts being generated by individuals seeking to minimize

asymmetric loss functions.1 Although Capistrán and Timmermann (2009) assume a specific asymmetric

loss function, namely linex loss (see Varian (1975)), the results in Patton and Timmermann (2007) show

that we can obtain essentially the same conclusions for a general asymmetric loss function, provided

only weak restrictions are put on the form of that loss function and the data generating process. The

requirement of the data generating process is that the variable of interest is conditionally location-scale

distributed, and the requirement of the loss function is that it is homogeneous in the forecast error.2

Letting Et (yt+h) ≡ E (yt+h | Ωt), and Vt (yt+h) ≡ V ar (yt+h | Ωt), and et+h,t denote the h-step ahead

forecast error, then formally we are assuming that:

yt+h | Ωt ∼ D (Et [yt+h] , Vt [yt+h]) ,

for some constant distribution function D, and:

L (a · et+h,t) = g (a)L (et+h,t) ,

1Following the key insight of Granger (1969) and Zellner (1986) that optimal forecasts will be biased if the loss function
is asymmetric, much of the recent literature has sought to test whether forecasts are rational once we allow forecasters
to have asymmetric loss functions: see, for example, Elliott, Komunjer and Timmermann (2005), Elliott, Komunjer and
Timmermann (2008) and Patton and Timmermann (2007).

2Homogeneity of the loss function rules out linex loss. A practical implication of adopting the Patton and Timmermann
(2007) framework rather than linex loss (together with the assumption that the data generating process is conditionally
normal, in order to obtain an expression for the optimal predictor) is that the optimal predictor should depend on the
conditional standard deviation, rather than the conditional variance.
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for some positive function g, and all a 6= 0. Patton and Timmermann (2007, Proposition 2) show that

the optimal forecast is given by:

ft+h,t = Et (yt+h) + φh ·
√
Vt (yt+h) (1)

where φh is a constant that depends on the form of D and L. If φh < 0 then over-predictions are more

costly than under-predictions (and vice versa for φ∗h > 0). The more likely over-prediction (because the

more uncertain the outlook, captured by the ‘variance’term), then the more the forecaster will aim to

under-predict on average. Hence the bias of a rational forecaster should depend on the forecast standard

deviation3 but not on other variables known at time t:

E (yt+h − ft+h,t | Ωt) = E
(
yt+h −

(
Et (yt+h) + φh ·

√
Vt (yt+h)

)
| Ωt

)
= −φh ·

√
Vt (yt+h).

Hence Pesaran and Weale (2006) suggest testing for rational expectations with asymmetric losses by

running a regression such as:

et+h,t ≡ yt+h − ft+h,t = ζ1
√
Vt (yt+h) + ζ′2Zt + εt+h (2)

where under the null we would expect to find ζ′2 = 0, but ζ1 6= 0 if loss is asymmetric.

Forecasters with the same conditional mean will ‘disagree’ (have different point forecasts) when

either i) they differ with regard to their conditional standard deviation of future inflation (‘inflation

uncertainty’) or ii) they attach different relative costs to under and over-predictions (φi 6= φ). Moreover,

for given values of φi, the extent of disagreement across forecasters will vary positively with ‘uncertainty’.

Allowing individuals to have different loss functions, we can test for rational expectations via regressions

for each respondent such as (2):

et+h,t,i ≡ yt+h − ft+h,t,i = ζ1,i

√
Vt,i (yt+h) + ζ′2,iZt + εt+h,i (3)

where ζ2,i = 0 under rational expectations, and ζ1,i = 0 under symmetric loss, but we would expect to

3Under linex loss the optimal predictor is given by f∗t+h,t = Et (yt+h)+
φ
2
Vt (yt+h), where the parameter φ determines

the degree of asymmetry in the linex loss function: L
(
et+h,t, φ

)
= φ−2

[
exp

(
φet+h,t

)
− φet+h,t − 1

]
.
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find ζ1,i 6= 0 under asymmetric loss. In terms of forecasting macroaggregates such as inflation it seems

reasonable to suppose that the relevant information is public, so accessible to all, so the test regressors Zt

typically will not have an i subscript. The main problem with (3) is obtaining a measure of
√
Vt,i (yt+h).4

