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1 Introduction

In perfectly competitive markets prices convey all the information agents need to make

their consumption and production decisions, but many important economic decisions

are not made through the market and many markets are not perfectly competitive.

Internal transactions within firms and organizations rarely rely on the price system;

governments regulate and intervene in many sectors of the economy; agents (e.g.,

managers, stock analysts, lobbyists, politicians, professionals experts) with market

power and private information are pervasive. Decision makers must thus often rely

on information transmitted by other, more informed, parties.

Informed parties sometimes have no stake in the different alternatives the decision

maker may select. They may even have the best interest of the decision maker at

heart, as when one moves to a job in a new city and a new colleague gives advice

about the city’s attractions. Other times, experts have stakes in the decision. In this

latter case, how should one interpret the information coming from an expert? If the

expert is self-serving, will she be able to manipulate the decision maker? Can she get

what she wants?

There is a large economic literature devoted to the study of this general problem.

It is useful to distinguish between three strands: disclosure of verifiable information,

cheap talk and Bayesian persuasion. The latter has the least in common with this

paper. Springing from the contributions of Kamenika and Gentzkov (2011) and Rayo

and Segal (2010), the Bayesian persuasion, or information design, literature focuses on

the case when a designer with commitment power and no information about the state

of nature controls the information received by the decision maker. The designer’s

goal in this literature is typically to induce the decision maker to undertake a specific

action independently of the state of the world.

On the contrary, and as in most of the cheap talk literature, this paper is concerned

with the case when the expert has private information about the state of the world

and her ideal decision depends on it. The decision maker is modeled as a single agent,
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but in some applications it could be viewed as representing “the market.”In the cheap

talk literature, the informed agent simply talks. The messages sent have no verifiable

meaning. Anything that expert A says could be said by expert B, irrespective of

the underlying information the two have. The general insight from the cheap talk

literature is that only coarse information can be transmitted and the outcome chosen

by the decision maker is not sensitive to small changes in the state of the world

(e.g., see the survey by Sobel, 2013). When their preferences are imperfectly aligned,

neither the expert nor the decision maker will be able to reach their ideal outcome.

The third strand of the literature studies the disclosure of verifiable information.

Experts that possess verifiable information can decide to disclose all or part of it,

but they cannot manufacture and disclose facts that are not true. The fundamental

insight from the literature on disclosure of verifiable information is that information

has little value to the expert; the expert cannot turn it to her advantage. Any news

that is not reported is viewed as bad news for the expert. By putting together the

evidence disclosed and the information not reported, the decision maker is able to

determine which alternative is best.

Many real life examples have both elements of cheap talk and verifiable infor-

mation. For example news and media companies report facts and opinions. Partial

verifiability is common. If rating agency A has discovered hidden liabilities in the

balance sheet of company C, it can fully or partially report them. If there are no

such liabilities in the balance sheet of company D, then rating agency B cannot mimic

the disclosure of A. Media companies can decide what facts to report, but they may

also report opinions. Scientists working for a biotechnology firm may or may not

publish the results of their research, but they cannot publish research they have not

undertaken.

The purpose of this paper is to take a new look at the disclosure of information

when the expert may decide how much information to disclose, with full disclosure,

partial disclosure and cheap talk all being possible. Its novelty is to show that there
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are natural circumstances, not explored in the existing literature, under which an

expert can make good use, in a self-serving way, of her private information. Indeed,

often the expert may be able to manipulate the decision maker to the point of inducing

her to choose the expert’s favorite alternative.

The standard assumption in the literature on disclosure of verifiable information

and cheap talk is that the preferences of the expert are well known. A buyer, for

example, knows that the salesman is trying to sell as much as possible of a given

product. The buyer can then safely assume that all positive verifiable information

about the quality of the product will be disclosed, because it will induce the buyer

to buy more. The privacy of the salesman information unravels; all information will

be disclosed and the buyer will be able to select her first best alternative (Grossman,

1981, Grossman and Hart, 1980, and Milgrom, 1981).

