Financial and Fiscal Interaction in the Euro Area Crisis:
This Time was Different

Alberto Caruso, Lucrezia Reichlin & Giovanni Ricco

June 2018

No: 1167

Warwick Economics Research Papers

ISSN 2059-4283 (online)
ISSN 0083-7350 (print)
Financial and Fiscal Interaction in the Euro Area Crisis: This Time was Different

Alberto Caruso∗ Lucrezia Reichlin†
Confindustria London Business School
Université Libre de Bruxelles CEPR
Giovanni Ricco‡
University of Warwick OFCE – Sciences Po

This version: 18 June 2018

Abstract

This paper highlights the anomalous characteristics of the Euro Area ‘twin crises’ by contrasting the aggregate macroeconomic dynamics in the period 2009-2013 with the business cycle fluctuations of the previous decades. We report three stylised facts. First, the contraction in output was marked by an anomalous downfall in investment, while consumption, savings and unemployment followed their historical relation with GDP. Second, households’ and financial corporations’ debts, and house prices deviated from their pre-crisis trends. Third, the jump in the public deficit-GDP ratio in 2008-2009 was unprecedented and so was the fiscal consolidation that followed. Our analysis points to the financial nature of the crisis as a likely explanation for these facts. Importantly, the ‘anomaly’ in public deficit is in large part explained by extraordinary measures in support of the financial sector, which show up in the stock-flow adjustments and reveal a key interaction between the fiscal and the financial sectors.

JEL classification: C11, C32, C54, E52, E62, F45.

Keywords: Euro Area, government debt, recessions, financial crises, business cycles.

∗ Contact: Confindustria, Viale dell’Astronomia 30, 00144 Roma, Italy. Email: a.caruso@confindustria.it Web: www.alberto-caruso.com
† Contact: Department of Economics, London Business School, Regent’s Park, NW1 4SA, London, United Kingdom. Email: lreichlin@london.edu Web: www.lucreziareichlin.eu/
‡ Corresponding author. Contact: Department of Economics, The University of Warwick, The Social Sciences Building, The University of Warwick, Coventry, West Midlands CV4 7AL, United Kingdom. Email: G.Ricco@warwick.ac.uk Web: www.giovanni-ricco.com

This study was supported by the DG ECFIN’s 2014-2015 Fellowship Initiative ‘Growth, integration and structural convergence revisited’. We thank Joan Paredes for providing us with a timely updated version of the quarterly fiscal database for the Euro Area (Paredes et al., 2009). We also thank Jacopo Cimadomo, Giovanni Callegari and Ingrid Toming for helping interpreting the data and insightful comments. Finally, we are grateful to Marta Babiura, Domenico Giannone, Michele Lenza, Bartosz Mackowiak for insightful comments and discussions. The views expressed in this paper are those of the authors and do not necessarily reflect those of Confindustria.
Introduction

This paper analyses the anomalous characteristics in the responses of a rich set of fiscal, financial and macroeconomic variables to the macroeconomic shocks that generated the 2008 and 2012 prolonged recessions, as compared to the business cycle regularities of the previous decades. Our approach is to model the Euro Area as a single economy and the twin crises – the 2008 financial crisis and the 2012 sovereign debt crisis – as a potentially unique event. This to account for the highly integrated economic and financial features of the Euro Area, and for the possibly common chain of events linking the two recessions.

Our analysis contributes to the literature on the special nature of financial crises as opposed to regular recessions. Much of the existing empirical literature in this area has investigated the path of a handful of macroeconomic variables by using a single regression approach, in which financial crises are identified by using a narrative dummy or a quantitative index (e.g., among others, Reinhart et al., 2012, Jordà et al., 2013b, and Romer and Romer, 2017). A stylised fact emerging from this strand of research is that recessions that are associated to financial crises tend to be deeper, longer, and characterised by prolonged cycles of deleveraging which weigh on the economy.

Differently from this approach, we focus on the fallout of a single financial crisis but provide a landscape view over the economy by adopting a rich multivariate Vector Autoregression (VAR) model with real, nominal and financial variables to capture the interdependence of business and financial cycles. Our Euro Area-wide VAR model makes use of historical quarterly time series data from 1983 to 2013 to jointly model the dynamic interaction of (i) macro aggregates – real GDP, consumption, investment, unemployment; (ii) inflation, long- and short-term interest rates; (iii) several fiscal indicators – spending, taxes, transfers and interest payments; (iv) different spreads; (v) credit aggregates; (vi) house prices. Including in our model a rich set of fiscal aggregates and rates capturing financial crisis characteristics, our model sheds new light on the economic dynamics of the Euro Area during and after the 2008–2012 episode.

1We adopt a Large Vector Autoregression (VAR) model with Bayesian priors that can incorporates a rich set of variables capturing monetary, fiscal, financial and real economic conditions, by efficiently coping with the dimensionality problem (Babalà et al., 2010; Doan et al., 1984). In our empirical specification, we adopt two sets of standard macroeconomic priors: Minnesota priors (Litterman, 1980, 1986) and sum-of-coefficients priors (Doan et al., 1984). The strength of these priors is optimally set using the hierarchical approach proposed by Giannone et al. (2015).

2The fiscal variables come from an updated version of a unique quarterly database for the Euro Area, described in Paredes et al. (2009).
the monetary policy stance is potentially of great importance in examining the policy mix historically adopted in the Euro Area before and after the crisis. In fact, as firstly shown by Leeper (1991), it is important to model the joint behaviour of the monetary and fiscal authorities in explaining macroeconomic outcomes (see Leeper and Leith, 2016 for a review of the extensive research on the issue). Moreover, expanding the econometric information to incorporate both flow and stock variables such as household, financial and non-financial corporation leverage helps identify the potential role of balance sheet adjustments. Similarly to us, Brunnermeier et al. (2017) propose a multivariate VAR approach to distinguish the several channels of interaction between financial variables and the macroeconomy and to control for the response of policy variables.