Capistrán and Timmermann (2009) assume that forecast uncertainty is the same across all individuals,

and measure it as the one-quarter ahead conditional variance from a GARCH model fitted to the errors

of an AR model for inflation. The finding of Rich and Tracy (2003) that there is no relationship between

the conditional variance of the consensus errors and an ex ante measure of uncertainty casts doubt on

this step. Model-based forecasts of the conditional variance are necessarily backward-looking and will

adjust slowly when the economic environment changes relative to forecasters perceptions. It seems likely

that assuming a constant-parameter GARCH model for a period that spans the Great Moderation might

lead to the degree of persistence in inflation volatility being over-estimated.5

Clements (2009) proposes testing (1) directly for the SPF forecasts of output growth, for which

histograms forecasts are reported which can be used to estimate the required forecast moments. The

hypothesis of asymmetry is that Et,i (yt+h) − ft+h,t,i is systematically related to the forecast standard

deviation (or the forecast variance, in the case of linex loss), but rationality requires it should not

vary systematically with any variables in the individual’s information set. This suggests the following

regression:

Et,i (yt+h)− ft+h,t,i = δ1,i

√
Vt,i (yt+h) + δ′2,iZt + vt+h,i. (4)

The null of rationality and quadratic loss for individual i is that δ1,i = 0 and δ′2,i = 0, against the

alternative that any of these coeffi cients are non-zero. A rejection of the null due to δ1,i 6= 0, with

δ′2,i = 0, indicates asymmetry (and rationality), while δ′2,i 6= 0 indicates irrationality (conditional on

the assumed form of the loss function). In order to carry out these tests, as well as the point forecasts

we require the individual’s predictive distributions Pt+h,t,i (y) = Pr (Yt+h < y | Ωt,i) so that Et,i (Yt+h)

and Vt,i (Yt+h) can be derived (or that these conditional moments are available directly). Estimates of

these distributions are available in the SPF in the form of histograms, as described below.

The problem with testing based on (3) can be viewed as one of measurement error, as the dependent

4Or equivalently, of Vt,i (yt+h) if instead we assume a linex loss function.
5The Capistrán and Timmermann (2009) explanation of the dispersion of inflation expectations in terms of heterogeneity

in asymmetric loss is grounded on their estimates of inflation volatility, which for most of the results they report are derived
from an AR(4)-GARCH(1, 1) model of US inflation. They find the coeffi cients on lagged volatility and the lagged squared
error term sum to 0.98, indicating a highly persistent process.
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variable in (4) is related to that in (3) by:

et+h,i = yt+h − ft+h,t,i = (Et,i (yt+h)− ft+h,t,i) + (yt+h − Et,i (yt+h)) .

We let ξt+h, = yt+h − Et,i (yt+h). In this interpretation, ξt+h,i is a measurement error, such that the

dependent variable in (3) is a noisy proxy for the unobserved dependent variable Ei,t (Yt+h) − ft+h,t,i

in (4). Standard analysis suggests that if E
(
ξt+h,i | Ωt

)
= 0, so that ξt+h,i is uncorrelated with any

variables that might be included as explanatory variables, then inference based on (3) is less precise,

but tests of both ζ1,i = 0 and ζ′2,i = 0 remain valid. But when E
(
ξt+h,i,Xti

)
6= 0, where Xti =[√

Vt,i (yt+h) Z′t

]′
, then inference based on (3) is invalid.

As argued by Clements (2009), estimating (4) avoids the pitfalls of analyzing realized forecast errors

directly. Suppose the forecast error (constructed from the outcomes and point forecasts, i.e., et+h,i) is

regressed on variables known at the time the forecast was made, and the conditional standard deviation.

Were there a series of negative shocks to inflation over the period, the individual’s point forecasts may

overstate the realized rates of inflation. This may show up as evidence of asymmetric loss - that the

respondent has deliberately engineered a negative bias in their forecasts to avoid costly under-predictions.

By instead considering the deviation between the point forecast and the conditional expectation, the

conditional expectation would control for the negative shocks - it too would be higher than warranted

based on an information set that includes the shocks, but unless loss truly were asymmetric there is no

reason why the deviation should systematically differ from zero.

