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Abstract

In this paper we exploit firm-level data on patent grants and subsequent reactions of

their stocks to identify technological news shocks. Changes in stock market valuations due

to announcements of individual patent grants represent expected future increases in the

technology level, which we refer to as patent-based news shocks. Our patent-based news

shocks resemble diffusion news in that they do not affect total factor productivity in the

short-run but account for about 20 percent of its variations after five years. These shocks

induce positive comovement between consumption, output, investment and hours. Unlike

the existing empirical evidence, patent-based news shocks generate a positive response

in inflation and the federal funds rate, in line with a standard New Keynesian model.

Patenting activity in electronic and electrical equipment industries within the manufac-

turing sector and computer programming and data processing services within the services

sector play a crucial role in driving our results.
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1 Introduction

Ever since the seminal work of Beaudry and Portier (2006) revived the idea of expectation-

driven business cycles in Pigou (1927), many economists have tried to understand the role that

so-called technological news shocks play in explaining business-cycle fluctuations.1 Technolog-

ical news shocks are usually defined as advance information about technological improvements

that will become available in the future. Isolating these technological news shocks requires two

elements: first, a reliable measure of technological improvements and, second, an identification

strategy to extract the advance information about these improvements.

The empirical news literature almost exclusively uses the utilization-adjusted total factor

productivity (TFP) in Fernald (2012) as a measure of technological improvements, and defines

technological news shock as the shock that does not affect TFP in the short run but drives

most of its variations over longer horizons.2,3 Neither of these two elements is free of concerns.

First, TFP is an indirect measure of technology that is hard to link to specific technological

improvements. Second, regardless of the specific assumptions imposed, existing identification

schemes rely on strong assumptions that the TFP follows an exogenous process and that,

consequently, long-run movements in TFP are solely due to productivity shocks.4

This paper contributes to the empirical literature by using a direct measure of technological

improvements and by proposing a straightforward identification strategy that is agnostic about

the TFP process. We use microlevel data on patents that are, as noted by Griliches (1990), by

definition directly related to inventiveness. In particular, we use the measure of technological

innovation in Kogan, Papanikolaou, Seru, and Stoffman (2017) (KPSS, henceforth), and refer

to it as patent-based innovation index because it combines firm-level data on patent grants with

their subsequent stock price movements.5 These stock price movements represent the reaction

1See, for example, Beaudry and Portier (2006), Jaimovich and Rebelo (2009), Barsky and Sims (2011),
Kurmann and Mertens (2014), Beaudry and Portier (2014), Schmitt-Grohé and Uribe (2012), Forni et al.
(2014), and Görtz and Tsoukalas (2017).

2The TFP in Fernald (2012) is constructed following his earlier work in Basu et al. (2006). Even though
this measure arguably represents the best aggregate measure of technology at a quarterly frequency, it does
not fully coincide with the annual purified technology measure proposed by Basu et al. (2006) as it does not
correct for the possibility of non-constant returns to scale. As pointed out by Bouakez and Kemoe (2017) even
this seemingly small discrepancy between the two measures can have important implications on the conclusions
regarding the effects of news shocks. In addition, Cascaldi-Garcia (2017) and Kurmann and Sims (2017) show
that the existing identification schemes are very sensitive to updates recently implemented by Fernald to his
original TFP measure.

3Barsky and Sims (2011) identify technological news shock as a shock that explains most of the forecast error
variance of TFP over a 40-quarter horizon, restricting it to have zero impact effect on TFP. Some researchers
in this literature have adopted the approach of Francis, Owyang, Roush, and DiCecio (2014) and identified
technological news shocks as shocks that explain most of the forecast error variance of TFP at the 40-quarter
horizon, restricting it to have zero effect on TFP on impact. More recently, Kurmann and Sims (2017) propose
using the approach of Francis et al. (2014) but without imposing a zero-impact restriction.

4For example, as pointed out by Barsky and Sims (2011), other structural shocks that can affect productivity
in the future but not immediately, such as research and development shocks, investment-specific shocks or re-
allocative shocks would be confounded with true news shocks when maximum variance decomposition of TFP
is used, thus misrepresenting the importance of technological news shocks in driving the business cycle.

5The authors calculate an economic value of each patent based on the firm’s stock price reaction to news
about a patent grant, while controlling for the factors that could move stock prices but are unrelated to the
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of markets to announcements about technologies that will become available in the future, which

maps directly into the definition of technological news shocks.

The advantage of using this direct measure of future technology is that, unlike most of the

empirical news literature, we can use a very simple and straightforward identification strat-

egy. In particular, we identify the patent-based news shock as the shock that explains most

of the contemporaneous variations in the measure that aggregates stock market valuations of

all individual patents. We show that this shock essentially amounts to an unexpected con-

temporaneous shock. An increase in the patent-based innovation index represents the market

valuation of the potential patent outcomes, capturing expectations about technology that will

be available with some delay.

The news shocks identified with our approach are more closely connected to true technologi-

cal improvements for at least two reasons. First, our approach uses data on technology together

with forward-looking variables that reflect advance information about future improvements in

order to recover the structural shock. As we already discussed, using movements in TFP for

identification might be problematic, so it does not come as a surprise that even small updates

in TFP lead to different conclusions regarding the effects of technological news shocks. At the

same time, aggregate stock prices, often used in this literature, are also likely to capture changes

not related to economic fundamentals, such as optimism or animal spirits. By using microlevel

data, our approach mitigates these issues, as the KPSS measure considers only movements in

market responses during a narrow window of time around patent grant announcements. There-

fore, any surprise movements in the KPSS should measure market expectations solely about

future technological improvements reflected in patents.6

Second, long lags between a patent grant and the appearance of the patented product or

process account for a delay in the implementation of technology. This delay makes patents more

appealing for identifying news shocks than alternative direct measures that capture technolog-

ical improvements around their implementation dates (see, for example, Alexopoulos, 2011;

Alexopoulos and Cohen, 2009). Overall, patents represent a good proxy for a technology that

will be available and diffuse with a delay, while movements of the firm’s stock price within

a very short window around the patent grant date represent the market expectations about

this technology. Indeed, the key idea behind expectation-driven business cycles is that markets

economic value of the patent.
6It is important to note that the use of simple patent counts is often criticized in the literature because it does

not account for drastic differences in technical and economic significances across patents. It follows that a simple
patent count may either underestimate or overestimate the real (expected) economic effect of such innovations.
In addition, patents are used differently across fields and do not always reflect how the firm appropriates returns
from innovation (Sampat, 2018). The KPSS measure overcomes these issues by carefully weighting patents by
their economic importance reflected in the stock market movements following the announcements of patent
grants. Furthermore, the patent-based innovation index is given in terms of dollars and, therefore, can be
comparable across time and industries. Although this measure does not overcome the criticism that patent
fluctuations might be the consequence of changes in patent laws and/or the quantity of resources available to
the U.S. patent office, it does mitigate it by assigning these patents more appropriate weights. Furthermore, our
results are robust to using average patent value, a measure that completely overcomes this criticism, suggesting
that it is not changes in patent laws that drive our results.
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learn about a new technology before it is implemented, which is precisely what the patent-based

innovation index captures.

Our results show that the response of TFP to the patent-based news shocks closely resem-

bles the predicted path of diffusion news described by Portier (2014), as they seem to “bring

information about the future evolution of TFP without affecting TFP in the short run.” In

fact, our news shocks do not significantly move TFP for about six quarters in our benchmark

specification. Strikingly, this is a result of the identification and not an imposed assumption;

Beaudry and Portier (2006) only achieve such diffusion by imposing it through statistical pro-

cedures, and Barsky and Sims (2011) show TFP quickly growing to a new higher level, which

is less compatible with the idea of diffusion news. Because of this feature, our results are also

much less susceptible to the criticism that expansions following news shocks are not due to

the effects of news per se, but rather to the expected change in fundamentals evoked by news

innovations.

The identified patent-based news shocks induce a clear comovement among output, con-

sumption, investment, and hours. They all rise on impact, displaying hump-shaped responses;

the majority of these movements happen even before the positive effect on TFP becomes signif-

icant and TFP starts picking up. This result indicates that the identified shock carries advance

information about future productivity prospects, rather than tracking its path. This anticipa-

tion feature of the patent-based news shock is further confirmed by the strong positive impact

effect on the two forward-looking variables, stock prices and consumer confidence.

Another important result of our analysis relates to the responses of inflation and the federal

funds rate to the patent-based news shock. Both variables respond positively in the short

run, consistent with the predictions of a standard New Keynesian model. This result becomes

even more relevant in light of the fact that most of the empirical literature suffers from a

so-called disinflation puzzle – a persistently negative response of inflation to a positive news

shock. Bouakez and Kemoe (2017) show that the existence of this puzzle in the empirical news

literature is the direct consequence of measurement errors in TFP that impair the identification

of technological news shocks.7 Because our identification does not rely on any assumptions

regarding TFP, this result reinforces the claim that the patent-based news shocks we identify

represent “true” technological news shocks.8

The news shocks identified here explain less of the forecast error variance of main macroe-

conomic aggregates than typically found in the empirical literature on news shocks. This result

is expected, because most identification schemes are based precisely on maximizing the forecast

7In addition, these authors also confirm that technological news shocks in the Smets and Wouters (2007)
model are indeed mildly inflationary.

