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1 Introduction

The study of price formation and market making with variable demand and supply and a

focus on the efficient allocation of resources has a long tradition in economics. Walras (1874)

proposed a procedure, called tâtonnement, in which buyers and sellers quote their demands

and supplies at a given price to an auctioneer that increases the price if there is excess demand

and decreases it if there is excess supply, with transactions only taking place when equilibrium

is reached. One important problem with the Walrasian tâtonnement is that agents do not have

an incentive to indicate truthfully their demand and supply schedules, as their bidding affects

the final price.1 In his landmark paper, Vickrey (1961) showed that it is possible to elicit the

true demands and supplies and implement the efficient allocation, using a generalization of

the static auction that bears his name. Observing that it runs a deficit and hence must be

financed by an outside source, Vickrey was skeptical about the practical relevance of the market

mechanism he proposed, calling it “inordinately expensive” for the market maker. Vickrey did

not see an easy way to modify it so as to avoid the deficit, preserve the truth telling property

and achieve an approximately efficient allocation, noting (Vickrey, 1961, p.13-14):

It is tempting to try to modify this scheme in various ways that would reduce or

eliminate this cost of operation while still preserving the tendency to optimum re-

source allocation. However, it seems that all modifications that do diminish the

cost of the scheme either imply the use of some external information as to the

true equilibrium price or reintroduce a direct incentive for misrepresentation of the

marginal-cost and marginal-value curves. To be sure, in some cases the impair-

ment of optimum allocation would be small relative to the reduction in cost, but,

unfortunately, the analysis of such variations is extremely difficult; ...

In this paper, we propose a novel double-clock auction that induces price taking behavior by

all buyers and sellers at all times and hence elicits revelation of the true quantities demanded

and supplied, without running a deficit. We do so for a general environment in which traders

have multi-unit demands and supplies and multi-dimensional private information about their

marginal values and costs. We view our double-clock auction as a possible solution to the

challenges identified by Vickrey. Under mild regularity conditions, we show that our double

clock auction generates an outcome converging to the efficient allocation as the number of

traders grows at rate 1{n, where n is the number of traders.

As emphasized by Ausubel (2004), two fundamental prescriptions for practical auction

design derived from the auction literature are that the prices paid by an agent ought to be as

1 The substantial impact on social welfare of strategic behavior in tâtonnement mechanisms was discussed
by Babaioff et al. (2014). As they pointed out, tâtonnement mechanisms “are used, for example, in the daily
opening of the New York Stock Exchange and the call market for copper and gold in London.”
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independent as possible from her own bids, and that the auction should be structured in an

open, dynamic fashion, so as to convey clear price information to bidders and to preserve the

privacy of the winners’ valuations. Under the latter property, market participants are protected

from hold up by the designer, because they do not reveal their willingness to pay on units they

trade, and the designer is protected from the often substantial political and public risk of ex

post regret – not knowing the agents’ willingness to pay makes it difficult if not impossible to

claim that there was “money left on the table.”2

Our double-clock auction (DCA) satisfies both prescriptions. It consists of a descending

clock price for sellers and an ascending clock price for buyers. At every point in the DCA,

traders indicate the number of units they are active, or bid, on, with activity meaning that this

is the number of units they supply (demand) if they are sellers (buyers). There is a monotone

activity rule that stipulates that in the course of the auction a trader can only decrease her

activity. Once an agent’s activity has dropped to zero, the agent is said to have dropped

out (or exited). Based on information obtained only from agents who have exited, the DCA

estimates supply and demand and, at any point in the process, sets target prices that are such

that estimated excess demand is zero. If a given target price is reached without any additional

exits, this target price becomes the reserve price. If an additional exit occurs before the target

is reached, supply and demand are estimated anew, the target price is adjusted, and the DCA

proceeds as before until the earliest of two points in time – both clock prices reach the target

price, or an additional trader drops out.

Once both clock prices reach the target price, this price becomes the reserve, and the

quantities supplied and demanded by all remaining active traders are used to determine whether

buyers or seller are on the long side of the market at the reserve. If aggregate quantity demanded

equals aggregate quantity supplied at the reserve, then all trades are executed at this price.

Otherwise, agents on the long side participate in an Ausubel (2004) auction, starting at the

reserve. We show that sincere bidding by each agent is a dominant strategy equilibrium in the

DCA. By construction, it never runs a deficit. It is ex post individually rational and constrained

efficient in the sense that the units it trades are procured at minimum cost and allocated to

buyers to maximize value. We also provide conditions under which the DCA is asymptotically

efficient. Asymptotic efficiency obtains, for example, in the order statistics model (Burdett

and Woodward, 2020), according to which each buyer (seller) draws a number of values (costs)

independently from the same distribution equal to its maximum demand (capacity).

Our paper relates to the literature on dominant strategy mechanisms in the tradition of

2The practice of mechanism design and historical experience with auctions offer plenty of examples of such
public outcry. The 1990 spectrum license auction in New Zealand is one famous example of political risk due
to ex post regret (see, for example, McMillan, 1994, or Milgrom, 2004). That static, sealed bid, mechanisms
are prone to the bidders’ hold-up problem was known by stamp collectors before the middle of the 20th century
(Lucking-Reiley, 2000).
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Vickrey (1961), Clarke (1971) and Groves (1973). There are particularly close connections to

papers that develop deficit-free dominant strategy mechanisms such as Hagerty and Rogerson

(1987) and McAfee (1992). We provide a detailed discussion of these in Section 4, after we

have formally introduced our double-clock auction and derived its key properties. Our paper,

and the double-clock auction we design, obviously draws inspiration from the extended body

of research that has emphasized advantages of clock auctions, such as Ausubel (2004, 2006),

Ausubel, Cramton and Milgrom (2006), Perry and Reny (2005), Bergemann and Morris (2007),

Levin and Skrzypacz (2016), Li (2017), Sun and Yang (2009, 2014), and Milgrom and Segal

(2019).3 Perry and Reny (2005, p.568), for example, argue that “simultaneous auction formats

tend to treat information as if it were costless to collect and costless to provide” while dynamic

auctions economize on the information collected.

Our paper also relates to the recent and growing literature on mechanism design with

estimation initiated by Baliga and Vohra (2003) and Segal (2003).4 In that literature, the

designer’s objective is profit-maximization, and hence the objects to be estimated are hazard

rates and virtual types. In contrast, our market maker’s objective is social surplus, without

running a deficit, and so the object to be estimated is, like in Kojima and Yamashita (2017)

the Walrasian price. A more detailed discussion of the connection and differences to the paper

of Kojima and Yamashita, which was concurrently written with a previous draft of the present

one, is deferred to Section 4.

Of course, the very idea of a tâtonnement process to discover market clearing prices dates

back to Walras (1874), and so our paper is also tightly connected to the literature on the

decentralized micro-foundations of competitive equilibrium, such as Satterthwaite and Williams

(1989, 2002), Rustichini, Satterthwaite, and Williams (1994), and Cripps and Swinkels (2006)

as well as to Reny and Perry (2006), who study the related question of the foundations of

rational expectation equilibrium.5 Our double-clock auction can be viewed as providing a

centralized micro-foundation in which the “Walrasian” auctioneer does the heavy lifting while

endowing agents with dominant strategies. Rather than getting rid of the Walrasian auctioneer,

it fills her role with substance.

The remainder of the paper is organized as follows. Section 2 provides the setup. In Section

3, we introduce the DCA and derive its key properties. Section 4 provides a comparison of

different mechanisms in the small and a discussion of the most closely related literature. Section

3Ausubel’s (2004) proposed a clock implementation of the VCG mechanism for the case of homogeneous
goods. For subsequent generalizations to the case of heterogenous objects, see Ausubel (2006), and Sun and
Yang (2009, 2014).

4See also Loertscher and Marx (2019a), who develop a prior-free clock auction that is asymptotically profit-
maximizing in an environment with single-unit traders and independently distributed types.

5Other papers on the convergence to competitive equilibrium in the single-unit case include Gresik and
Satterthwaite (1989) who looked at optimal trading mechanisms, Yoon (2001) who studied a double auction
with participation fees and Tatur (2005), who introduced a double auction with a fixed fee. For the multi-unit
case, Yoon (2008) introduced the participatory Vickrey-Clarke-Groves mechanism.
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5 introduces conditions under which the double-clock auction is asymptotically efficient, and

Section 6 concludes the paper.

2 The Setup

There is a set N “ t1, ..., Nu of buyers, and a set M “ t1, ...,Mu of sellers of a homogeneous

good. In Section 5, to study convergence to efficiency, we will proportionally expand the sets

of buyers and sellers to N “ t1, ..., nNu and M “ t1, ..., nMu and we will let n go to infinity.

Denote by vb “
´

vb1, ..., v
b
kB

¯

the valuation, or type, of buyer b P N , where vbk P r0, 1s is

buyer b’s marginal value for the k-th unit of the good and kB is an upper bound on each buyer’s

demand. Denote by cs “
´

cs1, ..., c
s
kS

¯

the cost, or type, of seller s P M, where csk P r0, 1s

is seller s’s cost for producing, or giving up the use of, the k-th unit and kS is an upper

bound on each seller’s capacity.6 Let v “
`

v1, ...,vN
˘

“
`

vb,v´b
˘

be the profile of valuations,

c “
`

c1, ..., cM
˘

“ pcs, c´sq be the profile of costs, and θ “ pv, cq “ pvb,θ´bq “ pcs,θ´sq.

We assume diminishing marginal values and increasing marginal costs; that is, for all b P N ,

all k P t1, .., kB ´ 1u, we have vbk ě vbk`1 and, for all s P M, all k P t1, .., kS ´ 1u, we have

csk ď csk`1. A buyer b receiving q goods at unit prices pb1, ..., p
b
q obtains payoff

řq
k“1

`

vbk ´ p
b
k

˘

; a

buyer receiving no units and making no payments has zero payoff. Similarly, a seller s selling q

goods at prices ps1, ..., p
s
q obtains payoff

řq
k“1 pp

s
k ´ c

s
kq; a seller receiving no payments and selling

no units has zero payoff. The payoff functions and the upper bounds on traders’ capacities are

common knowledge, but marginal values and marginal costs are private information of each

trader.7

The mechanism we propose has an open bid, clock format. As ours is a setting with active

buyers and sellers (as opposed to a one-sided auction), the mechanism is a double clock auction;

that is, it will be run with an ascending clock on the buyers’ side and a descending clock on the

sellers’ side. This implies that the mechanism is privacy preserving; that is, it does not reveal

the marginal values or marginal costs of the units that are traded.8 Our mechanism is robust

in the sense of Bergemann and Morris (2005), because it satisfies dominant strategy incentive

compatibility, so that agents do not need well specified beliefs about the other agents’ types in

order to bid optimally. It can be specified without making use of detailed a priori information

about agents’ types and beliefs, so to some extent our mechanism is detail free in the sense

of Wilson (1987), except that beliefs about values and costs are needed by the auctioneer to

estimate demand and supply and determine which of the two clocks should be running at each

point in time.

6The assumption that values and costs are in r0, 1s is just a normalization.
7Our results remain valid when traders have complete information about all marginal values and costs. This

is because in the DCA we introduce traders have the dominant strategy of bidding sincerely.
8See Engelbrecht-Wiggans and Kahn (1991), Naor et al. (1999), Ausubel (2004) and Milgrom and Segal

(2019) for discussions of the importance of this requirement.
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Denote the individualized price vector of agent i by pipθ´iq “
`

pi0pθ
´iq, ..., pikipθ

´iq
˘

, where

pik
`

θ´i
˘

is the price buyer i must pay (seller i is paid) for the k-th unit of the good.9 Using

the convention vb0 “ cs0 “ 0 for all b and s, let the quantities traded by each buyer b P N and

seller s PM at their personalized prices be:

qbppbpθ´bq,vbq “ arg max
0ďqďkB

q
ÿ

k“0

´

vbk ´ p
b
kpθ

´bq

¯

and

qsppspθ´sq, csq “ arg max
0ďqďkS

q
ÿ

k“0

`

pskpθ
´sq ´ csk

˘

Let qBpθq “
ř

bPN qbppbpθ´bq,vbq be the total quantity acquired by buyers and qSpθq “
ř

sPM qsppspθ´sq, csq be the total quantity sold by sellers.

A mechanism is feasible if for every θ, qBpθq “ qSpθq.
10

Given that the outside option has zero value for every agent, a mechanism satisfies ex post

individual rationality if for all b, θ “
`

vb,θ´b
˘

and for all s, θ “ pcs,θ´sq:

pb0pθ
´bq ď 0 ; ps0pθ

´sq ě 0 .

The profit a mechanism generates at θ is:

Πpθq “
ÿ

bPN

qbppbpθ´bqq
ÿ

qb“0

pbqbpθ
´bq ´

ÿ

sPM

qsppspθ´sqq
ÿ

qs“0

psqspθ
´sq ;

a mechanism is deficit free if for all θ, Πpθq ě 0.