In joint modelling the evolution of financial and macro variables and the underlying cycles, we have to deal with a number of issues. First, trends and low frequency components are difficult to capture empirically, due to the inherent low number of observations. More specifically, the limited lag order of VAR models may fail to correctly capture the financial cycles, that are thought to have much lower frequency than (and associate weakly with) the traditional business cycle (see, e.g. Borio, 2014). We try to address these issues by enriching our econometric information set and by adopting macroeconomic priors providing credibility to the idea of independent stochastic trend components. Also, we explicitly analyse and assess the plausibility the implicit trends retrieved by our model. Second, VAR-based estimates allow to take into account general equilibrium effects but do not accommodate for non-linearities, which are implicit, for example, in the debt accumulation equation (see, for example, Favero and Giavazzi, 2007 for a discussion on this point). To handle this issue we follow Favero and Giavazzi (2007) and adopt a VARX framework, where public debt can affect all variables but its dynamics is reconstructed externally as a cumulated sum of the deficit implied by the evolution of fiscal aggregates inside the model. This approach, beyond providing robustness to our analysis, also allows to highlight how the measure of public debt resulting from the cumulative sum of public deficit can differ from the actual public debt, due to stock-flow adjustments. In fact, the latter can be large in periods of financial distress given the size of financial transfers which are accounted for as debt but did not originate from fiscal
Our model provides three sets of empirical results. First, we perform a model-based counterfactual exercise by estimating the model for the period 1983-2007 (pre-crisis sample) and computing forecasts for 2008-2013, based on the pre-crisis parameters and conditional on the realised (observed) paths of nominal GDP and inflation. In computing conditional forecasts, we adopt the methodology proposed in Giannone et al. (2010) and detailed in Banbura et al. (2015). This exercise can be interpreted as a test for the statement ‘this time is different’. In fact, conditional on the prolonged drop in output triggered by the 2008 crisis (and the related path of inflation), it allows to uncover the differences between the conditional and the realised paths of the other variables examined and highlights potential anomalous responses as compared to the historical pattern observed in recessions.\footnote{A similar approach has been used in recent works by Giannone et al. (2014) and Colangelo et al. (2017) in studying the response of monetary policy to the crisis.}

Second, using results from the first exercise, we then study how two measures of public debt – the cumulative sum of the deficit and the observed debt incorporating stock-flow adjustments – deviated from its predicted measure conditional on the collapse in output. If the observed path of any variable is found to be significantly different from what observed in its ‘stressed’ scenario, we conclude that there is a departure from previous cyclical experiences.

Third, we study how the realised paths of the variables of interest deviated from the unconditional forecast and the implicit trends recovered by the model. This exercise provides a gauge on how much (or how little) correlation exists in the data between macro and financial variables. It also provides useful information on pre-crisis trends.

Our approach does not recover the nature of the shocks that caused the deep recessions, nor allows to infer causal relationships among the variables. Indeed, while our findings provide new evidence on what happens after financial crises, they only convey suggestive evidence of any causal impact of financial distress onto the economy. Also, importantly, the approach does not disentangle the complex causal relation between the
exceptional fiscal and monetary policies undertaken and the macroeconomic performances observed. This limitation is common to the rest of the literature that has studied financial crises by adopting a treatment variable (and not exogenous events) defined in terms of anomalous credit conditions with respect to an historical norm.

Our results confirm findings reported by extant literature while expanding on the set of stylised facts. First, the contraction in output was marked by an anomalous deep and persistent downfall in investment, beyond historical regularities; conversely, consumption, savings and unemployment followed their historical relation with GDP. Second, house prices contracted, and households' and financial corporations’ debt adjusted more than in previous business cycle recessions, while deviating from their pre-crisis trends; non-financial corporations debt instead followed historical regularities. Third, results indicate that households’, financial corporations’ debts and house prices are weakly associated to the economic cycle in the pre-crisis sample, possibly due to two decades of leveraging. In the post-crisis sample, they markedly deviated from their pre-crisis trends, as a consequence of the deleveraging. Finally, the jump in the fiscal deficit-GDP ratio in 2008-2009 was unprecedented and so was the fiscal consolidation that followed. Importantly, the ‘anomaly’ in public deficit is in large part explained by extraordinary measures in support of the financial sector, which show up in the stock-flow adjustments and reveals a key interaction between the fiscal and the financial sectors. Our analysis points to the financial nature of the crisis as a likely explanation for these facts.

Related Literature. This paper is related to the recent literature investigating the behaviour of the economy in the aftermath of deep recessions and financial crises. A narrative approach in dating crises is commonly used in the literature, as for example in the influential book of Reinhart and Rogoff (2009a) and in a series of articles (e.g. Reinhart and Rogoff, 2009b, 2014). This approach has been pioneered by Caprio and Klingebiel (1996), and then extended by a number of important works, as for example Bordo et al. (2001), Cerra and Saxena (2008), Claessens et al. (2009, 2010), Gourinchas

\footnote{It is important to stress that, given our approach, we cannot discriminate amongst competing explanations. In particular we cannot determine whether the uncovered anomalous features were due to the 'depth' of the drop in output (and hence the activation of non-linearities and hysteresis effects), to the financial nature of the crisis, or to a sudden permanent change in the underlying trends.}
and Obstfeld (2012), Schularick and Taylor (2012), Jordà et al. (2013b), Laeven and Valencia (2014), and Bordo and Haubrich (2017). Most of these studies adopt a single regression approach to investigate the path of a handful of macroeconomic variables following a crisis, identified by using a narrative dummy or a quantitative index. A common finding in this literature is that recessions accompanied by financial crises tend to be more severe, while recoveries are particularly slow compared to deep recessions. Hoggarth et al. (2002), and Laeven and Valencia (2013) compare the path of output following crises with projections of pre-crisis trends. These studies find that output often falls far below the pre-crisis path, but that there is substantial dispersion across episodes.

Slightly different results are reported by Bordo and Haubrich (2017), who find that the slow recovery pattern in the US is true only in the 1930s, the early 1990s and after the 2008 financial crisis. Romer and Romer (2017) refine the narrative approach employing OECD accounts of financial crises to classify financial distress on a relatively fine scale. They find that the average decline in output following a financial crisis is statistically significant and persistent, but only moderate in size, with effects that are highly variable across major episodes.

In focussing on a rich set of fiscal variables we also connect to the literature which studies the impact of prolonged periods of exceptionally high public debt onto economic growth. Reinhart et al. (2012), basing their analysis on a cross-section of countries, have suggested that high public debt overhang has a negative effect on growth. Jordà et al. (2013a), focussing on a cross-section of recessions for different countries, show that this negative effect is only at work when recessions are associated to financial crises. Furthermore, by incorporating some measure of interest rates spread we relate to Krishnamurthy and Muir (2017), who investigate credit spreads as a possible indicator of financial disturbances, and finds a substantial correlation between this statistical measure of financial distress and common crisis chronologies.

Finally, this paper may provide relevant insights to the debate about the post crisis slump in the Euro Area and the ongoing discussion on the reform of the economic
governance of the European Monetary Union (EMU). The policy debate has emphasised, for example, that the fiscal framework of the Euro Area induces pro-cyclicality of fiscal policy in response to large macro-shocks. When monetary policy is constrained at the zero-lower bound this implies an inadequate policy mix and depresses aggregate demand excessively (see for example Corsetti et al., 2016).

1 Fiscal and financial facts

In this section we report some background facts providing suggestive evidence on the financial nature of the crisis. First, we document the anomalous pattern of term and sovereign spreads in the Euro Area, and show that they suggest the activation of different types of financial stress at different points of the crisis. Second, we provide evidence of the fact that the anomalous accumulation of public debt during the last crisis in the Euro Area as a whole is related to the crisis in the financial sector of the core countries of the area. While this observation cannot fully determine the fiscal or financial nature of the crisis, it provides some interesting facts about the sources of deterioration of the fiscal position of the Euro Area.