8As pointed out by Barsky and Sims (2009), in order to make TFP-based empirical news literature findings
consistent with a New Keynesian model, one would need to account for additional features, such as exogenous
real wage rigidity or monetary policy that reacts to output growth rather than output gap. Furthermore, Jinnai
(2013) shows that these modifications are not enough in a model with endogenous capital, and proposes two
additional ones: sticky nominal wages in the labor market and a monetary policy rule that reacts to consumption
growth rate. Our results show that all these additional modifications are not needed in the first place.
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error variance of TFP over a particular horizon. We believe that our results represent a lower

bound of the importance of technological news shocks given that not all innovative activity

is patented in the first place, and the patent-based innovation index only considers publicly

listed companies. Nevertheless, the patent-based news shocks explain almost zero short-run

variations in TFP and about 20 percent of variations at a five-year horizon.

We also provide industry evidence, where we show that patenting activity in manufactur-

ing and services is predominantly responsible for explaining future movements in TFP. Within

manufacturing, the most important industries are Electronic and electrical equipment, Machin-

ery and Chemicals. Interestingly, a patent-based news shock identified only considering these

industries produces a perfect zero effect on impact, before slowly growing to a new higher level.

Another important industry, Business services, produces a significant positive effect on impact,

also increasing in the long-run. This positive impact effect is expected, as this industry is driven

by services related to computer programming and data processing which can be available more

promptly to the market than manufacturing goods.

We show that our main results are robust to using the patent-based innovation index as

an instrument for innovative activity in a proxy VAR setting by following the methodology

developed in Stock and Watson (2012) and Mertens and Ravn (2013). As the patent-based

innovation index aims to capture exogenous stock price movements due to expected future

economic fundamentals, it represents a good candidate for a proxy for technological news shocks.

The idea of using proxy VARs to identify technological news shocks is recent and, to the

best of our knowledge, initiated by Cascaldi-Garcia (2018), who employs forecast revisions

from professional forecasters as exogenous instruments. Miranda-Agrippino et al. (2019) also

propose a proxy for technological news shocks, based on the number of patents registered with

the USPTO. However, as previously discussed, the sole use of patent counts can underestimate

or overestimate the real (expected) economic effects of patented innovations.

This paper is also linked to the literature that relates patents to technological development.

The idea of using patent data to identify surprise technology shocks has been explored by Shea

(1999) and Christiansen (2008). The former uses data on patent applications and research and

development expenditures in 19 U.S. manufacturing industries to recover technology shocks,

concluding that favorable technology shocks do not significantly increase measured TFP at any

horizon. Christiansen (2008) uses more than a century of annual data on patent applications

and investigates effects of patent shocks on inputs and labor productivity.

Our paper is organized as follows. Section 2 argues why patents and their stock market

valuations can be used to identify technological news shocks. Section 3 describes the data

and the identification procedure. Section 4 presents the main results. Section 5 discusses

the relation of our patent-based news shocks to traditional TFP-based news shocks and to

unexpected innovations in other forward-looking variables. Section 6 presents the robustness of

our results when proxy VAR with the patent-based innovation index as an instrument is used.

Section 7 concludes.
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2 Patent-Based News Shocks

The news literature usually defines technological news shocks as advance information about

technology that will become available with some delay. Rarely, however, does this literature

provide specific examples of such technological advances. Instead, it almost exclusively relies

on using TFP as an abstract aggregate measure of technology and explores its movements over

the business cycle to identify aggregate technological news shocks.

We identify technological news shocks using a measure, proposed by KPSS, that combines

microlevel data on patents together with their stock market valuations. This approach over-

comes the restriction that TFP is an abstract and imperfect measure of technology by relying

on the importance of microlevel data to learn about relevant aggregate shocks.9 We argue that

unexpected innovations in this measure represent technological news shocks and refer to them

as patent-based news shocks.

Patents contain useful information about inventive activity of an economy.10 Furthermore,

as argued by Griliches (1990), analyzing data on patents together with the data on stock market

valuation is particularly useful because of the immediate nature of stock market reactions to

the events that are a result of firms’ research activities. At the same time, the author notes

that a downside of using stock market data is its large volatility, arguing that “the needle might

be there but the haystack can be very large.” We argue that specific stock market variations

exploited by KPSS bring us much closer to finding this needle and, consequently, to identifying

technological news shocks.11

2.1 KPSS Innovation Index

The KPSS aggregate innovation index is constructed by using rich firm-level datasets. In

particular, the authors estimate the economic value of the patent by combining data on patents

issued to U.S. firms during the 1926-2010 period with firm stock price movements.12 The biggest

challenge these authors face is to carefully extract the information about the economic value of

9When learning about an aggregate shock that might represent a relevant force behind business cycles, it is
always useful to consult more data. For example, Romer and Romer (2004) use a narrative approach by reading
accounts of each Federal Open Market Committee meetings to identify monetary policy shocks and, similarly,
by analyzing presidential speeches and congressional reports to identify tax shocks in Romer and Romer (2010).
Nakamura and Steinsson (2014) exploit variation in regional military procurements to estimate the effects of
government spending. Using microdata becomes particularly relevant in the case of technological news shocks,
given the imperfections related with TFP as an aggregate measure of technology.

10As Griliches (1990) writes “the stated purpose of the patent system is to encourage invention and technical
progress both by providing a temporary monopoly for the inventor and by forcing the early disclosure of the
information necessary for the production of this item or the operation of the new process.”

11Several authors have explored stock valuations of patentable assets. See, for example, Austin (1993),
Nicholas (2008), and Hall et al. (2005). However, none of these studies is as broad, both in firm and time
dimension, as the KPSS one.

12In particular, the authors use about 7.8 million patents available from Google Patents and then match all
patents to corporations whose returns are in the Centre for Research in Security Prices (CRSP) database. After
matching the names of assignees to public firms in CRSP, they obtain a database of 1,928,123 matched patents.
We refer the reader to the original article for more details regarding the dataset construction.
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the patent contained in stock prices from unrelated news. To do so, they focus their analysis

on the days around an announcement of a patent grant, which are also characterized by larger

trading activity in the stock of the firm. They then filter the stock price reaction to the patent

issuance from noise by making several distributional assumptions; the results prove to be quite

robust to these assumptions.

The value of each patent in the database is calculated as a part of the stock reaction that

is solely due to news about a patent grant. One can then aggregate firm-level information to

obtain an aggregate innovation index. In order to do so, particular assumptions must be made

about how monopoly profits of the firms, accumulated because of the patent issuance, relate to

aggregate improvements in technology. The authors propose a simple model of innovation as

in Atkeson and Burstein (2011), in which firms collect monopoly profits from innovation; these

profits, in turn, are approximately linearly related to aggregate improvements in output and

TFP. Therefore, an aggregate measure (equation 18 in the original article) is the sum of the

value of all patents granted in year t to the firms in their sample, scaled by aggregate output.

The aggregate index constructed following the above procedure is in an annual frequency.

Crucially for our analysis, we were able to construct an analogous measure in a quarterly

frequency, as displayed in Figure 1.13 We refer to this measure as the patent-based innovation

index.

Figure 1 Quarterly Patent-Based Aggregate Innovation Index

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

-4

-3.5

-3

-2.5

-2

-1.5

-1

Note: Log of the aggregate patent-based quarterly index constructed following the procedure described
in Kogan et al. (2017), spanning 1961:Q1 - 2010:Q4.

The value of the index seems to follow times of speculation in the market and especially

13The authors make available information on patent grant dates, the inferred economic value of each patent
and the number of citing patents, which allows us to construct the quarterly aggregate index. Although KPSS
provide an annual measure for the 1926-2010 period, we are only interested in studying the period after 1961:Q1,
because of the availability of macroeconomic data that we use in our benchmark analysis. In particular, the
data on consumer confidence are available only after this date, which is, therefore, the earliest starting date in
any specification.
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that of the dot-com bubble, where investors appear to have been actively following technological

patents. Throughout the entire sample, the distribution of patents assigned to the firms is highly

skewed. There are few high-frequency patenting companies in the sample. For example, during

the sample Exxon Mobil was granted, on average, 240 patents per year, Cisco about 332, and

IBM 1,384. To put these numbers into perspective, the median number of patents per company

per year is 3, and the average number is about 29. Figure 2 represents the top 10 firms by their

patent value from 1961 to 2010 with all their patent values throughout the sample.14

Figure 2 Value of Patents by Company

Note: The figure shows values (in 1982 dollars) of each patent by top 10 firms.

Figures 3 and 4 represent the share of total number (and value) of patents by top 10 firms in

each year. The share of these firms, both in terms of number and value of patents, is consistently

higher than 25 percent and, in some periods, even as high as 50 percent.

2.2 Bridging the Theoretical and Empirical Technological News

A few reasons lead us to believe that the patent-based innovation index can be used to

extract technological news shocks.

First, by combining patent counts with stock market data, this measure overcomes the

criticisms that arise when only simple patent counts are used for economic analysis, which

pertain to the issue of drastic differences in technical and economic significances across patents.

