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Abstract

This paper develops a test for monotonicity of the regression function under endogeneity. The novel
testing framework is applied to study monotonicity of the reservation wage as a function of elapsed
unemployment duration. Hence, the objective of the paper is twofold: from a theoretical perspective,
it proposes a test that formally assesses monotonicity of the regression function in the case of a contin-
uous, endogenous regressor. This is accomplished by combining different nonparametric conditional
mean estimators using either control functions or unobservable exogenous variation to address endo-
geneity with a test statistic based on a functional of a second order U-process. The modified statistic is
shown to have a non-standard asymptotic distribution (similar to related tests) from which asymptotic
critical values can directly be derived rather than approximated by bootstrap resampling methods.
The test is shown to be consistent against general alternatives. From an empirical perspective, the
paper provides a detailed investigation of the effect of elapsed unemployment duration on reservation
wages in a nonparametric setup. This effect is difficult to measure due to the simultaneity of both
variables. Despite some evidence in the literature for a declining reservation wage function over the
course of unemployment, no information about the actual form of this decline has yet been provided.
Using a standard job search model, it is shown that monotonicity of the reservation wage function,
a restriction imposed by several empirical studies, only holds under certain (rather restrictive) condi-
tions on the variables in the model. The test from above is applied to formally evaluate this shape
restriction and it is found that reservation wage functions (conditional on different characteristics) do
not decline monotonically.
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1 Introduction

This paper develops a test for monotonicitiy of the regression function when the continuous

regressor of interest is endogenous. To the best of the author’s knowledge, this case has not

yet been studied in the literature, but it is argued that such a testing framework is relevant

for various setups in Labour Economics and Industrial Organization. In particular, the paper

provides an application to formally evaluate the monotonoicity of the reservation wage as a

function of elapsed unemployment duration, which refers to the length of an unemployment

spell at the time the reservation wage information is being retrieved.

Reservation wages lie at the heart of many partial and general equilibrium job search models and

are viewed as a key determinant for the length of unemployment (Mortensen, 1986). However,

the effect of unemployment duration on the reservation wage is generally ambiguous and difficult

to measure since both variables are determined simultaneuosly if reservation wages are flexible.

Numerous papers have assessed the impact of unemployment duration on the reservation wage

using either structural approaches (Kiefer and Neumann, 1979; Lancaster, 1985; van den Berg,

1990) or instrumental variable methods (Addison, Centeno, and Portugal, 2004; Brown and

Taylor, 2009). Despite some evidence for an overall declining reservation wage function over

the course of unemployment, it is not yet well understood whether this decline is monotonic

and whether it holds across different subgroups of the (unemployed) population.

Using a standard partial equilibrium job search model, it is shown that monotonicity, a re-

striction that has been imposed by several empirical studies (Kiefer and Neumann, 1981; Lan-

caster, 1985; Addison, Centeno, and Portugal, 2004; Brown and Taylor, 2009), only holds under

certain conditions on the variables in the model. The paper sheds light on this monotonicity

aspect by developing a test that can evaluate the restriction while addressing endogeneity either

through a nonparametric control function argument (e.g. Newey, Powell, and Vella, 1999; Blun-

dell and Powell, 2003) or through unobservable exogenous variation in the endogenous variable

of interest (Matzkin, 2004). The test is set up to detect whether reservation wages decline

monotonically for certain subsets of the support of elapsed unemployment duration conditional

on different characteristics. That is, the test aims to give an answer to questions such as: does

the reservation wage of a male decrease over the first three months of unemployment?1 Knowl-

edge about this kind of questions has policy implications since interventions may be designed

accordingly. For instance, an increase in the reservation wage after an initial decline, which

might be due to individuals becoming more selective the longer search lasts, could suggest

implementing policies that enforce search or intensify search assistance in particular from the

point when reservation wages increase again. Alternatively, unemployed individuals below a

certain age typically undergo a tighter benefit regime and face more drastic sanctions than their

1Notice that the notion of ‘decreasing’ here and in the following is understood as non-increasing during the
entire period considered.
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older counterparts, which might result in a reservation wage that is monotonically declining

throughout their unemployment. On the other hand, these sanctions or changes in the benefit

level are often absent or less pronounced for unemployed individuals above a certain age (in

particular the ones close to retirement age). Thus, reservation wages could, by contrast, behave

quite differently for older unemployed. As mentioned above, this has general implications for

the design of policies addressing unemployment.

The main theoretical contribution of this paper is to combine different conditional mean es-

timators for the regression function with a test for monotonicity based on Ghosal, Sen, and

van der Vaart (2000) and to derive its asymptotic properties. The estimator can be constructed

in multiple ways:2 if the researcher has a suitable instrument (vector) at his disposal that gives

rise to a conditional mean independence assumption, a consistent two-step estimator as in

Gutknecht (2011) can be used following standard arguments from the control function liter-

ature (e.g. Newey, Powell, and Vella, 1999; Blundell and Powell, 2003). In a first step, the

mean of the dependent variable conditional on exogenous covariates and the estimated con-

trol function is estimated using standard kernel methods. Subsequently, the control function

is averaged out to yield the empirical conditional mean function of interest. Alternatively, if

no appropriate instrumental variables together with a conditional mean independence condi-

tion exist, but instead variables that represent an exogenous perturbation of the endogenous

regressor are available, the concept of ‘unobservable instruments’ (Matzkin, 2004) can be ap-

plied. It is shown that by assuming the existence of such an exogenous perturbation that can

be integrated into the conditioning set, one may still identify and estimate the nonparametric

regression function of interest using additive separability conditions together with backfitting

methods (Mammen, Linton, and Nielsen, 1999).

After having constructed the first stage, either estimator can be plugged into a modified test

statistic that is taken to be the supremum of a suitably rescaled second order U-process. The

asymptotic distribution of this statistic can be approximated by a stationary Gaussian process

with a covariance that resembles the one in Ghosal, Sen, and van der Vaart (2000). The main

difference w.r.t. the latter consists of the estimated regression function that forms part of the

modified test statistic and that requires extra consideration in the derivation of the limiting

distribution (similar to Lee, Linton, and Wang (2009)). The test is shown to be consistent

against fixed general alternatives and its finite sample performance is studied in a Monte Carlo

Simulation.

Tests for monotonicity of the regression function have been a long-standing topic in the sta-

tistical literature and numerous other tests have been developed: Bowman, Jones, and Gijbels

(1998) for instance use Silvermans (1981) ‘critical bandwidth’ approach to construct a bootstrap

2It is the aim of the author to extend the current setup also to nonparametric instrumental variable regression
if the researcher has a corresponding moment condition at hand to construct a suitable first stage estimator
(e.g. Chen and Pouzo, 2009).
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test for monotonicity, while Gijbels, Hall, Jones, and Koch (2000) consider the length or runs of

consecutive negative values of observation differences and Hall and Heckman (2000) suggest to

fit straight lines through subsequent groups of consecutive points and reject monotonicity for

too large negative values of the slopes. A more recent example are Birke and Neumeyer (2010),

who base their test on different empirical processes of residuals. All these tests do, however,

require independence between the equation error and the regressor of interest and are hence

not applicable to a wide range of economic setups that allow for a correlation of the latter.

A generalization of the above tests to monotonicity of nonparametric conditional distributions

has recently been carried out by Lee, Linton, and Wang (2009). Their test statistic is similar

to the one of Ghosal, Sen, and van der Vaart (2000), albeit the asymptotic distribution takes a

different and more complicated form. Another test for monotonicity of conditional distributions

and its moments has been proposed by Delgado and Escanciano (2012). Even though in both

examples the null of stochastic monotonicity implies monotonicity of the regression function (if

it exists), rejection of the null does clearly not imply a failure of monotonicity of the regression

function.

Changing reservation wages raise a simultaneity issue since the reservation wage does not only

influence unemployment, but is in turn also affected by the length of unemployment itself. This

inter-relationship is well understood and has aptly been discussed in the job search literature

(e.g. Lancaster, 1985; van den Berg, 1990). The identification approach of this paper uses in-

strumental variables suggested by the literature such as logarithm of benefit income other than

unemployment benefits, logarithm pay in the last job, an indicator variable for having a working

spouse, marital status, or the number of dependent children (Kiefer and Neumann, 1979; Addi-

son, Centeno, and Portugal, 2004; Brown and Taylor, 2009) to construct control functions that

are plugged into the conditional mean estiamtor.3 To check robustness of the results, the paper

also proposes an alternative method based on a recent study by Addison, Machado, and Portu-

gal (2011), who address endogeneity by using longitudinal information on completed durations:

assuming that endogeneity arises due to an omitted, endogenous ‘fixed effect’ that is constant

throughout the unemployment spell, an additively separable nonparametric model can be fitted

to the data controlling contemporaneously for elapsed and completed unemployment duration.

It is shown that controlling for both durations, together with suitable additivity assumptions,

allows to recover the regression function of interest.4 The estimated reservation wage function

can then be plugged into the test statistic described before.

The data for the empirical analysis stems from the British Household Panel Survey (BHPS),

a nationally representative survey on individuals from more than 5,000 households in the UK.

This data source provides sufficient information on (hourly) reservation wages, unemployment

3The crucial underlying assumption here will be that all these instrumental variables impact the reservation
wage only through elapsed unemployment duration.

4A theoretical model will demonstrate how such an endogenous fixed effect can be incorporated into a
standard partial equilibrium job search model.
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spells, and instrumental variables to conduct the monotonicity test for different population

subgroups. More generally, however, the testing framework can also be applied to other fields

in economics where a formal evaluation of monotonicity is of interest to the researcher and

assumptions set out in this paper are met. Examples include the relationship between the

hourly wage rate and the number of annual hours worked (Vella, 1993) or returns to years of

schooling (Garen, 1984) if years of schooling is modelled as a continuous choice variable.

The paper is organised as follows: Section 2 outlines the main setup and the test statistic if

a suitable instrumental variable is at hand, while large sample properties of the statistic are

examined in Section 3. Section 4 extends the framework of the previous sections to the case of

‘unobservable instruments’ as outlined above. Section 5 examines the finite sample properties

of the estimator in a Monte Carlo Simulation. Section 6 will then be devoted to the reservation

wage example and will provide a motivation for the methods suggested to address endogeneity

and for testing monotonicity in that context. It will also outline the results from an application

to UK unemployment data. Section 7 concludes. All proofs and tables are postponed to the

appendix.

2 Setup

To gain a better understanding of the setup, consider the following model: let Wi be the

continuous outcome variable (e.g. the ‘reservation wage’ from the application example). Ui

is a continuous, endogenous regressor (e.g. elapsed unemployment duration) and Xi is a D

dimensional random vector of exogenous characteristics of the individual. The vector may

contain both, continuous as well as discrete elements. Then, with εi denoting the unobservable,

the equation of interest is given by:

Wi = m̃
(
Xi, Ui

)
+ εi (1)

where m̃(·, ·) is a real-valued function, which is differentiable in its continuous arguments.