3 The Survey Data

3.1 The SPF survey

The SPF quarterly survey is our source of inflation expectations. The SPF began as the NBER-ASA

survey in 1968:4 and runs to the present day.6 It is a quarterly survey of macroeconomic forecasters of

the US economy. The survey questions elicit information from the respondents on their point forecasts

for a number of variables and their histograms for inflation and output growth. When the respondents

make their forecasts they will know the advance national accounts release for the previous quarter. The

6Since June 1990 it has been run by the Philadelphia Fed, renamed as the Survey of Professional Forecasters (SPF):
see Zarnowitz (1969) and Croushore (1993).
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Federal Reserve Bank of Philadelphia maintains a quarterly Real Time Data Set for Macroeconomists

(RTDSM): see Croushore and Stark (2001). This allows us to recreate the date on ‘output price’7 that

the respondent would have had access to, including the data for the quarter immediately prior to the

survey quarter.8

The histograms we use refer to annual inflation in the current year relative to the previous year, so

that for first-quarter surveys the forecast horizon is just under a year, whereas for fourth-quarter surveys

it is just under one quarter. In the statistical analyses we consider the surveys separately by quarter of

the year. We construct matching series of point forecasts from the SPF data. So for Q1 surveys, for

example, we sum the forecast of the current quarter and the forecasts of the next three quarters, and

divide by the data for the previous year’s four quarters.9
,10 For Q2 surveys the approach is the same

except the value for the preceding quarter (Q1) is now data, and similarly for surveys made in the third

and fourth quarters of the year. So we have forecasts of annual inflation made in Q1 through to Q4

of that year, that match the histograms in terms of forecast target (the annual change) and forecast

horizon.

We have 169 quarterly surveys from 1968:4 to 2010:4. We exclude the surveys for which there is some

doubt about the year that the histogram returns refer to.11

The methods of calculating forecast moments are described in the following sub-section.

3.2 Fitting continuous distributions to the SPF inflation histograms

We require measures of the forecast mean and variance of the annual rate of inflation. Calculating

means and variances from histograms is not straightforward. Diebold, Tay and Wallis (1999) assume

the probability mass is uniform within each interval (in the context of calculating probability integral

7Both the definition and base year of the output-price index has changed over time. The vintages of data in the RTDSM
match the indices for which probability assessments and point forecasts were requested in the SPF. For 1969 to 1991, this
was the implicit GNP deflator, for 1992 to 1995 the implicit GDP deflator, and for 1996 to 2002 the chain-weighted deflator.

8Later vintages of data contain revisions and definitional changes (see e.g., Landefeld, Seskin and Fraumeni (2008) for
a discussion of the revisions to US national accounts data).

9As of 1981:3, forecasts of the level of the output price for the current year were provided. Summing the quarterly
forecasts allows us to use data back to 1968:4. For the period from 1981:3 to 2005:1 we found that the differences in the
two methods of calculating annual inflation were small.
10The point forecasts of the growth rate are calculated using the actual data for the previous year from the RTDSM

available in the quarter of the survey. The one exception is that the RTDSM for 1996Q1 is missing the value for 1995Q4.
In constructing the year-on-year point forecast growth rates for the respondents to the 1996Q1 survey we use the previous-
quarter forecasts (of 1995Q4).
11See the online documentation provided by the Philadelphia Feb: ‘Documentation for the Philadelphia Fed’s Survey of

Professional Forecasters’, http://www.phil.frb.org/econ/spf/. The problematic survey quarters are 1985.1,1986.1, 1968.4,
1969.4, 1970.4, 1971.4, 1972.3, 1972.4, 1973.4, 1975.4, 1976.4, 1977.4, 1978.4, 1979.2, 1979.3, 1979.4.
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Table 1: Example of a histogram return.

Interval Probability t F (t)
‘ < −2′ 0.0 -2 0

-2 to -1.1 0.0 -1 0
-1 to -0.1 0.0 0 0
0 to 0.9 0.0 1 0
1 to 1.9 0.0 2 0
2 to 2.9 0.20 3 0.2
3 to 3.9 0.50 4 0.7
4 to 4.9 0.30 5 1.0
5 to 5.9 0.0 6 1.0

‘6+′ 0.0 7 1.0

transforms), while Giordani and Söderlind (2003) fit normal distributions to the histograms. Clements

(2009, 2010) uses both approaches. The uniformity assumption may tend to overstate the dispersion of

the distribution especially when there is a large difference in the probability mass attached to adjacent

intervals, where it might be thought desirable to attach higher probabilities to points in the lower interval

near the boundary with the high probability interval. One might question the assumption of symmetry

implied by fitting a normal distribution, and so we follow Engelberg et al. (2009) and fit (unimodal)

generalized beta distribution. This distribution uses two parameters to describe the shape of beliefs, and

two more to give their support.