Let us first turn to some potential indicators of financial frictions. We select two variables as proxies: the spread between the ten-year interest rate on government bonds and the three month Euribor (term spread) and the spread between the ten year interest rates on Italian debt and German debt (sovereign spread). We use the sovereign spread as an indicator of risk associated with the risk of disintegration of the EMU, the so-called ‘redenomination’ risk. To this aim we consider Italy rather than a country that lost access to the market during the crisis like Greece, Portugal or Ireland. Figure 5 plots these variables.

The left-hand chart includes the entire sample and is dominated by the decline of the sovereign spread in preparation of the euro, while it does not show a cyclical behaviour. Conversely, the term spread has a typical anti-cyclical dynamics, raising in recessions and then normalising with a lag. The chart on the right is a zoom of the recent years,

5 The European Economic Review has devoted a special issue to the debate on the persistent post-crisis slump and on the resulting fiscal and monetary policy challenges (see EER 2016).
Figure 1: Italy-Germany long term sovereign interest rates spread and term spread defined as 10 years - 3 months.

with shaded areas indicating CEPR dated recessions. A simple message is apparent: the dominant friction in the 2008-09 recession was the steepening of the term spread affecting all countries, while in the second was the cross-country spread revealing periphery countries stress. In other words, the Euro Area economy in the period 2008-2013 was subject to two different sources of risks: term risk and sovereign risk. The former characterises the first recession, the latter, the second.

Let us now report some key facts about fiscal deficit of the Euro Area as a whole. Figure 2 focuses on the three recessions in our sample with starting dates in 1980, 1991, and 2008. In the left panel it reports public debt to GDP ratios and in the right one the deficit to GDP ratio. For each episode the debt and deficit variables are set equal to 100 at the beginning of the recession. The horizontal axis indicates quarters after that date.

Following each recession, the deficit to GDP ratio increases due to the decline of GDP (the denominator), the decline in tax income and the effect of fiscal stabilisers on public expenditure. The 2008 recession, however, is of a different order of magnitude: due to the dramatic decline of GDP, the deficit to GDP ratio spikes up and continues to do so until early 2009, when a massive fiscal consolidation takes place. The latter, also unprecedented, implied a halving of the deficit in about four years, but failed to stabilise
Figure 2: Euro Area government debt/GDP and deficit/GDP. Indices based at 100 in the quarters in which each recession starts.

public debt which continued to increase albeit at a declining rate.

The question of whether fiscal consolidation was excessive, thereby contributing to slow down the recovery due to a large multiplier in a context of distressed financial markets, or whether it was not aggressive enough, has generated a large debate. Less attention has been devoted to the anomalous debt-deficit dynamics related to the interaction between financial distress and public expenditure. To appreciate this point it is interesting to look at the historical relation between public debt and the rate of change (quarterly differences) of public deficit. The relation between debt and deficit can be expressed as:

\[D_t - D_{t-1} = pd_t + adj_t, \]

(1)

where \(D \) is the stock of the public sector gross debt and \(pd \) is the public deficit. The residual, the so-called stock-flow adjustment, is explained by valuation effects, financial transactions which are not reflected in the deficit, and errors and omissions.

Typically the residual is small, but occasionally it can be big. The literature has documented that creative accounting can inflate the residual near election time or when the economy enters a slump (Reischmann 2016). In Europe, there is also evidence of a

\(^6\)Our analysis is silent on this important question.
persistent positive residual in the nineties when EU rules kicked in (see Alt et al., 2014 for evidence on this point). However, data from 2010 and 2012 are striking and point to very special circumstances. Figure 3 describes the first difference in public debt and the public deficit. Typically the two series are very similar, indicating a small residual. In the nineties the residual was positive, confirming results of the earlier literature but, in 2009 and 2011, there are two large peaks in the debt series which are unprecedented.

Eurostat data for the period 2008-2011 in Table 2 shows that these peaks are almost entirely explained by financial transactions which did not originate from the deficit but are accounted for in the public debt. These are related to special measures adopted in the crisis to support the financial sector, mainly acquisition of financial assets by the government (see Appendix B for further details). Several countries in the Euro Area had stock-flow adjustments which exceeded 2% of GDP. The large positive figure in Germany in 2008 reflects the purchases of securities by two special purpose vehicles in the context of operations related to the financial crisis, while in 2010 it reflects the transfer of assets of two public defeasance structures classified in the government sector. The 2009 figure for Ireland reflects capital injection in the form of preference shares. Similar measures are in evidence for other countries (see Eurostat, 2012 for details). Aggregate figures are heavily influenced by Germany, which is the largest country in the Union and also the
Table 1: Stock Flow Adjustments, 2008-2011, as % of GDP

<table>
<thead>
<tr>
<th>Country</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>Average</th>
<th>Sum</th>
<th>Sum (% of 2011 EA GDP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euro Area</td>
<td>3.2</td>
<td>0.8</td>
<td>1.5</td>
<td>0.6</td>
<td>1.6</td>
<td>6.2</td>
<td>6.2</td>
</tr>
<tr>
<td>BE</td>
<td>6.7</td>
<td>-0.5</td>
<td>0.2</td>
<td>2.1</td>
<td>2.1</td>
<td>8.5</td>
<td>0.3</td>
</tr>
<tr>
<td>DE</td>
<td>2.7</td>
<td>1.8</td>
<td>7.5</td>
<td>0.3</td>
<td>3.1</td>
<td>12.3</td>
<td>3.2</td>
</tr>
<tr>
<td>IE</td>
<td>10.7</td>
<td>1.6</td>
<td>-5.6</td>
<td>2.4</td>
<td>2.3</td>
<td>9.1</td>
<td>0.2</td>
</tr>
<tr>
<td>ES</td>
<td>0.5</td>
<td>1.0</td>
<td>-2.1</td>
<td>-0.8</td>
<td>-0.3</td>
<td>-1.4</td>
<td>-0.2</td>
</tr>
<tr>
<td>FI</td>
<td>4.3</td>
<td>4.5</td>
<td>4.2</td>
<td>2.5</td>
<td>3.9</td>
<td>15.5</td>
<td>0.3</td>
</tr>
<tr>
<td>FR</td>
<td>2.2</td>
<td>1.7</td>
<td>-1.8</td>
<td>0.9</td>
<td>0.8</td>
<td>3</td>
<td>0.6</td>
</tr>
<tr>
<td>IT</td>
<td>1.5</td>
<td>1</td>
<td>0.8</td>
<td>-0.4</td>
<td>0.7</td>
<td>2.9</td>
<td>0.5</td>
</tr>
<tr>
<td>NL</td>
<td>15.4</td>
<td>-5.5</td>
<td>-1.1</td>
<td>-0.8</td>
<td>2</td>
<td>8</td>
<td>0.5</td>
</tr>
<tr>
<td>PT</td>
<td>0.7</td>
<td>-0.1</td>
<td>2.5</td>
<td>9.2</td>
<td>3.1</td>
<td>12.3</td>
<td>0.2</td>
</tr>
</tbody>
</table>

country that showed the largest debt increase due to extraordinary financial expenses as well as the most drastic fiscal consolidation.