Before the test statistic is outlined, a few remarks on the notation are required: let X , U
denote compact subsets of the support of X and U with strictly positive density everywhere.5

Moreover, let ∇Um̃(·, ·) denote the derivative of m̃(·, ·) w.r.t. the argument Ui, and T = [a, b]

be a compact interval s.t. T ⊂ U . Reverting to the application example of reservation wages

from the introduction, suppose the interest lies in testing whether the reservation wage function

(for an individual with characteristics x) is declining for every elapsed unemployment duration

5For expositional motives, Xi is assumed to contain exclusively continuous components in this section. This
does obviously restrict the applicability for many empirical studies with small samples where researchers are
typically interested in a differentiation of the sample according to different (discrete) subgroups such as gender,
race etc.. Hence, an extension to discrete components is considered in section 3.
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t ∈ T . That is, for a specific x ∈ X , the null hypothesis is given by:

H0 : ∇Um̃(x, t) ≤ 0 for all t ∈ T

The alterative is the negation of this null hypothesis. Notice that the above hypothesis can

be restated as −∇Um̃(x, t) ≡ ∇Um(x, t) ≥ 0 for all t ∈ T , which will turn out to be more

convenient when setting up the test statistic. What prevents a direct application of the test for

monotonicity of Ghosal, Sen, and van der Vaart (2000) based on observed Wi and Ui is that Ui

and εi are correlated and thus inference based on the former test statistic will be misleading.

As outlined in the introduction, the paper proposes different identification strategies that allow

to implement the test despite this endogeneity problem. In the following, the paper will outline

a control function procedure that can be applied if the researcher has instrumental variables

at his disposal that give rise to a conditional mean independence condition. If instead of an

instrumental variable, an exogenous perturbation of the endogenous regressor Ui exists, an

identification strategy along the lines of Matzkin (2004) becomes applicable. The latter will be

outlined as an extension in section 5.

Suppose a Dz-dimensional vector of instruments Zi = {Xi, Z1i} exists. Moreover, the subvector

Z1i is allowed to include a non-zero constant and is assumed to be of dimension Dz1 ≥ 2 with

at least one (nonconstant) continuous component. The following reduced form equation is

assumed:

Ui = g
(
Zi

)
+ Vi (2)

where g(·) is a real-valued, differentiable with non-zero derivative in its continuous argument(s).

Without loss of generality, it is assumed that E
[
Vi

∣∣∣Zi] = 0. Vi is the so called control function,

which is assumed to satisfy a conditional mean independence condition:

E
[
εi

∣∣∣Zi, Vi] = E
[
εi

∣∣∣Vi] (3)

This restriction is crucial for identification purposes and referred to as ‘exclusion restriction’

in the literature. A sufficient condition is independence between the instrument vector Zi and

the model unobservables εi and Vi.
6 To revert to the example of reservation wages, instruments

suggested by the literature might for instance be the logarithm of benefit income other than

unemployment benefits, the pay of a previously held job, having a working spouse, marital

status, household size, or the number of dependent children. In order for these instruments to

be valid, one has to assume that the variables only affect the reservation wage through elapsed

unemployment duration. That is, elapsed unemployment Ui is assumed to be a function of

6Notice that under this independence condition identification could be achieved even if the setup in (1)

contained a nonseparable function Wi = m̃
(
Xi, Ui, εi

)
, where m̃(·, ·, ·) is strictly increasing in its last argument.

Such an extension would require a strengthening of the exclusion restriction to conditional independence of Ui
and εi given Vi (see Blundell and Powell, 2003), which follows from independence of the instrument vector Zi
and the unobservables εi and Vi.
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Zi (see section 6 for details). Equations (1) and (2) together with the assumption in (3) and

the normalization characterize a standard nonparametric control function setup for an additive

regression function (e.g. Blundell and Powell, 2003).

Identification of m̃(·, ·) can be achieved using for instance Theorem 2.3 of Newey, Powell, and

Vella (1999). In order to understand their result, notice that:

E
[
Wi

∣∣∣Ui = u, Zi = z
]

=m̃
(
x, u
)

+ E
[
εi

∣∣∣Ui = u, Zi = z
]

=m̃
(
x, u
)

+ E
[
εi

∣∣∣Ui = u, Vi = v
]

=m̃
(
x, u
)

+ E
[
εi

∣∣∣Vi = v
]

≡m̃
(
x, u
)

+ λ(v)

(4)

where the third equality follows from the conditional mean independence assumption in (3).

Newey, Powell, and Vella (1999) show that identification of the additive m̃(·, ·) from the condi-

tional expectation above is the same as identification of m̃(·, ·) in equation (1). Then, identifica-

tion up to an additive constant can be accomplished by reverting to the following lemma:

Lemma 1. Suppose that equations (1) and (2) and the conditional mean independence assump-

tion in (3) as well as E
[
Vi

∣∣∣Zi] = 0 hold. Moreover, assume that E
[
εi

∣∣∣Vi] is differentiable and

that the boundary of the support of (Z, V ) has zero probability. Then, m̃(X,U) is identified up

to an additive constant.7

The proof of the lemma follows directly from an application of Theorem 2.3 in Newey, Powell,

and Vella (1999). The rank condition of that theorem is trivially satisfied here because our

setup only contains one endogenous regressor and thus ∂
∂Z
g(·) has a vector format with rank

one. Then, imposing the normalization E
[
εi

]
= 0 on εi such that E

[
Wi

]
= E

[
m̃
(
Xi, Ui

)]
,

identification of the level of m̃(·, ·) can be accomplished by assuming the existence of a function

7The exact definition of identification in Newey, Powell, and Vella (1999, p.567) is based on equation (4):

E
[
Wi

∣∣∣Ui = u, Zi = z
]

= E
[
Wi

∣∣∣Ui = u,Xi = x, Vi = v
]
≡ m̃

(
x, u

)
+ λ(v)

Since conditional expectations are unique with probability one, any other additive function m(x, u) + λ(v)
satisfying the above equation must satisfy P[m(x, u)+λ(v) = m̃(x, u)+λ(v)] = 1. Identification is thus equivalent
to equality of conditional expectations, which in turn implies equality of the additive components, up to a
constant. Equivalently, working with the difference of two conditional expectations, identification is equivalent
to the statement that a zero additive function must have only constant components. Hence, the authors obtain
the following Theorem, which also provides their definition of identification: Theorem 2.1 of Newey, Powell,
and Vella (1999): m̃(x, u) is identified, up to an additive constant, if and only if P[δ(x, u) + γ(v) = 0] = 1
implies there is a constant cm with P[δ(x, u) = cm] = 1.
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f(v) satisfying
∫
f(v)dv = 1:∫

E
[
Wi

∣∣∣Ui = u,Xi = x, Vi = v
]
f(v)dv =

∫
E
[
Wi

∣∣∣Ui = u,Xi = x, Vi = v
]
f(v)dv

+ E
[∫

E
[
Wi

∣∣∣Ui = u,Xi = x, Vi = v
]
f(v)dv

]
− E

[
Wi

]
=m̃

(
x, u
)

+ E
[
m̃
(
Xi, Ui

)]
− E

[
Wi

]
=m̃

(
x, u
)

(5)

where the second equality follows because
∫
E[Wi|Ui = u,Xi = x, Vi = v]f(v)dv = m̃(x, u) +∫

λ(v)f(v)dv and
∫
λ(v)f(v)dv =

∫
E[εi|Vi = v]f(v)dv = E[εi] = 0. This establishes identifica-

tion.

In order to use the above result for the test statistic developed in this paper, recall that

m(·, ·) = −m̃(·, ·) and let:

µ(x, u, v) = −E
[
Wi

∣∣∣Xi = x, Ui = u, Vi = v
]

(6)

so that:

µ(x, u) =−
∫

E
[
Wi

∣∣∣Xi = x, Ui = u, Vi = v
]
f(v)dv

=m(x, u)−
∫

E
[
εi

∣∣∣Vi = v
]
f(v)dv

=m(x, u)

(7)

for every x, u ∈ X ×U .8 Equation (7) can be consistently estimated using the kernel estimator

suggested in Gutknecht (2011):

µ̂(x, u) =
1

n

n∑
j=1

µ̂(x, u, V̂j) (8)

where

µ̂(x, u, V̂j) = −Îj

1
nh3n

n∑
i=1

WiKh(x−Xi)Kh(u− Ui)Kh(V̂j − V̂i)

1
nh3n

n∑
i=1

Kh(x−Xi)Kh(u− Ui)Kh(V̂j − V̂i)
(9)

and Îj = I[x ∈ X , u ∈ U , V̂j ∈ V ] denotes an indicator function that is equal to one on the

8A similar argument could be made under conditional independence and non-separability of m̃(·, ·, ·). That

is: µ(x, u) = −
∫
E
[
Wi

∣∣∣Xi = x, Ui = u, Vi = v
]
f(v)dv = E

[
m(x, u, εi)

∣∣∣Vi = v
]
f(v)dv = E

[
m(x, u, εi)

]
. Notice

that for this argument to hold for every x, u ∈ X × U , a large support condition similar to the one in Imbens
and Newey (2009) is required.
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compact set of interest. Kh(u) = K(u/hn) is a kernel function with compact support on

[−1, 1] and hn −→ 0 as n −→ ∞. The empirical control function V̂i can be constructed using

V̂i = Ui − g(Zi), where ĝ(·) can be estimated using for instance the Nadaraya-Watson kernel

estimator. The modified test statistic is based on µ̂(·, ·) in (8): assuming that the observations

are in ascending order 1 ≤ i < j ≤ n, a suitable second order U-process based on µ̂(·, ·) and Ui

(and indexed by t) is given by:

Ûn,x(t) =
2

n(n− 1)

∑
1≤i<j≤n

(
µ̂(x, Uj)− µ̂(x, Ui)

)
sign

(
Ui − Uj

) 1

h2n
Kh(Ui − t)Kh(Uj − t) (10)

where t ∈ T and

sign(x) =


1 if x > 0

0 if x = 0

−1 if x < 0

If ∇Um(x, t) ≥ 0, Ûn,x(t) should, apart from random fluctuations due to estimation errors, be

less than or equal to 0. To see this, replace µ̂(·, ·) by µ(·, ·) and recall that µ(x, u) = m(x, u).

Hence, taking expectations of the modified Un,x(t) and letting ν = ((Uj − t)/hn) and u =

((Ui − t)/hn), by change of variables:

E
[
Un,x(t)

]
=

∫ ∫ (
m(x, Uj)−m(x, Ui)

)
sign

(
Ui − Uj

) 1

h2n
Kh(Ui − t)Kh(Uj − t)f(Ui)f(Uj)duiduj

=

∫ ∫ (
m(x, t+ hnν)−m(x, t+ hnu)

)
sign

(
u− ν

)
K(u)K(ν)f(t+ hnu)f(t+ hnν)dudν

where f(·) denotes a marginal density function. Notice that:

1

hn

(
m(x, t+ hnν)−m(x, t+ hnu)

)
−→ ∇Um(x, t)(ν − u)

and hence by dominated convergence:

1

hn
E
[
Un,x(t)

]
−→ −∇Um(x, t)

∫ ∫
|u− ν|K(u)K(ν)f(t)2dudν

Thus, the limit is negative or zero if and only if ∇Um(x, t) ≥ 0. So in expectation, the statistic

should be less than or equal to zero under H0. Vice versa, under the alternative the statistic

should yield a positive value.