The approach can best be understood by an example. Suppose a respondent’s histogram is reported

as the first two columns of table 1. When, as here, probability is assigned to three or more intervals,

the histogram can be approximated by a generalized beta distribution, as in Engelberg et al. (2009). To

illustrate, let t1, . . . , t10 denote the right endpoints of the histogram intervals, so that F (t1) , , . . . , F (t10)

are points on the individual’s CDF (recorded in the fourth column of table 1). Thus we have F (t5) = 0,

F (t6) = 0.2, F (t7) = 0.7, and F (t8) = 1.

The generalized beta CDF is given by:

Beta (t; a, b, l, r) =


0 if t ≤ l

1
B(a,b)

∫ t

l

(x−l)a−1(r−x)b−1
(r−l)a+b−1 dx if l < t ≤ r

1 if t > r


where the support of the distribution is determined by the parameters l and r, and where B (a, b) =
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(Γ (a) Γ (b)) /Γ (a+ b), and Γ (a) =

∫ ∞
0

xa−1e−xdx (see, e.g., Balakrishnan and Nevzorov (2003) for

technical details). We can impose unimodality by restricting a, b such that a > 1 and b > 1. The support

will depend on the distribution of probability across the histogram intervals. Suppose probability is only

attached to interior intervals, as in our example. We then set l and r equal to the left and right endpoints

of the intervals with positive probability. In our example, l = t5, r = t8. Then we minimize only over a

and b:

min
a>1,b>1

10∑
i=1

[Beta (ti; a, b, t5, t8)− F (ti)]
2

If there is mass in the lower tail interval, the we allow the support to extend below the left endpoint

of the lower interval, and l is a free parameter (similarly r if probability is assigned to the upper tail

interval. For example, if F (t1) = 0.2, F (t2) = 0.5, F (t3) = 0.7, and F (t4) = 1, so there is a 20% chance

that inflation will be less than t1 (the lower open-ended interval), we estimate:

min
a>1,b>1,l>l∗

10∑
i=1

[Beta (ti; a, b, l, t4)− F (ti)]
2

where l∗ is the lowest historical value of inflation.

When X ∼ beta (a, b, l, r), the first two moments are given by:

EX = l +
(r − l) a
a+ b

and:

V ar X =
ab (r − l)2

(a+ b)
2

(a+ b+ 1)
.

When probability is assigned to fewer bins, the histogram less clearly reveals the individual’s underlying

subjective distribution. Formally, we are unable to fit the generalized beta distribution when there

are fewer than 3 bins, and although there are other solutions (e.g., joining the points on the CDF

joined by straight lines) we consider only those histograms with probability assigned to three or more

intervals. This means that we only consider those histograms which provide suffi cient points on the CDF

to reasonably accurately reveal the underlying subjective distribution, when we wish to allow that the

distribution need not be symmetric.

As a robustness check, we also fit normal distributions following Giordani and Söderlind (2003), by
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Figure 1: Estimated CDFs obtained by i) joining up CDP points with straight lines (solid line), ii) a
nomal approximation (dashed line ), and iii) fitting a generalized beta distribution (longer-dashed line).

minimizing:

min
µ,σ2

10∑
i=1

[
Fn
(
ti;µ, σ

2
)
− F (ti)

]2
where Fn

(
µ, σ2

)
is the normal CDF. The benefit of imposing symmetry is that we only require the

histogram to have two non-zero probability intervals. Figure 1 reports the results of fitting both the

beta and gaussian to the histogram in table 1. As seen the supports of the distribution differ - the normal

extends below 2 and above 5 (Fn
(
t5; µ̂, σ̂

2
)
> 0, and Fn

(
t8; µ̂, σ̂

2
)
< 1). Of interest is whether the

results are sensitive to using beta distributions (and only histograms with 3 or more non-zero probability

bins) compared to imposing symmetry and using all histograms with 2 or more non-zero bins (by fitting

normal distributions).
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4 Results