The performance of any allocation mechanism that targets welfare maximization must be

evaluated in term of its efficiency level. In our setting, full ex post efficiency, which implies

feasibility, requires that for all possible type profiles the buyers with the highest marginal

valuations trade with the sellers with the lowest marginal costs and that the total quantity

traded is qBpθq “ qSpθq “ qCEpθq, where qCEpθq is a Walrasian (competitive equilibrium)

quantity associated with θ:11

max
 

q P t0, ...,Ku : vpqq ą crqs
(

ď qCE pθq ď max
 

q P t0, ...,Ku : vpqq ě crqs
(

.

In our setting, dominant strategy incentive compatibility and ex post efficiency are satisfied

if and only if the mechanism is a Groves mechanism (e.g., see Holmström, 1979) and ex post

9By the taxation and revelation principles (see Rochet, 1985, and Myerson, 1979), any dominant strategy
mechanism is strategically equivalent to a “direct” price mechanism that sets an individualized marginal price
vector for each agent as a function of the other agents’ types and lets each agent decide how many units to trade
at the specified prices.

10If there was free disposal, we could weaken the feasibility condition to qBpθq ď qSpθq, but this would not
help in any substantial way in the design of our DCA.

11 Given a vector x, we denote by xpiq its i-th highest element and by xris its i-th lowest element. Thus,
xpqq “ xrm`1´qs if the vector contains m elements. We also adopt the notational convention that vp0q “ 1 and
cr0s “ 0, which implies that qCEpθq is well defined.
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individual rationality and deficit minimization further restrict the mechanism to be a VCG

mechanism. The VCG mechanism is not deficit free. Indeed, in Loertscher and Mezzetti

(2019), we have shown that in the setting of a market for a homogeneous good the two-sided

VCG auction runs a deficit on each trade and the total deficit does not vanish as the number

of traders grows large. While it is not possible to construct a mechanism that is ex post

efficient and deficit free, efficiency is an important feature of an allocation mechanism. Thus,

we require our double clock auction to satisfy two efficiency properties, constrained efficiency

and asymptotic efficiency.

A mechanism is constrained efficient if, given the total quantity traded qpθq “ qBpθq “

qSpθq, the trades completed are the most valuable ones – those associated with the qpθq-th

highest marginal values and the qpθq-th lowest marginal costs. Constrained efficiency is an

appealing property of the price mechanism in competitive and oligopolistic markets.

The total welfare at θ generated by a mechanism is given by the gains of trade:

W pθq “
ÿ

bPN

qbppbpθ´bqq
ÿ

qb“0

vbqbpp
bpθ´bqq ´

ÿ

sPM

qsppspθ´sqq
ÿ

qs“0

csqspp
spθ´sqq .

Let qbCEpθq and qsCEpθq be the quantity traded by buyer b and seller s in a Walrasian

equilibrium. Under a fully efficient allocation, total welfare at θ is:

WCEpθq “
ÿ

bPN

qbCEpθq
ÿ

qb“0

vbqbpθq ´
ÿ

sPM

qsCEpθq
ÿ

qs“0

csqspθq ,

Thus, the percentage welfare loss at θ is Lpθq “ 1 ´ W pθq
WCEpθq

. Let Pφ˚ be the probability

measure determining the true marginal values and costs (i.e., θ) and Eφ˚ be the expectation

operator with respect to Pφ˚ .12 For ρ ą 0, we say that a mechanism is asymptotically efficient

at rate 1{nρ if the expected percentage welfare loss converges to zero at rate 1{nρ as the size

of the market n goes to infinity; that is, if there is a constant L ą 0 such that for all n:

Eφ˚ rLpθqs ď L{nρ. Our double clock auction will be constrained efficient and asymptotically

efficient at rate 1{n.

3 The Dominant Strategy Double Clock Auction

Our DCA uses a price adjustment process inspired by Walras’ tâtonnement. Its starting clock

prices are pB “ 0 for buyers and pS “ 1 for sellers. Each buyer starts with a quantity demanded

equal to kB and each seller starts with a quantity supplied equal to kS . When they are permitted

to take an action, buyers and sellers may reduce their quantity demanded or supplied by any

12The true probability distribution is not known by the auctioneer or by the traders. There is a set Φ indexing
the possible probability measures Pφ, with φ P Φ. See Section 5 for details.
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non-negative integer, but they can never demand or supply less than zero. Let NOpp
Bq be the

set of buyers whose quantity demanded is zero when the buyers clock price reaches pB and

let MOpp
Sq be the set of sellers whose quantity supplied is zero when the sellers clock price

reaches pS . These two sets are the traders who have irrevocably dropped out of the DCA; these

traders cannot re-enter and will trade zero units. The only active traders after the clock prices

have reached pB and pS are the buyers in the set NApp
Bq “ N zNOpp

Bq and the sellers in the

set MApp
Sq “MzMOpp

Sq.

An important novelty of our DCA is that, rather than by the “true” (or revealed) excess

demand as in Walras’ tâtonnement, the tâtonnement process is driven by rounds in which the

auctioneer uses some procedure to derive estimated excess demand. To derive the main result of

this section, Theorem 1, and design an estimation procedure which gives no trader an incentive

to misrepresent her true demand and supply, it suffices to assume that when the current clock

prices are pB and pS , the auctioneer only uses information from traders in the sets NOpp
Bq

and MOpp
Sq. That is, the auctioneer uses the history of demand and supply reductions of

all traders that have dropped out of the DCA, but she does not use any information from the

traders who are still active.13 The estimation procedure used to prove the asymptotic efficiency

of the DCA will be explained in detail in Section 5.

3.1 Definition

The DCA starts in round 0 of the estimation state.

Step Es: Estimation state.

• Let t P t0, 1, 2, ...u indicate the estimation round. Set pB0 “ 0 and pS0 “ 1. In each

estimation round t the auctioneer uses the history of previous drop-outs to estimate

demand and supply at the current prices pBt ă pSt :14

– If estimated demand exceeds estimated supply at the current prices, then set a target

price pTBt ď pSt such that for pTBt ă pSt estimated demand at pTBt equals estimated

supply at pSt ; go to Step Bc.

– If estimated supply exceeds estimated demand at the current prices, then set a target

price pTSt ě pBt such that for pTSt ą pBt estimated supply at pTSt equals estimated

demand at pBt ; go to Step Sc.

13Although our mechanism is different, the idea of using only information from losing bidders is not novel, as it
is the basis for price formation in a single-unit English auction and its strategic equivalence with the second-price
auction. Brooks (2013) also exploits this idea.

14In round 0 the auctioneer may use any arbitrary prior estimate of the demand and supply functions.
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– If estimated demand equals estimated supply at the current prices, then set the

target price pTt at which estimated demand equals estimated supply; go to Step

Dc.

Step Bc: Buyers’ clock state.

• The buyer price pB increases continuously starting from pBt .

• At any price level pB, each active buyer b P NApp
Bq decides whether to reduce her

demand.

– If the demand of one of the active buyers becomes zero at price pB ă pTBt or at price

pB “ pTBt ă pSt , set pBt`1 “ pB and pSt`1 “ pSt , go to Step Es.

– If at price pTBt ă pSt the demand of none of the active buyers has become zero, go

to Step Dc.

– If price pB reaches pTBt “ pSt , then set the reserve price r “ pTBt , go to Step Ls.

Step Sc: Sellers clock state.

• The seller price pS decreases continuously starting from pSt .

• At any price level pS , each active seller s PMApp
Sq decides whether to reduce her supply.

– If the supply of one of the active sellers becomes zero at price pS ą pTSt or at price

pS “ pTSt ą pBt , set pSt`1 “ pS , and pBt`1 “ pBt , go to Step Es.

– If at price pTSt ą pBt the supply of none of the active sellers has become zero, go to

Step Dc.

– If price pS reaches pTSt “ pBt , then set the reserve price r “ pTSt , go to Step Ls.

Step Dc: Double clock state.

• The buyer price pB increases continuously starting from pBt and the seller price pS de-

creases continuously starting from pSt ; prices change in such a way that equality of esti-

mated demand and supply is maintained and that they would reach the target price pTt

simultaneously.

• At any price level pB, each active buyer decides whether to reduce her demand; at any

price level pS , each active seller decides whether to reduce her supply.

– If the demand of one of the active buyers or the supply of one of the active sellers

becomes zero at prices pB ă pTt and pS ą pTt , set pBt`1 “ pB and pSt`1 “ pS ; go to

Step Es.

8



– If prices pB and pS reach pTt , then set the reserve price r “ pTt ; go to Step Ls.

Step Ls: Long side determination state.

• Let qbprq be the quantity demanded by buyer b and qsprq the quantity supplied by seller

s at the reserve price r. Total quantities demanded and supplied are: qBprq “
ř

bPN qbprq

and qSprq “
ř

sPM qsprq. Select qprq “ mintqBprq, qSprqu as the aggregate quantity

traded.

– If qBprq “ qSprq, then allocate to each buyer and seller the quantity she demands

or supplies; charge buyer and pay seller r for each unit demanded or supplied; end

the DCA.

– If qBprq ą qSprq (i.e., buyers are on the long side of the market), then allocate to

each seller the quantity she supplies at r and pay her r for each unit; go to Step

Ab.

– If qBprq ă qSprq (i.e., sellers are on the long side of the market), then allocate to

each buyer the quantity she demands at r and charge her r for each unit; go to Step

As.

Step Ab: Ausubel buyers auction state.

• The buyer price pB increases continuously starting from r.

• At any price level pB, each active buyer b P NApp
Bq decides whether to reduce her

demand.

– When the total quantity demanded at price pB reaches qBppBq “ qprq, allocate

units and charge prices to buyers as in an Ausubel auction (i.e., the VCG unit

prices bounded by the reserve price); end the DCA.

Step As: Ausubel sellers auction state.

• The seller price pS decreases continuously starting from r.

• At any price level pS , each active seller s PMApp
Sq decides whether to reduce her supply.

– When the total quantity supplied at price pS is qSppSq “ qprq, stop: allocate units

and pay prices to sellers as in a reverse Ausubel auction; end the DCA.
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Two observations are worth making. First, at all points in the DCA the only information

available to the active traders are the state and the current clock prices.15 Second, in the long

side determination state the auctioneer uses information from the active traders to determine

the aggregate quantity traded. As we shall prove in Theorem 1, this does not introduce an

incentive for traders to misrepresent their true demands and supplies.

3.2 Properties

We say that an agent engages in sincere bidding if she expresses her quantity demanded or

supplied truthfully. That is, buyer b bids sincerely if for any buyers clock price pB her demand

is qb such that vb
qb
ě pB ě vb

qb`1
and seller s bids sincerely if for any sellers clock price pS her

supply qs is such that csqs ď pS ď csqs`1.

We now show that the DCA is feasible, deficit free, ex post individually rational, constrained

efficient and dominant strategy incentive compatible.

Theorem 1. Sincere bidding by each agent is a dominant strategy equilibrium in the DCA.

The DCA is also feasible, deficit free, ex post individually rational and constrained efficient.

Proof. By construction, the DCA is feasible as the quantity traded is determined by the short

side of the market at the reserve price, and it is deficit free since the minimum price paid by

buyers (the reserve price r) is equal to the maximum price paid to sellers (also the reserve price

r). Ex post individual rationality holds since each trader may guarantee herself the outside

option payoff by dropping out of the bidding. Constrained efficiency holds because, under

sincere bidding, for any given quantity to be traded q, the trades that are completed are those

associated with the q highest marginal values and the q lowest marginal costs.

Because of the symmetry of buyers and sellers, to save space we will just argue that sincere

bidding is a dominant strategy for buyers. First observe that if by bidding sincerely buyer b

ends up dropping out and not buying any unit, then no alternative strategy could increase her

payoff, as it could only make her acquire units at a price above their marginal value.

Second, suppose that by bidding sincerely buyer b acquires at least one unit. This means

that she acquires all units having marginal value above the reserve price r. To see that no

strategy can increase the buyer’s payoff requires the following observations: (i) she cannot

affect the reserve price if she adopts a strategy leading to positive trades; (ii) she suffers a

payoff reduction if she uses a strategy leading to no trades; (iii) she cannot improve her payoff

while remaining on the same side of the market; (iv) if she is on the short side of the market

15There are two reasons why no bid information about the other agents is revealed to a trader. First, it
makes the bidding environment straightforward; much like in the Walrasian analysis of competitive markets, all
information that an agent has is the price she faces. Second, as shown by Theorem 1, it makes sincere bidding
by all agents, as defined below, a dominant strategy equilibrium. As in Ausubel (2004), if we allowed either full
or aggregate bid information, then sincere bidding would be an ex post perfect equilibrium.
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by bidding sincerely, she can only raise the prices she pays if she ends up on the long side

by adopting a different strategy; and (v) if she is on the long side of the market by bidding

sincerely, she would do at least as well by using the strategy of dropping out on all units at

price r in the Ausubel auction, then by reducing demand before the reserve price is determined

in order to end up on the short side, but the strategy of dropping out on all units at price r in

the Ausubel auction is dominated by sincere bidding.