Specifically, this measure carefully extracts the economic value of each patent by capturing

firm stock market movements in response to news about patent grants; these stock market

valuations, in turn, are used as weights for the economic importance of each patent.15

14Nicholas (2008) investigates valuations of corporate patentable assets in an earlier period, from 1910 to
1939, and also finds that the distribution of patents is highly skewed, with few companies dominating patenting
activity.

15Another “quality-adjusted” measure of patents often used in the literature is citation counts, as discussed by
Hall, Jaffe, and Trajtenberg (2005). It turns out that this measure is highly correlated with the KPSS measure.
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Figure 3 Top Firms by Number of Patents per Year

Note: The figure shows the share of number of patents by top 10 firms in each year from 1961 to
2010.

Figure 4 Top Firms by Total Patent Value per Year

Note: The figure shows the share of total value of patents by top 10 firms in each year from 1961
to 2010.

Second, while lags between a patent grant and the date when a product or process that is

patented is brought to markets might be worrisome when one is interested in recovering surprise

technological shocks (see, for example, Alexopoulos, 2011), they represent a desirable feature

when one is interested in recovering technological news shocks. Indeed, the key idea behind

expectation-driven business cycles is that markets learn about a new technology before it is

implemented, which is precisely what the patent-based innovation index captures.

Third, any plausible identification of technological news shocks must rely on the usage

of forward-looking variables because of their predictive power regarding future movements in

economic activity, as recognized by Beaudry and Portier (2006). For that purpose, the literature
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has often used movements in aggregate stock prices and consumer confidence to extract the

forecastable component of TFP. However, these movements also capture changes not related

to economic fundamentals, such as optimism, confidence, and animal spirits. By narrowing

the forward-looking component to the specific market responses to announcements of patent

grants, the patent-based measure is more prone to capture market expectations only based on

future economic fundamentals.

Fourth, identifying technological news shocks by looking at unexpected movements in a

measure that collects market expectations about the future value of a technological innovation

circumvents the issues that arise when the identification relies on TFP measures. Fernald (2012)

calculates a utilization-adjusted TFP series that is widely used by the news shock literature as a

proxy for the technological level of the U.S. economy. The process of extracting the technological

level is complex and depends on imputations on hours worked and capital level as well as on

filters to estimate the utilization factor. As a result, the series is subject to measurement errors

and data revisions.

As pointed out by Cascaldi-Garcia (2017) and Kurmann and Sims (2017), the identification

of news shocks is not robust to different vintages of this series. The Barsky and Sims (2011)’

identification, for example, relies on the assumption that this series perfectly captures the

technological level of the economy, and that it is driven by only two shocks: surprise and

news shocks. It follows that movements in forward-looking variables that can explain future

movements in TFP should represent a news shock. This claim, however, does not hold if TFP is

measured with an error. Our identification instead depends only on the patent-based innovation

index series, and it is agnostic about the measurement of TFP.

Overall, rather than focusing on proposing a novel statistical approach that would recover

news shocks by exploiting fluctuations in TFP, we approach this problem differently, by using

microlevel data on patents and their stock market valuations. Because this measure represents

a forward-looking measure that collects market expectation about the future value of an inno-

vation, any unexpected changes in this measure would represent news about the future value

of these innovations.

2.3 Some Illustrative Examples

Although a firm that applies to patent a technology might start using the technology dur-

ing or even before the application process, it is only after the technology is patented that the

information about it becomes public knowledge. This information can then be used by com-

petitors for advancing their own technological ideas. Therefore, it is likely that the effects of a

technological discovery that is admissible for being patented will be reflected in the aggregate

TFP only after the patent is granted.

We provide several examples in order to establish the relationship between a patent grant,

the reaction of the firm’s stock price to that grant, and the subsequent implementation of
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technology and its effect on competitors.

First we consider patent 5,064,435, titled “Self-expanding prosthesis having stable axial

length,” which was granted to Schneider (USA) Inc. on November 1, 1991. This patent rep-

resented an improvement over plastically expanded stents used until that time. The patent

was assigned a very high economic value, placing it in the top 15 percent in 1991. With 788

forward citations, the patent was the 25th most-cited patent in the entire sample and the sec-

ond most-cited patent in 1991, indicating its high scientific value as well. Interestingly, even

though the U.S. Food and Drug Administration approved the stent use only two years after

the patent grant, it was already cited about 40 times within the first two years of its grant,

suggesting that the information released in the patent was widely used for the development of

other technologies.

Another example that illustrates the importance of the dissemination of the information

released with a patent grant is patent 4,131,919, awarded to Eastman Kodak Company on

December 26, 1978, for the invention of the “electronic still camera that employs a nonvolatile

reusable storage medium for recording scene images”– the first self-contained digital camera.

Although Kodak didn’t make a camera that used digital single-lens reflex commercially avail-

able until 1991, the information contained in this patent was crucial for the development of

competing technologies and for the overall advancement of the field of photography and imag-

ing. The information was invaluable for competitors that understood the importance of digital

technology even more than Kodak itself and produced a commercially available digital camera

in 1986.16 The patent value was the third highest in 1977. Its scientific value was very high

as well; the patent was cited 100 times, placing it in the top 1 percent of cited patents in the

entire period.

Patent 4,699,545, granted to Exxon Production Research Company on October 13, 1987

and titled “Spray Ice Structure,” is an example that confirms the narrative behind technological

news shocks. The patent is for a method of creating a structure to protect against ice sheets

when drilling offshore arctic wells, and it presents a “fast, economical and practical approach

for drilling offshore arctic wells in areas covered by floating ice.” It was only after two years

that the technology was first used. This invention, therefore, clearly represents an important

technological advancement available with delay.

3 Data, Bayesian VAR, and Identification Procedure

The information set contains a combination of technology, real macroeconomic, and forward-

looking variables, described in Appendix A. We estimate our benchmark VAR model with 10

endogenous variables. All variables except inflation (reported in annualized percent) are in log

levels as in Barsky and Sims (2011), allowing for the possibility of cointegration among them.

16In 1986, the Japanese company Nikon introduced a prototype of the first digital single-lens reflex (DSLR)
camera, the Nikon SVC. The information contained in Kodak’s patent was very important for this development.
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The data frequency is quarterly, from 1961:Q1 to 2010:Q4 and the model contains four lags

and an intercept term. We employ a Bayesian VAR in order to deal with the large number of

coefficients by taking advantage of Minnesota priors (Litterman, 1986; Bańbura et al., 2010).

Confidence bands for the impulse response graphs are computed using 1,000 draws from the

posterior distribution.

The patent-based news shock is identified following the procedure introduced by Francis

et al. (2014) and the maximum forecast error variance approach in Uhlig (2005), which was

further developed by Barsky and Sims (2011).

Taking a vector of endogenous variables yt, assuming that patent-based innovation index is

ordered first, the moving average representation (in levels) is written as

yt = B(L)ut. (1)

If there is a linear mapping of the innovations (ut) and the structural shocks (st), this

moving average representation can be rewritten as

ut = A0st (2)

and

yt = C(L)st, (3)

where C(L) = B(L)A0, st = A−10 ut, and A0 is the impact matrix that makes A0A
′
0 = Σ

(variance-covariance matrix of innovations). It is possible to rewrite A0 as Ã0D, where Ã0 is

the lower triangular Cholesky factor of the covariance matrix of reduced-form innovations (or

any other orthogonalization), and D is any k × k matrix that satisfies DD
′
= I.

Considering that Ωi,j(h) is the share of the forecast error variance of variable i of the

structural shock j at horizon h, and that patent-based innovation index is driven only by one

exogenous shock (patent-based news shock), it follows that Ω1,1(0)news = 1, where h = 0 refers

to the effect on impact, i = 1 refers to patent-based index and j = 1 is the patent-based news

shock. The share of the forecast error variance of the patent-based news shock is defined as

Ω1,1(0)news =
e

′
1

(
BτÃ0De2e

′
2D

′
Ã

′

0B
′
τ

)
e1

e
′
1 (BτΣB′

τ ) e1

=
B1,τÃ0 γγ

′
Ã

′
0B

′
1,τ

B1,τΣB
′
1,τ

, (4)

where e1 is a selection vector with 1 in the position i = 1 and zeros elsewhere, e2 is a selection

vector with 1 in the position i = 1 and zeros elsewhere, and Bτ is the matrix of moving average

coefficients measured at each period until τ . Since the effect of interest here is on impact, this

can be simplified as τ = 0. The combination of selection vectors with the proper column of

D can be written as γ, which is an orthonormal vector that makes Ã0γ the impact of a news

shock over the variables.
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The patent-based news shock is identified by solving the optimization problem

γ = argmax Ω1,1(0)news, (5)

s.t.

γ′γ = 1, (6)

where the restriction imposes that the γ vector is orthonormal.

In summary, the patent-based news shock is identified as the shock that best explains

unpredictable movements of the patent-based innovation index on impact (h = 0). This is

equivalent to finding the linear combination of the reduced-form VAR innovations ut that

maximizes the forecasting variance of productivity on impact.17

4 Results

In this section we discuss the effects of our patent-based news shock on the business cycle.