We estimate (3) and (4) for each individual respondent and for each forecast horizon, conditional on

there being at least ten observations. Given the relatively small number of observations for a respondent

for a given horizon, Zt was restricted to a constant. For both (3) and (4) we recorded whether the null

that δ2,i = 0 was rejected at the 5% level, both with and without the forecast standard deviation; the

sign of the constant when significant; whether the forecast standard deviation was significant (δ2,i = 0);

the sign of this coeffi cient when significant; and whether the null that δ2,i = 0 was rejected but the null

that δ1,i = 0 was not (i.e., the forecast standard deviation was significant but the constant was not).

To estimate (3) requires an assumption about what it is the forecasters are trying to forecast - the first

announcement of the data or an earlier release. Following much of the literature we assume the latter,

specifically, the second release of output-price data. Table 2 reports the proportion of times the various

hypotheses were rejected across all the regressions for a given horizon.

Firstly, the null of forecast bias (δ2,i = 0 in (3) with the forecast s.d. omitted) was rejected for 10%

of the respondents across all horizons, with more rejections at the longer than the shorter horizons.12

Over all horizons, roughly half the significant biases (in the two-sided tests) are of each sign. When we

use the beta distribution to calculate moments, the proportion of rejections of δ2,i = 0 halves whether

we include the forecast s.d. or the variance. The null that δ1,i = 0 is rejected only 10% for the variance

(and less often for the s.d.), always with a negative coeffi cient. In summary, the 10% rejection rate of

the test for bias (for a 5% level test) suggests little evidence of biased forecasts, and the proportion

of rejections equals the size when the uncertainty term is included. Testing for rationality (allowing

for asymmetric loss) as recommended by Pesaran and Weale (2006), for example, gives little cause for

concern for rational expectations proponents.

Testing δ2,i = 0 in (4) tells a different story. Omitting the uncertainty term, we find the null is

rejected in over half the cases, and it is always positive, suggesting Et,i (Yt+h) > ft+h,t,i. This rejects

rationality based on squared error loss, and suggests that this finding was largely masked by measurement

error13 when we considered (3). According to the asymmetric loss story, the significance of the constant

term may be because of the omission of forecast uncertainty, which is expected to drive a wedge between

12When forecast moments are calculated using the beta distribution there are 73 regressions in total. The smaller number
of Q4 survey regressions reflect the different timing conventions in the 1970s. When we use the normal distribution to
estimate moments, there are 144 regressions. The use of histograms with two non-zero intervals gives rise to twice as many
sets of 10 or more observations by individual and horizon.
13 In section 2 we argued that inference based on (3) would be less precise than on (4).
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the conditional mean and the point prediction. Including the uncertainty term results in δ2,i = 0 being

rejected much less often (15% of the time for the forecast standard deviation), as would be expected

under asymmetric loss. However, the insignificance of the forecast uncertainty term is rejected only one

fifth of the time (for the variance, less often for the s.d.) which is not consistent with asymmetry loss,

but might reflect the relatively small samples and low power.

The results using the normal distribution to estimate forecast means and variances indicate fewer

rejections of δ2,i = 0 when forecast uncertainty is omitted, but a similar fraction when this term is

included.

So far, our results are reasonably supportive of the asymmetric loss story, especially if the fail-

ure to find δ1,i significant is attributed to low power or little variation in the uncertainty measure in

the sample. However, the asymmetric loss explanation assumes that the forecast means are unbiased,

E (yt+h − Et,i (yt+h)) = 0, and the expected squared errors of the forecast means should be less than

the expected squared errors of the point predictions (by construction, the mean minimizes squared-error

loss and the point prediction is optimal for an assumed non-symmetric loss function).

We investigate these issues with a further set of regressions, where we regard Et,i (Yt+h) and ft+h,t,i as

rival forecasts in a forecast encompassing framework (see, e.g., Clements and Harvey (2009) for a recent

review and exposition). Forecast encompassing relates to whether or not one forecast encapsulates all

the useful predictive information contained in a second forecast. If we use a squared error loss function

to measure forecast accuracy, then under the hypothesis of rationality and asymmetric loss we would

expect Et,i (Yt+h) to forecast encompass ft+h,t,i in the sense that in a pooled or combined forecast of the

two ft+h,t,i should receive zero weight. In terms of the general formulation of Fair and Shiller (1989),

Et,i (Yt+h) encompasses f t+h,t,i if β2 = 0 in the regression:

yt+h = α+ β1Et,i (Yt+h) + β2f t+h,t,i + εt+h.