The test statistic is given as the supremum (of the interval T ) of a suitably scaled version

of (10), which corresponds to the choice of similar tests in the literature rendering the test

particularly sensitive to large positive outliers violating the null hypothesis.9 Specifically, the

9However, as pointed out by Ghosal, Sen, and van der Vaart (2000), other functionals might be chosen
depending on the specific interest of the researcher.
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statistic is chosen to be:

Sn = sup
t∈T

{
Ûn,x(t)

cn(t)

}
where cn(t) is a scaling factor that may depend on ({X1, U1}, . . . , {Xn, Un}) and is assumed to

have continuous sample paths as a process of t. A suitable choice given the U-process structure

of (10), which ensures that the variability of Sn is approximately the same over different t, is

cn(t) = σ̂n,x(t)/
√
n so that Sn becomes:

Sn = sup
t∈T

{√
nÛn,x(t)

σ̂n,x(t)

}
(11)

where

σ̂2
n,x(t) =

1

n(n− 1)(n− 2)

∑
1≤i,j,k≤n,i 6=j 6=k

(
µ̂(x, Uj)− µ̂(x, Ui)

)(
µ̂(x, Uk)− µ̂(x, Ui)

)
× sign

(
Ui − Uj

)
sign

(
Ui − Uk

) 1

h4n
Kh(Uj − t)Kh(Uk − t)K2

h(Ui − t) (12)

is the estimated U-process for:

σ2
n,x(t) =

∫ (∫ (
µ(x, ω)− µ(x, U)

)
sign

(
U − ω

) 1

hn
Kh(ω − t)

)2

dF (ω)
1

h2n
K2
h(U − t)dF (U)

=

∫ (∫ ∫ (
µ(x, ω1)− µ(x, U)

)(
µ(x, ω2)− µ(x, U)

)
sign

(
U − ω1

)
sign

(
U − ω2

)
× 1

h2n
Kh(ω1 − t)Kh(ω2 − t)dF (ω1)dF (ω2)

)
1

h2n
K2
h(U − t)dF (U)

(13)

with F (·) denoting a distribution function that corresponds to the marginal density function

f(·). The respective test is given by:

Reject H0 at level α if Sn > τn,α

where lim
n−→∞

P{Sn > τn,α} = α. Thus, to approximate the critical values, the limiting dis-

tribution of Sn is required. The first step towards this point is to show that (11) can be

approximated by a stationary Gaussian process with continuous sample paths, which will be

achieved in Theorem 2 of the next section.
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3 Large Sample Theory

Before assumptions and asymptotic theory are outlined, the following terms need to be defined:

let the projection of the degenerate U-process in (10) be denoted as (Hoeffding, 1948):

Ûp
n,x(t) =

2

n

n∑
i=1

∫ (
µ̂(x, ω)− µ̂(x, Ui)

)
sign

(
Ui − ω

) 1

h2n
Kh(ω − t)dF (ω)Kh(Ui − t) (14)

where the projection term of higher order Op(hnn
−1) has been omitted. Moreover, define:

q(r) =

∫ (
ω − r

)
sign

(
r − ω

)
K(ω)dω (15)

and

ρ(s) =

∫
q(r)q(r − s)K(r)K(r − s)dr∫

q2(r)K2(r)dr
(16)

as well as Tn = [0, (b− a)/hn]. The following assumptions are made:

A1 Let {Wi, X
T
i , Ui, Zi}ni=1 be i.i.d. data with finite second moments.

A2 W = U × X × V is a non-empty set, where U , X , and V are subsets in the interior of

the marginal support of X and U and V . The marginal distribution function of V is

continuously differentiable on V . The elements x in the support of X can be partitioned

into subvectors of discrete x(d) and continuous x(c) components of dimension Dc. Let X (d)

and X (c) be the corresponding discrete and continuous parts of X ⊂ W . Assume that the

conditional density (given x(d) ∈ X (d)) on W is continuously differentiable and strictly

bounded away from zero.

A3 K(·) is a bounded and symmetric second order kernel function with compact support

[−1, 1]. It is twice continuously differentiable.

A4 The function µ(·, ·) = E
[
µ(·, ·, Vi)

]
as defined in (7) satisfies, for every u1, u2 ∈ U and

x ∈ X , µ(·, ·) = E
[
µ(·, ·, Vi)2

]
<∞ and the following Lipschitz condition:

∣∣∣µ(x, u1)− µ(x, u2)
∣∣∣ ≤ C

∣∣∣u1 − u2∣∣∣
where C is a generic finite constant. Moreover, let w = {x(c), u, v}T denote a vector of

dimension Dc+2 and ‖·‖ the Euclidean norm. Assume that for every x(d) ∈ X (d), µ(·, ·, ·)
is twice continuously differentiable with derivatives satisfying the Lipschitz conditions:∥∥∥∇wµ(x(d), x

(c)
1 , u1, v1)−∇wµ(x(d), x

(c)
2 , u2, v2)

∥∥∥ ≤ CD

∥∥∥w1 − w2

∥∥∥∥∥∥∇ww′µ(x(d), x
(c)
1 , u1, v1)−∇ww′µ(x(d), x

(c)
2 , u2, v2)

∥∥∥ ≤ CDD

∥∥∥w1 − w2

∥∥∥
10



for every w1, w2 ∈ X × U × V , where CD, CDD are again generic finite constants.

A5 For every {x, U, t : x ∈ X , U ∈ U , t ∈ T } and bandwidth hn −→ 0, assume that:∫ (
µ̂(x, ω)− µ(x, ω)

)
sign

(
U − ω

) 1

hn
Kh(ω − t)dF (ω) ≤ C sup

x∈X

∣∣∣µ̂(x, U)− µ(x, U)
∣∣∣

where µ(·, ·) and µ̂(·, ·) are defined in (7) and (8), respectively, and C is a generic finite

constant.

Assumption A2 allows in principle for continuous as well as discrete conditioning variables x in

µ(·, ·). In practice, the former will obviously depend on the nature of the data set requiring a rich

enough data source if continuous variables are part of the conditioning vector (for instance, if

age was treated as a continuous random variable and sufficient observations existed, one might

be testing the monontonicity of the reservation wage function for different age levels). The

underlying assumption with discrete x is that, with slight abuse of notation, n −→ ∞ also

holds conditional on a specific value of x. A2 also incorporates the identification conditions

from the previous section (see Newey, Powell, and Vella (1999) for details), while the absolutely

continous distribution of V requires U to be continuous. Condition A3 is satisfied by many

commonly used kernel functions such as the Epanechnikov kernel K(v) = 0.75(1−v2) I[|v| ≤ 1]

or the biweight kernel K(v) = (15/16)(1−v2)2 I[|v| ≤ 1]. The Lipschitz continuity assumptions

on µ(·, ·) and the derivatives of µ(·, ·, ·) in A4 comlement the assumptions made on the regression

function m̃(·) and allow in principle a generalization of the setup to nonseparable models Wi =

m(Xi, Ui, εi). However, such a generalization requires also a ‘tightening’ of the identification

conditions to full independence of the instrument Zi and the unobservables (εi, Vi) as discussed

in the previous section. The following theorem establishes consistency of the rescaled test

statistic.

Theorem 2. Assume that A1 to A6 hold. Let the bandwidth sequence satisfy hn
√

log(n) −→ 0,

nhn(log(n))−2 −→ ∞, and nh3n −→ ∞. Then there exists a sequence of stationary Gaussian

processes {ξn(s) : s ∈ Tn} with continuous sample paths s.t.:

E
[
ξn(s)

]
= 0, E

[
ξn(s1)ξn(s2

]
= ρ(s1 − s2), s1, s2, s ∈ Tn

where ρ(·) was defined in (16) and

sup
t∈T

∣∣∣∣∣
√
nÛn,x(t)

σ̂n,x(t)
− ξn(h−1n (t− a))

∣∣∣∣∣
=Op

(
hn
√

log(n) + h
1
2
n + n−

1
2h
− 1

2
n log(n)

)
=op(1)

11



The proof is carried out in several steps, which follow closely the proof of Theorem 3.1 in

Ghosal, Sen, and van der Vaart (2000): Lemma A2 establishes the order of the error when

approximating the U-statistic Un,x(t) by its projection Up
n,x(t). Lemma A3 gives an approxima-

tion of the empirical process
√
nUp

n,x(t) by a Gaussian process Gn(t). Lemma A4 shows that

σ̂n,x(t) converges uniformly to σn,x(t). Finally, in Lemma A5 it is shown that the scaled Gaus-

sian process Gn(t)/σn,x(t) can be approximated by a stationary Gaussian process ξn(t). The

key difference to Theorem 3.1 consists in the fact that µ̂(·, ·) and σ̂n,x(t) are estimated, which

needs to be accounted for. This is carried out in Lemma A1 and A6: Lemma A1 establishes

a parametric convergence rate for the averaged nonparametric estimator µ̂(·, ·), while, similar

to the proof of Theorem A.1 in Lee, Linton, and Wang (2009), Lemma A6 shows that, given

the bandwidth conditions, it holds that Ûn,x(t)− Up
n,x(t) = Op(n

− 1
2 ) uniformly over x ∈ X and

t ∈ T . That is, the asymptotic distribution of Sn can be treated as if µ(·, ·) was observed. The

same argument appies for the estimated σ̂n,x(t).

The next step is to determine the asymptotic distribution of the test statistic. From Theorem

2 above, it is clear that Sn = sup
s∈Tn

ξn(s) +Op(δn), where δn = hn
√

log(n) + h
1
2
n +n−

1
2h
− 1

2
n log(n).

Therefore, for some positive an and some real number bn, if:

an

(
sup
s∈Tn

ξn(s)− bn
)

d→ L

holds for some random variable L, then it also holds that:

an

(
Sn − bn

)
d→ L

provided anδn = o(1). As mentioned in Ghosal, Sen, and van der Vaart (2000), since the

interest lies in distributions only and the covariance of ρ(·) is free from n, one may assume that

all the Gaussian processes are the same with:

E
[
ξ(s)

]
= 0, E

[
ξ(s1)ξ(s2

]
= ρ(s1 − s2), s1, s2, s ∈ Tn

The following theorem establishes the limiting distribution of this Gaussian process.

Theorem 3. Let assumptions A1 to A5 hold. The bandwidth sequence satisfies hn log(n) −→ 0,

nhn(log(n))−3 −→∞, and nh3n(log(n))−1 −→∞. Then, for any x:

lim
n→∞

P

(
an(sup

t∈Tn
ξt − bn) ≥ x

)
= exp(−e−x) ≡ F∞(x)

12



where an =
√

2 log((b− a)/hn) and

bn =
√

2 log((b− a)/hn) +
log
(
λ

1
2

2π

)
√

2 log((b− a)/hn)

with

λ = −
∫
q(v)q

′′
(v)K2(v)dv + 2

∫
q(v)q

′
(v)K(v)K

′
(v)dv +

∫
q(v)2K(v)K

′′
(v)dv∫

q(v)2K2(v)dv

and q
′
(·), K ′(·) and q

′′
(·), K ′′(·) denote the first and second derivative of q(·) and the kernel

function, respectively.