4 Discussion and Comparisons

Vickrey (1961) first noted that developing mechanisms for two-sided allocation problems that

minimize inefficiencies, do not run a deficit and require no prior information about the true

equilibrium price is “extremely difficult”. For a bilateral trade setting à la Myerson and Sat-

terthwaite (1983) with the buyer and seller drawing their value and cost independently from

distributions with overlapping support, Hagerty and Rogerson (1987) showed that the best the

market maker can do subject to dominant strategy incentive compatibility, ex post individual

rationality and budget balance is to post an exogenously given price and let the buyer and seller

decide if they want to trade at that price. With only one agent on each side of the market,

there is simply no way of endogenizing the price at which trade occurs without giving up on

dominant strategies (see also Čopič and Ponsati, 2016, and Čopič, 2017).

McAfee (1992) proposed a mechanism that embeds this insight in a setup with multiple

single-unit traders whose values and costs are elements of the r0, 1s-interval. In any round t

with the same number of buyers and sellers, the mechanism posts a price pt like Hagerty and

Rogerson in the bilateral trade setting. It then runs a double-clock auction, with the sellers’

clock price pS decreasing from its starting point (which is 1 at the beginning of the mechanism)

and the buyers’ price pB increasing (and equal to 0 at the outset). If no agent exits by the

time both clocks reach the posted price pt (i.e., by the time pB “ pS “ pt), then all active

agents trade at pt. The posted price in each round does not depend on the values of the active

agents, but it depends on the prices at which the last buyer and seller dropped out; McAfee’s

double auction thus endogenizes the posted price of Hagerty and Rogerson. More precisely,

if at the beginning of round t the clock prices are pB and pS , then the posted price is set at

pt “
pB`pS

2 .16

If the numbers of buyers and sellers are not the same, either at the outset or after a trader

drops out, the mechanism runs a single-clock auction; only the clock price on the long side

is moved until the number of active agents is the same on both sides of the market. If this

happens when the buyer’s clock price is lower than the seller’s, then the mechanism selects a

new posted price in the interval ppB, pSq and runs the double clock auction again. If equality

16Any choice of a posted price equal to αtp
B
` p1´ αtq p

S , with αt P r0, 1s would work equally well with
regards to the incentive compatibility and individual rationality constraints.
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in the number of buyers and sellers is reached when pB ą pS , then the remaining active traders

trade at those prices; buyers pay pB sellers receive pS .

McAfee’s double clock auction endows traders with dominant strategies and it either imple-

ments trading of the efficient quantity, which happens if trade occurs at a posted price pt, or it

just excludes the single least efficient trade, which happens if trade occurs at prices pB ą pS .

Although McAfee does not refer to estimation, the posted price pt is naturally interpreted as

the price at which the estimated demand function and the estimated supply function are equal.

For example, take estimated demand and supply to be linear starting from the current number

Nt of buyers and sellers and the current clock prices pB and pS , with quantity demanded at

price p ě pB being Nt´λ
`

p´ pB
˘

and quantity supplied at price p ď pS being Nt`λ
`

p´ pS
˘

for some λ ą 0; then demand equals supply at pt “
pB`pS

2 .17

Similarly, McAfee’s mechanism can be viewed as entering an Ausubel auction phase when

pB “ pS and the number of traders on the long side exceeds the number of traders on the

short side (with probability one only by one trader): with single-unit traders, the single-clock,

Ausubel auction on the long side is simply a clock implementation of the second-price Vickrey

auction, determining the trading price at the drop-out price of the first trader that exits, the

most competitive losing bid. Our DCA can thus be viewed as an extension of McAfee’s (1992)

double auction to traders with multi-unit demand and supply.18 It is worth recalling that in

standard auction formats multi-unit buyers and seller have an incentive to reduce their demands

and supplies so as to manipulate the prices at which they trade (e.g., see Ausubel et al., 2014).

Unlike the DCA, many apparently intuitive generalizations of McAfee’s double auction, that

rely on counting the number of drop-outs or on excluding the least efficient trades, either

give traders incentives to misrepresent their marginal values or do not guarantee asymptotic

efficiency.

The most prominent alternative to our and McAfee’s approach to estimating equilibrium

prices and basing allocations and transfers on these estimates is to use random splitting mech-

anisms, where agents are randomly split in submarkets and data from the other markets is

used to set the price to post in a given market. In a paper that was developed independently

and at the same time as the first version of this paper, Kojima and Yamashita (2017) use this

method. Their focus is different from ours, as they also target efficiency, but in a setting with

interdependent values, when the type of each trader is single dimensional and a single crossing

17Natural extensions would be to allow the slope coefficients to vary across the two sides of the market, which
in the notation used in footnote 16 would yield αt ‰ 1{2, and to estimate these coefficients based on information
from the agents who have dropped out. In turn, this would make αt a non-degenerate function of the values
and costs of the agents who have dropped out. As we discuss in the Conclusions, even in McAfee’s mechanism
this use of estimation has the drawback of making shill bidding profitable.

18McAfee also proposed a simultaneous bid version of his mechanism, which has been extended in the operation
research and computer science literature (see Chu, 2009, and Segal-Halev et al., 2017, for recent contributions
and references). None of these extensions has considered a setting with multi-dimensional types, or has used a
double clock format.
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condition holds, so as to escape from the impossibility results that plague ex post implemen-

tation (e.g., see Jehiel et al., 2006) when two-stage mechanisms as in Mezzetti (2004) are not

allowed.19

A consequence of dividing agents randomly into submarkets is that, unlike our mechanism,

the random splitting mechanisms are neither constrained efficient nor clock implementable.

Yet Kojima and Yamashita have established for their mechanism (like we do for the DCA

in the next section) that asymptotic efficiency obtains as the number of traders grow large.

Since in general little is known about the performance in the small of asymptotically efficient

double auction mechanisms, we will now compare the efficiency properties of McAfee’s and

the DCA with the random splitting mechanism for two simple examples in which traders have

independent private values. Rather than determining the winner of a horse race, our goal is to

gain some understanding of the differences in the two approaches.

We start from the case with two buyers and two sellers with unit demand and supply,

N “ M “ 2, kB “ kS “ 1. In this case the DCA coincides with McAfee’s double clock

auction. To simplify the analysis, we assume that values and costs are all drawn from the same

distribution F . With N “ M “ 2 the random splitting mechanism creates two submarkets,

each with one buyer and one seller, has all agents report their types, and uses the reports from

one market to post a price in the other market. Because in each market i the price is exogenous,

it follows that reporting truthfully is a dominant strategy.

The expected social welfare generated by McAfee’s double auction can be divided into three

components. The first, denoted by W T1 is the welfare created by the most valuable trade (i.e.,

the trade between the seller with the lowest cost and the buyer with the highest value) when

efficiency requires that two trades be completed, with each of the two sellers selling her good

and each of the buyers acquire one unit. The second component, denoted by W T2, is the

expected payoff from the least efficient trade (i.e., the trade between the seller with the highest

cost and the buyer with the lowest value) when it is efficient that two trades be completed.

The third welfare component, denoted by WE1, is the expected welfare when it is efficient only

to complete one trade and p1 “
vp2q`cr2s

2 is the price posted after the highest cost seller drops

out at price cr2s and the lowest value seller drops out at vp2q ă cr2s. The expected welfare

in McAfee’s double auction with two single-unit traders on each side of the market is thus

WM “W T1 `W T2 `WE1.20

The random splitting mechanism separates the two unit-demand buyers and two unit-supply

sellers into two markets, denoted by A and B. Letting pvi, ciq be the reported types in market

i P tA,Bu, we set the price posted in market j, pj , with j ‰ i equal to the midpoint of the

19Random splitting mechanism are related to the random sampling approach frequently used in the computer
science literature and first introduced in economics by Baliga and Vohra (2003) and Segal (2003) to study a
monopolist seller whose goal is to extract maximum profit from single-unit traders.

20The formal definition of these welfare components are given in the proof of Proposition 1 in Appendix A.
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Walrasian price gap in market i, that is, pj “ vi`ci

2 .21

Denote the expected welfare in this random splitting mechanism by WRS . In the following

proposition (proven in Appendix A), we compare welfare in McAfee’s mechanism and the

random splitting mechanism.

Proposition 1. Assume kB “ kS “ 1 and N “M “ 2. For any distribution F , we have

WM ąWRS “WE1.

In other words, with four, symmetric, single-unit traders, the random splitting mechanism

generates the same welfare as total welfare when it is efficient to complete a single trade.

Relative to McAfee’s mechanism and the DCA, it loses the welfare from the most efficient

trade when it is efficient to trade both units, and the welfare from the least efficient trade

whenever such trade is completed at the original reserve price p0 “
1
2 . Intuitively, when

efficiency dictates to complete both trades, if the high value buyer is matched with the high

cost seller and the low value buyer is matched with the low cost seller, the resulting prices in

the random splitting mechanism could be such that no trade is completed, while at least one

trade is always completed in the DCA in this case.

Let us now consider the case of multi-unit demand and supply, for which McAfee’s double

auction is not defined. As explained above, the DCA can be viewed as an extension of McAfee’s

design to this environment. We do not need to make this assumption for any of our formal

results, but one natural way to think about multi-unit traders is that they emerge from the

conglomeration of multiple single-unit traders, for example, via mergers, acquisitions, or joint

ventures (see e.g., Loertscher and Marx, 2019b). If, as in our example in this section, the

single-unit trader setup has buyers and sellers draw their types independently from the same

distribution F , then in the multi-unit setup in which a trader has a capacity of kB “ kS “ K,

each is naturally characterized by K draws from F . Hence, the buyer’s highest marginal value

is distributed according to FK and the seller’s lowest marginal cost according to 1´p1´F qK ,

and so on. We refer to this model as the order statistics model.

Using this order statistics model, we next consider what might be the simplest specification

with multi-unit traders that permits a comparison between our DCA and random splitting

mechanisms. We assume that each trader has a capacity of kB “ kS “ K “ 2 and, as in the

single-unit case, N “ M “ 2. Moreover, we let F to be uniform on r0, 1s. Table 1 provides a

summary of the performance of various mechanisms in the small for the case when there are

either N “ 1 or N “ 2 pairs of buyers and sellers present, each agents drawing her type(s)

according to the order statistics model from the uniform distributions with a capacity K P

t1, 2u. Capacities K and the number of pairs present N are common knowledge. Derivations

of and details for the numbers in Table 1 are provided in Appendix A.

21Note that pj is a Walrasian price for market i irrespective of whether vi ě ci or vi ă ci.

14



Comparisons

Mechanisms SB DCA RS McAfee

K “ 1, N “ 1 0.84 0.75 n.a. 0.75

K “ 1, N “ 2 0.94 0.82 0.52 0.82

K “ 2, N “ 1 n.a. 0.91 n.a. n.a.

K “ 2, N “ 2 n.a. 0.71 0.65 n.a.

Table 1: Table entries are social surplus under a given mechanism divided by social surplus
under ex post efficiency for F uniform. SB is the second-best mechanism (Myerson and Sat-
terthwaite 1983; Gresik and Satterthwaite, 1989); DCA is our double clock auction; RS is the
random splitting mechanism, and McAfee is McAfee’s (1992) double auction. For N “ 1 and
K “ 1, McAfee and the DCA reduce to the posted price mechanism of Hagerty and Rogerson
(1987) with p0 “ 1{2; for N “ 1 and K “ 2 the DCA again reduces to a posted price mechanism
with p0 “ 1{2 (note that because N “ 1, there is no rationing assumption required).

There are clearly many limits to how much one can read into the computations displayed in

Table 1. Nevertheless, for K “ 1 and N “ 2, the superior performance of McAfee’s relative to

the RS mechanism is noteworthy. It can be explained by the fact that by splitting the market

into two, the RS reduces—and in the N “ 2 case, eliminates—the benefits from sorting; that

is, it reduces the ability to match high value buyers with low cost sellers.

While we compute welfare under McAfee’s mechanism using the initial posted price p0 “

1{2, it is also worth mentioning that if p0 were set equal to 1 or 0, so that no gains from

trade occur at the exogenous price, McAfee’s mechanism (or, for that matter, the DCA) still

achieves 0.77 of welfare under ex post efficiency for K “ 1 and N “ 2. Intuitively, McAfee’s

mechanism is better able to exploit the increasing returns to scale inherent in market making

as larger markets can always replicate what smaller, stand-alone, markets do, and sometimes

do better.22

The superior sorting properties of the DCA relative to RS are also apparent in the spec-

ification with N “ M “ K “ 2, where the DCA achieves 0.71 of first-best welfare while the

RS mechanism achieves only 0.65. For the DCA we compute expected welfare by taking as a

reserve price the price at which the first trader drops out.23 For the RS mechanism we take the

midpoint of the Walrasian price gap in one market to set the price in the other, just as we did

in the case with K “ 1. This price is an unbiased estimate of the Walrasian price in the limit

economy when N Ñ 8. The sorting advantage of the DCA is mitigated by the fact that the

reserve price is a biased estimator of the limit Walrasian price, as it is either the lowest cost of

22Denoting by W pNA`NB ,MA`MBq the expected welfare under first best with NA`NB single-unit buyers
and MA `MB single-unit sellers, each drawing their types independently from F , we have, for any positive
integers NA, NB ,MA,MB , W pNA `NB ,MA `MBq ąW pNA,MAq `W pNB ,MBq.