Clearly the increase in debt due to these measures represents a cost in terms of future taxes. Since the Stability and Growth Pact rules are set for public debt as well as public deficit, the very large fiscal consolidation since 2009 is likely to have been motivated by the increase in debt caused by these special measures.

Turning now on the analysis of the deficit, Figure 4 shows the dynamics of government expenditures and revenues. While public debt was increasing due to measures in support of the financial sector, fiscal consolidation since 2010 was taking place mostly by a flattening of government expenditures. Figure 5 reports the growth of different public expenditures items as percentage of the rate of growth of total expenditures. It shows that the decline in the growth rate of government expenditures is associated to a decline in the contribution of social payments, government consumption and public investment. Notice also two spikes in the contribution of what is defined as a residual, which is explained by ad hoc capital transfers (that appear directly in the deficit) related to support of the financial sector.

Let us summarise the descriptive features we have illustrated.
1. In 2008, in relation to the collapse of GDP, both the public debt-GDP and public deficit-GDP ratios experienced a sudden deterioration which is much larger than anything experienced in the recessions included in our sample.

2. The dynamics of public debt is partly explained by measures in support of the
financial system that were not accounted for as deficit.

3. Since 2009, we have seen a major fiscal adjustment with the deficit-GDP ratio declining more than in any other expansions.

4. The fiscal adjustment was mostly achieved by a flattening of government expenditures.

5. The latter was achieved by a decrease in the contribution of social payments, government consumption and public investment in favour of an increase to expenses in favour of the financial sector (capital transfers).

In the next sections we analyse these facts through the lens of an econometric model.

2 A Macro-Finance VAR for the Euro Area

In order to capture the complex interactions shaping the aggregate Euro Area economy we adopt a large VAR including a rich set of macroeconomic and financial indicators. In particular we consider 20 time series for the Euro Area aggregate, including fiscal and monetary policy variables, real output and its components, unemployment, prices, assets and several credit and financial variables for the sample 1981Q1-2008Q1. Importantly, we incorporate both standard macroeconomic flow variables and detailed fiscal indicators, but also stocks such as debt in different sectors. Table 3 lists the variables used in the model. Variables enter the model in log-levels, except for variables expressed in rates or with negative levels. When in levels (or log-levels), they are deflated by using the GDP deflator. This choice has the advantage of avoiding problems related to arbitrary choices of data transformations which can distort results.

In incorporating this rich dataset in our VAR we have to deal with four major challenges. First, while VARs are usually specified for flow variables and rates – e.g. output and its components or policy rates –, we need to model the joint evolution of stock and flow variables. In doing this the potentially non-linear relationship between stocks

7The fiscal variables come from an updated version of a unique quarterly database for the Euro Area, described in Paredes et al. (2009). A more detailed description including sources and data treatment is provided in Appendix A.
and flows may distort VAR estimates. This is of particular concern, for example, for
the deficit and the debt accumulation equation. Second, a model capturing the joint
dynamics of many macro and financial variables has necessarily a large cross-sectional
dimension and an expansive set of parameters to be estimated with non-standard tech-
niques. Third, VARs tend to extract ‘implicit’ deterministic components (trends) from
the initial conditions of the data, that are taken as given. In doing so they may overfit
the data, and explain too much of their variation by these deterministic components.
Finally, in our VAR this problems are compounded by the empirical issue that financial
stock variables – often thought of as driven by long cycles – tend to have low correlation
with real variables at business cycle frequency, and may not be well captured by a VAR
with limited lags.

To deal with the possible non-linear equation of debt accumulation, we adopt an
approach similar to the one suggested by Favero and Giavazzi (2007) and consider a
VARX, that is a VAR with public debt treated as an exogenous variable. Differently
from Favero and Giavazzi (2007), we introduce fiscal budget components independently
in the VAR and reconstruct the public debt as the cumulative sum of the fiscal deficit.
The variables listed in Table 3, with the exception of the public debt and the public
deficit, are collected in a vector of endogenous variables \(Y_t \), while we specify separate
equations for \(D_t \) – the stock of the Euro Area consolidated public debt (without the
stock-flow adjustment) –, and for the public deficit \(pd_t \). Our VARX model has the form:

\[
Y_t = c + A(L)Y_{t-1} + b(L)D_t + u_t \tag{2}
\]
\[
D_t = D_0 + \sum_{j=0}^{t} pd_j \tag{3}
\]
\[
pd_t = G_t + TR_t + IP_t - T_t \tag{4}
\]

where \(u_t \) is a normally distributed multivariate white noise with covariance matrix \(\Sigma \)
and \(A(L) \) is a matrix polynomial of order \(p = 4 \) in the lag operator \(L \). The fiscal deficit,
\(pd_t \), is constructed as the sum of the relevant fiscal variables – i.e. public expenditure
\(G \), fiscal transfers \(TR \), interest payments \(IP \), and tax receipts \(T \) – that are individually
present in the vector of endogenous variables \(Y_t \). In this form the debt accumulation
Table 3: List of Variables. See Appendix A for the details.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP</td>
<td>Real GDP</td>
<td>Euro Area Wide Model</td>
</tr>
<tr>
<td>Consumption</td>
<td>Personal consumption</td>
<td>Euro Area Wide Model</td>
</tr>
<tr>
<td>Investment</td>
<td>Gross investment</td>
<td>Euro Area Wide Model</td>
</tr>
<tr>
<td>Unemployment</td>
<td>Unemployment rate</td>
<td>Euro Area Wide Model</td>
</tr>
<tr>
<td>Gov Deficit</td>
<td>General government deficit</td>
<td>Euro Area Fiscal Database</td>
</tr>
<tr>
<td>Gov Debt</td>
<td>General government debt</td>
<td>Euro Area Fiscal Database</td>
</tr>
<tr>
<td>Gov Spending</td>
<td>General government total expenditure</td>
<td>Euro Area Fiscal Database</td>
</tr>
<tr>
<td>Gov Revenues</td>
<td>General government total revenue</td>
<td>Euro Area Fiscal Database</td>
</tr>
<tr>
<td>Social Payments</td>
<td>General government social payments</td>
<td>Euro Area Fiscal Database</td>
</tr>
<tr>
<td>HH Savings</td>
<td>Household saving rate</td>
<td>Euro Area Wide Model</td>
</tr>
<tr>
<td>HH Debt</td>
<td>Households debt</td>
<td>Authors' Calculations</td>
</tr>
<tr>
<td>NFC Debt</td>
<td>Non-financial corporations debt</td>
<td>Authors' Calculations</td>
</tr>
<tr>
<td>FC Debt</td>
<td>Debt securities of MFI excl. ESCB</td>
<td>Authors' Calculations</td>
</tr>
<tr>
<td>CA/GDP</td>
<td>Current account / GDP</td>
<td>Euro Area Wide Model</td>
</tr>
<tr>
<td>House Prices</td>
<td>House prices</td>
<td>ECB</td>
</tr>
<tr>
<td>Long Term IR</td>
<td>Long term interest rate</td>
<td>Euro Area Wide Model</td>
</tr>
<tr>
<td>Short Term IR</td>
<td>Short term interest rate</td>
<td>Euro Area Wide Model</td>
</tr>
<tr>
<td>HCPI</td>
<td>Harmonized consumer price index</td>
<td>Euro Area Wide Model</td>
</tr>
<tr>
<td>ITA-GER i.r. spread</td>
<td>Spread Italian-German 10-year bond yields</td>
<td>Eurostat</td>
</tr>
</tbody>
</table>