Thus, as in Theorem 4.2 of Ghosal, Sen, and van der Vaart (2000), the asymptotic distribution

of Sn follows straightforwardly from the above theorem:

lim
n→∞

P

(
an(Sn − bn) ≥ x

)
= exp(−e−x) ≡ F∞(x)

and one can construct a test with asymptotic level α:

Reject H0 if F∞(an(Sn − bn)) ≥ 1− α (17)

Notice that, in order to ensure anδn −→ 0, the restrictions imposed on the bandwidth sequence

are slightly stronger than in Theorem 2: bandwidth sequences such as hn = 1/ log(n)γ, γ > 1,

or hn = 1/nη, η < (1/3) if Dz ≤ 2 and η < (1/(Dz)) if Dz > 2, satisfy the above requirements

and provide a broad range of possible bandwidths for which the test has asymptotic level α. To

compute the above statistic, one needs to calculate an and bn, which depend on hn and λ. Since

K(·) is supported on [−1, 1], this integral can be computed analytically. The biweight kernel

for instance yields λ ≈ 3.082, while for the Epanechnikov kernel one obtains λ ≈ 4.493.

Next, the consistency of the test against general alternatives is examined, which leads to the

following theorem:

Theorem 4. Assume that nh3n/ log(n) −→∞. Then, for a given x ∈ X , if ∇Um(x, t) < 0 for

some t ∈ [a, b], the test in (17) is consistent at any level α.

The theorem imposes a further restriction on the bandwidth sequence. This is because, under

violation of the null for some t ∈ [a, b], hnUn,x(t) for that t can be shown to converge to a

positive limit in probability. Since Sn is of order Op(nh
3
n), this exceeds the order of bn only if

the bandwidth sequence satisfies nh3n/ log(n) −→∞.

13



4 Extension

A drawback of the control function approach is that suitable instrumental variables are required

that satisfy appropriate relevance and exogeneity conditions. In the context of the reservation

wage application, Addison, Centeno, and Portugal (2010) suggest the concept of ‘unobserv-

able instruments’ as an alternative to the former using completed duration as an exogenous

perturbation of elapsed duration to infer about the effect of elapsed unemployment duration

on reservation wages. The underlying rationale of completed duration as ‘unobservable instru-

ment’ will be explained by a job search model outlined in the next section. To formalize the

econometric concept introduced by Matzkin (2004), assume that Ui is an exogenous perturba-

tion of another continuous random variable Ti (completed duration). That is, Ui = s(Ti, δi),

where δi is an unobservable that is assumed to be independent of εi from (1) and s(·, ·) is some

unknown function. Further assume that the error term εi can be characterized by the following

additive reduced form equation:

εi = r(Ti) + ηi (18)

where ηi is an unobservable variable that is assumed to be independent of the observables Ti.

ηi in the above equation must not to be confounded with the control function from section 2.

Notice also that Ti is not an instrumental variable in the traditional sense as it is correlated

with the unobservable εi by construction. Put differently, endogeneity in this framework can be

addressed because it is caused by a ‘fixed effect’ (e.g. unobserved heterogeneity) that is present

in Ui as well as Ti.
10 Thus, controlling for observed Ti implies controlling for the unobserved

effect.11 Inserting (18) into the regression equation yields:

Wi = m̃
(
Xi, Ui

)
+ r
(
Ti

)
+ ηi (19)

Equation (19) represents an additive nonparametric regression model with the unobservable

error term ηi that is assumed to be independent of Xi, Ui, and Ti. Given some additional

regularity and identification conditions, one may, for a specific x ∈ X of interest, recover

m(x, ·) = −m̃(x, ·) and r(·) using standard backfitting methods as proposed by e.g. Mammen,

Linton, and Nielsen (1999). In order to apply this procedure, it is assumed that X only contains

discrete elements. With slight abuse of notation, n −→∞ will hence represent the sample size

for a specific value x in the following. Also, for identification purposes it is assumed that

m(x, .) and r(·) can be normalized to E
[
m(x, Ui)

]
= 0 and E

[
r(Ti)

]
= 0 for every x ∈ X .

Once m̂(x, ·) is obtained, this function can be plugged into the second order U-process in (10)

in lieu of µ̂(x, ·) to compute the test statistic. That is, using the smooth backfitting procedure

of Mammen, Linton, and Nielsen (1999) to estimate m(x, ·) and r(·) from (19) for a specific

x (see their paper for details of the estimator), one may construct the following modified test

10That is, the roles of the observable Ti and the unobservable ηi have been exchanged.
11That is, the roles of the observable Ti and the unobservable ηi have been exchanged.
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statistic:

S∗n = sup
t∈T

{√
nÛ∗n,x(t)

σ̂∗n,x(t)

}
(20)

where Û∗n,x(t) is defined as:

Û∗n,x(t) =
2

n(n− 1)

∑
1≤i<j≤n

(
m̂(x, Uj)− m̂(x, Ui)

)
sign

(
Ui − Uj

) 1

h2n
Kh(Ui − t)Kh(Uj − t)

and m̂(x, ·) is the backfitting estimator of m(x, ·). σ̂∗n,x(t) is the equivalent to (12) using m̂(x, ·)
instead of µ̂(x, ·). The following regularity conditions from Mammen, Linton, and Nielsen

(1999) are imposed:

A2* For every x ∈ X , assume that U and T have compact support [0, 1]× [0, 1] and that the

joint density function is continuously differentiable in its arguments and strictly bounded

away from zero everywhere on [0, 1]× [0, 1].

A4* For some θ > 5
2
, assume that E

[∣∣∣W ∣∣∣θ] < ∞. Moreover, for every x ∈ X , the functions

m(x, ·) and r(·) are twice continuously differentiable in their (second) argument.

Since Ui and Ti are both supported on [0,∞), condition A2* implies that trimming (as for A2

in the previous section) has to be applied to restrict the support to a compact subset with

strictly positive density. A suitable affine transformation of the data will then ensure that

the normalization to [0, 1] in A2* is satisfied. Moreover, let the assumption below substitute

condition A5 from section 3:

A5* For every {x, U, t : x ∈ X , U ∈ U , t ∈ T } and bandwidth hn −→ 0, assume that:∫ (
m̂(x, ω)−m(x, ω)

)
sign

(
U − ω

) 1

hn
Kh(ω − t)dF (ω) ≤ C sup

x∈X

∣∣∣m̂(x, U)−m(x, U)
∣∣∣

where m(·, ·) is defined in (7) and C is a generic finite constant.

The following theorem can be established in analogy to Theorem 2:

Theorem 5. Assume that A1, A3 as well as A2*, A4*, and A5* hold and that T ⊂ (0, 1).

Let the bandwidth sequence satisfy hn
√

log(n) −→ 0, nhn(log(n))−2 −→ ∞, and nh3n −→ ∞.

Then there exists a sequence of stationary Gaussian processes {ξn(s) : s ∈ Tn} with continuous

sample paths s.t.:

E
[
ξn(s)

]
= 0, E

[
ξn(s1)ξn(s2

]
= ρ(s1 − s2), s1, s2, s ∈ Tn
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where ρ(·) was defined in (16) and

sup
t∈T

∣∣∣∣∣
√
nUn,x(t)

σ̂n,x(t)
− ξn(h−1n (t− a))

∣∣∣∣∣
=Op

(
hn
√

log(n) + h
1
2
n + n−

1
2h
− 1

2
n log(n)

)
=op(1)

The subsequent theorems follow in accordance with Theorem 3 and 4 from section 3 and have

been omitted for brevity. Hence, this section has presented a viable alternative to the use

of control functions in case where suitable instrumental variables do not exist, but instead

unobserved exogenous variation is available.

5 Monte Carlo Simulation

In order to research the performance of the test in small samples, a Monte Carlo simulation is

carried out. The results are displayed in Table 1 of Appendix B2. Firstly, the behaviour of the

test in small samples is examined when the null hypothesis is true. The underlying model for

this case is chosen to be the following monotonically increasing function:

Wi = 0.1 · Ui + εi

where the regressor Ui is constructed as Ui = Zi+Vi: the instrument Zi and the control function

Vi are drawn from uniform distributions supported on [.25, .75] and [−.25, .25], respectively.

Thus, Ui is supported on the compact interval [0, 1]. The unobservable εi is given by: εi =

Vi + 0.1 ·$i with $i ∼ N(0, 0.12).

The kernel function is chosen to be the Epanechnikov kernel K(v) = 0.75(1− v2) I[|v| ≤ 1] and

the first stage functions g(·) in (2) and µ(·) in (7) are estimated using the Nadaraya Watson

estimator as explained in section 2. The bandwidth for these estimators are determined using

the rule of thumb for nonparametric density estimators, i.e. C ·sd(·)·n− 1
5 with sd(·) the standard

deviation and C = 2.34 a constant for the Epanechnikov kernel (C = 2.78 for the Biweight

kernel). Finally, the test statistic is constructed as described in (11) with the interval T chosen

to be T = {0.05, 0.1, . . . , 0.9, 0.95}. There are three different bandwidth parameters used for

the construction of the test statistic at the final stage, each of which satisfies the requirements

of Theorem 3. The simulations use sample sizes of n = 100, 200, 300 and 1, 500 replications are

conducted for each simulation.

Reverting to Table 1 one can observe that, while a reasonable approximation to the nominal

size of 5% is obtained for hn = 1·n− 1
5 , the proportion of rejections appears to be rather sensitive
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to modifications of the bandwidth for this chosen specification: surprisingly, the share increases

with growing sample size (and thus decreasing bandwidth) to roughly 16% for hn = 0.8 · n− 1
5

and decreases to 0.002% for h = 1.2 · n− 1
5 . This is in contrast to a stabilization of the size at

around 3% for hn = 1 · n− 1
5 . In order to better understand this sensitive behaviour, further

simulations are to be carried out in the future.

Next, the behaviour of the test is examined when the null hypothesis is false. The model is

altered to:

Wi = Ui(1− Ui) + εi

with the variables themselves being generated as before. In this case, reasonable rejection

levels are achieved across all bandwidth specifications: already at n = 100, rejection shares

range from 94 to 98%. At n = 200, these proportions have reached or are very close to one,

while for n = 300 the nominal level is reached throughout.

Thus, despite a somewhat sensitive behaviour of the test under the null, simulation results

presented in Appendix A2 do overall provide a fairly positive and encouraging picture of the

small sample propteries of the test. Still, other specifications and different sample sizes are yet to

be examined in order to further understand its performance under different model specifications.

Moreover, using an asymptotic expansion similar to the one in Lee, Linton, and Wang (2009)

to construct the test statistic might substantially improve the results as in their paper. The

parameters for this asymptotic expansion have yet to be derived.