23Thus, the welfare reported in Table 1 for the DCA excludes any welfare generated when no trader has
dropped when both clocks reach the initial posted price p0 “ 1{2. This welfare component is however small.
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the seller or the highest value of the buyer who is first to drop out. Note however that, since F

is uniform, the ex-ante expected price is an unbiased estimator. This hints at the asymptotic

efficiency of the DCA, Theorem 2 in the next section. As the number of traders increases any

estimation advantage of the RS mechanism disappears.

Intuitively, and as the preceding discussion suggests, the DCA should perform well relative

to RS in environments in which sorting (or matching) is important. As an additional example,

imagine that there are very many buyers, each demanding a few units, and only a few, different,

sellers, each supplying many units. Then the reserve price in the DCA will be determined by

the last buyer to drop out and will be a good approximation of the Walrasian price in the

aggregate market, while the RS mechanism will set prices that are different from the aggregate

Walrasian price as they will reflect the Walrasian prices in different sub-markets with different

“supply functions”.

To further corroborate the notion that the DCA does well when matching is important, we

now extend the setup and provide a brief comparative statics exercise that varies the distribu-

tions F and G from which buyers and sellers draw their types. Among other things, as F and

G differ in this experiment, this will also demonstrate that the main insight of Proposition 1

extends beyond setups where buyers and sellers draw their types from identical distributions.

To focus on the simplest case that permits meaningful comparisons between DCA and RS,

we assume K “ 1 and N “ M “ 2, which, of course, implies that the DCA is equivalent to

McAfee’s mechanism. The distributions we use for this exercise are

F pvq “ 1´ p1´ vqa and Gpcq “ ca, (1)

where a ą 0.24 The Walrasian price pW in the limit as N Ñ8 is 1{2, which is easily seen to be

true by solving 1´F ppq “ Gppq for p. Panel (a) in Figure 1 illustrates the effects of increasing

a on F and G. Both F and G become worse distributions, with the buyer having a lower value

and the seller having a higher cost with higher probability. Thus, as a increases, a bilateral

matching is ever less likely to induce trade. In this sense, the parameter a ą 0 measures the

importance of matching. More formally, let

w1paq “

ż 1

0

ż v

0
pv ´ cqfpvqgpcqdcdv and

w8paq “

ż 1

1{2
vfpvqdv ´

ż 1{2

0
cgpcqdc “

ż 1{2

0
pGpxq ` 1´ F p1{2` xqqdx

be, respectively, first-best welfare in bilateral trade setting (that is, with N “ 1 “ M) and

the welfare per buyer-seller pair in the continuum limit with N Ñ 8 (that is, w8paq is social

24This family is convenient because it implies linear virtual type functions. Among other things, this permits
closed-form expressions for the social surplus under the second-best mechanism for bilateral trade problems, as
we show in Appendix A.
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surplus per buyer-seller pair in the continuum limit economy). The ratio

mpaq “
w1paq

w8paq

then measures the importance of matching: it gives the percentage of limit welfare that is

achieved when there is only one buyer-seller pair present. The larger is this ratio, the less

important is matching. For example, for a “ 1, both F and G are uniform, and we have

w1paq “ 1{6 and w8paq “ 1{4, so mpaq “ 2{3. In other words, with N “ 1 and F and G

uniform, we already have 66% of all the per-trader pair welfare of a perfectly thick market

(i.e. of N Ñ 8). This means that the gains from better matching are (very) limited. As

Panel (b) in Figure 1 illustrates, 1 ´mpaq is an increasing function of a that goes to 1 as a

increases.25 Thus, as a increases, the distributions have a longer tail, and the importance of

matching increases.26
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(a) F and G
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1 -m

(b) Importance of matching

Figure 1: Panel (a): F pvq (red, dashed) and Gpcq (blue, solid) for a “ 2, 5. The solid black line
is the uniform, corresponding to a “ 1. The farther way from the 45-degree line, the larger is
a. Panel (b): 1´mpaq as a function of a.

Table 2 summarizes the results for the family of distributions in (1) for different values of a.27

As expected, as matching becomes more important (that is, as a increases), the performance

of the DCA relative to the RS mechanisms improves further. Interestingly, however, relative to

first-best, both mechanisms perform worse as a increases. As we show in Appendix A, where we

25In Appendix A, we provide the closed-form solution for mpaq and show that mpaq is decreasing and satisfies
mp0q “ 1 and limaÑ8mpaq “ 0.

26Obviously, this measure neglects incentives compatibility, individual rationality and budget constraints.
However, and less obviously, as we show in Appendix A, relative to gains from improved matching due to
increases in market size when a is large (and mpaq is small), these constraints are of second-order importance
insofar as, for any a ą 0, the ratio of second-best welfare in the bilateral trade problem, wSB1 paq to w1paq is
bounded from below by 2{e « 0.73 whereas the lower bound for mpaq is 0. As the inefficiency of the second-best
mechanism decreases in market size (see, e.g., Gresik and Satterthwaite, 1989), this inefficiency is largest in the
bilateral trade setting.

27These results were obtained numerically using the same formulas as for Table 1.
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Performance in relation to importance of matching

a WRS{W ˚ WDCA{W ˚ WRS{WDCA mpaq

1 0.523 0.822 0.633 0.667

2 0.343 0.644 0.533 0.400

5 0.200 0.405 0.501 0.069

10 0.151 0.300 0.500 0.003

Table 2: The performance of the RS mechanism and DCA for K “ 1 and N “ 2 for the
parameterized family of distributions in (1) for different values of a. (With K “ 1, DCA is
equivalent to McAfee’s mechanism.) The first row repeats what we know from Table 1 with
the exception of the last entry. The fourth column is obtained by dividing the second by the
third. Other than the last column, table entries are social surplus ratios.

study the behaviour of the second-best mechanism for the bilateral trade problem as a function

of a, this reflects, in accentuated form, the feature that the incentive problem worsens as a

increases in the sense that wSB1 paq{w1paq decreases in a, where wSB1 paq is the social surplus

under the second-best mechanism for N “ 1.

5 Asymptotic Efficiency of the DCA

To prove the asymptotic efficiency of the DCA in the general model, we now endow the auction-

eer with a model of the random process generating traders’ valuations, allowing the number of

traders to grow large. Thus, as foreshadowed in Section 2, the sets of buyers N and sellers M
now contain, respectively, nN and nM elements, and we study the limit equilibrium outcome

as nÑ8.

Given an integer n, we assume that the marginal values and costs of the agents are drawn

from one of the feasible probability measures Pnφ. The set of indexes Φ determines the set of

feasible measures and the index φ P Φ specifies an element of the set. We assume that Φ is a

compact subset of a metric space and that Pnφ is continuous as a function of φ (an assumption

that is trivially satisfied if Φ is a finite set). For example, consider the ordinal statistics,

conditionally independent model (OS-CI), an extension of the model used in the examples of

Section 4, in which the marginal values of buyers and sellers correspond to the ordinal statistics

of kB and kS independent draws from the same atomless distributions with positive densities

in r0, 1s. However, to model conditional independence, we now also allow for there to be a

set of distributions FφB for buyers and GφS for sellers (e.g., FφB pvq “ vφ
B

and GφS pvq “ vφ
S

with 0 ă φ ď φB, φS ď φ), in which case the probability measure Pnφ, with φ “
`

φB, φS
˘

, is

simply the product measure of the nN ˆkB product measure of FφB and the nM ˆkS product

measure of GφS .

For the general model, we will make three assumptions about the probability measures
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Pnφ. Two of them are automatically satisfied in the OS-CI model; a sufficient condition for the

third condition—called identifiability—to be satisfied is that: piq φB1 ‰ φB2 implies that for all

p P p0, 1s it is FφB1
pvq ‰ FφB2

pvq for a positive Lebesgue measure set of values v P p0, ps; and piiq

φS1 ‰ φS2 implies that for all p P r0, 1q it is GφS1
pcq ‰ GφS2

pcq for a positive Lebesgue measure

set of values c P rp, 1q.

Let 1p¨q be the indicator function and define the true demand and supply for the k-th

unit by buyer b and seller s at price p as: Db
kppq “ 1

`

vbk ě p
˘

and Sskppq “ 1 pcsk ď pq. We

denote the demand at price p for the k-th unit of the buyers who are still active at price pB

by D
NAppBq
k ppq, and of those who have dropped out by D

NOppBq
k ppq. Adding the two we obtain

the aggregate demand for the k-th unit DN
k ppq, which allows us to define aggregate demand

at price p as DN ppq “
řkB
k“1D

N
k ppq. Similarly, we denote the supply at price p for the k-th

unit of the active sellers at price pS by S
MAppSq
k ppq and of those who have dropped out by

S
MOppSq
k ppq; aggregate supply for the k-th unit is denoted by SM

k ppq and aggregate supply at

price p is SMppq “
řkS
k“1 S

M
k ppq.

Given any probability measure Pnφ , any possible event Z describing the information obtained

from buyers and sellers that have dropped out when prices pB, pS are reached, and any random

variableX which is measurable with respect to such drop-outs information, let Enφ
“

X
ˇ

ˇ Z
‰

be the

conditional expectation of X and Enφ
“

Enφ
“

X
ˇ

ˇ Z
‰‰

“ Enφ
“

X
‰

be the unconditional expectation.

Thus, for example, Enφ
“

DN ppq
ˇ

ˇ Z
‰

is expected aggregate demand at price p conditional on Z
and Enφ

“

DN ppq
‰

is unconditional expected aggregate demand at price p.

The first assumption we make guarantees that with a large number of traders the per capita

demand and supply functions are strictly monotone.

Assumption 1. (Monotonicity of Demand and Supply ) There exist w and W with 0 ă w ăW

such that:

(i) For all p P r0, 1s, all ε P r0, 1´ ps, all n, and all φ P Φ, we have:

wnε ď Enφ
“

DN ppq
‰

´ Enφ
“

DN pp` εq
‰

ďWnε . (2)

(ii) For all p P r0, 1s, all ε P r0, ps, all n, and all φ P Φ, we have:

wnε ď Enφ
“

SMppq
‰

´ Enφ
“

SMpp´ εq
‰

ďWnε . (3)

Assumption 1 holds in the OS-CI model since there En
φB
rDN ppqs “ nNkBr1 ´ FφB ppqs and

En
φS
rSMppqs “ nMkSGφS ppq. More generally, a sufficient condition for Assumption 1 to hold is

that the probability measures Pnφ are absolutely continuous with respect to Lebesgue measure

and their Radon-Nikodym derivatives (densities) are bounded away from zero and finite.28

28The requirement that wnε ď Enφ
“

DN ppq
‰

´Eφ
“

DN pp` εq
‰

and wnε ď Enφ
“

SMppq
‰

´Eφ
“

SMpp´ εq
‰

is essen-
tially the same as the assumption of No Asymptotic Gaps in Cripps and Swinkels (2006), while the requirement
that Enφ

“

DN ppq
‰

´ Eφ
“

DN pp` εq
‰

ď Wnε and Enφ
“

SMppq
‰

´ Eφ
“

SMpp´ εq
‰

ď Wnε is the counterpart of their
No Asymptotic Atoms assumption.
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As we want to allow for traders’ values to be correlated to same extent, even after con-

ditioning on the true index φ˚, the second assumption we make is needed to guarantee that

the law of large numbers holds for demands and supplies. We borrow the concept of weak

independence from the statistical literature (e.g., see Bradley, 2005, and Dedecker et al., 2007);

it requires that, for any given index φ P Φ, the covariances among the marginal values of two

traders vanish as the distance between them, as measured by their position in an ordered list,

grows large.29 Given a probability measure Pnφ, consider the following covariances:

αijk pp;φq “ Pnφ
´

Di
kppq “ Dj

kppq “ 1
¯

´ Pnφ
`

Di
kppq “ 1

˘

Pφ
´

Dj
kppq “ 1

¯

;

βijk pp;φq “ Pnφ
´

Sikppq “ Sjkppq “ 1
¯

´ Pnφ
`

Sikppq “ 1
˘

Pφ
´

Sjkppq “ 1
¯

.

Note that αijk pp;φq and βijk pp;φq are bounded above by 1{4 and below by ´1{4. If the individual

demands at p of buyers i and j are independent conditional on φ as in the OS-CI model, or if

individual demands are deterministic, then αijk pp;φq “ 0; similarly, if the individual supplies of

sellers i and j at p are independent conditional on φ, or if individual supplies are deterministic,

then βijk pp;φq “ 0. In both cases Assumption 2 holds.