The assumption that the preferences of the expert are fully known nicely fits many

situations, but not all. Consider a rating agency discovering bad news about a large

company; it will have an incentive to investigate thoroughly and report the bad news

in order to preserve its reputation, but it will also have an incentive to gloss over

the bad news in order to appease the large company and get its business again in

the future. A biotechnology firm will have an incentive to let its scientists publish

all preliminary research in order to gain financing, but it also has an incentive not

to publish to make it more difficult for competitors to imitate. Even in the case

of a salesman, it is not always clear what her incentives are. When shopping for a

washing machine, for example, a buyer may not know whether the salesman stands

to gain more by selling brand A or brand B. In general, when information is not

unidimensional it is difficult to be sure about the precise direction of the expert’s

preferences.

So, what can the expert accomplish if the direction of her bias is not known by

the decision maker? This paper shed lights on this question. It takes a minimalist

modeling approach, by changing as little as possible from an otherwise standard
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model. The model used is the work-horse model of the literature on cheap talk,

in which the expert knows the state of the world, which coincides with the first

best alternative for the decision maker. Rather than pure cheap talk messages, the

expert must send messages that contain the truth, but the truth can be swamped by

cheap talk to the point that the message does not contain any information. The one

fundamental departure from the existing literature is that the decision maker does

not know the direction of the expert’s bias. The expert may want to distort choices

up or down.

Many new insights arise. Full disclosure is never an equilibrium. Quite to the

contrary, almost all expert types are able to manipulate the decision maker and

induce the choice of an alternative that is close to their favorite outcome. Indeed, a

positive measure of expert types will be able to obtain their first best outcome. We

call this full manipulation. Expert types who observe a non-extreme state are all able

to manipulate the decision maker. Those with non-extreme biases will achieve full

manipulation, while those with extreme biases will partially manipulate. The only

experts that obtain the same outcome as under full disclosure are the ones whose

preferences are perfectly aligned with the decision maker, and the ones that have

observed an extreme state and would prefer an even more extreme outcome. There

is no room for these types to distort the decision in a direction that is favorable to

them.

The intuition for why manipulation occurs is simple and instructive. Because the

direction of the expert’s bias is uncertain, the decision maker cannot fully decode

partial disclosures that do not fully reveal the state. A partial disclosure is consistent

with an expert that has observed a low state but would prefer a higher choice, and

with an expert that has observed a high state but would prefer a lower choice. The

compromise choice of the decision maker ends up being exactly what both types of

expert want.

We show that, if given a choice, experts would want to maintain uncertainty
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about their biases and incentives. Decision makers, on the other hand should not

worry about getting advice from a strongly biased expert, as long as the direction

of the bias is known. An increase in the size of the expert’s mean bias benefits the

decision maker and hurts the expert. This is because disclosures from more highly

biased experts are easier to read.

The paper proceeds as follows. Section 2 introduces the model. Section 3 shows

that any equilibrium involves full manipulation by a positive measure of expert types.

Section 4 studies the main features of the equilibrium. Section 5 contains comparative

statics results. Section 6 discusses related literature and Section 7 concludes. Proofs

missing from the main text are in the Appendix

2 The Model

There are two agents, Dema is a decision maker and Knowyn is an expert. They

care about the match of the choice of action made by Dema with the true state of

the world. The state of the world ω ∈ [ω, ω] is known by Knowyn but not by Dema,

who views it as a random variable with prior distribution F (ω). We assume that F

admits a positive density f(ω) at all points ω ∈ [ω, ω] .

The game the two agents play has two stages. In the first stage, Knowyn decides

the information to disclose to Dema. To allow full disclosure, partial disclosure and

pure cheap talk as feasible options, we postulate that the expert’s disclosure policy

consists of choosing an interval [a, b] which must contain the true state ω. If the expert

chooses an interval that contains the support [ω, ω] of the state of the world, then her

is a pure cheap talk message. If she chooses a non-degenerate interval [a, b] that is a

strict subset of [ω, ω], then she makes a partial disclosure, as she rules out that the

state belongs to [ω, ω] \ [a, b]. If she chooses interval [ω, ω], then she fully discloses.