We report the results of tests based on a version due to Chong and Hendry (1986):

yt+h − Et,i (Yt+h) = α+ β (Et,i (Yt+h)− ft+h,t,i) + εt+h (5)

and:

yt+h − ft+h,t,i = α+ β (ft+h,t,i − Et,i (Yt+h)) + εt+h (6)
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where we would expect i) not to reject the null that β = 0 in (5) but ii) to reject β = 0 in (6). We also

report the number of times we reject α = 0 in (5), when the slope regressor is excluded, which is a test

for forecast bias of the histogram mean (the results for the point predictions are recorded in table 2).

When β = 0 in (5) it is not possible to improve the (squared-error loss) accuracy of the mean forecast

by combining it with the point prediction. Under rationality and asymmetric loss, the point prediction

differs from the mean by a term which is independent of yt+h, so we would expect the optimal weight

on the point prediction to be zero. In (6) we would expect β = 1, so that the null that β = 0 should

be rejected. The results in table 4 are exactly the opposite of what would be expected assuming RE

forecasters with asymmetric loss functions. We reject the null that Et,i (Yt+h) encompasses ft+h,t,i for

two thirds of the individuals and horizons, but the null that ft+h,t,i encompasses Et,i (Yt+h) is rejected

for only one tenth of the individual/horizon pairs. Moreover, the unbiasedness of the mean forecasts is

rejected in around one third of cases. (The comparable figure for the point predictions was one tenth of

cases).

4.1 Robustness checks

A possible explanation of our findings is that the way we estimate individuals’mean forecasts results

in poor estimates relative to the means of the (unobserved) underlying subjective distributions. This is

possible, but we obtain similar results (table 2) whether we fit gaussian or generalized beta distributions.

The results for the latter require (by construction) that positive probabilities are assigned to three or

more intervals. This reduces the scope for mis-measuring means compared to analyses that estimate

means for one and two-interval histograms. That the results using the two different distributions match

quite closely would suggest that mis-measurement of means is unlikely to be the explanation.

A second explanation is that we have used data from the earliest days of the survey and have

analyzed the data by individual. The location and widths of the histogram intervals has changed over

time. For most of the period, the inflation histogram intervals were one percentage point, but for the

period 1981:Q3 to 1991:Q4 this was increased to two percentage points, so that these histograms are less

informative about the underlying continuous distributions, other things being equal. Further, the SPF

documentation warns of the possibility that the individual identifiers might have been assigned to more

than one person during the earlier period.14

14See http://www.phil.frb.org/research-and-data/real-time-center/survey-of-professional-forecasters/spf-
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For these two reasons we truncate the sample of forecasts, and only consider the surveys from 1992:Q1

onwards. This covers a 19 year period and 76 surveys. The results are recorded in table 3 for testing

for rationality allowing asymmetric. This table is directly comparable to the full-sample results table 2.

Results are reported only for the forecast standard deviation measure of uncertainty (results for the whole

sample varied little with the measure of uncertainty). There are fewer instances of respondents providing

more than 10 returns to surveys in a given quarter of the year (and therefore of a given horizon), as

expected. Nevertheless, the overall picture is unchanged. The regression of the histogram mean minus

the point prediction yields a significant difference between the two for around a half of the regressions,

but this is reduced to around a tenth when the forecast standard deviation is included, as would be

expected under the asymmetric loss story. Table 5 indicates that the forecast encompassing tests are

also qualitatively similar. On the shortened sample, we reject the null that the mean encompasses the

point prediction for around two thirds of the regressions, but the reverse hypothesis is rejected in only

one tenth of cases. We conclude that the message from the SPF surveys from 1992:1 onwards is the

same as for the whole period.

We have used real-time actual values to calculate forecast errors, rather than the latest-available

values. Specifically, we use the so-called ‘final values’ which are the second-quarterly release in the

RTDSMs. The last panel of table 5 indicates that the results of the forecasting encompassing tests are

qualitatively unchanged if we use the latest-available (2010:Q4 vintage) instead.