equation is a linear function of its components.

We deal with the challenge of incorporating in an efficient manner a large set of variables by adopting Bayesian VAR techniques, that offer a convenient way to deal with large datasets. In fact, BVARs can efficiently deal with the problem of over-parametrisation through the use of prior information about the model coefficients. The key idea is to use informative priors that shrink the unrestricted model towards a parsimonious stylised benchmark model, thereby – in frequentist language – reducing parameter uncertainty, while introducing minimal bias.

More specifically, our BVAR is estimated adopting two sets of standard macroeconomic priors: Minnesota priors (Litterman, 1980, 1986) and sum-of-coefficients priors
While these priors are not motivated by economic theory, they capture commonly held beliefs about how economic time series behave. In fact, Minnesota and sum-of-coefficients are widely applied standard priors in macroeconometric research, that are proven to improve forecasting performances of VAR models.

Minnesota priors can be cast in the form of Normal-Inverse Wishart (NIW) conjugate priors, that assume a multivariate normal distribution for the regression coefficients and an Inverse Wishart specification for the covariance matrix of the error term Σ. Conditional on a draw for Σ, the Minnesota prior assumes the coefficients A_1, \ldots, A_p to be a priori independent and normally distributed, with the following moments

$$E[(A_\ell)_{ij}|\Sigma] = \begin{cases} \delta_i & i = j, \ell = 1 \\ 0 & \text{otherwise} \end{cases}$$

$$\text{Var}[(A_\ell)_{ij}|\Sigma] = \begin{cases} \frac{\lambda}{\ell} & \text{for } i = j, \forall \ell \\ \frac{\lambda}{\ell} \Sigma_{ij} \sigma_j^2 & \text{for } i \neq j, \forall \ell. \end{cases}$$

In Eq. (5), $(A_\ell)_{ij}$ denotes the coefficient of variable j in equation i at lag ℓ. δ_i is either 0 or 1 – for stationary series, or variables that have been transformed to achieve stationarity, we centre the distribution around zero. The factor Σ_{ij}/σ_j^2 accounts for the different scales of variables i and j. The hyperparameters σ_i are fixed using sample information, as the standard deviations of the residuals of univariate regressions of each variable onto its own lags. Importantly, λ is a hyperparameter that controls the overall tightness of the random walk prior. If $\lambda = 0$ the prior information dominates, and the VAR reduces to a vector of univariate models. Conversely, as $\lambda \to \infty$ the prior becomes less informative, and the posterior mostly mirrors sample information. Minnesota priors can be implemented using dummy observations. Priors on A coefficients are implemented by the following pseudo-observations

$$y_d^{(1)} = \begin{bmatrix} \text{diag}([\delta_1 \sigma_1, \ldots, \delta_n \sigma_n]/\lambda) \\ 0_{n(p-1)\times n} \end{bmatrix},$$

$$x_d^{(1)} = \begin{bmatrix} J_p \otimes \text{diag}([\sigma_1, \ldots, \sigma_n]/\lambda) \\ 0_{np\times 1} \end{bmatrix}.$$
et al., 1984), can be relevant in dealing with the challenge of the relatively weak joint
dynamics connecting private debt and real variables, while reducing concerns about the
overfitting of VARs estimated conditional on initial observations. In fact, these priors
provide more weight to the hypothesis that macro and financial variables can be approx-
imated by independent random walks with drifts. This stylised description is helpful in
modelling the joint dynamics of macroeconomic and financial variables, combining stock
and flow indicators, and possibly exhibiting heterogenous trend components.

Specifically, the sum-of-coefficients prior captures the belief that when the average
lagged values of a variable $y_{i,t}$ is at some level y_i, that same value y_i is likely to be a good
forecast of $y_{i,t}$. It also implies that knowing the average of lagged values of variable j
does not help in predicting a variable $i \neq j$. This prior is implemented using n artificial
observations, one for each variable in y_t

$$y_d^{(2)} = diag \left(\frac{\bar{y}_{0.1}}{\tau}, \ldots, \frac{\bar{y}_{0.n}}{\tau} \right), \quad x_d^{(2)} = [y_d^{(2)}, \ldots, y_d^{(2)}, 0], \quad (8)$$

where $\bar{y}_{0,i}$, $i = 1, \ldots, n$ are the average of the first four initial values of each variable.
The prior implied by these dummy observations is centred at 1 for the sum of coefficients
on own lags for each variable, and at 0 for the sum of coefficients on other variables’ lags.
It also introduces correlation among the coefficients of each variable in each equation.
In fact, it is easy to show that equation by equation this prior implies the stochastic
constraint

$$(1 - (A_1)_{jj} - \ldots - (A_p)_{jj}) \bar{y}_{0,j} = \tau u_t^d \quad \forall j , \quad (9)$$

where $(A_\ell)_{jj}$ denotes the coefficient of variable j in equation j at lag ℓ. The hyper-
parameter τ controls the variance of these prior beliefs. As $\tau \to \infty$ the prior becomes
uninformative, while for $\tau \to 0$ the model implies that each variable is an independent
unit-root process and there is no cointegration relationship.