Assumption 2. (Weak Dependence of Individual Demands and Supplies)

(i) There exists ∆B ă 8 and a permutation b Ñ i of the buyers’ names such that, for all

p P p0, 1q, all k P t1, ..., kBu, all n, all i P N and all φ P Φ:

ÿ

jPN , jąi

αijk pp;φq ď ∆B . (4)

(ii) There exists ∆S ă 8 and a permutation s Ñ i of the sellers’ names such that, for all

p P p0, 1q, all k P t1, ..., kSu, all n, all i PM and all φ P Φ:

ÿ

jPM, jąi

βijk pp;φq ď ∆S . (5)

The bite of Assumption 2 comes as the number of buyers and sellers grows large; it requires

that there is a listing of buyers, and one of sellers, under which the covariance between the

demands of any buyer b and buyer b`τ , and seller s and s`τ , vanishes as the distance τ between

the position in the list of the two buyers, and the two sellers, grows large. Assumption 2 holds

more generally than in the OS-CI model. For example suppose that, conditional on φ P ra, bs,

the marginal values of buyer 1 are independently drawn from the probability distribution Fφpvq,

while the marginal values of traders i ą 1 are independently drawn from Fφpvq with probability

0 ă λ ă 1 and with the remaining probability they are either: (A) identical to the marginal

29Cripps and Swinkels (2006) and Peters and Severinov (2006) use different assumptions that are closely
related to the related statistical literature on mixing conditions.
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values drawn by trader i ´ 1, or (B) identical to the marginal values drawn by trader 1. In

case (A) Assumption 2 holds for buyers, while in case (B) it fails. More generally, one may

think of buyers as linked in a network with values of connected types being correlated. Case

(A) corresponds to a line network, case (B) to a star. Extending this example, if for all n the

network is fully connected, then Assumption 2 also fails.

Before stating the third assumption, recall that when the buyers clock price in the DCA

is pB and the sellers clock price is pS , to estimate the parameter φ the data available to the

auctioneer are the true demands and supplies of the traders that have dropped out of the

DCA, that is, of the buyers and sellers in the sets NOpp
Bq and MOpp

Sq. We assume that the

auctioneer computes the parameter φ that minimizes the integrated square distance between

true and expected per capita demand and supply of the traders that have dropped out; that

is, she solves the minimum distance problem:30

min
φPΦ

¨

˝

ż pB

0

˜

DNOppBqppq ´ Eφ
“

DNOppBqppq
‰

n

¸2

dp`

ż 1

pS

˜

SMOppSqppq ´ Eφ
“

SMOppSqppq
‰

n

¸2

dp

˛

‚ .

(6)

For any given event Z describing the information obtained from the traders that have dropped

out when the DCA has reached prices pB and pS , let φpZq be the solution of the mini-

mum distance problem.31 Estimated demand and supply then are EnφpZq
“

DN ppq
ˇ

ˇ Z
‰

and

EnφpZq
“

SMppq
ˇ

ˇ Z
‰

.

Convergence to efficiency requires that the estimation procedure be informative about the

true stochastic process generating the data (i.e., marginal values and costs). Thus, like in

any statistical or econometric model, we need an identifiability assumption on the admissible

probability measures, Assumption 3 below, which guarantees, loosely speaking, that the data

available are sufficient to determine the true value of φ. Let Pnφ˚ be the true probability measure

from which values and costs are drawn. In combination with the operation of the DCA, Pnφ˚
determines the distribution of the reserve price. Indeed, the reserve price only depends on the

event Z describing the information obtained from traders that have dropped out of the DCA;

to emphasize this dependency and the fact that the reserve price is a random variable, we will

now denote by RZ the reserve price when the event is Z.

Assumption 3. (Identifiability) Suppose the vectors of valuations of the nN buyers and nM

sellers are drawn according to the probability measure Pnφ˚. Let Z be the event describing the

30The mean square distance is the “right” distance because to prove Theorem 2 we will use the convergence
in mean square to their expectations of aggregate demand and supply at the reserve price.

31Since Φ is a compact subset of a metric space and Pnφ is a continuous function of φ, the minimizer φpZq
of (6) exists. The size of the set Φ does not matter for our results, but it would affect the computability of
the estimator φpZq. As long as the probability measures are well behaved functions of φ, for the purpose of
computation Φ could be approximated by a finite grid.
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information obtained from the traders that have dropped out when the DCA has reached the

reserve price RZ . For φ P Φ and φ ‰ φ˚, let Pnφ be any other feasible probability measure.

There exists ζ ą 0 such that:

˜

Enφ˚
“

DN pRZq |Z
‰

´ Enφ
“

DN pRZq |Z
‰

n

¸2

`

˜

Enφ˚
“

SMpRZq |Z
‰

´ Enφ
“

SMpRZq |Z
‰

n

¸2

ď ζ ¨ Enφ˚

«

ż RZ

0

˜

Enφ˚
“

DNOpRZqppq
‰

´ Enφ
“

DNOpRZqppq
‰

n

¸2

dp

`

ż 1

RZ

˜

Enφ˚
“

SMOpRZqppq
‰

´ Enφ
“

SMOpRZqppq
‰

n

¸2

dp

ff

(7)

The identifiability condition requires that the difference between true expected demand and

supply and expected demand and supply according to a different probability measure at the

reserve price RZ , conditional on the event Z, is bounded by some multiple of the expected

demand and supply distance of the buyers and sellers that have dropped out at RZ .

To understand Assumption 3, consider the OS-CI model and, to simplify the exposition,

assume there is a unique, known, distribution from which the sellers’ costs are drawn, so

that the second terms on both sides of (7) vanish. Let nA;ZN be the number of buyers still

active at the reserve price RZ . Then, conditional on the event Z, all active buyers demand

at least one unit plus an additional number of units equal to the number of the other kB ´ 1

independent draws that are above RZ . In other words, expected demand conditional on Z
by an active buyer when the index is φ˚ is: 1 ` pkB ´ 1qr1 ´ Fφ˚pRZqs. It then follows

that the left hand side of (7) is:
´

nA;ZN
n pkB ´ 1qrFφpRZq ´ Fφ˚pRZqs

¯2
, which is less than

N2pkB´1q2rFφpRZq´Fφ˚pRZqs
2. We may follow the same approach to compute the integrand

on the right hand side of (7), after first noting that there is no conditioning on the event Z
apart from the number nO;ZN “ pn´ nA;ZqN of buyers who have dropped out; note that the

expected number of buyers that drop out by the time any price r is reached is nNFφ˚prq
kB .

Thus, the integrand on the right hand side of (7) is:
´

nO;ZN
n kBrFφppq ´ Fφ˚ppqs

¯2
. Thus, if piq

φ ‰ φ˚ implies that for all p P p0, 1s it is Fφpvq ‰ Fφ˚pvq for a positive Lebesgue measure set

of values v P p0, ps, then Assumption 3 holds in the OS-CI model.

The first, trivial, way in which Assumption 3 would fail is if for all feasible probability

measures, all buyers had the highest possible value for the first unit, vb1 “ 1 for all b, and all

sellers had the lowest possible cost for the first unit cs1 “ 0 for all s. In such a case there would

be no drop-outs at any interior reserve price and the right hand side of (7) would always equal

zero.32 More generally, for Assumption 3 to fail the active traders at the reserve price must be

unpredictably different from the inactive traders. Thus, in a similar vein to the example just

32Note however that if the auctioneer knows this information, she could allocate the first unit from sellers to
buyers at an arbitrary price and then run the DCA.
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discussed, suppose for simplicity that all sellers’ values are independently drawn from the same

distribution G while buyers are first drawn to be weak or strong; weak buyers draw all their

values independently from the same distribution F , while strong buyers value the first unit at

1 and the marginal values for all other units are independently drawn from a distribution Fφ,

with φ P Φ. Now there will be traders that drop out (both sellers and weak buyers), but their

values provide no information about the values of the strong buyers.
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Figure 2: Illustration of bounds on welfare losses. Panel (a): Buyers are on short side at r.
Panel (b): Sellers are on short side at r.

We are now ready to prove the asymptotic efficiency of the DCA. Denote by PnBpqq “
 

min p : DN pp1q ď q ď DN ppq for all p1 ą p
(

the inverse realized market demand and by PnS pqq “
 

max p : SMpp1q ď q ď SMppq for all p1 ă p
(

the inverse realized market supply. Consider the

demand and supply diagram in Figure 2, with r being the realized reserve price. When buyers

are on the short side of the market – i.e., when DN prq ă SMpr1q for some r1 ă r, as in Panel (a)

– the quantity traded in the DCA is qprq “ DN prq; let PnS
`

DN prq
˘

ă r be the price at which

supply is equal to DN prq. The difference between efficient and realized welfare, WCEpθq´W pθq,

is bounded above by the area of the shaded rectangle ABCD. Thus, the welfare difference is at

most the area of this rectangle; that is, rr ´ PnS
`

DN prq
˘

s ¨ rSMprq ´DN prqs. Similarly, when

sellers are on the short side of the market – i.e., when SMprq ă DN pr1q for some r1 ą r as

in Panel (b) of Figure 2 – the quantity traded is qprq “ SMprq; let PnB
`

pSMprq
˘

be the price

at which demand would be equal to SMprq. The welfare difference is now bounded above by

rPnB
`

SMprq
˘

´ rs ¨ rDN prq ´ SMprqs, the area of the rectangle EFGH.

In the proof of Theorem 2 we show that the ratio of the area of the rectangle ABCD (or

EFGH) to total welfare, and hence the expected percentage welfare loss, converges to zero at

rate 1{n.

Theorem 2. Under Assumptions 1, 2 and 3, the expected percentage welfare loss in the DCA

converges to zero at rate 1{n as nÑ8.
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To prove Theorem 2 we need to establish that the expected distance between demand and

supply at the reserve price r reached by the DCA is “small”. The proof strategy is to observe

that an upper bound on the expected distance between demand and supply is given by a

multiple of the highest of three expected distances, all of which are small. The first is the

expected distance between demand and expected demand at r (given the true index φ˚). The

second is the expected distance between supply and expected supply at r (again, given the true

index φ˚). The proof that these two expected distances are small appeals to the law of large

numbers, Corollary 1 in Appendix B, and only requires monotonicity and weak dependence of

demand and supply, that is, Assumptions 1 and 2. The third expected distance is the expected

distance between estimated demand and estimated supply; that is, the expected magnitude of

estimated excess demand. The claim that this expected distance is small is in Lemma 2 in

Appendix B. This is the only part of the proof of Theorem 2 that requires our identifiability

condition, Assumption 3.

The rate of convergence to efficiency in Theorem 2 is 1{n because the auctioneer uses the

empirical distribution of values and costs of the traders that have dropped out to estimate

demand and supply, and the empirical distribution converges to the true distribution at rate

1{
?
n. In McAfee (1992) the rate of convergence is 1{n2 as the gap between demand and

supply is never more than one unit and there is no need to use the empirical distribution

to estimate demand and supply with single-unit traders. Thus, in McAfee’s mechanism not

only the percentage welfare loss, but also the total welfare loss goes to zero as the number of

traders increases. The literature on the k-double auction (see Rustichini, Satterthwaite, and

Williams, 1994, and Cripps and Swinkels, 2006) has also obtained convergence to efficiency at

rate 1{n2. In that literature, no estimation procedure is needed as the auctioneer is passive and

the traders know the true distribution of values and costs when computing their equilibrium

strategies. The k-double auction literature puts the burden of aggregating information on the

traders’ knowledge of the true distribution and their ability to compute and coordinate on

an equilibrium.33 In contrast, our DCA puts the burden of aggregating information on the

auctioneer, making the traders’ strategy straightforward. Finally, we should mention that the

splitting mechanism in Kojima and Yamashita (2017) converges to efficiency at rate 1{n1{6.

Their and our rate of convergence, however, are not not easily comparable, as the models

are different; they assume interdependent values and single dimensional types determining the

shape of a trader’s valuation.

33In the case of unit demand and supply it is well known that there are a continuum of equilibria. In the
case of multi-unit demands and supplies it is only known that a mixed strategy equilibrium exists, but no such
equilibrium has yet been found.
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6 Conclusions

Progress in research is made one step at a time; in this paper, we have proposed an estimation-

based market design for a homogeneous good market which targets efficiency. In contrast

to Walrasian tâtonnement, from which it draws inspiration, it maintains dominant strategy

incentive compatibility throughout by making all agents price-takers at all times.

Importantly, our DCA achieves this while accommodating multi-unit traders, which is of

relevance in practice. Of course, it can be criticized on the ground that it does not perform

well (e.g., in the large) in environments different from those we have studied. This is however

true of any mechanism; for example, McAfee’s mechanism has nice incentive and asymptotic

properties with single-unit traders, but these properties are not robust to the introduction of

multi-unit traders with multi-dimensional types. Similarly, our DCA may be vulnerable to

shill bidding if the designer cannot prevent agents from registering under multiple identities,

because it estimates target prices and eventually the reserve price based on the values and costs

of the traders that have dropped out. To see this simply, reconsider the variant of McAfee’s

mechanism with single-unit traders mentioned in footnote 17, in which the target price is a non-

degenerate function of the exit prices of all agents who have become inactive. By registering

multiple times and dropping out early on the shills an agent may be able to affect the price at

which she trades in her favor. Thus, robustness to shill bidding is not a problem specific to our

mechanism but applies to the entire literature on mechanism design with estimation.

Our DCA design is quite flexible, and can be modified in several ways, depending on the

goals and constraints facing the designer, while preserving the property that sincere bidding is

a dominant strategy equilibrium.