4.2 Related results

Elliott et al. (2008) consider the SPF 1-step ahead point forecasts of inflation and output growth, and

find results which are more favourable to the asymmetric loss hypothesis. They identify 51 forecasters

who made 20 or more one-step ahead inflation forecasts, and find that rationality is rejected at the 5%

level for 19 of the forecasters (around 40%) assuming symmetric loss (see their Table 1). This is higher

than the 10% we find. A possible explanation is that they have larger average samples by individual.

Because we use the histograms to calculate the forecast moments to test for rationality, and because the

histograms refer to the survey year relative to the previous year, each survey will provide forecasts of

one of four horizons (depending on the quarter of the year the survey belongs to), so that on average we

documentation.pdf
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will have only a quarter as many observations per individual as Elliott et al. (2008).15 However, their

rejections are based on testing ‘effi ciency’, α = 0 and β = 1 in:

yt+1 = α+ βft+1,t + vt

following Mincer and Zarnowitz (1969), rather than testing for forecast bias (as in column (3) of our

table 2). Testing our data for effi ciency gave rejection rates of 25 to 30% (at the 5% significance level),

bringing our findings more in line with their results. There was more evidence against rationality at

the longer-horizons (i.e., for forecast returns to Q1 surveys), and fewer rejections at shorter horizons.

However, testing the same null (α = 0 and β = 1) in a model that includes a measure of forecast

uncertainty (namely the forecast standard deviations calculated from the histograms) had virtually no

effect on the rate at which the null was rejected, contrary to what would be expected under asymmetric

loss.

Elliott et al. (2008) test for rationality allowing for asymmetric loss using the approach of Elliott

et al. (2005). They allow for a general loss function:

Lp (et+1;α) =
[
α+ (1− 2α) 1(et+1<0)

]
|et+1|p (7)

where p = 2 gives a piecewise quadratic loss function, with under and over-predictions being pe-

nalized differently when α 6= 1
2 . Given (7), the forecast ft+1,t minimizes E [Lp (et+1;α) | Ft] and

so solves E
[
L′p (et+1;α) | Ft

]
= 0, where (when p = 2), L′2 (et+1;α) = et+1 − (1− 2α) |et+1| =

2
(
α− 1(et+1<0)

)
|et+1|. Letting vt be a vector of instruments, vt ∈ Ft, the test of rationality al-

lowing for loss L2 is given by the GMM over-identification test where the population moments are

E {vt.L′2 (et+1;α)} = 0. They find that rationality allowing for asymmetric loss is rejected for single-

figure numbers of respondents, the precise number depending on the instrument set. However, given the

small samples involved there are concerns over the power of GMM tests of overidentifying restrictions:

the failure to reject the null of rationality might simply reflect low power.

15On the plus side, we consider 1 to 4-quarter ahead forecasts of annual year-on-year inflation, as opposed to simply
1-step ahead forecasts of next quarters inflation rate. Patton and Timmermann (2010) have shown that forecasters tend
to put relatively more weight on new information at shorter horizons than at longer horizons when expectations about
the long-run value receive greater weight. One might expect that the degree to which forecasters might aim to under or
over-predict would also depend on the forecast horizon.
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5 Conclusions

In the recent literature it has been suggested that symmetric loss ought to be regarded as just a special

case of more general loss functions, and that the presumption of symmetric loss might be misplaced

for macro-forecasters. If forecasters have asymmetric loss functions, then we would expect their point

forecasts to be biased, and the bias should depend on the conditional forecast uncertainty. However,

the small samples of forecasts we have by individual for a given horizon might explain why we often

fail to reject the null of unbiasedness (irrespective of whether loss is really asymmetric). Our preferred

test analyses the difference between the point predictions and (estimates of) the conditional means and

appears to have greater power, and is consistent with the asymmetry story in that the difference is zero

mean once we allow for forecast uncertainty. However, the outcomes of the forecast encompassing tests

provide telling evidence against asymmetric loss: we tend to reject the null that the mean forecasts

encompass the point predictions, under squared error loss, but not vice versa.