In the second stage, after having observed Knowyn’s disclosure, Dema chooses an

action, or alternative. The set of possible alternatives is the real line.
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After observing the expert’s disclosure, Dema knows for sure that the true state

of the world belongs to the disclosed interval. This assumption is what distinguishes

our model from a pure cheap talk model, without ruling out that all messages sent are

cheap talk. Naturally, Dema’s posterior probability about the state of the world needs

also to take into account the strategy chosen by Knowyn; using Knowyn’s equilibrium

strategy allows Dema to further refine her beliefs.

We assume that the decision maker’s goal is to choose the alternative that mini-

mizes the Euclidean distance from the state of the world. That is, we take the state

of the world to represent the decision maker’s ideal choice. Thus, if x is the choice

and ω is the state, then Dema’s payoff is

V (x, ω) = − (x− ω)2 .

We could adopt a more general formulation; what we will use is that Dema’s optimal

choice is the alternative which equals the expected value of the state, conditional on

the information directly disclosed by the expert and the expert’s equilibrium strategy.

The expert’s preferences are not perfectly aligned with Dema’s preferences. The

simplest way to model this is to assume that the expert has a bias β and that her

payoff depends on the distance between the chosen alternative x and ω + β:

U(x, ω, β) = − (x− ω − β)2 .

The ideal choice of the expert diverges from the ideal choice of Dema, state ω, by the

bias β.

Our payoff functions coincide with those in the literature on cheap talk started

by Crawford and Sobel (1982), but unlike most of the literature on cheap talk and

disclosure of verifiable information, we assume that the bias β is private information

of the expert and viewed by the decision maker as a random variable with support

[βL, βH ] . As we shall see, the interesting case is when βL < 0 < βH ; in such a case

Dema is uncertain about the direction (as opposed to just the size) of Knowyn’s
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bias. We allow β to be correlated with ω and denote with G (β |ω) its conditional

distribution. We assume that G admits a positive density g for all β and ω.

An expert’s type is a pair (ω, β) of a state and a bias; let T = {(ω, β) : ω ∈

[ω, ω] , β ∈ [βL, βH ]} be the set of possible types of the expert. Let C be the set

of closed subintervals of the interval [ω, ω]. A strategy for the expert is a func-

tion sK : T → C with the restriction that ω ∈ sK (ω, β); the true state must be-

long to the reported interval. A strategy for Dema is a function sD : C → R. We

are interested in the (pure-strategy) perfect Bayesian equilibria (PBE) of the game.

A PBE is a triple 〈sK , sD, µ〉 , where sK and sD are the agents’ strategies and µ

is a map that associates to each I ∈ C a probability density over T , representing

Dema’s posterior beliefs about Knowyn’s type after Knowyn’s disclosure of I. Let

s−1K (I) = {(ω, β) ∈ T : sK (ω, β) = I} be the inverse image of I. To be a PBE the

triple 〈sK , sD, µ〉 must satisfy the following conditions:

µ (ω, β | I) =



f (ω) g(β |ω)∫
(ω̃,β̃)∈s−1

K (I)
f (ω̃) g(β̃ | ω̃)dω̃dβ̃

if ω ∈ I and s−1K (I) 6= ∅

0 if ω /∈ I

(1)

sD (I) = Eµ [ω | I] =:

∫
(ω,β)∈s−1

K (I)

ωµ (ω, β | I) dωdβ (2)

sK (ω, β) ∈ arg min
{I∈C: ω∈I}

(sD (I)− ω − β)2 . (3)

Condition (1) says that on the equilibrium path Dema’s posterior beliefs about

Knowyn’s type are consistent with Knowyn’s strategy and put zero mass on states

outside the disclosed interval.1 Condition (2) says that Dema’s equilibrium strategy

is to choose the expected value of the state conditional on her posterior beliefs and

1Thus, the only restriction on beliefs that follow disclosure of an interval I that is not on the

equilibrium path is that all mass be on I.
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the observed disclosure. Condition (3) requires that Knowyn chooses the disclosure

interval containing the state ω that maximizes her payoff, given Dema’s strategy.