First, the DCA generates a budget surplus, because it runs an Ausubel auction on the

long side of the market. While in many practical applications (e.g., double auctions run by

governments or public agencies) running a surplus is acceptable, or even desirable, a budget

surplus could be avoided by using a rationing procedure instead of an Ausubel auction. Suppose

that after selecting the reserve price the auctioneer randomly selects a priority order of the

traders on the long side of the market and fulfills their demands or supplies according to the

drawn priority, up to the quantity determined on the short side of the market. All traders

are charged or paid the reserve price for each unit they receive or provide. This modification

does not change the incentive properties of the DCA, as no trader can affect the reserve price

unless they drop out. They also cannot profitably affect the quantity traded. Thus, Theorem 1

continues to hold and the modified DCA balances the budget. However, this comes at the cost

of giving up constrained efficiency and slowing the convergence to efficiency as the number of

traders grows. Consider the case when buyers are on the long side of the market. The number

of efficient trades that are not completed is still given by the difference between demand and
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supply at the reserve price RZ , DN pRZq´S
MpRZq. However, as the non-completed trades are

randomly selected among buyers with marginal values above r, the upper bound on the welfare

loss is now (some multiple of) DN pRZq ´ SMpRZq. Thus, an upper bound on the expected

percentage efficiency loss is Enφ˚

„?
pDN pRZq´SMpRZqq2

n



. Since Lemma 2 in Appendix B proves

that Enφ˚

„

Enφ˚
”

DN pRZq´S
MpRZq

n

ˇ

ˇZ
ı2


converges to zero at rate 1{n, it follows from Jensen’s

inequality that the expected percentage efficiency loss of the DCA with rationing converges to

zero at rate 1{
?
n.

Second, our DCA can be modified to allow for the incorporation of constraints on the

aggregate quantities subsets of bidders may be allocated or may procure, such as a cap on the

number of units a subgroup of buyers may acquire in total. Quantity constraints like these

may arise for a number of reasons, such as antitrust concerns or technological constraints.

Third, in the DCA the auctioneer selects target prices in each estimation round and the

clock state is determined so as to achieve equality of estimated demand and supply; the goal

is to reach a unique reserve price at which estimated excess demand is zero. A profit max-

imizing intermediary could instead set target prices and clock states so as to target equality

of estimated marginal cost and marginal benefit (derived from estimated demand and sup-

ply), with the goal of reaching two different reserve prices, one for buyers and one for sellers,

at which estimated marginal revenue equals estimated marginal cost and estimated demand

equals estimated supply. Call maximum profit the profit that would be generated if the profit

maximizing intermediary knew demand and supply, but was constrained to select two prices,

a uniform price for buyers and a uniform price for sellers.34 With an additional monotonicity

assumption on marginal cost and benefit, we conjecture that such a modified DCA would be

asymptotically profit maximizing; that is, the percentage profit loss relative to maximum profit

would convergences to zero as the number of traders grows. We leave a proper investigation to

future research.

In future research, it would also be important to expand the setup to allow for heterogenous

commodities or incorporate versions of the assignment model.35 The latter is simpler than what

we have studied here, insofar as agents trade at most one unit, but the challenges arise because

there is no natural ordering of agents according to their types. One could also depart from the

two-sided setup we considered here by studying an asset market model in which every agent

is endowed with some units while having demand for more units. This setup takes away the

market maker’s ability to separate traders a priori into buyers and sellers.

34Extending Myerson (1981) optimal single-side auction in a Bayesian setting to the case of buyers with multi-
unit demand is still an open problem; a fortiori, we do not know the Bayesian mechanism (or, for that matter,
the dominant strategy mechanism) that maximizes the intermediary profit in a setting with multi-unit demands
and supplies and no restrictions on the prices the intermediary may charge.

35See Ausubel (2006) and Shapley and Shubik (1972), respectively.
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Appendix A

Proof of Proposition 1. We denote by vpiq the i-th highest value and by cris the i-th lowest

cost. We let: fp2:2q

`

vp2q
˘

be the unconditional density of vp2q; fp1:2q

`

vp1q | vp2q
˘

be the density

of vp1q conditional on vp2q; fr2:2spcr2sq be the unconditional density of cr2s and fr1:2s

`

cr1s | cr2s
˘

be the density of cr1s conditional on cr2s.

We are now ready to define the three welfare components in McAfee’s mechanism. Inte-

grating for vp2q ě cr2s, first we have

W T1 “

ż 1

0

ż 1

cr2s

ż cr2s

0

ż 1

vp2q

pvp1q´cr1sqfp1:2qpvp1q|vp2qqfr1:2spcr1s|cr2sqfp2:2qpvp2qqfr2:2spcr2sqdvp1qdcr1sdvp2qdcr2s ,

and second we have

W T2 “

ż 1
2

0

ż 1

1
2

pvp2q ´ cr2sqfp2:2qpvp2qqfr2:2spcr2sqdvp2qdcr2s.

Third, integrating over vp2q ă cr2s with p1 “
vp2q`cr2s

2 we have

WE1 “

ż 1

0

ż cr2s

0

ż p1

0

ż 1

p1

pvp1q´cr1sqfp1:2qpvp1q|vp2qqfr1:2spcr1s|cr2sqfp2:2qpvp2qqfr2:2spcr2sqdvp1qdcr1sdvp2qdcr2s.

Letting f be the density of F , recall that the densities and conditional densities of the order

statistics out of a population N “M “ 2 are fr2:2spcq “ 2fpcqF pcq, fp2:2qpvq “ 2fpvqr1´F pvqs,

fr1:2spx | cq “
fpxq
F pcq , fp1:2qpy | vq “

fpyq
1´F pvq . Making use of these definitions yields

WE1 “ 4

ż 1

0

ż c

0

ż v`c
2

0

ż 1

v`c
2

py ´ xqfpyqfpxqfpvqfpcqdydxdvdc.

We now prove that WE1 “WRS . The proposition then follows from the fact that W T1 ą 0,

W T2 ą 0.

Observe that in the random sampling mechanism in each market i welfare wRSi is

wRSi “

ż 1

0

ż 1

0

ż vj`cj

2

0

ż 1

vj`cj

2

pvi ´ ciqfpviqfpciqfpvjqfpcjqdvidcidvjdcj ,

where vj , cj are the realizations in the other market j ‰ i. Thus, dropping the superscripts on

vj , cj and setting vi “ y, ci “ x, we have:

WRS “ 2

ż 1

0

ż 1

0

ż v`c
2

0

ż 1

v`c
2

py ´ xqfpyqfpxqfpvqfpcqdydxdvdc

“ 2

ż 1

0

ż c

0

«

ż v`c
2

0

ż 1

v`c
2

py ´ xqfpyqfpxqdydx

ff

fpvqfpcqdvdc

` 2

ż 1

0

ż 1

c

«

ż v`c
2

0

ż 1

v`c
2

py ´ xqfpyqfpxqdydx

ff

fpvqfpcqdvdc.

27



By changing the order of integration of c and v, the second term on the right hand side is equal

to

2

ż 1

0

ż v

0

«

ż v`c
2

0

ż 1

v`c
2

py ´ xqfpyqfpxqdydx

ff

fpcqfpvqdcdv

It is thus clear, by swapping the variables c and v, that the second term is equal to the first

term on the right hand side, and hence WRS “WE1, which is what we wanted to show.

Background for Table 1

We used Wolfram Mathematica to perform the computations presented in the text and dis-

cussed in this appendix. The files are available from the authors.

Ex post efficiency. As all the numbers in the table refer to fractions of social surplus under

ex post efficiency, we first need to compute social surplus under ex post efficiency for given

N “M and kB “ kS “ K.

For any N ě 1 and K “ 1, expected social surplus under ex post efficiency, denoted W pnq,

can be computed as

W pNq “
N
ÿ

j“1

Wj ,

where for j P t1, . . . , Nu

Wj “

ż 1

0

ż vp1q

0
. . .

ż vpjq

crj´1s

pvpjq ´ crjsqfrj:Nspcrjs|crj´1sqfpj:Nqpvpjq|vpj´1qq . . . fp1:Nqpvp1qqfr1:Nspcr1sq

dcrjsdvpjq . . . dcr1sdvp1q

is the expected social surplus created by the j-th most valuable trade and where frj:Nspcrjs|crj´1sq

is the conditional density of the j-th lowest of N independent draws from F , conditional on this

draw being greater than the j´ 1-th lowest, and fpj:Nqpvpjq|vpj´1qq is the conditional density of

the j-th highest of N independent draws from F , conditional on this draw being smaller than

the j ´ 1-th highest. For K ą 1, denote expected social surplus by W pN,Kq. Replacing N by

N̂ “ NKk, one obtains W pN,Kq “ W pN̂q as the expression of expected social surplus in the

setting with N buyers and sellers each with capacity K.

With F uniform and N “ K “ 1, expected social surplus under ex post efficiency is
ş1
0

şv
0pv ´ cqdcdv “ 1{6. With N “ 2 and K “ 1, and equivalently for N “ 1 and K “ 2, it is

2{5. With N “ K “ 2, or equivalently for N “ 4 and K “ 1, it is 8
9 .

SB : As is well known, the Myersonian mechanism design machinery works only for one-

dimensional types, which means that the second-best mechanism is only known for the cases

with K “ 1. For α P r0, 1s, letting ΨB
α pvq “ v´αp1´F pvqq{fpvq and ΨS

αpcq “ c`αF pvq{fpvq

be the α-weighted virtual types, which we assume to be increasing in v and c, the second-best

mechanism has the allocation rule of inducing trade by all pairs i P t0, . . . , Nu with values
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vpiq and costs cris such that ΨB
α˚pvpiqq ´ ΨS

α˚pcrisq ě 0, where no trade occurs if ΨB
α˚pvp1qq ´

ΨS
α˚pcr1sq ă 0 and where α˚ is the smallest number α such that

Eα

«

N
ÿ

i“1

`

ΨB
1 pvpiqq ´ΨS

1 pcrisq
˘

ff

“ 0,

with the expectation accounting for the allocation rule parameterized by α. Accordingly,

second-best welfare WSBpNq is

WSBpNq “ Eα˚

«

N
ÿ

i“1

`

vpiq ´ cris
˘

ff

.

See Myerson and Satterthwaite (1983) and Gresik and Satterthwaite (1989) for derivations of

the second-best mechanism. ForN “ 1 and F uniform on r0, 1s, Eα
”

řN
i“0

`

ΨB
1 pvpiq ´ΨS

1 pcrisq
˘

ı

“

p3α´1q{p6p1`αq3q, so α˚ “ 1{3, implying a second best welfare of
ş1
1{4

şv´1{2
0 pv´cqdcdv “ 9{64,

which is 27{32 of first-best welfare. For N “ 2, one can show that α˚ “ 0.225629, yielding a

second-best welfare of 0.377463.36 This is 0.944 times first-best welfare of 2{5.

RS : The formula for welfare in the RS mechanism with two markets and single-unit capacity

(N “ 2, K “ 1) is given in the proof of Proposition 1. With two markets and traders with a

capacity of two (N “ K “ 2) and the estimated price being equal to the average Walrasian

price, the expected welfare in the RS mechanism is

WRS “ 2

ż 1

0

„
ż 1

p

ż p

0
pvp1q ´ cr1sqfp1:2qpvp1qqfr1:2spcr1sqdvp1qdcr1s

`

ż 1

p

ż p

0
pvp2q ´ cr2sqfp2:2qpvp2qqfr2:2spcr2sqdvp2qdcr2s



hppqppqdp,

where hppq is the density of the midpoint of the Walrasian price gap in a market with one buyer

and one seller, each with a capacity of 2 drawing their types independently from F ; that is, it

is the density of the average of the second and third order statistic out of four draws; see e.g.,

Loertscher and Mezzetti (2019). Thus, for F uniform on r0, 1s, the density of p is

hppq “

#

24p2 ´ 32p3, p P r0, 1{2s

´8` 48p´ 72p2 ` 32p3, p P p1{2, 1s .

DCA: The formula for N “ 2 and K “ 1 is in the proof of Proposition 1. For N “ K “ 2,

we stack the deck against the DCA and assume there is no exogenous initial reserve price p0.

Then the DCA has to proceed until one agent drops out and the reserve price in the ensuing

Ausubel auction is determined by the lowest cost of the first seller that drops out, or the highest

36Analytical expressions for second-best welfare and for α˚ are available but not particularly insightful. Welfare
for given α is p2p3` 15α` 25α2

` 15α3
qq{p15p1`αq5q while α˚ “ p´30` p29700´ 1350

?
434q1{3` 352{3

p2p22`?
434q1{3qq{90. Second-best welfare is then obtained by plugging in α˚.
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value of the first buyer that drops out. When it is the first seller to drop out that determines

the price, this is either the second lowest out of four (first event), or the third lowest out of

four (second event) value draws. The first of these two events is twice as likely as the second,

because the seller that drops out could have either the second and the third or the second and

the fourth lowest values. While the only assignment of values in the event when the price is

the third lowest seller value is that the seller that drops out has the third and fourth lowest

values. Each of the possible value assignments to the seller are equally likely. Thus welfare is:

WDA
S “

2

3

ż 1

0

„
ż 1

p

ż p

0
pvp1q ´ cr1sqfp1:4qpvp1qqfr1:1spcr1s | cr1s ă pqdcr1sdvp1q



fr2:4sppqdp

`
1

3

ż 1

0

„
ż 1

p

ż p

0
pvp1q ´ cr1sqfp1:4qpvp1qqfr1:2spcr1s | cr2s ă pqdcr1sdvp1q



fr3:4sppqdp

`
1

3

ż 1

0

„
ż 1

p

ż p

0
pvp2q ´ cr2sqfp2:4qpvp2qqfr2:2spcr2s | cr2s ă pqdcr2sdvp2q



fr3:4sppqdp,

where, for F uniform, fr1:1spcr1s | cr1s ă pq “ 1{p , fr1:2spcr1s | cr2s ă pq “ 2pp ´ cr1sq{p
2 and

fr2:2spcr2s | cr2s ă pq “ 2cr2s{p
2.