We have assumed throughout that the histograms accurately reflect the individuals’true beliefs, in the

sense that the histograms are not intentionally ‘biased’representations of the individuals’probability

assessments. Note that this is distinct from the measurement issues of estimating forecast moments

from the histograms, which we have tackled by reporting a sensitivity analysis. If forecasters report

probability distributions in the form of histograms with ‘in-built’bias, then the point predictions could be

optimal for an asymmetric loss function, and could simultaneously be more accurate than the ‘conditional

mean’forecasts, when both are judged by squared-error loss. It is recognized that forecasters may have

incentives not to report their true beliefs (see, e.g., Ehrbeck and Waldmann (1996), Laster, Bennett

and Geoum (1999) and Ottaviani and Sorensen (2006)): they may balance the minimization of forecast

errors against conflicting aims, such as convincing the market that they are well-informed, or of attracting

media attention. However, one might expect these incentives to relate to the relatively higher-profile

point predictions, rather than histogram forecasts (or probability assessments more generally) which

tend to receive less attention.

Asymmetric loss requires forecasters bias their forecasts away from what they expect the outcome to

be to an increasing extent as the degree of uncertainty about the future increases, that is, at just those

times when they are liable to make large forecast errors anyway. One might suppose that credibility

issues arise when one’s forecasts are suffi ciently ‘poor’(when judged by conventional criteria such as bias

and squared-error loss) such that the assumption of symmetric loss might not be unreasonable.
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Table 4: Forecast encompassing tests, 1968:4 to 2010:4

Survey # regns. α α < 0 β β
in eqn. (5) in eqn. (5) in eqn. (5) in eqn. (6)

1 2 3 4 5 6

Generalized beta
All 73 0.32 1.00 0.66 0.08
Q1 29 0.10 1.00 0.41 0.07
Q2 24 0.42 1.00 0.67 0.13
Q3 13 0.62 1.00 1.00 0.00
Q4 7 0.29 1.00 1.00 0.14

Gaussian
All 144 0.22 1.00 0.66 0.11
Q1 46 0.09 1.00 0.39 0.11
Q2 44 0.32 1.00 0.68 0.09
Q3 32 0.31 1.00 0.88 0.16
Q4 22 0.14 1.00 0.86 0.09

Notes. Column 3 reports the proportion of individual regressions for which we reject αi = 0 at the 5%
level in regression (5). Column 4 reports the proportion of these rejections for which the constant term
is negative. Column 5 is the proportion of regressions for which we reject βi = 0 at the 5% level in eqn.
(5) - the null that the mean forecast encompasses the point prediction, and column 6 is the same but
for eqn. (6), where the null is that the point prediction encompasses the mean. The actual values of the
inlfation rates are ‘real-time’- the second-quarterly release vintage.
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Table 5: Forecast encompassing tests, Restricted sample, 1992:1 to 2010:4

Survey # regns. α α < 0 β β
in eqn. (5) in eqn. (5) in eqn. (5) in eqn. (6)

1 2 3 4 5 6

Generalized beta, real-time actuals

All 42 0.43 1.00 0.69 0.12
1 15 0.20 1.00 0.40 0.13
2 13 0.54 1.00 0.77 0.15
3 9 0.67 1.00 1.00 0.00
4 5 0.40 1.00 0.80 0.20

Gaussian, real-time actuals
All 77 0.30 1.00 0.69 0.10
1 22 0.14 1.00 0.45 0.14
2 22 0.45 1.00 0.77 0.09
3 16 0.44 1.00 0.81 0.13
4 17 0.18 1.00 0.76 0.06

Generalized beta, 2010:4 vintage actuals
All 42 0.12 1.00 0.60 0.12
1 15 0.07 1.00 0.27 0.13
2 13 0.23 1.00 0.69 0.08
3 9 0.11 1.00 0.89 0.00
4 5 0.00 0.00 0.80 0.40

Notes. Layout is identical to table 4, repeated here for convenience. Column 3 reports the proportion
of individual regressions for which we reject αi = 0 at the 5% level in regression (5). Column 4 reports
the proportion of these rejections for which the constant term is negative. Column 5 is the proportion
of regressions for which we reject βi = 0 at the 5% level in eqn. (5) - the null that the mean forecast
encompasses the point prediction, and column 6 is the same but for eqn. (6), where the null is that the
point prediction encompasses the mean.
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