We discuss its effect on aggregate productivity as well as on the following macroeconomic

variables: output, consumption, investment, hours, inflation, the federal funds rate, consumer

confidence, and the stock price index. We then provide industry evidence and document which

industries prove to be most relevant for our results. We consider a horizon of five years (20

quarters) which, as suggested by Barsky et al. (2015), represents a reasonable benchmark

horizon for predictions of future productivity. In addition, this is the horizon over which the

effect of the patent-based news shocks on patent-based innovation index dies out.

4.1 Patent-Based News Shocks and Total Factor Productivity

Figure 5 displays the response of TFP to a patent-based news shock described above. Even

though the impact response of TFP is not restricted, it is barely statistically different from

zero. After this small initial jump, TFP decreases for about a year before it slowly picks up

and converges to its new long-run level.18 However, it is only after about five quarters that the

coverage bands of the impulse response do not rule out a zero effect. This result implies that

after an announcement of a new patent grant, a jump in the firm’s stock price – a forward-

looking variable – anticipates the expected future aggregate technological improvements brought

by the implementation of this patent. In fact, after a favorable patent-based news shock, TFP

permanently increases by about 0.3 percent.

As pointed out by Barsky et al. (2015), a news shock should not be correlated with current

productivity but should predict its future movements. The shock we identify does precisely that.

17The signs of the identified shocks might flip because the identification is based on the forecast error variance.
To ensure a positive patent-based news shock, we check whether the response of the patent-based index is positive
on impact. If the response is negative, all computed responses are multiplied by (−1).

18This slight decrease of aggregate TFP before it starts to rise might be a reflection of a creative destruction
that is documented by KPSS at the firm-level.
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Figure 5 Response of TFP to a Patent-Based News Shock
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Note: The blue solid line is the estimated impulse response to a patent-based news shock and corre-
sponds to the posterior median estimates. The unit of the vertical axis is the percentage deviation
from the situation without a shock. The responses originate from a VAR composed of the following:
the patent-based innovation index, TFP, GDP, consumption, investment, hours, inflation, the fed-
eral funds rate, consumer confidence, and the stock price index. The time period is from 1961:Q1
to 2010:Q4. The system is estimated in the levels of all variables, features four lags and a constant.
The dashed red lines represent +/- one standard deviation confidence bands of the patent-based news
shock obtained by drawing from the posterior.

The above result suggests that an innovation in the patent-based index carries information

about aggregate productivity many periods into the future but not about its current level.

This conclusion is bolstered by the fact that the patent-based index Granger causes future

productivity and that there is significant correlation between the current level of the patent-

based index and TFP five years ahead, while there is no correlation in the short run.19

The TFP response presented in Figure 5 also resembles a process that follows a slow diffusion

of new innovative activity, as discussed by Portier (2014). In particular, in line with the

illustrative examples provided above, the author argues that a “true” technological news shock

should take some time to diffuse into aggregate productivity. As a result, impulse responses

of TFP after a news shock should not show a significant increase in the short-run.20 Barsky

and Sims (2011), for example, have trouble reproducing this fact even after imposing a zero-

impact response of TFP. Figure B1 in the Appendix displays responses of TFP to a news shock

identified using four different identification schemes often used in the literature. It is clear that

when zero-restrictions are not imposed the response of TFP on impact is quite large (about 0.7

percent and 0.2 percent when Barsky and Sims, 2011, and Francis et al., 2014, identification

without zero impact restriction is used, respectively), making the results less compatible with

the diffusion news story. In addition, these results show that TFP may not be a perfect measure

of technology and that it might be problematic to explore features of this particular series to

extract news shocks.

19A Granger causality test reveals that movements in the patent-based index predict movements in TFP. The
value of the F statistic is 7.89 with a p-value of .0001 for a lag length of 3 chosen according to the Bayesian
Information Criterion.

20In particular, the response of TFP in Figure 5 very much resembles a response to a hypothetical news shock
in panel (d) of Figure 2 in Portier (2014). Using Portier’s terminology, our patent-based news shock very much
resembles a diffusion news shock.
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In light of these results, the attractive feature of our identification is that it does not rely

on imposing any assumptions about short- and long-run behavior of TFP. Our results are not

affected by the measure of TFP used. Traditionally, news literature uses utilization-adjusted

TFP as a proxy for the technological level of the economy, which we also adopt as our benchmark

case. However, as Figure B2 in the Appendix illustrates, the responses to a patent-based

news shock are almost identical regardless of whether productivity is adjusted for capacity

utilization. Furthermore, as evident from the right panel of this figure, our patent-based news

shock essentially represents an unexpected innovation to the patent-based index.

Finally, as an additional check, we perform a local projection of the patent-based news

shock on utilization-adjusted TFP, following methodology proposed by Òscar Jordà (2005).

As presented in Figure B3 in the Appendix, the response of TFP is zero on impact, and

starts to slowly increase over time. After 20 quarters it is statistically different from zero.

This robustness test provides extra evidence of the power of the patent-based news shock on

capturing the technological diffusion characterized by the news shock literature.21

4.2 Patent-Based News Shock and Business Cycle

Figure 6 shows the responses of output, consumption, investment, hours, inflation, the

federal funds rate, consumer confidence, and the stock price index to a positive patent-based

news shock.

A patent-based news shock induces a clear comovement among output, consumption, in-

vestment, and hours. Output increases by about 0.15 percent on impact. Interestingly, much

of this increase is dictated by investment behavior. In particular, the 0.25 percent impact re-

sponse of investment is higher than that of output. The effect is long-lasting as investment

remains positive at a new higher level of about 0.7 percent. Consumption also reacts positively

on impact, but this effect is quite muted, with an impact increase of about 0.1 percent. This

new higher level is sustained even after five years, but the coverage bands do not rule out a zero

long-run effect. The response of hours is positive on impact and through about seven quarters.

Output, consumption, investment and hours all rise on impact and display hump-shaped

responses. The majority of these movements happen even before the positive effect on TFP

becomes significant and TFP starts picking up, which is clearly indicative of the identified

shock carrying advance information about future productivity prospects, rather than tracking

its path. The strong positive impact effect on two forward-looking variables, stock prices and

consumer confidence, also confirms the anticipation feature of the patent-based news shock.

This result suggests that economic agents anticipate future technological improvements and act

upon them before actual changes in TFP materialize.

The impact responses of inflation and the federal funds rate are particularly interesting.

21Local projections of the patent-based news shock on other macroeconomic variables are qualitatively similar
to the ones presented on Figure 6 and are available upon request.
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Figure 6 Responses to a Patent-Based News Shock
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Note: The blue solid lines are the estimated impulse responses to a patent-based news shock, and
correspond to the posterior median estimates. The unit of the vertical axis is the percentage de-
viation from the situation without a shock. The responses originate from a VAR composed of the
following: the patent-based innovation index, TFP, GDP, consumption, investment, hours, infla-
tion, the federal funds rate, consumer confidence, and the stock price index. The time period is from
1961:Q1 to 2010:Q4. The dashed red lines represent +/- one standard deviation confidence bands
of the patent-based news shock obtained by drawing from the posterior.

Both inflation and the federal funds rate rise mildly on impact, although the response of the

federal funds rate does not rule out a zero effect. The positive response of the federal funds

rate is in line with the initial increase in inflation, and with the predictions of a standard New

Keynesian model. However, most of the empirical news shock literature suffers from a so-called

disinflation puzzle, a negative and persistent response of inflation to a positive news shock (see,

for example, Barsky and Sims, 2011; Kurmann and Sims, 2017; Barsky et al., 2015). As pointed

out by Barsky and Sims (2009), in order to make these empirical findings consistent with a New

Keynesian model, one would need to account for additional features, such as exogenous real

wage rigidity or monetary policy that reacts to output growth rather than output gap. In

addition, Jinnai (2013) shows that if capital is added into the model, additional modifications
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Table 1 Distribution of the Forecast Error Variance

horizon TFP Output Consumption Investment
16% 50% 84% 16% 50% 84% 16% 50% 84% 16% 50% 84%

0 0.2 1.4 4.2 0.8 3.3 7.2 1.7 4.3 8.1 0.2 1.7 4.9
4 0.5 1.7 5.0 2.3 6.7 12.2 1.5 4.5 9.5 4.1 9.3 15.0
8 2.0 6.0 12.7 1.7 5.2 11.1 1.1 3.2 7.9 3.5 8.8 15.4
16 5.8 15.7 26.1 1.7 4.7 11.2 0.9 2.7 7.8 3.7 9.3 18.1
20 6.9 17.8 29.0 1.7 4.8 11.8 0.9 3.0 8.1 4.0 10.1 20.0

horizon Hours Worked Inflation Consumer Confidence Stock Prices
16% 50% 84% 16% 50% 84% 16% 50% 84% 16% 50% 84%

0 0.4 1.9 4.9 0.1 0.6 2.8 0.7 3.0 7.1 13.8 20.6 27.6
4 1.3 4.3 8.8 0.4 1.7 5.2 1.2 3.7 8.5 8.1 13.6 20.8
8 1.1 2.9 7.1 0.8 2.2 5.5 1.3 3.7 8.7 5.6 10.0 17.0
16 1.1 2.7 6.9 1.1 3.0 7.1 1.7 4.3 9.3 4.9 8.4 13.4
20 1.1 2.9 7.7 1.5 3.7 8.0 1.9 4.7 9.6 4.8 8.4 13.4

Note: The table reports distribution of forecast error variance explained by a patent-based news shock at different
horizons – namely at 0, 4, 8, 16, and 20 quarters.

such as sticky nominal wages in the labor market and a monetary policy that responds to

consumption growth rate are needed. Our results show that all these additional features are

not needed in the first place.