When it is the first buyer that drops out to determine the price, the argument is analogous

and welfare is:

WDA
B “

2

3

ż 1

0

„
ż p

0

ż 1

p
pvp1q ´ cr1sqfr1:4spcr1sqfp1:1qpvp1q | vp1q ą pqdvp1qdcr1s



fp2:4qppqdp

`
1

3

ż 1

0

„
ż p

0

ż 1

p
pvp1q ´ cr1sqfr1:4spcr1sqfp1:2qpvp1q | vp2q ą pqdvp1qdcr1s



fp3:4qppqdp

`
1

3

ż 1

0

„
ż p

0

ż 1

p
pvp2q ´ cr2sqfr2:4spcr2sqfp2:2qpvp2q | vp2q ą pqdvp2qdcr2s



fp3:4qppqdp,

with, for F uniform, fp1:1qpvp1q | vp1q ą pq “ 1{p1´pq, fp1:2qpvp1q | vp2q ą pq “ 2pvp1q´pq{p1´pq
2,

and fp2:2qpvp2q | vp2q ą pq “ 2p1´ vp2qq{p1´ pq
2.

When it is equally likely that the first drop out is a seller or a buyer (which is true for the

uniform and any distribution that is symmetric around 1{2), welfare is pWDA
S `WDA

B q{2. In

the uniform case, we have also

WDA
S “WDA “

17

27
.

Background for Table 2 and the Importance of Matching

It is straightforward to show that limit welfare is w8paq “ 1{p2ap1 ` aqq while welfare in the

bilateral trade setting is w1paq “
aΓpaqΓp2`aq
p1`aqΓp2p1`aqq , where Γpaq “

ş8

0 xa´1e´xdx. Hence,

mpaq “
2aaΓpaqΓp2` aq

Γp2p1` aqq
,
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which has the properties mentioned in the text. The second-best mechanism for the bilateral

trade problem with the distributions in (1) is characterized by the allocation that induces

trade if ΨB
α pvq “ v ´ αp1 ´ vq{a ě c ` αc{a “ ΨS

αpcq for the smallest value of α such that

EαrΨB
1 pvq ´ΨS

1 pcqs, where the expectation accounts for this allocation rule (see, e.g., Myerson

and Satterthwaite, 1983, and Background for Table 1). Letting α˚paq be this value, one can

show that

α˚paq “
a

1` 2a
.

For example, for a “ 1, the uniform distribution for both buyers and sellers, we have α˚p1q “

1{3. Accordingly, social surplus under the second-best mechanism for the bilateral trade prob-

lem parameterized by a is

wSB1 paq “ Eα˚paqrv ´ cs “
a
´

1`a
1`2a

¯´2a
ΓpaqΓp2` aq

4ap1` aq2Γp1` 2aq
.

As w1paq “ p2aΓpaqΓp2` aqq{Γp3` 2aq, it follows that

wSB1 paq

w1paq
“

2´p1`2aq
´

1`a
1`2a

¯´2a
Γp3` 2aq

p1` 2aq2Γp1` 2aq
.

As shown in Figure 3, this is a decreasing function of a. Moreover, one can show that

limaÑ8
wSB1 paq
w1paq

“ 2
e « 0.736.

0 1 2 3 4 5
a

0.2

0.4

0.6

0.8

1.0
w1SBw1Ratio

Figure 3: The ratio wSB1 paq{w1paq.
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Appendix B

Lemma 1. Suppose Assumptions 1 and 2 hold and the valuations and costs of the nN buyers

and nM sellers are drawn according to the probability measure Pnφ. Then there exists ∆ ă 8

such that, for all p, pB, pS P p0, 1q, k P t1, ..., kBu or k P t1, ..., kSu, and all φ P Φ: 37

Enφ
„ˆ

DN
k ppq ´ Eφ

“

DN
k ppq

‰

n

˙2

ď
∆

n
, (8)

Enφ
„ˆ

D
NOppBq
k ppq ´ Eφ

“

D
NOppBq
k ppq

‰

nOppBq

˙2

ď
∆

nOppBq
, (9)

Enφ
„ˆ

SM
k ppq ´ Eφ

“

SM
k ppq

‰

n

˙2

ď
∆

n
, (10)

Enφ
„ˆ

S
MOppSq
k ppq ´ Eφ

“

S
MOppSq
k ppq

‰

mOppSq

˙2

ď
∆

mOppSq
. (11)

Proof. We will only prove (8), as the the proofs of (9) – (11) are analogous. We have:

Enφ
„ˆ

DN
k ppq ´ Enφ

“

DN
k ppq

‰

n

˙2

“
1

n2
Enφ

„ˆ

ÿ

iPN

´

Di
kppq ´ Enφ

“

Di
kppq

‰

¯

˙2

“
1

n2
¨
ÿ

iPN

˜

Enφ
„ˆ

Di
kppq ´ Enφ

“

Di
kppq

‰

˙2

` 2
ÿ

jPN , jąi

Enφ
„ˆ

Di
kppq ´ Enφ

“

Di
kppq

‰

˙ˆ

Dj
kppq ´ Enφ

“

Dj
kppq

‰

˙

¸

“
1

n2
¨
ÿ

iPN

˜

Enφ
„ˆ

Di
kppq ´ Enφ

“

Di
kppq

‰

˙2

` 2
ÿ

jPN , jąi

´

Enφ
“

Di
kppqD

j
kppq

‰

´ Enφ
“

Di
kppq

‰

Enφ
“

Dj
kppq

‰

¯

¸

“
1

n2
¨
ÿ

iPN

˜

Enφ
„ˆ

Di
kppq ´ Enφ

“

Di
kppq

‰

˙2

` 2
ÿ

jPN , jąi

αijk pp;φq

¸

ď
1

n2
¨

´

n` 2n∆B

¯

,

where the inequality follows from Assumption 2. Setting ∆ “ 1`2∆B concludes the proof.
37Expectations in (9) and (11) are taken given the identities of the inactive traders in NOppBq and MOpp

S
q.
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Corollary 1. Suppose the valuations and costs of the nN buyers and nM sellers are drawn

according to the probability measure Pnφ and Assumptions 1 and 2 hold, then there exists ∆ ă 8

such that, for all p, pB, pS P p0, 1q, and all φ P Φ:

Enφ
„ˆ

DN ppq ´ Enφ
“

DN ppqs

n

˙2

ď
∆

n
, (12)

Enφ
„ˆ

DNOppBqppq ´ Enφ
“

DNOppBqppqs

nOppBq

˙2

ď
∆

nOppBq
, (13)

Enφ
„ˆ

SMppq ´ Enφ
“

SMppq
‰

n

˙2

ď
∆

n
, (14)

Enφ
„ˆ

SMOppSqppq ´ Enφ
“

SMOppSqppq
‰

mOppSq

˙2

ď
∆

mOppSq
. (15)

Proof. Define Y N
k ppq “ DN

k ppq ´ Eφ
“

DN
k ppq

‰

. It is:

Enφ
„ˆ

DN ppq ´ Enφ
“

DN ppq
‰

n

˙2

“ Enφ
„ˆ kB

ÿ

k“1

DN
k ppq ´ Enφ

“

DN
k ppq

‰

n

˙2

“ Enφ
„ˆ kB

ÿ

k“1

Y N
k ppq

n

˙2

“

kB
ÿ

k“1

Enφ
„ˆ

Y N
k ppq

n

˙2

` 2
kB
ÿ

k“1

kB
ÿ

h“k`1

Enφ
„ˆ

Y N
k ppq

n

˙ˆ

Y N
h ppq

n

˙

ď

kB
ÿ

k“1

Enφ
„ˆ

Y N
k ppq

n

˙2

` 2
kB
ÿ

k“1

kB
ÿ

h“k`1

Enφ
„ˆ

Y N
k ppq

n

˙21{2

¨ Enφ
„ˆ

Y N
h ppq

n

˙21{2

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

by Hölder’s inequality

ď pkBq
2 ¨ max

kPt1,...,kBu

"

Eφ
„ˆ

Y N
k ppq

n

˙2*

“ pkBq
2 ¨ max

kPt1,...,kBu

"

Eφ
„ˆ

DN
k ppq ´ Enφ

“

DN
k ppq

‰

n

˙2*

.

Then (12) follows from Lemma 1. The proofs of (13) – (15) are analogous.

Corollary 2. Suppose the valuations and costs of the nN buyers and nM sellers are drawn

according to the probability measure Pnφ and Assumptions 1 and 2 hold, then there exists ∆ ă 8

such that, for all p, pB, pS P p0, 1q, all events Z determining the set of buyers and sellers that
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have dropped out when prices are pB and pS and all φ P Φ:

Enφ
„ˆ

DN ppq ´ Enφ
“

DN ppq |Zs
n

˙2

ď
∆

n
, (16)

Enφ
„ˆ

SMppq ´ Enφ
“

SMppq |Z
‰

n

˙2

ď
∆

n
. (17)

Proof. We only prove (16), as the the proof of (17) is analogous. It is:

Enφ
„ˆ

DN ppq ´ Enφ
“

DN ppq |Z
‰

n

˙2

“ Enφ
„

1

n2
¨

´

DN ppq2 ` Enφ
“

DN ppq |Z
‰2
´ 2DN ppqEnφ

“

DN ppq |Z
‰

¯



“
1

n2
¨

ˆ

Enφ
”

DN ppq2
ı

` Enφ
”

Enφ
“

DN ppq |Z
‰2
ı

´ 2Enφ
”

Enφ
”

DN ppqEnφ
“

DN ppq |Z
‰

|Z
ıı

looooooooooooooooooooooomooooooooooooooooooooooon

by iterated expectations

˙

“
1

n2
¨

ˆ

Enφ
”

DN ppq2
ı

´ Enφ
”

Enφ
“

DN ppq |Z
‰2
ı

˙

ď Enφ
„ˆ

DN ppq

n

˙2

´ Enφ
„

DN ppq

n

2

looooooomooooooon

by Jensen’s inequality

“ Enφ
„ˆ

DN ppq ´ Enφ
“

DN ppq
‰

n

˙2

ď
∆

n
loomoon

by Corollary 1.

Proof of Theorem 2. Take φ˚ to be the true index; that is, take Pnφ˚ to be the true prob-

ability measure determining values and costs. Define δS as δS “ rr ´ P
n
S

`

DN prq
˘

s, where r is

the realized reserve price. By Assumption 1, nwδS ď Enφ˚rS
Mprq´SMpr´δSqs “ Enφ˚rS

N prq´

DN prqs; thus, when buyers are on the short side, we have that Enφ˚
“ˇ

ˇDN prq ´ SMprq
ˇ

ˇ

‰2
{nw

is an upper bound of the area of the rectangle ABCD in Fig. 2(a), which in turn is an an

upper bound of the expected welfare loss when the reserve price is r. Similarly, define δB “

rPnB
`

SmathcalM prq
˘

´ rs. By Assumption 1, nwδB ď Enφ˚rD
N prq ´DN pr ` δBqs “ Enφ˚rD

N ´

SMprqs; thus, when sellers are on the short side of the market, Enφ˚
1
nw

“ˇ

ˇDN prq ´ SMprq
ˇ

ˇ

‰2
is

also an upper bound of the expected welfare loss, as it is an upper bound of the area of the

rectangle EFGH in Fig. 2(b).

Recall that the reserve price RZ only depends on the event Z describing the informa-

tion obtained from traders that have dropped out of the DCA. The percentage welfare loss is
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Lpθq “ pWCEpθq´W pθqq{n
WCEpθq{n

and the per capita efficient welfare is finite, has finite variance and its

expectation converges to a finite level as n Ñ 8. By Assumption 1, we may then conclude

that to prove that the expected percentage efficiency loss Enφ˚ rLpθqs converges to zero at rate

1{n, it is sufficient to prove that the expectation of the numerator of Lpθq, which is bounded

above by 1
nE

n
φ˚

1
n

”

Enφ˚
“

|DN pRZq ´ S
MpRZq|

ˇ

ˇZ
‰

ı2
, converges to zero at rate 1{n, where the

inside expectation is taken over demand and supply conditional on Z and the outside expec-

tation is over events Z and hence the random reserve price RZ . That is, we must prove that

Enφ˚
”

Enφ˚
”

|DN pRZq´S
MpRZq|

n

ˇ

ˇZ
ıı2

ď L
n for some constant L ą 0 and all n. By Jensen’s in-

equality: Enφ˚
”

Enφ˚
”

|DN pRZq´S
MpRZq|

n

ˇ

ˇZ
ıı2

ď Enφ˚

„

Enφ˚

„

´

DN pRZq´S
MpRZq

n

¯2 ˇ

ˇZ


and hence

it suffices to show that for some L ą 0 and all n: Enφ˚

„

Enφ˚

„

´

DN pRZq´S
MpRZq

n

¯2 ˇ

ˇZ


ď L
n .