6 An Application to Reservation Wages

Reservation wages have been the focal point of labour economists for many decades since they

play a key role in modern job search theory. While early partial equilibrium job search mod-

els typically assumed constant reservation wages, later studies mostly relaxed this assumption

and allowed for flexible reservation wages that could change with elapsed unemployment du-

ration (Kiefer and Neumann, 1979). In fact, in instances where the hypothesis of constant

reservation wages has been tested empirically, it has typicallly been rejected (Kiefer and Neu-

mann, 1979; Brown and Taylor, 2009; Addison, Machado, and Portugal, 2011). That is, using

linear regression techniques, most studies established a significantly negative regression coeffi-

cient for elapsed duration hinting at declining reservation wages over time. However, despite

its potential policy implications, no information has yet been provided about whether this de-

cline is montonic (throughout an unemployment spell) and whether it holds across different

subgroups of the population (see introduction).

In the following, it will be examined under which conditions reservation wages decline mono-

tonically using a standard job search model based on the one of van den Berg (1990). Moreover,
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the model developed in this paper will accomodate unobserved heterogeneity across agents and

thus provide a theoretical underpinning of completed unemployment duration as an exogenous

perturbation of elapsed duration.

Let U denote continuous calendar time, which starts at the moment an individual becomes un-

employed and thus characterizes elapsed unemployment duration. The underlying hazard rate

for such an elapsed duration U(Z) ∈ [0,∞) is given by θ(U(Z), X, V ) = Ψ(U(Z), X) · V . The

dependence of elapsed unemployment duration U(·) on the vector of instruments Z = {Z1, X}
is assumed to ensure the validity of the latter. V is a random variable denoting unobserved

heterogeneity, which is assumed to be independent of elapsed duration U(Z). Thus, in line with

standard mixed proportional hazard models, unobserved heterogeneity V is time invariant.12

Independence and constancy are certainly strong and rather unrealistic assumptions. However,

both are owed to the use of completed unemployment as an exogenous variation for elapsed

unemployment duration, which relies on the existence of a fixed effect as the only source of

endogeneity. As outlined in the introduction, the paper uses different methods to verify the

robustness of results obtained from regressions with completed unemployment duration as an

exogenous perturbation of elapsed unemployment duration. Hence, severe violations of the

above assumption are likely to lead to differing results. The conditional distribution function

of elapsed durations U(Z) is given by F (U(Z)|X, V ) = {1− exp(−
∫ U(Z)

0
Ψ(t,X)dt) exp(−V )}.

Notice that while the model imposes proportionality in the unobserved heterogeneity term V

(thus allowing for fixed effects), no such assumption is imposed on X. The latter is also reflected

by the non-separability of the reduced form function m(·, ·) in its arguments. The unemployed

agent receives job offers that arrive with a fixed wage ω attached, which represent random

draws from a distribution with known distribution function Fω(·;X). Notice that the wage

offer distribution function depends on observed covariates X and not on Z1, which is crucial for

our instruments Z1 to be valid.13 The discount factor is given by ρ and the rate at which he re-

ceives these offers is λ(U(Z), X, V ). Every time the agent receives such an offer, he may decide

whether to accept or reject it: if he accepts, the job will be held forever, while a rejection of the

offer implies that he may not recall this job at a later stage anymore.14 In this stylized version

of the model, there are no costs to search and agents receive benefits b(U(Z)) over their course

of unemployment. Individuals are assumed to maximize the expected present value of income

(over an infinite horizon) and they are able to anticipate changes in the exogenous b(U(Z))

and λ(U(Z), ·, ·). While the assumption of an infinite decision horizon is clearly unrealistic

(but typically adopted by the literature to simplify matters and to gain better insight into the

12Notice that, despite assuming that unobserved heterogeneity enters multiplicatively into the hazard, other
observed covariates must not necessarily do so. This provides a certain degree of flexibility to the approach as
no proportional hazards in the observed covariates are imposed.

13Fω(·;X) denotes the wage offer distribution rather than the conditional distribution function of elapsed
unemployment durations. A possible element of X might be gender if one expects wage offer distributions to
differ between men and women.

14See van den Berg (1990) for a discussion of these assumptions.

18



essentials of the problem), the anticipation condition appears fairly plausible in instances where

individuals have for instance upfront information about future reductions in benefit payments

(as in the case of contribution based jobseeker’s allowance in the UK).

The following assumptions are sufficient for a strictly monotonically declining reservation wage:

J1 The discount factor satisfies 0 < ρ < ∞, while 0 < b(U(Z)) ≤ Ψb < ∞ for all U(Z) ∈
[0,∞) and some fixed Ψb. Additionally, assume that for every X and V it holds that

0 < λ(U(Z), X, V ) ≤ Ψλ <∞ for some fixed Ψλ and all U(Z) ∈ [0,∞). Let Fω(·;X) be

continuous and strictly monotonic in ω with lim
ω→0

Fω(ω;X) = 0 and lim
ω→∞

Fω(ω;X) = 1.

Moreover, assume that Fω(·;X) has finite first moment for every X.

J2 There exists some finite point U ∈ [0,∞) such that b(U(Z)) = b and λ(U(Z), X, V ) = λ are

constant for every U(Z) ∈ [U,∞). For every U(Z) ∈ [0, U), assume that ∂λ(U(Z), X, V )/∂U(Z)

exists and is negative. In addition, there exists some point Ub ∈ [0, U) s.t. b(U(Z)) = b1

for U ∈ [0, Ub) and b(U(Z)) = b2 for U(Z) ∈ [Ub,∞), respectively. Without loss of

generality it is imposed that b1 > b2.
15

This is the simplified setup of van den Berg (1990). The constancy assumption in J2 after

U together with J1 imply that the model has a unique solution. Moreover, the assumption of

b(U(Z)) being a declining step function (which captures the effect of a possible benefit reduction

after 182 days) allows us to split the time axis [0, U) into two intervals on which b(U(Z)) is

constant. Take for instance the first interval [0, Ub). The reservation wage function for every

U(Z) ∈ [0, Ub) is characterized by the following differential equation:

∂ω∗(U(Z), X, V )

∂U(Z)
= ρω∗(U(Z), X, V )−ρb1−λ(U(Z), X, V )

∫ ∞
ω∗(U(Z),X,V )

(ω−ω∗(U(Z), X, V ))dFω(ω;X)

Notice also that the hazard rate θ(U(Z), X, V ) can be rewritten as θ(U(Z), Z, V ) = λ(U(Z), X, V )(1−
Fω(ω∗(U(Z), X, V );X). By Theorem 2 of van den Berg (1990), the reservation wage function

ω∗(U(Z)), which is continuous and differentiable in U(Z) for all U(Z) ∈ [0, Ub) by J1 and J2,

satisfies:

(i) ω∗0(X, V ) > ω∗(U(Z), X, V ) for every U(Z) ∈ (0, Ub), where ω∗0(·, ·) denotes the solutions

under the assumption of constant parameters from time 0 onwards.

(ii) For every U(Z) ∈ (0, Ub), it holds that ∂ω∗(U(Z), X, V )/∂U(Z) < 0.

In other words, the reservation wage ω∗(U(Z), X, V ) is monotonically declining for all U(Z) ∈
(0, Ub) only if the function b(U(Z)) and λ(U(Z), X, V ) are strictly decreasing in U(Z). Obvi-

15Imposing b2 > b1, albeit not a very realistic scenario, would simply alter the direction of inequalities in the
following theorem.
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ously, these assumptions are fairly restrictive and might sometimes be violated.

The remainder of this section will be dedicated to assessing the monotonicity of the reservation

wage function using unemployment data from the BHPS, a nationally representative survey

on individuals from more than 5,000 households in the UK. It contains detailed questions on

the current labour market situation of adults in each household. Unemployment spells and

labour market states are constructed using the case-by-case correction method of inconsisten-

cies (Method C) developed by Paull (2002). The starting point of the sampling period is chosen

to be October 1996, which conincides with the introduction of jobseeker’s allowance in the UK.

To examine the robustness of the empirical results, three different endpoints have been selected

for the analysis, namely 31st of December 2002, 2005 and 2007. The first date has been selected

due major reforms of the British tax credit system in April 2003. It is conjectured that this

legislation change might have affected reservation wages as a provisional system (Working Fam-

ily Tax Credits) leading up to this reform has recently been found to have impacted the latter

(Brown and Taylor, 2009). Moreover, the end year 2007 has been chosen to avoid censoring of

unemployment spells at the end of the observation period.

The hourly reservation wage is constructed combining answers from the two questions “What

is the lowest weekly take home pay you would consider accepting for a job?” and “About how

many hours in a week would you expect to have to work for that pay?” that non-employed

individuals are asked during the interview. The sample then includes all individuals of working

age (16-65) who indicate such an hourly wage and who satisfy the rationality condition, which

requires a reservation wage below the reported expected wage. Notice that even individuals

who indicated to be economically inactive are included in the sample if they have a valid

reservation and expected wage. The decision to incorporate these observations is based on

recent advances in labour market research questioning the clear-cut distinction between inactive

and labour-seeking agents and instead interpreting the indication of a reservation wage as a

signal for labour market attachment (see Brown and Taylor (2009) and references therein).

Finally, to test robustness, observations below the nationally binding minimum wage (which

became applicable after 1999) have been dropped in all three but a basic 1996-2002 sample

specification.16

For all empirical specifications, the sample is split into male and female subsamples. The

continuous instrumental variables are unemployment benefits and other benefit income. In

order to incorporate also discrete variables as instruments, principal component analysis was

employed. The latter is a common statistical technique to aggregate multivariate data into

a (smaller) set of linearly uncorrelated variables, the so called principal components. Despite

the fact that the underlying asymptotic properties have been derived under the assumption of

normally and continuously distributed variables, Kolenikov and Angeles (2009) point out in a

recent simulation study on socioeconomic status measurements that the bias for using discrete

16This only applies to spells recorded after 1999 when the minimum wage became applicable.
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variables in principal component analysis appears to be rather small if it contains mostly

categorical data with several categories that is not transformed into binary indicators. Thus,

ordinal and count variables such as number of dependent children, age, and education have

been included in the analysis alongside variables such as having a companion (being married

or living as a couple), having a working spouse, and regional dummy variables (only number

of dependent children, having a companion, and having a working spouse are considered to be

part of Z1). Only the first two principal components have been retained. Moreover, as pointed

out previously, the maintained assumption is that all instrumental variables impact reservation

wages exclusively through elapsed unemployment duration. This is formalized by writing U(·)
as a function of the instrument vector Z.

The bandwidth sequence is determined using the leave-one-out cross-validation method. That

is, the bandwidth is determined according to hn = C · min{sd(·); 0.8 · iqr} · n− 1
5 , where

iqr denotes the interquartile range and C is chosen through cross-validation from the grid

{0.9, 0.925, . . . , 1.175, 1.2}.17 Turning to the summary statistics of Table 2 in Appendix A2,

which displays key features of the hourly reservation wage as well as the elapsed unemployment

distribution for the 1996 to 2002 sample, one can observe that, irrespective of an elimination of

reservation wages below the minimum wage (“Min. Wage Correction”), the reservation wage

distribution for females has a slightly lower mean and higher variance than the one for males.

By contrast, in both specifications, female subsamples display a larger average elapsed duration

(and greater variance). The share of multiple spells is 20.6% (19.58%) for males and 15.71%

(15.48%) for females and thus fairly evenly distributed across gender. Turning to Table 3 dis-

playing statistics for the 1996-2005 and the 1996-2007 samples, one observes that, as expected,

the means of the hourly reservation wage increase as more recent years are included. Likewise,

average elapsed durations fall, which is again not surprising given the positive developments in

the British labour market during the early 2000s.