Table 1 displays the distribution of forecast error variance explained by the patent-based

news shock. There are several compelling observations. First, the shock explains almost no

short-run variations in TFP, while it accounts for a large part of the longer-run variations

in TFP. Recall that our identification procedure does not impose this result as it is the case

with identifications based on forecast error maximization of TFP. This result is encouraging,

because it suggests that the information contained in firms’ stock prices after they have been

granted the patent clearly explains part of future TFP movements. Furthermore, this result

does not come as a surprise given our previous assertion regarding the patent-based index

Granger causing TFP and patent-based index being significantly correlated with TFP only

after about 20 quarters.

Second, the patent-based news shock explains about 9 to 10 percent of the variation in

investment in the long run, and about 5 to 7 percent of output (mean of the posterior dis-

tribution). Interestingly, the identified shock explains variations in output and investment at

horizons when positive changes in TFP have not materialized or reached their long-run level,

in line with the idea of anticipated effects from future technological improvements.

Third, the shock explains a large part of short-run variation in stock prices. In particular, it

explains about one-fifth of total variation on impact and less than one-tenth of total variation

after five years. This result is in line with news being reflected immediately in forward-looking

variables, with a diminishing effect over time, and with stock market efficiency. The shock

accounts only for 3 to 5 percent of the variation of consumer confidence, at all horizons.

Overall, our results indicate that the patent-based news shock explains a large part of longer-
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run variations in TFP, suggesting that it carries relevant information about future productivity

movements. This shock also induces comovement among output, consumption, investment and

hours. Furthermore, contrary to technological news shocks identified by maximizing variations

in TFP, patent-based news shocks induce responses of inflation and the federal funds rate in

line with the New Keynesian model.

It is important to note that our results are likely to understate the effects of news shocks.

KPSS use patents from publicly listed firms and therefore do not cover the universe of all

patented innovations. Although this effect is minimized by constructing the aggregate index as

we discussed above, not all innovations are patented in the first place, as patenting is a strategic

decision. Therefore, our results are likely to represent a lower bound on the (business cycle)

importance of true news shocks. The fact that patent-based news shock still explains quite a

good share of variations in TFP is reassuring because it suggests that the shock we identify

carries important information about future productivity.

4.3 Industry Evidence

The aggregate patent-based innovation index is based on the valuations of patents spanning

many different industries. To better understand which industries technological news originate

from, we break up the aggregate index into indexes specific to nine SIC divisions: 1) Agriculture,

Forestry and Fishing, 2) Construction, 3) Finance, Insurance and Real Estate, 4) Manufactur-

ing, 5) Mining, 6) Retail Trade, 7) Services, 8) Transportation, Communications, Electric, Gas

and Sanitary service, and 9) Wholesale Trade. We disaggregate the divisions that turn out

to be crucial further into industries and subindustries. For each major division (and relevant

industries) we construct a patent-based innovation index following the same procedure as with

the aggregate index, i.e. summing the valuations of all patents from that particular division

(industry). We then repeat the same exercise as in the previous two subsections, replacing the

aggregate index with a division (industry) index.

Our industry evidence suggests that patenting activity in manufacturing is most relevant for

explaining observed aggregate movements. Within manufacturing, the most important indus-

tries are Electronic and Other Electrical Equipment and Components, Except Computer Equip-

ment (electronic/electrical), followed by Industrial And Commercial Machinery And Computer

Equipment (machinery), and Chemicals And Allied Products (chemicals).22 These three in-

dustries account for 63% of the total number (and 64% of the total value) of all patents in

Manufacturing.23

Figure 7 displays the responses of aggregate productivity to a positive shock to the man-

ufacturing patent-based index (left panel) and to the electronic/electrical patent-based news

22This result is in line with Vukotić (2019) who shows that aggregate news shocks propagate mainly through
the durable goods industries within manufacturing.

23Electronics account for 29% (number) and 22% (value), machinery for 17% (number) and 20% (value), and
chemicals account for 17% (number) and 28% (value) of all patents in manufacturing.
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shock (middle panel). In both cases, aggregate TFP does not increase on impact, takes time

to become significant, and converges to a new higher value. This pattern is somewhat more

pronounced when only patents in electronic/electrical are considered. In particular, TFP takes

almost two years to become significantly different from zero, then slowly converging to a higher

value, 0.4. Notice that this increase is higher than when all patents in the sample are considered.

This result suggests that the patenting activity in manufacturing, and in electronic/electrical

in particular, carries important information about future movements in the aggregate TFP.

This assertion is confirmed by looking at the FEV of TFP due to these two shocks, which is

displayed in Table 2; the manufacturing news shock explains 19%, and the electronic/electrical

news shock explains 25% of the FEV of TFP after 20 quarters.

Figure 7 Effects of Disaggregated Patent-Based News Shocks on TFP
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Note: The blue solid lines are the estimated impulse responses to a manufacturing division patent-
based news shock (left panel), an electronic/electrical industry patent-based news shock (middle
panel), and a business services industry patent-based news shock (right panel). The unit of the
vertical axis is the percentage deviation from the situation without a shock. The responses originate
from a VAR composed of the following: the manufacturing patent-based innovation index (left panel),
the electronic/electrical patent-based innovation index (middle panel), the business services patent-
based innovation index (right panel), and TFP, GDP, consumption, investment, hours, inflation,
the federal funds rate, consumer confidence, and the stock price index in all three panels. The time
period is from 1961:Q1 to 2010:Q4. The dashed red lines represent +/- one standard deviation
confidence bands obtained by drawing from the posterior.

Appendix C presents the responses of other macroeconomic variables to these shocks. The

responses are even more pronounced than in the case of the benchmark aggregate patent-based

news shocks, as can be seen in Figure C1. The same pattern holds with the FEV of output,

consumption, investment, and hours, as shown in Table C1. The most interesting result is

that the electronic/electrical patent-based news shock explains large portions of the FEV of

output (18% after 20 quarters), consumption (23% after 20 quarters), investment (28% after

20 quarters), and hours (12% after 20 quarters). Patenting activity in these few industries,

therefore, proves to be crucial not only for explaining future movements in TFP, but also in

other macroeconomic variables.

The most relevant subindustry within the electronic/electrical industry is Semiconductors

and Related Devices; this subindustry accounts for 25% of the total number (and 35% of the

total value) of all patents in electronic/electrical. In addition, it accounts for 70 out of top 100

valued manufacturing patents. All of these 70 patents belong to Cisco. Other companies that

dominate patenting in this industry are Intel, Dell, and Apple; top patents in machinery are
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Table 2 Distribution of the Forecast Error Variance of TFP

Manufacturing Electronic/Electrical Business Services
Patent-Based News Patent-Based News Patent-Based News

horizon TFP TFP TFP
16% 50% 84% 16% 50% 84% 16% 50% 84%

0 0.1 0.5 1.9 0.0 0.3 1.2 1.7 4.3 7.8
4 0.4 1.3 3.9 0.4 0.2 2.5 1.7 4.8 9.4
8 2.1 6.0 12.7 2.1 4.6 9.4 4.3 10.3 18.0
16 6.8 16.7 27.4 8.4 19.4 30.7 8.8 19.3 30.2
20 8.2 19.3 30.8 11.9 25.1 38.7 9.7 21.2 32.3

Note: The table reports distribution of forecast error variance of TFP explained by the manufacturing division
patent-based news shock, by the electronic/equipment industry patent-based news shock, and by the business
services patent-based news shock at different horizons – namely at 0, 4, 8, 16, and 20 quarters.

dominated by EMC Corporation, while top patents in chemicals are dominated by Pfizer.

Another division that proves to be relevant for explaining movements in the aggregate TFP

is Services, with Business Services representing 93% of all services patents. In what follows we

show the results considering only business services patent-based news shocks.

The right panel of Figure 7 displays the response of the aggregate TFP to the business

services patent-based news shock, while the right panel of Table 2 displays the FEV of TFP

explained by this shock. TFP significantly increases on impact, but follows a similar shape as

in the case of manufacturing and electronic/electrical news; it slowly decreases after the initial

impact before approaching a new higher level, 0.3. The shock explains about 5% of short-run

movements in TFP and about 21% after 20 quarters.

The reason why TFP jumps on impact most likely related to the nature of patents in

this industry. In particular, the most relevant subindustry is Computer Programming, Data

Processing, And Other Computer Related Services which accounts for 80% of the total number

of patents in business services. The companies that lead the way in this subindustry are

Microsoft, accounting for 32%, and Oracle, accounting for 11% of the total value of patents.

Therefore, it is highly likely that most patents that are closely related to programming and

data processing get implemented much faster than manufacturing patents, where sophisticated

products/processes take longer to bring to the market. This result also explains why the

aggregate shock induces a mild, although barely significant, positive effect on TFP on impact,

as shown in Figure 5.