For all r P r0, 1s, define expected excess demand at r asXN
φ˚pr;Zq “ Enφ˚

“

DN prq ´ SMprq |Z
‰

.

Note that for all Z and RZ P r0, 1s:

Enφ˚

«

Enφ˚

«

ˆ

DN pRZq ´ S
MpRZq

n

˙2
ˇ

ˇ

ˇ
Z

ffff

“ Enφ˚

«

Enφ˚

«˜

DN pRZq ´ Eφ˚rDN pRZq|Zs
n

´
SMpRZq ´ Eφ˚rSMpRZq|Zs

n
`
XN
φ˚pRZ ;Zq

n

¸2
ˇ

ˇ

ˇ
Z

ffff

ď 9 max

#

Enφ˚

«

Enφ˚

«˜

DN pRZq ´ Enφ˚rD
N pRZq|Zs

n

¸2
ˇ

ˇ

ˇ
Z

ffff

,

Enφ˚

«

Enφ˚

«˜

SMpRZq ´ Enφ˚rS
MpRZq |Zs

n

¸2
ˇ

ˇ

ˇ
Z

ffff

, Enφ˚

«

Enφ˚

«˜

XN
φ˚
pRZ ;Zq
n

¸2 ff
ˇ

ˇ

ˇ
Z

ff+

.

To conclude the proof we only need to show that there exists ∆ ă 8 such that each of the

three terms in the max is smaller than ∆{n. For the first two terms, this follows immediately

from Corollary 1, as the inequality holds for all realizations of RZ . Lemma 2 below shows that

the third term, which equals Enφ˚
”´

XNφ˚ pRZ ;Zq
n

¯2ı

is also smaller than ∆
n .

Lemma 2. Suppose the valuations and costs of the nN buyers and nM sellers are drawn

according to the probability measure Pnφ˚ and Assumptions 1, 2 and 3 hold, then there exists

∆ ă 8 such that: Enφ˚
”´

XNφ˚ pRZ ;Zq
n

¯2ı

ď ∆
n .

Proof. We first need to establish two preliminary lemmas.

Lemma 3. Suppose the valuations and costs of the nN buyers and nM sellers are drawn

according to the probability measure Pnφ˚ and Assumptions 1, 2 and 3 hold. Let Z be the event

containing the information from the dropped-out traders. There exists ∆ ă 8 such that:

Enφ˚

«˜

XN
φ˚
pRZ ;Zq ´ EnφpZq

“

DN pRZq ´ S
MpRZq |Z

‰

n

¸2 ff

ď
∆

n
.
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Proof. Note that:

´

XN
φ˚pRZ ;Zqq ´ EnφpZq

“

DN pRZq ´ S
MpRZq |Z

‰

¯2

“

´

Enφ˚
“

DN pRZq ´ S
MpRZq |Z

‰

´ EnφpZq
“

DN pRZq ´ S
MpRZq |Z

‰

¯2

ď 2
´

Enφ˚
“

DN pRZq |Z
‰

´ EnφpZq
“

DN pRZq |Z
‰

¯2
` 2

´

Enφ˚
“

SMpRZq |Z
‰

´ EnφpZq
“

SMpRZq |Z
‰

¯2

(18)

Taking the expectation with respect to Pnφ˚ , by Assumption 3 there exists a ζ ą 0 such that:

1

2ζ
¨ Enφ˚

«˜

XN
φ˚
pRZ ;Zq ´ EnφpZq

“

DN pRZq ´ S
MpRZq |Z

‰

n

¸2 ff

ď Enφ˚

«

ż RZ

0

˜

Enφ˚
“

DNOpRZqptq
‰

´ EnφpZq
“

DNOpRZqptq
‰

n

¸2

dt

`

ż 1

RZ

˜

Enφ˚
“

SMOpRZqptq
‰

´ EnφpZq
“

SMOpRZqptq
‰

n

¸2

dt

ff

“ Enφ˚

«

ż RZ

0

˜

Enφ˚
“

DNOpRZqptq
‰

´DNOpRZqptq `DNOpRZqptq ´ EnφpZq
“

DNOpRZqptq
‰

n

¸2

dt

`

ż 1

RZ

˜

Enφ˚
“

SMOpRZqptq
‰

´ SMOpRZqptq ` SMOpRZqptq ´ EnφpZq
“

SMOpRZqptq
‰

n

¸2

dt

ff

ď 2Enφ˚

«

ż RZ

0

˜

Enφ˚
“

DNOpRZqptq
‰

´DNOpRZqptq

n

¸2

dt`

ż RZ

0

˜

DNOpRZqptq ´ EnφpZq
“

DNOpRZqptq
‰

n

¸2

dt

`

ż 1

RZ

˜

Enφ˚
“

SMOpRZqptq
‰

´ SMOpRZqptq

n

¸2

dt`

ż 1

RZ

˜

SMOpRZqptq ´ EnφpZq
“

SMOpRZqptq
‰

n

¸2

dt

ff

ď 4Enφ˚

«

ż RZ

0

˜

Enφ˚
“

DNOpRZqptq
‰

´DNOpRZqptq

n

¸2

dt`

ż 1

RZ

˜

Enφ˚
“

SMOpRZqptq
‰

´ SMOpRZqptq

n

¸2

dt

ff

where the first inequality follows from Assumption 3, the second from simple algebra, and the

third from the definition of φpZq in (6) as the minimum distance estimation index.

Applying Corollary 1 concludes the proof of Lemma 3, as for some ∆ ą 0 two terms in the

square brackets on the right hand side are both less than ∆
nζ for all realization RZ .

Lemma 4. Suppose the valuation and costs of the nN buyers and nM sellers are drawn

according to the probability measure Pnφ˚ and Assumptions 1, 2 and 3 hold. Let Z be the event

containing the information from the dropped-out traders. There exists ∆ ă 8 such that:

Enφ˚

«˜

EnφpZqrD
N pRZq ´ S

MpRZq
ˇ

ˇZ
‰

n

¸2 ff

ď
∆

n
.
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Proof. Recall that given an event Z estimated demand and estimated supply at RZ are given

by EφpZqrDN pRZq |Zs and EφpZqrSMpRZq |Zs. There are three cases, or set of events, to

consider depending on whether estimated demand is greater, equal or smaller than estimated

supply. The case of equality is trivial, as it obviously implies that the term in brackets in the

inequality in the lemma is less than ∆
n for any ∆ ą 0. The cases of estimated excess demand

and estimated excess supply are mirror images of one another and we will thus only consider

one of them.

Thus, take events Z for which EφpZqrDN pRZq |Zs ą EφpZqrSMpRZq |Zs, so that the last

clock state of the DCA, the state when the reserve price is reached, is a buyers clock state. This

implies that the state preceding the last clock state is either a double clock or a sellers’ clock

state and there was a sequence of clock prices along which the sellers’ price decreased until it

reached RZ and the buyers’ clock price stayed constant or increased and stopped at RZ ´ εB.

Along that price sequence conditional estimated supply must be at least as large as conditional

estimated demand and the sequence must end with either a seller or a buyer dropping out of

the DCA. Denote by Z´ the event that occurred before the state preceding the last; this is the

event used to estimate demand and supply in the the second to last state. As we have argued,

it must be EφpZ´qrDN pRZ ´ εBq |Z´s ď EφpZ´qrSMpRZq |Z´s and hence:

´

EφpZqrDN pRZq ´ S
MpRZq |Zs

¯2
(19)

ď

˜

EφpZqrDN pRZq |Zs ´ EφpZqrSMpRZq |Zs ` EφpZ´qrS
MpRZq |Z´s ´ EφpZ´qrD

N pRZ ´ εBq |Z´s
¯2

ď

´

EφpZqrDN pRZq |Zs´Eφ˚rDN pRZq |Zs ` Eφ˚rDN pRZq |Zs
loooooooooooooooooooooooooomoooooooooooooooooooooooooon

“ 0

´DN pRZq `D
N pRZq

loooooooooooomoooooooooooon

“ 0

´Eφ˚rDN pRZq |Z´s ` Eφ˚rDN pRZ ´ εBq |Z´s
looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

Eφ˚
rDN pRZ ´ εBq |Z´s ě Eφ˚

rDN pRZq |Z´s

´ EφpZ´qrD
N pRZ ´ εBq |Z´s

´ EφpZqrSMpRZq |Zs`Eφ˚rSMpRZq |Zs ´ Eφ˚rSMpRZq |Zs
loooooooooooooooooooooooooomoooooooooooooooooooooooooon

“ 0

`SMpRZq ´ S
MpRZq

looooooooooooomooooooooooooon

“ 0

`Eφ˚rSMpRZq |Z´s ´ Eφ˚rSMpRZq |Z´s
loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

“ 0

`EφpZ´qrS
MpRZq |Z´s

¯2

ď 8
´

EφpZqrDN pRZq |Zs ´ Eφ˚rDN pRZq |Zs
¯2
` 8

´

Eφ˚rDN pRZq |Zs ´DN pRZq
¯2

` 8
´

DN pRZq ´ Eφ˚rDN pRZq |Z´s
¯2
` 8

´

Eφ˚rDN pRZ ´ εBq |Z´s ´ EφpZ´qrD
N pRZ ´ εBq |Z´s

¯2
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` 8
´

EφpZqrSMpRZq |Zs ´ Eφ˚rSMpRZq |Zs
¯2
` 8

´

Eφ˚rSMpRZq |Zs ´ SMpRZq
¯2

` 8
´

SMpRZq ´ Eφ˚rSMpRZq |Z´s
¯2
` 8

´

Eφ˚rSMpRZq |Z´s ´ EφpZ´qrS
MpRZq |Z´s

¯2

Taking the expectation with respect to Pnφ˚ , we obtain:

1

8
¨ Eφ˚

„ˆEφpZqrDN pRZq ´ S
MpRZq |Zs

n

˙2

ď Eφ˚
„

´Eφ˚rDN pRZq |Zs ´DN pRZq

n

¯2


` Eφ˚
„

´DN pRZq ´ Eφ˚rDN pRZq |Z´s
n

¯2


` Eφ˚
„

´Eφ˚rSMpRZq |Zs ´ SMpRZq

n

¯2


` Eφ˚
„

´SMpRZq ´ Eφ˚rSMpRZq |Z´s
n

¯2


`
1

n2
Eφ˚

„

´

EφpZqrDN pRZq |Zs ´ Eφ˚rDN pRZq |Zs
¯2
`

´

EφpZqrSMpRZq |Zs ´ Eφ˚rSMpRZq |Zs
¯2


`
1

n2
Eφ˚

„

´

Eφ˚rDN pRZ ´ εBq |Z´s ´ EφpZ´qrD
N pRZ ´ εBq |Z´s

¯2

`

´

Eφ˚rSMpRZq |Z´s ´ EφpZ´qrS
MpRZq |Z´s

¯2


By Corollary 2 the first four terms on the right hand side of the last expression are bounded

from above by ∆{n for some ∆ ă 8. The first of the remaining two terms is equal to half the

right hand side of (18), while the second is equal to half the right hand side of (18) conditional

on Z´ rather than Z and with the demand evaluated at RZ ´ εB instead of RZ . Following

the same argument as in the proof of Lemma 3 we conclude that there exists a ∆ ă 8

such that ∆{n is an upper bound for the two terms. This conclude the proof of Lemma 4

since, as claimed above, the case of events with expected excess supply at RZ ( i.e., such that

EφpZqrSMpRZq |Zs ą EφpZqrDN pRZq |Zs ) can be dealt analogously to the case of expected

excess demand we just considered.

We now conclude the proof of Lemma 2. For all events Z is it is:

ˆ

XN
φ˚
pRZ ;Zq
n

˙2

“

ˆ

XN
φ˚
pRZ ;Zq ´ EφpZqrDN pRZq ´ S

MpRZq |Zs
n

`
EφpZqrDN pRZq ´ S

MpRZq |Zs
n

˙2

ď 2

ˆ

XN
φ˚
pRZ ;Zq ´ EφpZqrDN pRZq ´ S

MpRZq |Zs
n

˙2

` 2

ˆEφpZqrDN pRZq ´ S
MpRZq |Zs

n

˙2

ď 4 max

"ˆ

XN
φ˚
pRZ ;Zq ´ EφpZqrDN pRZq ´ S

MpRZq |Zs
n

˙2

,

ˆEφpZqrDN pRZq ´ S
MpRZq |Zs

n

˙2*

.

Taking the expectation Enφ˚ on both sides of the inequality, Lemma 2 follows from Lemmas 3

and 4, stating that the expectation of each term in curly brackets is less than ∆{n for some

∆ ą 0.
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