In order to assign less probability to versions of the model in which deterministic
transient components are more important than the stochastic component in explaining

\footnote{While results for a BVARS with only Minnesota priors are qualitatively unchanged, sum-of-
coefficients priors are helpful in reducing estimation uncertainty on the long end of the conditional
forecast.}
the series variance, we combine sum-of-coefficients dummy observations with dummy observations that favour the VAR intercept to be equal to zero \((c = 0)\), as suggested by [Sims and Zha (1998)](https://doi.org/10.1111/j.1468-0262.1998.tb00699.x). A fairly loose prior for the intercept of this type can be implemented with the following dummy observations:

\[
\begin{align*}
\mathbf{y}_d^{(3)} &= \begin{bmatrix} 0_{1 \times n} \end{bmatrix}, \\
\mathbf{x}_d^{(3)} &= \begin{bmatrix} 0_{1 \times np} & \epsilon \end{bmatrix},
\end{align*}
\]

where \(\epsilon\) is an hyperparameter set to a very small number.\(^9\)

The setting of the priors depends importantly on the hyperparameters \(\lambda\) and \(\tau\), which reflect the informativeness of the prior distributions for the model coefficients. In setting the value of these hyperparameters, regulating the strength of prior beliefs, we follow the approach proposed by [Giannone et al. (2015)](https://doi.org/10.1016/j.jeconom.2015.04.001). This involves treating the hyperparameters as additional parameters, in the spirit of hierarchical modelling.

Conditional forecasts are obtained from a Bayesian Vector Autoregression estimated on the pre-crisis sample, by employing the Kalman filtering techniques used first in [Giannone et al. (2010)](https://doi.org/10.1111/j.1468-0262.2010.00628.x) and detailed in [Bàrbura et al. (2015)](https://doi.org/10.1146/annurev-economics-120714-031145). The procedure exploits the fact that Vector Autoregressive models can be cast in a state-space form. Hence, the conditional forecasts can be computed using Kalman filtering techniques and the counterfactual simulations can be drawn using the simulation smoother of [Carter and Kohn (1994)](https://doi.org/10.1007/BF02294986). As discussed in [Bàrbura et al. (2015)](https://doi.org/10.1146/annurev-economics-120714-031145), since the Kalman filter works recursively, this algorithm reduces the computational burden significantly for longer forecast horizons, and is particularly well suited for empirical approaches where large data sets are being handled.

3 This Time was Different

In this section we present three sets of empirical results: (i) we compare the actual path of macroeconomic and financial variables with their model-based forecast conditional on

\(^9\)We set \(\epsilon\) the have a fairly loose prior variance equal to \(10^6\).
the pre-crisis sample and the realised path for output and inflation during the crisis; (ii) we zoom into the conditional predicted outcome for public debt and deficit and assess the role of stock-flow adjustment and measures of support to financial institutions; (iii) we compare conditional and unconditional forecasts and make inference about pre- and post-crisis trends.

3.1 How if the 2008 crisis had been just a ‘normal’ recession?

The question we want to ask is whether the observed behaviour of the variables since 2008 could have been expected given their historical correlation with the macroeconomy and the observed path of GDP and inflation. To provide an answer to this question, we compute model-based expectations for all macroeconomic and financial variables, conditional on the actual path of output and prices in 2008Q2–2013Q4, and using parameters estimated on the sample 1981Q1–2008Q1. A significant difference between the observed path and the median of the simulated path (conditional expectation) would suggest that the exceptional decline of GDP alone cannot explain what we have observed, given the realised inflation and the historical pattern of business cycle recessions.

Figure 6 reports the realised paths of all the variables included in the model, the median of the conditional forecasts as well as 68% (darker blue) and 90% (lighter blue) coverage intervals to provide a measure of uncertainty. A number of features are apparent.

First, while consumption, savings and unemployment followed their historical relation with GDP, the contraction in output was marked by an anomalous protracted downfall in investment. In fact, while the high persistence of unemployment in Europe is in line with past regularities (albeit in the upper tail of the forecast outcomes) the ‘hysteresis’

\[\text{To obtain conditional forecasts we first estimate the VAR model parameters’ posterior distributions for the period 1981Q1–2008Q1. Then, we compute for all variables the conditional expectations for 2008Q2–2013Q4. For any given draw of the model’s parameters from their posterior density, the draws from the counterfactual exercise are computed as conditional forecasts in which the conditioning information is given by: (1) the pre-crisis history of all variables in the model; (2) their estimated parameters capturing historical correlations; (3) the observed paths of GDP and inflation for 2008Q2–2013Q4. We report the median as well as 68% and 90% coverage intervals.} \]

\[\text{Blanchard and Summers (1986) and more recently Galí (2015) observed that ‘hysteresis’ in labour market (i.e. high persistence of unemployment) in Europe may be due to the nature of its wage setting mechanisms and their impact on the sensitivity of wages to unemployment.} \]
Figure 6: **Conditional forecast.** The figure shows the realised data (red) and the counterfactual path of the variables. The blue lines are the medians of the forecasts conditional on the path of GDP, plotted with 68% (dark blue) and 90% (light blue) coverage intervals. House Prices and HICP are indices, interest rates and spreads are expressed in yearly rates, HH Savings is the Eurostat saving ratio; all the other variables are in Millions of Euros in real terms, with 1995 as reference year.
pattern in investment (see Dixit, 1992) — to which the model assigns probability close to zero — is markedly anomalous.

Second, also fiscal aggregates show an anomalous behaviour. It is useful, however, to distinguish between the first recession, in the period 2008Q1-2009Q3, from the subsequent adjustment. The first recession was characterised by an unusual decline in government revenues, which fell below the distribution of the forecast paths conditional on the large observed decline of GDP; and by an increase in government expenditures and social payments in the upper tail of the predicted outcomes. The fact that tax revenues declined more than what could have been expected given the behaviour of output and prices could suggest the activations of non-linearities due to the progressive nature of the tax system. However, the adjustment since late 2009 produced a sudden ‘normalisation’ for tax revenues, government expenditures and social payments.

Third, during the first recession there was an anomalously large current account deficit, possibly explained by the collapse of world trade which, in 2008, was larger than the one of GDP. The adjustment since late 2009 involved a sharp reversal, with the current account returning to the historical counterfactual path and then overshoooting to an unusually large surplus. This may also relate to the unusual decline in investment and sharp fiscal adjustment experienced by the Euro Area.

Fourth, while household savings were quite stable, households’ and financial corporations’ debts and house prices deviated from the predicted paths. This shows a strong deleveraging of the European economy after the crisis. Also, the long-term interest rate stayed for the first part of the crisis at an unusually high level, possibly calling into action the unconventional monetary policy measures enacted by the ECB in the rest of the sample.

Finally, other features of the results deserve some comments. In correspondence to the debt crisis of 2011, we have an unusual steep increase in the Italian-German spread debt which persist till the end of the forecast period. Conversely, the interest rate term spread 10 year - 3 months on government bonds moves steeply to the upper tail of the distribution of the forecast during the 2008-2009 recession. Indeed results quantify the observations of Section 11 by showing that while an unusually high term spread was a
feature of the first recession, an unusually high core-periphery sovereign spread was a feature of the second. In other words, the model correctly identifies different financial frictions in the two recessions.

3.2 The debt-deficit dynamics

Let us now turn to the public debt and fiscal deficit. As described earlier, we construct the deficit from the disaggregated data on revenues and expenditures while we construct public debt as the sum of the deficit. Figure 7 shows the observed and counterfactual paths for the two variables expressed as ratios with respect to GDP. In addition, we report data on public debt without stock-flow adjustments.