5 Discussion

In this section we investigate how our patent-based news shock compares to news shocks

identified using methods based on maximizing the variance decomposition of TFP and with

shocks to widely used forward-looking variables, consumer confidence and aggregate stock price

index.
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5.1 Relation to TFP-Based News Shocks

While patent-based news shocks are likely to represent a lower bound of the importance

of true news shocks, the shocks identified using maximum variance decomposition of TFP are

likely to represent an upper bound. It is, therefore, worth discussing the difference between

them.

As pointed out by Barsky and Sims (2011), other structural shocks that can affect produc-

tivity in the future and not immediately, such as research and development shocks, investment-

specific shocks, or re-allocative shocks, would be confounded with true news shocks when max-

imum variance decomposition of TFP is used, thus misrepresenting the importance of news

shocks in driving the business cycle. This is not the case with our identification method, as we

do not use TFP to identify the shock and only concentrate on unexpected movements in values

of patents after they are granted.

In addition, Barsky et al. (2015) and Sims (2016) indicate that the variance decomposition

is likely to overstate the effects of news shocks. In particular, to isolate the independent

contribution of “pure” news shocks, one has to separate movements due solely to expected

changes in fundamentals from movements due to change in fundamentals when the anticipated

change actually occurs. For example, using a DSGE model setting as in Schmitt-Grohé and

Uribe (2012), Sims (2016) shows that “pure” news shocks explain between 2 and 9 percent of

the variance of the level of output at business cycle frequencies, whereas “realized” news shocks

explain between 20 and 40 percent. Furthermore, using a SVAR approach, Barsky et al. (2015)

document that responses of consumption, investment, and hours are cut roughly in half when

only the “pure” news component is isolated.

Our results are less susceptible to this criticism, because the response of TFP to a patent-

based news shock unconditionally resembles a slow diffusion process. This path is in line

with the concrete examples we presented before. The slow technology diffusion induced by a

patent starts with the patent grant and public disclosure of the information contained therein,

with next movers commonly using this information and applying it to develop new products

or processes. A release of a patent, therefore, can be thought of as representing a basis for

subsequent patented and nonpatented technological improvements.

Nevertheless, it warrants to directly compare our recovered patent-based news shock with the

most commonly used TFP-based news shock – the news shock identified using the identification

proposed by Barsky and Sims (2011).

The top panel of Figure 8 displays the two series and they appear to be quite correlated. We

confirm this assertion in Table 3 (row 1): the correlation between patent-based news shocks and

Barsky and Sims news shocks is 0.61. Given that Barsky and Sims’ TFP-based identification

scheme maximizes FEV of TFP over 40 quarters, we isolate two components of the economic

cycle, a high-frequency component (fluctuations between 2 and 6 quarters) and an extended

business-cycle frequency component (fluctuations between 6 and 40 quarters); this decompo-
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Figure 8 Patent-Based News Shocks vs TFP-Based News Shocks
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Note: The top panel displays unfiltered series of patent-based news shocks and news shocks arising
from the identification proposed by Barsky and Sims (2011). The bottom panel represents the same
two series filtered at extended business-cycle frequency (fluctuations between 6 and 40 quarters).
The cyclical component is isolated using the band-pass filter.

sition helps us to understand the degree of comovement between the two series at different

horizons.24 In the bottom panel of Figure 8 we display the extended business-cycle frequency

component of the two series.

When cleaned from high frequency fluctuations the two series appear to be even more cor-

related. This can be more formally seen in Table 3 (rows 2 and 3) where we report correlations

at different components of the cycle; the correlation between our patent-based news shocks

and Barsky and Sims news shocks at extended business-cycle frequency amounts to 0.70. This

result is quite encouraging considering that our identification strategy does not rely on any

maximization of FEV of TFP at any horizon, yet it is lower frequencies at which it seems to be

more correlated with the series that, by definition, focuses both on high and low frequencies.

These results further confirm that our procedure picks up shocks that are closely related

to future improvements in technology, but overcoming criticisms of widely used TFP-based

identification schemes at the same time.

24Instead of using business-cycle frequency as usually defined in the literature as fluctuations between 6 and
32 quarters, we include fluctuations of up to 40 quarters to account for the horizon used in the TFP-based
identification.
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Table 3 Correlation of Patent-Based News Shocks with TFP-Based News Shocks
at Different Frequencies

Frequency Barsky and Sims
News Shocks

Unconditional 0.61
High-Frequency, 2-6 quarters 0.56
Extended Business-Cycle Frequency, 6-40 quarters 0.70

Note: The table reports correlations, at different frequencies, of patent-based news shocks with news shocks
arising from the identification proposed by Barsky and Sims (2011). The cyclical component is isolated using
the band-pass filter.

5.2 Relation to Innovations in Forward-Looking Variables

The necessity of using forward-looking variables to capture agents’ expectations about future

developments in economic activity, and TFP in particular, has been well recognized in the news

literature. For example, Beaudry and Portier (2006) focus on a surprise shock to the aggregate

stock price index that is orthogonal to innovations in TFP, and they show that it explains

a large portion of business cycle fluctuations. Using different approaches, Barsky and Sims

(2012) and Barsky et al. (2015) claim that an innovation to consumer confidence to a large

extent represents a technological news shock.

Considering these results, we compare responses to our patent-based news shock with shocks

that explain the most impact variations in two aggregate forward-looking variables: stock prices

and consumer confidence.25 We refer to these two shocks as stock price shock and consumer

confidence shock, respectively.

Stock price index and consumer confidence are likely to reflect beliefs about economic fun-

damentals in general, and not only about future technological prospects. As discussed earlier,

movements in these two forward-looking variables, and especially in consumer confidence, might

also reflect autonomous fluctuations in beliefs not related to economic fundamentals, such as

sentiment and animal spirits.26 Below we provide some indicative evidence in support of this

assertion.

We argue that fluctuations in the stock market value of the firms in a short time period

around the patent grant date are less susceptible to this criticism and, therefore, are more likely

to reflect true beliefs about future technological prospects. To this end, the top panel of Figure

9 displays responses of TFP to positive patent-based news, stock price and consumer-confidence

shocks. The bottom panel displays the share of TFP’s forecast error variance explained by these

three shocks, respectively.

25We use the same procedure explained in Section 3 to identify stock price shock and consumer confidence
shocks. Namely, we order stock price (consumer confidence) first in the VAR composed of the same 10 vari-
ables as above and recover the shock that maximizes the forecast error variance of the stock price (consumer
confidence).

26This literature usually views these autonomous fluctuations as having a causal effect on economic activity
and the business cycle. See, for example, Barsky and Sims (2012), Angeletos and La’O (2013), Benhabib et al.
(2015), Angeletos et al. (2018) and Levchenko and Pandalai-Nayar (2018).
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Figure 9 Response and Variance Decomposition of TFP to Patent-Based
News, Stock Price and Consumer Confidence Shocks

Note: The top panel represents responses of TFP to a patent-based news shock (left), stock price
shock (middle) and consumer confidence shock (right). Median responses to a patent-based news
shock are represented by blue solid lines, and red dashed lines represent +/- one standard deviation
confidence bands. Patent-based innovation index is ordered first in the VAR. Median responses to
a stock price (consumer confidence) shock are represented by brown (yellow) dash-dotted line, while
the brown (yellow) shaded area represents +/- one standard deviation confidence bands. Stock price
(consumer confidence) is ordered first in the VAR. The bottom panel represents a corresponding
forecast error variance share of TFP due to a patent-based news shock (left), stock price shock
(middle) and consumer confidence shock (right). The time period is from 1961:Q1 to 2010:Q4.

Two observations regarding the TFP’s behavior in response to these three shocks stand out.

First, the coverage bands of the impact response to a patent-based news shock do not rule

out a zero effect, and this is almost unchanged during the first year after which TFP slowly

starts to take off. TFP raises mildly in response to a stock price shock and quite significantly in

response to a consumer confidence shock. To illustrate this point further, in Figure 10 we show

the whole distribution of the effect on impact on TFP after these three shocks. The median

effect of the patent-based news shock is closer to zero than the stock price and the consumer

confidence shocks. It is also clear that the distribution generated by the patent-based news

shock incorporates zero, and, in the case of the other two shocks, the zero outcome seems to

be a tail event.

Second, the forecast error variance decomposition reveals that it is the patent-based news

shock that explains the largest share of the variance of TFP after a five-year period. This

result, together with the fact that the patent-based index Granger causes TFP as documented

above, is suggestive that the information contained in the patent-based index is an important

force behind the TFP diffusion.

The responses of other macroeconomic variables that we considered previously are displayed

in Figure 11. Output, consumption, investment and hours overall respond more to a stock price

shock, and to a consumer confidence shock in particular, than to a patent-based news shock.

The effect of consumer-confidence shock is the longest lasting.

We believe that these results are supportive of our previous assertion. First, larger responses
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Figure 10 Distribution of TFP Impact Response to Patent-Based News,
Stock Price and Consumer Confidence Shocks

Note: Distribution of TFP impact response to a patent-based news shock (white area with red-
dashed borders), stock price shock (shaded brown area), and consumer confidence shock (shaded
yellow area). Blue, brown, and yellow vertical lines correspond to a median of the distribution in
the case of patent-based news, stock price, and consumer confidence shocks, respectively. Histograms
constructed over all 1,000 posterior draws. The time period is from 1961:Q1 to 2010:Q4.

of output, consumption, investment and hours to stock price and consumer confidence shocks,

in particular, are somewhat expected given that they are potentially capturing beliefs about

broad future economic prospects as well as sentiments or animal spirits. Second, it is harder to

infer that innovations to these two forward-looking variables represent technological news shocks

when they explain a much smaller part of TFP variations than a patent-based news shock, and

yet larger variations of these macroeconomic variables. This observation is quite telling. If the

shock was truly about future variations in productivity, then one would expect that this shock

explains at least as much, if not more, variations in TFP than the patent-based news shock.