The plots in Figures 1, 2, 3, and 4 display −µ̂(x, ·) from equation (8) for the first 250 days of

elapsed unemployment duration for the different specifications. Figures 1 and 2 concern the

estimated hourly reservation wage functions for males (x = 1), while Figures 3 and 4 show the

equivalent figures for females (x = 0). Firstly, notice that the patterns are fairly robust across

samples for both men and women: for men (Figures 1 and 2), one observes a fairly steep decline

during the first 50-75 days of elapsed duration, which is followed by an increase that eventually

exceeds the starting value. The initial fall seems to be more pronounced when observations

after 2002 are taken into account, too, while the rise after the turning point at around 75 days

is more marked for the 1996-2002 sample. Moreover, in particular for the extended 1996-2005

and 1996-2007 samples, there appears to be a ‘dent’ in the reservation wage curve after around

175-200 days, which conincides with the regime change from contribution to income based

17The biweight kernel has been used in all specifications.
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jobseeker’s allowance after six months for people with sufficient contributions.18 For women, a

similar albeit much less pronounced pattern can be observed. A moderate initial decline during

the first 50 days of elapsed duration is followed by a marked increase outweighing by far the

initial loss.

Putting the observations from the graphs to the (formal) test, Table 4 displays the results for

the null of a decreasing reservation wage function across all the different specifications. The

compact interval T is chosen to be bounded by 2% and 50% quantile for each sample and

contains nineteen equally spaced points within those bounds.19 Estimator and kernel function

are as described in Section 5. The bandwidth size has been determined by 1.25 · n− 1
5 in

compliance with Theorem 2, which required an upfront log transformation of elapsed duration.20

Examining the test results in Table 4, one can observe a clear-cut rejection of monotonically

declining reservation wages even at a 1% significance level for all specifications. Furthermore,

with the exception of the 1996-2005 sample, larger test statistics are obtained for females

throughout reflecting their upwards sloping reservation wage curves.

In summary, this section has demonstrated that the behaviour of the reservation wage func-

tion is more complicated than typically assumed, which might not be captured by standard

linear estimation techniques. For instance, linear two stage least squares regressions for the

different samples (with the exogenous and instrumental variables from before) yielded esti-

mated coefficients for elapsed unemployment duration ranging from −0.0028 to −0.0045 (with

t-statistics from |t| = 2.00 to |t| = 2.20) for males and from −0.0017 to 0.0016 (with t-statistics

from |t| = 0.48 to |t| = 0.78) for females. Thus, as outlined in the introduction, being able

to better understand the impact of elapsed unemployment duration on (hourly) reservation

wages is paramount for future research due to its implications for the design of appropriate

policies.

7 Conclusion

This paper proposes a test for monotonicity of the regression function when the (continuous)

regressor of interest is endogenous. It is argued that this kind of test is relevant for various

empirical setups. As an important application, the paper studies the behaviour of hourly

reservation wages as a function of elapsed unemployment duration in the UK using the British

Household Panel Survey as data source. The relationship between reservation wage and elapsed

unemployment duration is difficult to measure due to the simultaneity of both variables. Using

18180 days also marks the starting point of the gateway period for unemployed qualifying for the ‘New Deal’
programme.

19The 50% quantile roughly corresponds to 200 days of elapsed unemployment duration.
20Results are fairly robust to changes in the bandwidth sequence. In fact, modifications of the multiplier to

1 and 1.5 yielded very similar test outcomes (available upon request).
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instruments such as the number of dependent children, having a working spouse, the logarithm

of unemployment benefit or other benefit income to construct control functions, it is shown

that the reservation wage function does typically not decline monotonically. Rather, various

specifications seem to suggest that, after an initial decline, the function increases again after 75

to 100 days of unemployment and even exceeds the initial reservation wage level after around 200

days. This finding is robust across different specifications for both men and women, albeit much

less pronounced for the latter. This has policy implications and could, upon further and more

detailed investigation, give new insights into the behaviour of unemployed individuals.

Technically, the paper combines different conditional mean estimators with a test based on

Ghosal, Sen, and van der Vaart (2000) and derives its asymptotic properties: the conditional

mean estimator(s) can be constructed using either estimated control functions or variables

that represent exogenous perturbations of the endogenous regressor (Matzkin, 2004). Either

nonparametric estimator can then be plugged into a modified test statistic, which is chosen to be

the supremum of a suitably rescaled second order U-process. The asymptotic distribution of the

test statistic can be approximated by a stationary Gaussian process. A Monte Carlo simulation

study evaluates the finite sample behaviour of the test. It is shown that, even in small samples,

the test behaves well if the null hypothesis is violated. If the null hypothesis is satisfied, the

test appears to be rather sensitive to the bandwidth choice. Finally, the application in section

6 demonstrates the test’s applicability to actual data with the test results being throughout in

line with observations from the graphs.

A straightforward extension of the current paper is to the case of heteroscedasticity, where the

model in (1) is altered to Wi = m̃
(
Xi, Ui

)
+ σ(Xi)εi. This specification can be of interest in

various empirical contexts with monotonicity still being testable by the procedures developed

in this paper since the key identification condition E[σ(Xi)εi|Xi = x, Z1i = z1, Vi = v] =

σ(x) ·E[εi|Vi = v] remains satisfied. Another important extension concerns the amplification of

the current setup to nonparametric IV estimators at the first stage: given a suitable moment

condition of the form E
[
εi

∣∣∣Zi] = 0, estimators similar to the one suggested in Chen and Pouzo

(2009) could be used to recover m(·, ·). This estimator of m(·, ·) could then be plugged into

(10) as a substitute for µ̂(·, ·). Finally, to improve the external validity of the results, potential

selection bias problems should also be taken into account in the future: in a recent paper on

reservation wages collected from the Italian Labour Force Survey, Sestito and Viviano (2011)

point out two selection biases that affect the reservation wage distribution and that require

either a restriction of the data set or an appropriate adjustment mechanism. To address these

three aspects remains is key objective for future research.
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Appendix A1

Lemma A1. Under assumptions A1 to A4, it holds that:

sup
x∈X

sup
u∈U

∣∣∣µ̂(x, u)− µ(x, u)
∣∣∣ = Op(n

− 1
2 )

Lemma A2. Define:

M̂n,µ(x, t) =
2

n(n− 1)

∑
1≤i<j≤n

(
µ(x, Uj)− µ(x, Ui)

)
sign

(
Ui − Uj

) 1

h2
n

Kh(Ui − t)Kh(Uj − t) (A-1)

so that M̂n,µ̂(x, t) = Ûn,x(t) from (10). Moreover, let:

M̂p
n,µ(x, t) =

2

n

n∑
i=1

∫ (
µ(x, ω)− µ(x, Ui)

)
sign

(
Ui − ω

) 1

h2
n

Kh(ω − t)dF (ω)Kh(Ui − t) (A-2)

be the projection of M̂n,µ(x, t) with M̂p
n,µ̂(x, t) = Ûpn,x(t), where Ûpn,x(t) is defined in (14). Then, under

assumptions A1 to A4, it holds that:

sup
t∈T

sup
x∈X

∣∣∣M̂n,µ(x, t)− M̂p
n,µ(x, t)

∣∣∣ = Op(n
−1h−2

n )

Lemma A3. There exists a sequence of Gaussian processes Gn(·) indexed by t, with continuous sample
paths and with:

E
[
Gn(t)

]
= 0, E

[
Gn(t1)Gn(t2)

]
= E

[
Ψn,t1(U)Ψn,t2(U)

]
, t, t1, t2 ∈ T

where Ψn,t(U) =
∫ (
µ̃(ω) − µ̃(U)

)
sign

(
U − ω

)
1
h2
n
Kh(ω − t)dF (ω)Kh(U − t) with µ̃(U) = µ(x, U), such

that:
sup
t∈T

∣∣∣√nM̂p
n,µ(x, t)−Gn(t)

∣∣∣ = Op(n
− 1

2h−1
n log(n))

Lemma A4. Under assumptions A1 to A4, the following holds:

(i) sup
t∈T

∣∣∣hnσ2
n,x(t)− σ2

x(t)
∣∣∣ = o(1)

(ii) lim inf
n−→∞

hn inf
t∈T

σ2
x(t) > 0

(iii) sup
t∈T

∣∣∣σ̂2
n,x(t)− σ2

n,x(t)
∣∣∣ = Op(n

− 1
2h−2

n )

where σ̂2
n,x(t) and σ2

n,x(t) are defined in (12) and (13), while σ2
x(t) = f3(t)∇Uµ(x, t)

∫
q(v)K2(v)dv.

Lemma A5. For the sequence of Gaussian processes {Gn(t) : t ∈ T } obtained in Lemma A3, there cor-
responds a sequence of stationary Gaussian processes {ξn(s) : s ∈ Tn} with continuous sample paths s.t.:

E
[
ξn(s)

]
= 0, E

[
ξn(s1)ξn(s2

]
= ρ(s1 − s2), s1, s2, s ∈ Tn

where ρ(·) was defined in (16) and:

sup
t∈T

∣∣∣ Gn(t)

σn,x(t)
− ξn(h−1

n (t− a))
∣∣∣ = Op(hn

√
log(h−1

n ))

with σn,x(t) as in Lemma A4.
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Lemma A6. Under assumptions A1 to A5, it holds that:

sup
t∈T

sup
x∈X

∣∣∣M̂n,µ̂(x, t)− M̂p
n,µ(x, t)

∣∣∣ = Op(n
− 1

2 )

Proof of Theorem 2. The proof consists of several steps, which follow closely the proof of Theorem 3.1
in Ghosal, Sen, and van der Vaart (2000). In particular, Lemma A2-A5 replace Lemma 3.1-3.4 in Ghosal,

Sen, and van der Vaart (2000). Lemma A1 on the other hand establishes that sup
x∈X

sup
u∈U

∣∣∣µ̂(x, u) − µ(x, u)
∣∣∣ =

Op(n
− 1

2 ). Given that nh3
n −→ ∞ by Theorem 2, this is slower than the rate established in Lemma A2 and

thus sup
x∈X

sup
t∈T

∣∣∣Ûn,x(t)− Upn,x(t)
∣∣∣ = Op(n

− 1
2 ) is the overall rate obtained in Lemma A6. Notice however that an

identical adjustment is not required for Lemma A4 since its rate is slower than the parametric one. �

Proof of Theorem 4. The proof follows the same steps as the one of Theorem 5.1 in Ghosal, Sen, and
van der Vaart (2000). As in their proof, if the null is violated for a specific t ∈ T (∇Um(x, t) < 0), one can
straightforwardly show that:

hnUn,x(t)
p−→ −∇Um(x, t)

∫ ∫
|u− ν|K(u)K(ν)f(t)2dudν

which is positive. Since also h
1
2
n σ̂n,x(t) tends to a positive limit and Sn can be shown to be of order Op(n

− 1
2h

3
2
n ),

the test statistic only exceeds the order of bn if the bandwidth condition satisfies nh3
n/ log(n) −→∞. �

Proof of Theorem 5. The proof follows identical steps to the one of Theorem 2. However, Lemma A6 is
replaced by the uniform convergence result in Mammen, Linton, and Nielsen (1999). That is, using A1 and
A3 as well as A2*, A4*, and A5*, for a specific x ∈ X , Theorem 4 of Mammen, Linton, and Nielsen (1999)
yields:

sup
U∈(0,1)

∣∣∣m̂(x, U)−m(x, U)
∣∣∣ = op(h

2
n)

�

Proof of Lemma A1. In the following, write µ̂(x, u) = 1
n

n∑
j=1

µ̂(x, u, V̂j), where µ̂(·, ·, ·) was defined in (9), and

µ(x, u) for E
[
µ(x, u, Vj)

]
, where µ(·, ·, ·) defined in (6). Then, it holds that:

sup
x∈X

sup
u∈U

∣∣∣ 1
n

n∑
j=1

µ̂(x, u, V̂j)− µ(x, u)
∣∣∣ ≤ sup

x∈X
sup
u∈U

∣∣∣ 1
n

n∑
j=1

{
µ̂(x, u, V̂j)− µ̂(x, u, Vj)

}∣∣∣+ sup
x∈X

sup
u∈U

∣∣∣ 1
n

n∑
j=1

µ̂(x, u, Vj)− µ(x, u)
∣∣∣

=I1 + I2

The first term can be addressed through a combination of arguments from Lemma A1 and Lemma B4, B5 in
Gutknecht (2011). First notice that I1 can be further decomposed into:

sup
x∈X

sup
u∈U

∣∣∣∣∣ 1n
n∑
i=1

{
ŝ(x, u, V̂i)− ŝ(x, u, Vi)

f̂(x, Vi)
− f̂(x, u, Vi)− f̂(x, u, Vi)

f̂(x, u, Vi)
× µ̂(x, u, V̂i)

}∣∣∣∣∣
where

ŝ(x, u, V̂i) =
1

nh3

n∑
j=1

ÎiWjKh(x−Xj)×Kh(u− Uj)×Kh(V̂i − V̂j)

and

f̂(x, u, V̂i) =
1

nh3

n∑
j=1

ÎiKh(x−Xj)×Kh(u− Uj)×Kh(V̂i − V̂j)

with f̂(x, u, Vi) and ŝ(x, u, Vi) defined analoguously using Ii, Vj , respectively. Only the first term is examined,
the second follows by identical arguments. Using standard arguments (see Lemma A1 in Gutknecht (2011) for
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details) and some algebra, one can show that the leading terms of the numerator are:

I11 = sup
x∈X

sup
u∈U

∣∣∣ 1

n2h3

n∑
i=1

n∑
j=1

(
Îi − Ii

)
WjKh(x−Xj)×Kh(u− Uj)×Kh(Vi − Vj)

∣∣∣
and

I12 = sup
x∈X

sup
u∈U

∣∣∣ 1

n2h3

n∑
i=1

n∑
j=1

IiWjKh(x−Xj)×Kh(u− Uj)×Kh(V̂i − V̂j)
∣∣∣

The term I11 can be adressed using the same argument as in Lemma B4 of Gutknecht (2011). That is, omitting

the dependence of the indicator function on x, u for notational simplicity, notice that Îi − Ii = I{va ≤ V̂i ≤
vb} − I{va ≤ Vi ≤ vb} =

(
I{V̂i ≤ vb} − I{Vi ≤ vb}

)
+
(
I{V̂i ≥ va} − I{Vi ≥ va}

)
, where va, vb denote the

endpoints of the marginal support of V with va < vb. Focusing on
(
I{V̂i ≤ vb} − I{Vi ≤ vb}

)
and reverting to

condition A2, the term can be rewritten as:

sup
x∈X

sup
u∈U

∣∣∣ 1

n2h3

n∑
i=1

n∑
j=1

(
I{Vi ≤ vb + Vi − V̂i} − I{Vi ≤ vb}

)
WjKh(x−Xj)×Kh(u− Uj)×Kh(Vi − Vj)

∣∣∣
= sup
x∈X

sup
u∈U

∣∣∣ 1

n2h3

n∑
i=1

n∑
j=1

(
F (vb + Vi − V̂i)− F (vb)

)
WjKh(x−Xj)×Kh(u− Uj)×Kh(Vi − Vj)

∣∣∣+ op(1)

= sup
x∈X

sup
u∈U

∣∣∣ 1

n2

n∑
i=1

n∑
j=1

(
F (1)(V b)(V̂i − Vi)

)
E
[ 1

h3
WjKh(x−Xj)×Kh(u− Uj)×Kh(Vi − Vj)

]∣∣∣+ op(1)

where the first equality follows as adding and subtracting
(
F (vb + Vi− V̂i)−F (vb)

)
results in a term of smaller

order. The third equality on the other hand is obtained by a mean value expansion (V b denotes the intermediate
value). Addition and subtraction of E[(1/h3)WjKh(x−Xj×Kh(u−Uj×Kh(Vi−Vj)] together with a change of

variables and an application of Rosenthal’s inequality yields the op(1) term. Since (V̂i−Vi) = (ĝ(Zi)−g(Zi)), one
can show that this expression can be approximated by a second order U-statistic (see Lemma B4 in Gutknecht
(2011) for details) and applying Lemma 3.1 in Powell, Stock, and Stoker (1989) gives the convergence rate of
I11:

sup
x∈X

sup
u∈U

∣∣∣ 1

n2h3

n∑
i=1

n∑
j=1

(
Îi − Ii

)
WjKh(x−Xj)×Kh(u− Uj)×Kh(Vi − Vj)

∣∣∣ = Op(n
− 1

2 )

The term I12 can be adressed using arguments from Lemma B5 in Gutknecht (2011). A mean value expansion
around (Vi − Vj) yields:

sup
x∈X

sup
u∈U

∣∣∣ 1

n2h4

n∑
i=1

n∑
j=1

IiWjKh(x−Xj)×Kh(u− Uj)×K(1)
h (V i − V j)

{
(V̂i − V̂j)− (Vi − Vj)

}∣∣∣
where K

(1)
h denotes the derivative of the kernel function and (V i − V j) some intermediate value. Rewriting

again (V̂i − Vi) = (ĝ(Zi)− g(Zi)), one obtains:

sup
x∈X

sup
u∈U

∣∣∣ 1

n2h4

n∑
i=1

n∑
j=1

IiWjKh(x−Xj)×Kh(u− Uj)×K(1)
h (V i − V j)

{
(ĝ(Zi)− g(Zi)) + (ĝ(Zj)− g(Zj))

}∣∣∣
Using again the steps of Lemma B5 in Gutknecht (2011) (adding and subtracting E[(1/h4

n)IiWjKh(x−Xj)×
Kh(u−Uj)×K(1)

h (V i−V j)], integration by parts, change of variables, application of Rosenthal’s inequality, and
finally approximation by a second order U-statistic) yields the same convergence rate for I12 as before:

sup
x∈X

sup
u∈U

∣∣∣ 1

n2h3

n∑
i=1

n∑
j=1

IiWjKh(x−Xj)×Kh(u− Uj)×Kh(V̂i − V̂j)
∣∣∣ = Op(n

− 1
2 )
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The second term I2 on the other hand can be bounded by:

sup
x∈X

sup
u∈U

∣∣∣ 1
n

n∑
j=1

{
µ̂(x, u, Vj)− µ(x, u, Vj)

}∣∣∣+ sup
x∈X

sup
u∈U

∣∣∣ 1
n

n∑
j=1

µ(x, u, Vj)− µ(x, u)
∣∣∣ = I21 + I22

Since µ̂(x, u, Vi) is a consistent estimator for µ(x, u, Vi) and E[µ(x, u, Vi)
2] <∞ for every x ∈ X and u ∈ U , one

obtains by standard arguments:

sup
x∈X

sup
u∈U

∣∣∣ 1
n

n∑
j=1

{
µ̂(x, u, Vj)− µ(x, u, Vj)

}∣∣∣ = Op(n
− 1

2 )

Likewise, using A2 and since µ(x, u, Vj) is continuous (and hence bounded) on W , the same rate can be obtained
for I22. Hence the result of the lemma follows. �

Proof of Lemma A2. The proof is similar to that of Lemma 3.1 in Ghosal, Sen, and van der Vaart (2000).
Hence only differences will be pointed out. Consider the following class of functions F = {ft,x : (t, x) ∈ T ×X},
where:

ft,x : (t, x) =
(
µ(x, U1)− µ(x, U2)

)
sign

(
U2 − U1

) 1

h2
n

Kh(U2 − t)Kh(U1 − t)

This class is contained in the product of the three classes:

F1 =
{
h−2
n

(
µ(x, U1)− µ(x, U2)

)
sign

(
U2 − U1

)
× I
{
|U2 − U1| ≤ 2hn

}
: x ∈ X

}
F2 =

{
Kh(U1 − t) : t ∈ T

}
F3 =

{
Kh(U1 − t) : t ∈ T

}
with envelopes h−2

n C|U1−U2|× I
{
|U2−U1| ≤ 2hn

}
, ‖Kh‖∞, and ‖Kh‖∞, respectively. Since Kh is of bounded

variation and µ(·, ·) satisfies a Lipschitz condition, by Lemma 2.6.15, 2.6.16, and 2.6.18 of van der Vaart and
Wellner (1996) F is a Vapnik-Cervonekis (VC) class with the envelope Ch−2

n , where C is some generic finite
constant. Then, applying Theorem 2.6.7 of van der Vaart and Wellner (1996) and following the steps of Lemma
3.1 in Ghosal, Sen, and van der Vaart (2000), one obtains (Theorem A.2):

E
[
sup
t∈T

sup
x∈X

∣∣∣M̂n,µ(x, t)− M̂p
n,µ(x, t)

∣∣∣] ≤ Cn−1h−2
n

Notice that, similar to Lee, Linton, and Wang (2009), the rate by which the term can be bounded slightly differs
from the one in Ghosal, Sen, and van der Vaart (2000) since replacing the estimator by the true µ(x, U) results
in error of order op(1) by the convergence result of Lemma A1. �

Proof of Lemma A3. Unlike in the bivariate case of Ghosal, Sen, and van der Vaart (2000), there is no
need to show that Theorem 1.1 of Rio (1994) holds. Instead, one can directly appeal to Theorem 3 and the
subsequent Corollary of Komlos, Major, and Tusnady (1975). In the following, write:

Ψn,t(U) =

∫ (
µ̃(ω)− µ̃(U)

)
sign

(
U − ω

) 1

h2
n

Kh(ω − t)dF (ω)Kh(U − t)

As pointed out by Ghosal, Sen, and van der Vaart (2000), since U is supported on a compact interval with
positive and continuous density, a simple affine transformation can be used to normalize the empirical process
and t, which is necessary to satisfy the formal setup of Komlos, Major, and Tusnady (1975), who require
U to have a uniform distribution on [0, 1]. The transformation can subsequently be reversed by an inverse
transformation. Also notice that:

sup
t∈T

(
hn ·Ψn,t(U)

)
= O(1)