The left panel, showing actual and counterfactual paths for the deficit-to-GDP ratio, reflects the features noticed on Figure 6. A sharp fiscal consolidation from 2009Q3, started more than a year earlier than what predicted by the counterfactual path, brought down the large gap in 2008-2009 between the counterfactual path of the deficit ratio and the actual ratio. By 2010, the realised deficit is back inside the predicted conditional distribution of forecasts. This quantifies in statistical term what observed in the previous
section by comparing data across recessions: the fiscal consolidation of 2009-2010 was sudden and of an unprecedented size.

The right panel shows the dynamics of public debt. It reports both the actual level of debt-to-GDP ratio (red line) and the non-stock-flow adjusted ratio (green line). The adjusted debt ratio, that includes measure of support to the financial sector, jumps up immediately above the counterfactual and stays about 15% higher than the non-adjusted line until 2012, when it jumps up again as the effect of an other wave of special measures in support of the financial sector (see Table 2 in Section 4). The non-adjusted path, which we compute as the sum of the deficit, is at the end of the sample just outside the upper limit of the 90% predicted distribution. The big anomaly of the stock-flow adjusted debt dynamics seems therefore largely explained by the special measures in support of the financial sector.

To gain further insight about the joint path of public debt and deficit, let us consider the observed and counterfactual scatter-plot illustrated in Figure 8. Let us keep in mind
that the latter is computed taking into account all general equilibrium relationships implicit in the VAR model. The figure shows that the relationship between deficit and debt is highly non-linear and that, during the fiscal contraction, the increase in debt associated with a given decline in deficit has been larger than expected. The yellow dots, representing the deficit-debt counterfactual scatter plot where the debt is not adjusted, show an inverse U-shape: up to 2009 we have an increase in debt corresponding to an increase in deficit while, after 2009, as the deficit contracts (still remaining positive), debt increases. The data, both when the debt is adjusted (red dots) and when is not (green dots), follow the same pattern but the curves are shifted up and to the right. The red dots in particular are outside the 90% confidence intervals.

3.3 Unconditional forecast and trends

Figure 9 presents conditional and unconditional median forecasts against the realised paths of the variables since 2008. This exercise is meant to assess two aspects of our analysis. First, the unconditional forecasts, based on the pre-crisis estimated parameters, provide on the medium run a gauge on the pre-crisis trends that the model would extrapolate from the data. Second, the difference between the conditional and unconditional forecast provides an indirect measure of the strength or weakness of the coupling of each single variable with GDP and inflation.

It is worth observing that the difference between the realised paths for GDP and HCPI and their unconditional forecasts can be thought of as the deviation by which the conditional forecasts are informed. Conditional on the pre-crisis data, the model would implicitly read them as due to a given sequence of shocks and use this information to produce the conditional forecasts shown in Figure 6. By doing so the model should be able to capture the cyclical dynamics of those variables that are correlated with GDP and inflation (and that were not subject to structural change).

Figure 9 shows that several variables were co-moving with GDP and inflation in the pre-crisis period – the gap between the conditional and the unconditional projections is a measure of this. However, this is notably not the case for public, households’, and financial corporations’ debts. This can be read as an indication of the fact that due
Figure 9: **Conditional and unconditional forecast.** The figure shows the realised data (red), the median of the forecast conditioned on GDP and HICP paths (black) and the median of the unconditional forecast (blue). House Prices and HICP are indices, interest rates and spreads are expressed in yearly rates, HH Savings is the Eurostat saving ratio; all the other variables are in Millions of Euros in real terms with 1995 as reference year.
to two (pre-crisis) decades of leveraging, these variables have experienced movements unrelated to GDP and in general to the economic cycle. This observation matches with some of the stylised facts on financial cycles reported in the literature (see, for example, Borio [2014]).

Another feature that is in evidence in Figure 9 is the marked and very persistent deviation of the path of many variables from the pre-crisis trends. The gap that opened up during the crisis with respect to pre-crisis trends – among others for output, consumption, investment, private and public debts, and house prices – does not seem to close down in the final part of the sample. This begs the question whether the observed deviations are due to a very unusual and persistent cyclical event due to hysteresis effects, or they are better thought of as due to structural changes in the trend growth.

4 Conclusions and discussion

The analysis summarised in this section employs a large VAR incorporating a rich set of macroeconomic, fiscal and financial variables. Our model extracts information on the multivariate dynamics of economic indicators from the 1981-2008 sample, and produces forecasts (i) unconditional and (ii) conditional to the realised paths of output and prices. While the first can be thought of as a measure of the model-implied trends on the medium horizon, the latter provide an indication of how the behaviour of the economy since 2008 deviated from historical business cycle regularities.

From our analysis a few facts emerge. First, most of the variables deviated strongly and persistently from pre-crisis trends, among others output, consumption, investment, private and public debts, and house prices. The deviations from pre-crisis trends do not seem to close down in the final part of the sample. Second, while for some of the variables the deviation is explained by business cycle regularities and the deep contraction in production, for others the deviation was anomalous even given the large drop in output. This is notably the case for the protracted contraction in investment. Third, households’ and financial corporations’ debts seem to be weakly associated to the economic cycle in the pre-crisis sample, possibly due to two decades of leveraging. Moreover, during the
crisis, households’ and financial corporations’ debts and house prices markedly deviated from their pre-crisis trends. Finally, the jump in the fiscal deficit-GDP ratio in 2008-2009 was unprecedented and so was the fiscal consolidation that followed. Importantly, this anomaly in public deficit is in large part explained by extraordinary measures in support of the financial sector, which show up in the stock-flow adjustments and reveals a key interaction between the fiscal and financial sectors.

Our approach does not recover the nature of the shocks that caused the deep recession, nor allows to make causal statements. This limitations are largely common to the literature that has studied financial crises. However, our methodology provides a useful descriptive account of the adjustment since the crisis, by distinguishing what can be explained by its cyclical component and what are its specific characteristics as compared to historical regularities.

The stylised facts recovered by our analysis point to the financial stress and the associated sharp fiscal consolidation and as potential explanatory factors of the observed anomalies. However, it is important to remark that, given our approach, we cannot discriminate amongst potential competing explanations. In particular we cannot determine whether the uncovered anomalous features were due to the ‘depth’ of the drop in output (and hence the activation of non-linearities and hysteresis effects), to a sudden permanent change in the underlying trends, or to the financial nature of the crisis.
References

Eurostat (2012) “Stock-Flow Adjustment (SFA) for the Member States, the Euro Area and the EU27 for the Period 2008-2011, as Reported in the April 2012 EDP Notification.”