Define the composite outcome map α : T → R as α = sD ◦ sK ; α(ω, β) =

sD (sK(ω, β)) is the alternative chosen in equilibrium by Dema when Knowyn’s type

is (ω, β). It is the norm for disclosure games to have multiple equilibria that induce

the same outcome map. For this reason, in discussing equilibrium we will focus on

the equilibrium map and will not present all possible outcome equivalent equilibria

that generate it.2

It is instructive to end this section with the benchmark case in which the direction

of the bias is common knowledge; that is, βL and βH have the same sign. Without loss

of generality, take 0 ≤ βL ≤ βH . It is then commonly known that Knowyn would like

to push Dema’s choice upward. Given this, it is natural for Dema to have pessimistic

beliefs; given any disclosed interval [a, b], Dema puts all probability mass on ω = a

and hence chooses sD ([a, b]) = a. Given these beliefs, it is a best reply for Knowyn to

disclose an interval with the true state as the left boundary: sK (ω, β) = [ω, b] with

b ≥ ω.3 The equilibrium outcome is equivalent to the expert choosing full disclosure

(i.e., choosing interval [ω, ω]). This is the same result as when the bias is fully known

(e.g., see Milgrom, 1981 and Grossman, 1981); Dema always obtains the information

needed to selects her first best alternative.

Proposition 1 If 0 ≤ βL ≤ βH , then the unique equilibrium outcome map is α(ω, β) =

ω for all (ω, β) ∈ T ; the expert’s verifiable disclosure fully reveals the true state of

the world and the decision maker achieves her first-best outcome.

Proof. First, note that in all equilibria it must be α (ω, β) ≥ ω for all (ω, β). If it

were α (ω, β) < ω for some type (ω, β), then type (ω, β) could profitably deviate by

2See footnote 3.
3Note that there are multiple, outcome equivalent, equilibria, that only vary in the right boundary

of the interval [ω, b] .
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disclosing [ω, ω] , which would certainly lead Dema to choose sD ([ω, ω]) = ω. Second,

suppose that α (ω′, β′) = x > ω′ for some (ω′, β′) . Then, the equilibrium disclosure I ′

made by Knowyn’s type (ω′, β′) must also have been made by at least another type

(ω′′, β′′) with ω′′ > x, because it must be x = Eµ[ω | I ′]. But then type (ω′′, β′′) would

gain by deviating and disclosing [ω′′, ω′′] .

Knowing the direction of Knowyn’s bias is as good for Dema as knowing the true

value of the bias. In the remainder of the paper, we will assume that βL < 0 < βH

and focus on the case in which the bias direction is uncertain.

3 Full Manipulation

In this section, we derive some general properties of the equilibrium outcome map

α. The first lemma is obvious: unbiased expert types induce the decision maker to

choose the alternative that is first best optimal for both agents. When the interests

of Knowyn and Dema are perfectly aligned, the expert could always fully disclose the

state, thus making sure that the decision maker picks the first best outcome.

Lemma 1 For all ω ∈ [ω, ω] , α(ω, 0) = ω.

Proof. Suppose, to the contrary, that α(ω, 0) = x 6= ω. By (1), disclosing interval

[ω, ω] induces Dema to choose ω, and is thus a profitable deviation for type (ω, 0) , a

contradiction.

Next we show that for any given ω the map α (ω, β) must be continuous and

weakly increasing in β, because types with the same state can mimic each other and

disclose the same interval. More precisely, the outcome α must either stay constant

as β increases, or increase linearly with β and select Knowyn’s first best outcome.

Lemma 2 For all ω ∈ [ω, ω] , α (ω, β) is: (i) continuous and weakly increasing in β;

(ii) either constant in an interval around β or equal to ω + β.
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x

βL β1 β20

ω

ω + β2

ω + β1

βH

α(ω, β)

Figure 1: α(ω, β) as a function of β for given ω.

By Lemma 2, it must be either α(ω, β) = ω+ β and the expert gets it’s favorite’s

outcome, or α(ω, β) is constant in an interval around β. The next lemma shows that,

for any given state ω, the outcome map α(ω, β) can only be constant for expert types

with an “extreme” bias – that is, types with a bias in an interval including one of

the boundary points βL and βH . Expert types with a “moderate” bias in an interval

[β1, β2] around β = 0, on the other hand, obtain their ideal outcome ω+β.4 As shown

in Figure 1, extreme left biased types with bias in the interval [βL, β1] induce Dema

to choose ω + β1, while extreme right biased types with bias in the interval [β2, βH ]

induce choice ω + β2, so they are still able to manipulate Dema’s choice moving it in

the direction of their bias.