Defining a sequence of centered Gaussian processes with covariance:

E
[
Gn(t1)Gn(t2)

]
= E

[
Ψn,t1(U)Ψn,t2(U)

]
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one can apply Theorem 3 and the subsequent Corollary of Komlos, Major, and Tusnady (1975) using {hnΨn,t(U)}
and the Brownian bridge just defined. The same arguments as in Ghosal, Sen, and van der Vaart (2000) hold
and switching back to the original equation, the result follows. �

Proof of Lemma A4. Assertions (i) and (ii) are identical to the proof of Lemma 3.3 in Ghosal, Sen, and
van der Vaart (2000). In (iii), to deal with the fact that σ̂n,x(t) depends on the estimated µ(x, U), let σ̃2

n,µ(t, x)
be identical to σ̂2

n(t) except for µ̂(x, U) being replaced by µ(x, U), which results in an error of smaller order by
the uniform convergence result of Lemma A1 and the bandwidth conditions stated in Theorem 2. As in Lemma
A2, this will lead to a slightly larger bound than in Ghosal, Sen, and van der Vaart’s (2000) paper. Again,
using the modified σ̃2

n,µ(t, x) and following the steps of Lemma 3.3 in Ghosal, Sen, and van der Vaart (2000)
yields:

sup
t∈T

sup
x∈X

∣∣∣σ̃2
n,µ(t, x)− E

[
σ̃2
n,µ(t, x)

]∣∣∣ = Op(n
− 1

2h−2
n + n−1h−3

n + n−
3
2h−4

n )

�

Proof of Lemma A5. Let Gn denote the class of functions {gn,t(U) : t ∈ T } where gn,t(U) =
Ψn,t(U)
σn(t) . Let Gn

stand for the class of functions {gn,t : t ∈ T } with gn,t(U) =
Ψn,t(U)
σn(t) where:

Ψn,t(U) =

∫ (
µ̃(ω)− µ̃(U)

)
sign

(
U − ω

) 1

h2
n

Kh(ω − t)dωKh(U − t)

and

σn(t) =
(∫ (∫ (

µ̃(ω)− µ̃(Y )
)

sign
(
Y − ω

) 1

h2
n

Kh(ω − t)dω
) 1

h2
n

K2
h(Y − t)dY

) 1
2

f(U)
1
2

As explained in Remark 8.3 of Ghosal, Sen, and van der Vaart (2000), it is possible to extend Lemma

A3 to show that there is a sequence of Browian bridges {Bn(g) : g ∈ Gn ∪ Gn} with E
[
Bn(g)

]
= 0 and

E
[
Bn(g1)Bn(g2

]
= cov(g1, g2) for g, g1, g2 ∈ Gn ∪ Gn and with continuous sample paths w.r.t. the L1 metric

such that Gn(t) = σn(t)Bn(Ψn,t(U)), where Gn(t) was defined in Lemma A3. Set ξn(t) = Bn(gn,t) and note

that γn(t) = Gn(t)/σn(t)− ξn(t) is also a mean zero Gaussian process with:

E
[
γn(t1)γn(t2)

]
= E

[(
gn,t1 − gn,t1

)(
gn,t2 − gn,t2

)]
The rest of the proof follows as in the proof of Lemma 3.4 of Ghosal, Sen, and van der Vaart (2000). Notice
that a mean value expansion in the numerator and denominator is required to obtain the form of the covariance
ρ(·) in (16). �

Proof of Lemma A6. Notice that:∣∣∣∣∣M̂p
n,µ̂(x, t)− M̂p

n,µ(x, t)

∣∣∣∣∣ =

∣∣∣∣∣ 2n
n∑
i=1

{∫ (
µ̂(x, ω)− µ̂(x, Ui)

)
sign

(
Ui − ω

) 1

h2
n

Kh(ω − t)dF (ω)Kh(Ui − t)

−
∫ (

µ(x, ω)− µ(x, Ui)
)

sign
(
Ui − ω

) 1

h2
n

Kh(ω − t)dF (ω)Kh(Ui − t)

∣∣∣∣∣
≤

∣∣∣∣∣ 2n
n∑
i=1

{∫ (
µ̂(x, ω)− µ(x, ω)

)
sign

(
Ui − ω

) 1

h2
n

Kh(ω − t)dF (ω)Kh(Ui − t)

∣∣∣∣∣
+

∣∣∣∣∣ 2n
n∑
i=1

(
µ̂(x, Ui)− µ(x, Ui)

)∫
sign

(
Ui − ω

) 1

h2
n

Kh(ω − t)dF (ω)Kh(Ui − t)

∣∣∣∣∣
The first term is bounded by:

C sup
x∈X

sup
u∈U

∣∣∣∣∣µ̂(x, u)− µ(x, u)

∣∣∣∣∣ 1

nhn

n∑
i=1

Kh(Ui − t)

where C is some generic finite constant independent of t and x. Using assumptions A1 to A3 and standard
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empirical process theory, it is straightforward to see that:

sup
t∈T

∣∣∣ 1

nhn

n∑
i=1

Kh(Ui − t)
∣∣∣ = Op(1)

Moreover, by the uniform convergence result of Lemma A1 and the bandwidth conditions of Theorem 2, the
second term can be bounded by:

C sup
x∈X

sup
u∈U

∣∣∣∣∣µ̂(x, u)− µ(x, u)

∣∣∣∣∣ 1

nh2
n

n∑
i=1

∫
sign

(
Ui − ω

)
Kh(ω − t)dF (ω)Kh(Ui − t)

≤C sup
x∈X

sup
u∈U

∣∣∣∣∣µ̂(x, u)− µ(x, u)

∣∣∣∣∣ sup
t∈T

∣∣∣∣∣ 1

nhn

n∑
i=1

∫
sign

(
Ui − ω

)
Kh(ω − t)dF (ω)Kh(Ui − t)

∣∣∣∣∣
=Op(n

− 1
2 )

where the inequality follows from assumptions A2, A3, while the convergence rate is taken from Lemma A1. C
is again a generic, finite constant. Combining this result with the result of Lemma A2 yields the claim of the
lemma since n−1h−2

n is of smaller order given that nh3
n −→∞. �
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Appendix A2

Table 1: Monte Carlo Results

H0 is true, α = .5

h = 0.8 · n− 1
5

n = 100 0.10733
n = 200 0.13467
n = 300 0.16067

h = 1 · n− 1
5

n = 100 0.03677
n = 200 0.03133
n = 300 0.03400

h = 1.2 · n− 1
5

n = 100 0.02067
n = 200 0.00733
n = 300 0.00267

H0 is false, α = .5

h = 0.8 · n− 1
5

n = 100 0.98333
n = 200 1.00000
n = 300 1.00000

h = 1 · n− 1
5

n = 100 0.96733
n = 200 0.99933
n = 300 1.00000

h = 1.2 · n− 1
5

n = 100 0.94333
n = 200 1.00000
n = 300 1.00000
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Table 2: Descriptive Statistics

Males, 1996-2002

Variable Hourly Res. Wage (Pounds) Elapsed Duration (Days)
Obs. 1, 034 1, 034
Mean 5.169163 224.824

Std. Dev. 2.156003 291.4457
25% quantile 3.953016 56
50% quantile 4.751848 155
75% quantile 5.636979 316

Females, 1996-2002

Variable Hourly Res. Wage (Pounds) Elapsed Duration (Days)
Obs. 974 974
Mean 4.828762 288.6828

Std. Dev. 2.211663 317.3773
25% quantile 3.690456 82
50% quantile 4.349572 212
75% quantile 5.279831 345

Min. Wage Correction: Males, 1996-2002

Variable Hourly Res. Wage (Pounds) Elapsed Duration (Days)
Obs. 914 914
Mean 5.427778 222.7144

Std. Dev. 2.147863 284.8766
25% quantile 4.152823 55
50% quantile 5.099003 158
75% quantile 5.901098 316

Min. Wage Correction: Females, 1996-2002

Variable Hourly Res. Wage (Pounds) Elapsed Duration (Days)
Obs. 846 846
Mean 5.070153 281.9728

Std. Dev. 2.262114 326.456
25% quantile 3.945885 81
50% quantile 4.514527 210.5
75% quantile 5.399568 344
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Table 3: Descriptive Statistics (contd.)

Min. Wage Correction: Males, 1996-2005

Variable Hourly Res. Wage (Pounds) Elapsed Duration (Days)
Obs. 1, 203 1, 203
Mean 5.759774 206.8678

Std. Dev. 2.565025 259.0299
25% quantile 4.312823 51
50% quantile 5.208333 143
75% quantile 6.387328 304

Min. Wage Correction: Females, 1996-2005

Variable Hourly Res. Wage (Pounds) Elapsed Duration (Days)
Obs. 1, 105 1, 105
Mean 5.323397 260.9674

Std. Dev. 2.412956 295.9899
25% quantile 4.174159 74
50% quantile 4.887904 205
75% quantile 5.636979 338

Min. Wage Correction: Males, 1996-2007

Variable Hourly Res. Wage (Pounds) Elapsed Duration (Days)
Obs. 1, 307 1, 307
Mean 5.842997 201.1446

Std. Dev. 2.642724 251.3508
25% quantile 4.36205 50
50% quantile 5.274261 137
75% quantile 6.436663 296

Min. Wage Correction: Females, 1996-2007

Variable Hourly Res. Wage (Pounds) Elapsed Duration (Days)
Obs. 1, 203 1, 203
Mean 5.456375 253.9609

Std. Dev. 2.497814 287.4156
25% quantile 4.223865 73
50% quantile 4.970179 201
75% quantile 5.958292 335
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Table 4: Test Results - H0: Montonically Declining Rerservation Wages

CV 1% CV 5% CV 10% Test Statistic

Men: 1996-2002 3.7730 3.0322 2.7050 11.5773
Men: 1996-2002, Min. Wage 3.7661 3.0167 2.6858 10.8199
Women: 1996-2002 3.7679 3.0208 2.6909 13.1156
Women: 1996-2002, Min. Wage 3.7642 3.0123 2.6803 12.3965
Men: 1996-2005, Min. Wage 3.7719 3.0297 2.7019 11.5756
Women: 1996-2005, Min. Wage 3.7699 3.0253 2.6965 8.6792
Men: 1996-2007, Min. Wage 3.7805 3.0482 2.7248 12.9244
Women: 1996-2007, Min. Wage 3.7772 3.0412 2.7161 14.5392
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Figure 1: Men - Estimated Reservation Wage Function

(a) 1996 - 2002 Sample

(b) 1996 - 2002 Sample (“Min. Wage Correction”)
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Figure 2: Men - Estimated Reservation Wage Function (contd.)

(a) 1996 - 2005 Sample (“Min. Wage Correction”)

(b) 1996 - 2007 Sample (“Min. Wage Correction”)
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Figure 3: Women - Estimated Reservation Wage Function

(a) 1996 - 2002 Sample

(b) 1996 - 2002 Sample (“Min. Wage Correction”)
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Figure 4: Women - Estimated Reservation Wage Function (contd.)

(a) 1996 - 2005 Sample (“Min. Wage Correction”)

(b) 1996 - 2007 Sample (“Min. Wage Correction”)
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