The stock price index is a much broader index than the patent-based index, yet it elicits only a

small increase in TFP and a much larger increase in other macroeconomic variables, suggesting

that it is picking up shocks that are not necessarily technological in nature.

6 Robustness: Patent-Based Innovation Index as an In-

strument

In this section we perform a robustness check by identifying the patent-based news shock

under an alternative methodology. As discussed in Section 2, the patent-based index should be

directly linked to what is theoretically considered a technological news shock. The idea here is

to employ the proxy VAR procedure introduced by Stock and Watson (2012) and Mertens and

Ravn (2013) to identify the patent-based news shock by relying on the patent-based innovation

index series as an instrument, which is a noisy measure of the structural shock. In summary,

the procedure consists of regressing the instrument against the residuals of a reduced-form VAR

and using this information to infer the contemporaneous impact of the patent-based news shock

on the macroeconomic variables.

The use of exogenous variables as instruments has been applied by the business cycles liter-
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Figure 11 Responses to Patent-Based News, Stock Price and Consumer
Confidence Shocks

Note: The figure displays original responses of output, consumption, investment, hours, inflation,
and the federal funds rate to a unit patent-based news shock, together with responses to a 1 percent
unexpected innovation in aggregate stock price index (dash-dotted brown lines correspond to the pos-
terior median estimates, with the shaded area representing +/- one standard deviation confidence
interval obtained by drawing from the posterior) and to a 1 percent unexpected innovation in con-
sumer confidence (dashed yellow lines, with the shaded area representing +/- one standard deviation
confidence interval obtained by drawing from the posterior). The responses originate from a VAR
composed of the same 10 variables as before, with the patent-based innovation index (with patent-
based news shock), stock price (with stock price shock), and consumer confidence (with consumer
confidence shock) ordered first. The time period is from 1961:Q1- 2010:Q4.

ature to identify several types of structural shocks.27 For technological news shocks, Cascaldi-

Garcia (2018) employs constructed series of forecast revisions from the Survey of Professional

27Some examples are monetary policy shocks (Stock and Watson, 2012; Gertler and Karadi, 2015; Miranda-
Agrippino and Ricco, 2018; and Caldara and Herbst, 2019), fiscal policy shocks (Mertens and Ravn, 2014;
Caldara and Kamps, 2017), uncertainty shocks (Carriero et al., 2015; Piffer and Podstawski, 2018), oil supply
shocks (Montiel Olea et al., 2016), news about future fiscal spending (Auerbach and Gorodnichenko, 2012), and
news about future oil supply (Arezki et al., 2017).
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Forecasters (SPF)28 about future GDP, investment, and industrial production as instruments,

and Miranda-Agrippino et al. (2019) instrument the structural news shock through the unfore-

castable component of the number of granted patents filed at the United States Patents and

Trademark Office (USPTO).

Two conditions must be satisfied for the applicability of such a series as an instrument:

relevance and exogeneity. The first condition implies that the potential instrument is correlated

with the true underlying structural shock. While the true structural shock is not directly

observed, this condition cannot be tested. However, the extensive discussion presented in

Section 2 makes us confident about the intrinsic relation between the patent-based innovation

index and the patent-based news shock.

The second condition of exogeneity implies that the potential instrument is not correlated

with any other structural shock. We perform here an exogeneity test by calculating the corre-

lation between the patent-based index series29 and several identified shocks from the literature

– namely, news about tax shocks, news about government defense spending, oil price shocks,

monetary policy shocks and tax shocks.30

The results of the exogeneity tests are displayed in Table 4. The patent-based innovation

index is not correlated with oil price shocks and is mildly correlated to news about tax and

tax shocks, but these are not statistically significant. With respect to news about government

spending and monetary policy shocks, the series is positively correlated, but these are also not

statistically significant at a 10% level. Based on these results, we conclude that the patent-

based index series passes the exogeneity test and can be used as an instrument in the proxy

VAR setup.31

We estimate a Bayesian VAR in the same way as described in Section 3, with the excep-

tion that now the information set does not include the patent-based index series itself. For

each posterior draw of the coefficients, we perform the identification of the patent-based news

shock by making use of the proposed instrument. Figure 12 presents the impulse response of

the patent-based news shock on TFP. As expected, the patent-based news shock generates a

permanent long-run increase in the level of TFP. There is an increase on impact, but this effect

rapidly diminishes, in line with the idea of creative destruction. The shape is similar to the one

28Calculated by the Federal Reserve Bank of Philadelphia.
29We demean the series and control for its lags and lags of utilization-adjusted TFP, in order to ensure that

the instrument only contains new information about technology released in time t.
30The economic shocks are downloaded from the Caldara and Kamps (2017) database. The measure for news

about tax shocks is the proxy calculated by Leeper et al. (2013). News about government defense spending is
calculated as the nominal present value of Ramey (2011) defense news variable divided by the nominal GDP
of the previous quarter, as calculated by Caldara and Kamps (2017). Oil price shocks are the net oil increase
(three years) calculated by Caldara and Kamps (2017) based on Hamilton (2003). Monetary policy shocks are
the quarterly sum of the monthly Romer and Romer (2004) variable extended by Barakchian and Crowe (2013).
Tax shocks are the Mertens and Ravn (2011) unanticipated tax series.

31For comparison, the raw series of the total number of patents presents a correlation with news about tax
of negative 0.21 (statistically significant at a 5% level), and of 0.17 with news about government spending
(statistically significant at a 10% level). This implies that our measure represents a better instrument for
identifying a technological news shock, as the raw number of patents may be confounded with other sources of
news.
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Table 4 Correlations Between the Patent-Based Innovation Index and Selected
Shocks

Shock Source Correlation P-value
News about tax Leeper et al. (2013) -0.05 [0.717]
News about govt. spending Ramey (2011) 0.19 [0.102]
Oil price Hamilton (2003) 0.00 [0.977]
Monetary policy Romer and Romer (2004) 0.17 [0.102]
Tax Mertens and Ravn (2011) -0.08 [0.550]

Note: Values in brackets are p-values for the test of zero correlation under the null hypothesis and
are computed by taking into account the false discovery rate of positively dependent tests, following
the methodology by Benjamini and Hochberg (1995). Correlations range from 1969:Q1 to 2006:Q3
due to data availability.

presented in Figure 5 identified with our benchmark model.

Figure 12 Response of TFP to a Patent-Based News Shock Identified
with Patent-Based Innovation Index as an Instrument

Note: The blue solid line is the estimated impulse response to a patent-based news shock identified
under a proxy VAR with the patent-based innovation index as an instrument and corresponds to the
posterior median estimate. The unit of the vertical axis is the percentage deviation from the situa-
tion without a shock. The response originates from a VAR composed of TFP, GDP, consumption,
investment, hours, inflation, the federal funds rate, consumer confidence, and the stock price index.
The time period is from 1961:Q1 to 2010:Q4. The system is estimated in the levels of all vari-
ables, features four lags and a constant. The dashed red lines represent +/- one standard deviation
confidence bands of the patent-based news shock obtained by drawing from the posterior.

Figure 13 presents the impulse responses of the other variables included in the information

set. All the responses are qualitatively similar to the benchmark model shown in Figure 6. Con-

sumption, investment, and consequently output jump on impact as a response to the expected

future technological improvement. Hours worked react positively, converging back to zero in the

long run. There is a short-run inflationary effect, which generates the expected increase in the

federal funds rate. Consumer confidence and stock prices, as forward-looking variables, jump

on impact, anticipating the expected future outcomes of the technological improvement. In

summary, these results bring an extra confirmation of the economic effects of the patent-based

news shock, in line with the theoretical idea of a neutral technological shock.
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Figure 13 Responses to a Patent-Based News Shock Identified with
Patent-Based Innovation Index as an Instrument

Note: The blue solid lines are the estimated impulse responses to a patent-based news shock iden-
tified under a proxy VAR with the patent-based innovation index as an instrument and correspond
to the posterior median estimates. The unit of the vertical axis is the percentage deviation from
the situation without a shock. The responses originate from a VAR composed of: TFP, GDP, con-
sumption, investment, hours, inflation, the federal funds rate, consumer confidence, and the stock
price index. The time period is from 1961:Q1 to 2010:Q4. The dashed red lines represent +/- one
standard deviation confidence bands of the patent-based news shock obtained by drawing from the
posterior.

7 Conclusion

This paper contributes to the news literature by exploiting sound microlevel data directly

related to technological innovations rather than relying on movements in an imperfect produc-

tivity measure such as TFP to extract technological news. In particular, we combine firm-level

data on patent grants with the movements in firms’ stock prices in response to these grants

to identify a plausible technological news shock, which we call a patent-based news shock. We

identify the patent-based news shock as the shock that explains most of the contemporaneous

variations in the measure that aggregates stock market valuations of all individual patents and

argue that it represents an expected future increase in the technology level. The results pre-

sented here are also robust to employing the patent-based innovation index as an exogenous
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instrument for the news shock in a proxy VAR setting.