<table>
<thead>
<tr>
<th>Variable</th>
<th>Source</th>
<th>Name</th>
<th>ID / Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP</td>
<td>Euro Area Wide Model</td>
<td>GDP (Real)</td>
<td>YER</td>
</tr>
<tr>
<td>Consumption</td>
<td>Euro Area Wide Model</td>
<td>Private Consumption</td>
<td>PCR</td>
</tr>
<tr>
<td>Investment</td>
<td>Euro Area Wide Model</td>
<td>Gross Investment</td>
<td>ITR</td>
</tr>
<tr>
<td>Unemployment</td>
<td>Euro Area Wide Model</td>
<td>Unemployment rate (as a percentage of labour force)</td>
<td>URX</td>
</tr>
<tr>
<td>Gov. Deficit</td>
<td>Euro Area Fiscal Database</td>
<td>EA general government deficit (computed= TOE-TOR)</td>
<td>DEF, deflated by GDP deflator (ID: YED of EAWM)</td>
</tr>
<tr>
<td>Gov. Debt</td>
<td>Euro Area Fiscal Database</td>
<td>EA general government debt</td>
<td>MAL, deflated by GDP deflator (ID: YED of EAWM)</td>
</tr>
<tr>
<td>Gov. Spending</td>
<td>Euro Area Fiscal Database</td>
<td>EA general government total expenditure (corrected by UMTS proceeds)</td>
<td>TOE, deflated by Gov. Consumption Deflator (ID: GCD of EAWM)</td>
</tr>
<tr>
<td>Gov. Revenues</td>
<td>Euro Area Fiscal Database</td>
<td>EA general government total revenue</td>
<td>TOR, deflated by Gov. Consumption Deflator (ID: GCD of EAWM)</td>
</tr>
<tr>
<td>Social Payments</td>
<td>Euro Area Fiscal Database</td>
<td>EA general government social payments (social transfers other than in kind, D62)</td>
<td>THN, deflated by Consumption Deflator (ID: PCD of EAWM)</td>
</tr>
<tr>
<td>HH Savings</td>
<td>Euro Area Wide Model</td>
<td>Household savings rate</td>
<td>SAX</td>
</tr>
<tr>
<td>HH Debt</td>
<td>BIS and authors' calculations</td>
<td>Debt of Households</td>
<td>BIS data: Long series on total credit and domestic bank credit to the private non-financial sector, Households and NPISHs. Data for the Euro Area are available since 1999. To reconstruct data prior to 1999, we used the quarterly growth rates of the sum of the correspondent data for Belgium, Finland, France, Germany, Italy, Spain and Portugal.</td>
</tr>
</tbody>
</table>

Table 4: Variables included in the VAR model [1/2]. Euro area data are relative to a fixed composition with 19 members.
Table 5: Variables included in the VAR model [2/2].

<table>
<thead>
<tr>
<th>Variable</th>
<th>Source</th>
<th>Name</th>
<th>ID / Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFC Debt</td>
<td>BIS and authors' calculations</td>
<td>Debt of Non-Financial Corporations</td>
<td>BIS data: Long series on total credit and domestic bank credit to the private non-financial sector, Non-financial corporations. Data for the Euro Area are available since 1999. To reconstruct data prior to 1999, we used the quarterly growth rates of the sum of the correspondent data for Belgium, Finland, France, Germany, Italy, Spain and Portugal.</td>
</tr>
<tr>
<td>FC Debt</td>
<td>IMF, ECB and authors' calculations</td>
<td>Debt of Financial Corporations</td>
<td>Data for the Euro Area are available since 1997 Q3. To reconstruct data prior to 1997 Q3, we used the quarterly growth rates of the sum of the Debt securities for Other Depository Corporations in Austria, France, Germany, Italy, Netherlands, Portugal, Spain.</td>
</tr>
<tr>
<td>CA/GDP</td>
<td>Euro Area Wide Model</td>
<td>Current Account Balance/GDP</td>
<td>CAN YEN</td>
</tr>
<tr>
<td>House Prices</td>
<td>ECB</td>
<td>Residential property prices, New and existing dwellings</td>
<td>RPE.Q17.N.TD.00/3.00</td>
</tr>
<tr>
<td>Long Term IR</td>
<td>Euro Area Wide Model</td>
<td>10-year Interest Rate</td>
<td>LTN</td>
</tr>
<tr>
<td>Short Term IR</td>
<td>Euro Area Wide Model</td>
<td>3-month Interest Rate</td>
<td>STN</td>
</tr>
<tr>
<td>HICP</td>
<td>Euro Area Wide Model</td>
<td>Overall HICP (Non-seasonally adjusted)</td>
<td>HICP</td>
</tr>
<tr>
<td>ITA-GER i.r. spread</td>
<td>Eurostat</td>
<td>ITA-GER spread</td>
<td>Spread between Italian and German Maastricht criterion bond yields, around 10-year residual maturity</td>
</tr>
</tbody>
</table>

Euro area data are relative to a fixed composition with 19 members.
B Public Interventions in Support of the Financial Sector During the Crisis

We can distinguish between two types of public interventions for the financial sectors: those that affect both debt and deficit and those that affect debt only. According to the budget rules a capital injection can be considered as a capital transfer (increasing the government deficit, see the "residual" component in Figure [3] or as an acquisition of equity (a financial transaction, which does not impact on the government deficit; we have shown some figures relative to the period 2008-2011 in the Table 2 in the text).

Between 2008 and 2013 in the European Union there have been recapitalisation measures for 448.16 billions of euros accounting for 3.43% of GDP, and asset relief interventions for 188.24 billions accounting for 1.44% of GDP. Overall these measures accounted for 5.06% of GDP. This however is a small fraction of what was approved. We provide a list of approved measures by categories below.

Guarantees on liabilities (bulk of the intervention):

- The EC authorised a total aid of EUR 3 892.6 billion (29.8% of EU GDP in 2013) for guarantees on liabilities.

- The outstanding amount peaked in 2009 at EUR 835.8 billion (6.39% of EU 2013 GDP), and has decreased since.

- In 2013, outstanding guarantees amounted to EUR 352.3 billion (2.7% of EU 2013 GDP). However only EUR 3.13 billion of the total guarantees provided have been called.

Recapitalisation

The EC authorised aid for EUR 821.1 billion (6.3% of EU 2013 GDP) in the last six years. In 2008-2013, EUR 448 billion (3.4% of EU 2013 GDP) granted in recapitalisation measures. This was mostly for the UK, Germany, Ireland and Spain.
Direct Short Term Liquidity Support

The EC approved EUR 379.9 billion (2.9% of EU 2013 GDP) for liquidity measures. However, Member States have practically used only a very small amount. Spain and the Netherlands account for more than a half of the outstanding amounts in the peak year 2009.

Asset Relief Measures

In 2008-2013, Member States provided asset relief measures reaching EUR 188.2 billion (1.4% of EU 2013 GDP) while the total aid approved was EUR 669.1 billion (5.1% of EU 2013 GDP).