We show that patent-based news shocks account for about 20 percent of variations in TFP

after five years and do not account for any variation in TFP in the short run. In line with

the original intuition of Beaudry and Portier (2006), we show that output, consumption, in-

vestment and hours all rise on impact, displaying hump-shaped responses. Output movements

are dictated more by investment than by consumption behavior, and the effect on investment

is more long-lasting than that of consumption. The majority of these movements materialize

before the positive effect on TFP becomes significant. Therefore, rather than tracking the path

of aggregate productivity, the identified shocks carry advance information about it.

The patent-based news shocks induce a positive effect on impact on two forward-looking

variables, stock prices and consumer confidence, which also confirms its anticipation feature.

This result suggests that economic agents foresee future technological improvements and act

upon them before actual changes in TFP. We show that, contrary to most empirical evidence

in the news literature that suffers from a so-called disinflation puzzle, inflation and the federal

funds rate both increase on impact in response to our patent-based news shock, consistent with

a standard New Keynesian model.

The news shocks identified here explain less of the forecast error variance of main macroe-

conomic aggregates than typically found in the empirical literature on news shocks. We view

our results as representing a lower bound of the importance of technological news shocks given

that not all innovative activity is patented in the first place.

Our industry evidence shows that patenting activity in only few industries is predominantly

responsible for explaining future movements in TFP. In particular, patenting activity in elec-

tronic and electrical equipment industries within the manufacturing sector and computer pro-

gramming and data processing services within the services sector play a crucial role in driving

our results.

Identifying technological news shocks is a difficult task due to the complex process of esti-

mating the aggregate technology level. Exploring microlevel data directly related to innovation

is a promising path toward properly measuring the effects of anticipated technological change

on the economy. We believe that this paper and the identification of patent-based news shocks

represent one important step in that direction.
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Appendix A Data

We use quarterly aggregate data that span the period from 1961:Q1 to 2010:Q4.

The output and hours measure are recovered from the Bureau of Labor Statistics (BLS). The

output measure is the log of real output in the nonfarm business sector (BLS: PRS85006043).

The hours series is total hours worked in the same sector (BLS: PRS85006033). Both the con-

sumption and investment series are recovered from the Bureau of Economic Analysis (BEA).

The consumption measure is the log of real personal consumption expenditures on nondurables

and services (BEA Table 1.1.3., sum of lines 5 and 6). The investment series is the sum of real

gross private domestic investment (BEA Table 1.1.3., line 7) and personal consumption expen-

ditures on durables (BEA Table 1.1.3., line 4). To obtain per capita values we divide all these

series by the BLS series of the civilian noninstitutional population over 16 (LNU00000000Q).

The stock price measure is the log of the Standard and Poor’s 500 Composite Stock Price

Index, recovered from Robert Shiller’s website. The inflation measure is the percentage change

in the CPI for all urban consumers (CPIAUCSL, St. Louis FRED). The federal funds rate

series is the effective federal funds rate from the Board of Governors (FEDFUNDS, St. Louis

FRED). The consumer confidence measure is taken from the Michigan Survey of Consumers as

in Barsky and Sims (2011). This series starts in 1961:Q1 and, therefore, dictates the beginning

period of our sample.

The TFP measure is the utilization-adjusted measure provided by Fernald (2012).
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Appendix B Robustness

B.1 TFP-Based Identification Schemes

Figure B1 Responses of Utilization-Adjusted TFP to News Shocks

Note: The figure represents estimated impulse responses to a unit TFP-news shock identified using
four different identification schemes. The left panel represents responses to a unit news shock
identified using the Barsky and Sims (2011) procedure with (black dashed lines) and without zero
impact restriction (red dash-starred lines). The right panel represents responses to a unit news
shock identified using the Francis et al. (2014) procedure with (black dashed lines) and without
zero impact restriction (red dash-starred lines). The time period is from 1961:Q1 to 2010:Q4, the
system is estimated in levels of all variables (TFP, GDP, consumption, investment, hours, inflation,
the federal Funds rate, consumer confidence, and the stock price index) features four lags and a
constant. The shaded areas around the responses represent +/- one standard deviation confidence
bands obtained by drawing from the posterior.
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B.2 Patent-Based News Shock and Responses of (Adjusted and Un-

adjusted) TFP

Figure B2 Responses of (Un)adjusted TFP to a Patent-Based News
Shock and an Unexpected Shock to the Patent-Based Innovation In-
dex

Note: The left panel represents the response of utilization-adjusted TFP (as in Figure 5 in the main
body of the paper) and of unadjusted TFP (dash-starred line) to a patent-based news shock. The
right panel represents the response of utilization-adjusted TFP (blue solid line) and of unadjusted
TFP (dash-starred line) to an unexpected innovation to the patent-based innovation index. In both
panels, the responses originate from a VAR composed of the patent-based innovation index, TFP,
GDP, consumption, investment, hours, inflation, the federal funds rate, consumer confidence, and
the stock price index. The time period is from 1961:Q1 - 2010:Q4. Shaded areas and dashed red
lines represent +/- one standard deviation confidence bands obtained by drawing from the posterior.

B.3 Local Projection of Patent-Based News Shock on Utilization-

Adjusted TFP

Figure B3 Local Projection of Adjusted TFP to a Patent-Based News
Shock
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Note: The solid line represents the local projection of utilization-adjusted TFP to a patent-based
news shock. The time period is from 1961:Q1 - 2010:Q4. Dashed red lines represent +/- two
standard deviations significance bands.
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Appendix C Additional Industry Evidence

Figure C1 Responses to Disaggregated Patent-Based News Shocks
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Note: The blue solid lines are the estimated impulse responses to a manufacturing division patent-
based news shock (left panetl) and to electronic/equipment industry patent-based news shock (right
panel), and correspond to the posterior median estimates. The unit of the vertical axis is the
percentage deviation from the situation without a shock. The responses originate from a VAR
composed of the following: the manufacturing patent-based innovation index (left panel) and Elec-
tronic/Equipment patent-based innovation index (right panel), and TFP, GDP, consumption, in-
vestment, hours, inflation, the federal funds rate, consumer confidence, and the stock price index in
both panels. The time period is from 1961:Q1 to 2010:Q4. The dashed red lines represent +/- one
standard deviation confidence bands obtained by drawing from the posterior.
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Table C1 Distribution of the Forecast Error Variance

Manufacturing Patent-Based News
horizon Output Consumption Investment Hours Worked

16% 50% 84% 16% 50% 84% 16% 50% 84% 16% 50% 84%
0 0.4 1.8 4.2 0.7 2.3 5.0 0.1 1.0 3.2 0.7 2.4 5.2
4 1.4 4.2 8.7 0.7 2.4 6.1 3.4 7.4 13.0 1.3 4.0 8.2
8 1.1 3.8 8.9 0.6 1.9 5.5 3.3 8.1 14.6 1.0 2.7 7.1
16 1.3 4.4 11.4 0.6 2.3 7.6 4.1 10.9 20.6 1.0 2.8 8.2
20 1.5 4.9 12.9 0.6 2.6 8.5 4.8 12.4 23.2 1.1 3.4 9.6

Electronic/Electrical Patent-Based News
horizon Output Consumption Investment Hours Worked

16% 50% 84% 16% 50% 84% 16% 50% 84% 16% 50% 84%
0 1.3 3.6 6.5 3.4 6.3 10.3 0.2 1.4 3.6 4.2 7.4 11.7
4 6.9 12.2 18.5 4.8 9.5 15.4 9.0 14.9 21.8 8.2 13.4 19.7
8 6.9 13.2 21.5 3.7 8.9 16.1 10.3 18.2 27.0 6.1 11.5 19.1
16 8.6 16.6 28.9 3.3 10.5 21.0 14.5 25.2 37.3 4.8 11.0 20.7
20 8.7 18.1 31.7 3.1 11.0 23.7 16.7 28.0 41.2 4.9 11.9 23.3

Business Services Patent-Based News
horizon Output Consumption Investment Hours Worked

16% 50% 84% 16% 50% 84% 16% 50% 84% 16% 50% 84%
0 0.9 2.8 5.7 1.9 4.1 7.4 0.1 0.8 2.7 0.0 0.4 1.8
4 2.5 6.1 11.1 2.3 5.3 10.2 2.2 5.6 10.6 0.4 1.6 4.5
8 2.1 5.8 11.5 1.5 4.2 9.4 2.4 6.9 13.2 0.5 1.5 4.4
16 1.8 5.2 11.9 1.0 3.3 8.6 2.8 8.2 16.5 0.6 1.7 5.5
20 1.8 5.1 11.8 1.0 3.2 8.6 3.0 8.7 17.6 0.7 2.0 6.4

Note: The table reports distribution of forecast error variance of output, consumption, investment, and hours
worked explained by the manufacturing patent-based news shock (top panel) , by the electronic/electrical patent-
based news shocks (middle panel) and by the business services patent-based news shocks (bottom panel) at different
horizons – namely at 0, 4, 8, 16, and 20 quarters.
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