Lemma 3 For all ω ∈ [ω, ω] , it must be: (i) α(ω, β) = ω + β in an interval [β1, β2]

with βL ≤ β1 ≤ 0 ≤ β2 ≤ βH , (ii) α(ω, β) = ω+β1 if β ≤ β1, and (iii) α(ω, β) = ω+β2

if β ≥ β2.

The next lemma shows that α(ω, β) must be monotone in ω.

4Lemma 3 does not rule out the possibility that the interval is degenerate and only includes the

unbiased expert type with β = 0. This possibility will be ruled out later, by Proposition 2. In

general, the boundary points β1, β2 of the interval depend on ω.
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Lemma 4 For all β ∈ [βL, βH ], the map α(ω, β) is weakly increasing in ω.

We say that the equilibrium outcome map α involves full manipulation by expert

type (ω, β) (or, alternatively, type (ω, β) fully manipulates Dema) if α (ω, β) = ω+β;

that is, Knowyn type (ω, β) induces the choice of her ideal outcome. We now prove

the main result of this section: a positive measure of Knowyn’s types achieve their

first best outcome. The intuition for the proof of the result is the following. Suppose

interval [a, b] is disclosed. Dema will choose an outcome x ∈ [a, b] because any state

outside the interval has zero probability of being the true state. Then, all Knowyn’s

types that observe a state ω ∈ [a, b] and have x as their first best outcome (i.e., types

such that ω + β = x) are able to fully manipulate and make sure that x is chosen by

Dema.

Proposition 2 In all equilibria, a positive measure of the expert’s types (ω, β) fully

manipulates the decision maker; that is, for a positive measure of types it is α (ω, β) =

ω + β.

Proof. The proof is by contradiction. Suppose, to the contrary, that at most a zero

measure of Knowyn’s types (ω, β) induce their first best outcome ω+ β. By Lemmas

1, 2 and 4, α(ω, β) is continuous almost everywhere in an open rectangle around any

point (ω1, 0). Let ε > 0 and ω1 ∈ (ω + ε, ω − ε). Take the open rectangle of types

R = {(ω, β) : ω1 − ε < ω < ω1 + ε,−ε < β < ε}. If only a zero measure set of types

(ω, β) in R are such that α(ω, β) = ω + β, then by Lemmas 1 and 2 it must be

α(ω, β) = ω for all types in R. Consider the interval I = [ω1 − ε, ω1 + ε]. Disclosing

interval I must induce an outcome ω2 ∈ [ω1 − ε, ω1 + ε], and thus it is a profitable

deviation for all types (ω, β) ∈ R with ω + β = ω2; a contradiction.

It is important to emphasize once again that full manipulation by the expert is

quite different from the standard full disclosure outcome that obtains when there is no

uncertainty about the direction of the expert’s bias. In essence, in our model partially

verifiable disclosures (i.e., disclosures of a non degenerate interval) cannot be fully
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deciphered by the decision maker. Disclosure [a, b] could be made by a Knowyn type

that has observed a state as low as a and has a positive bias, or by a type that has

observed a state as high as b and has a negative bias. No matter what alternative x

the decision maker picks after such a disclosure, there will be Knowyn’s types that find

x their first best choice and that can all pool and disclose [a, b]. Full manipulation is

made possible by this ability to pool and disclose the same interval by expert’s types

with positive and negative bias that have a given outcome x as their ideal choice.

Our final result of this section pins down the conditions that the equilibrium map

must satisfy at the boundary points of the state space. Expert types that observe

state ω = ω and have a negative bias and types that observe state ω = ω and have

a positive bias cannot do better than fully disclosing the state. The intuition is

straightforward. Types that observe state ω = ω and have a negative bias prefer

alternative x = ω to any alternative x > ω. Their ideal outcome is some x < ω, but

Dema would never choose such an outcome. Thus, among the outcomes that Knowyn

can feasibly induce Dema to choose, Knowyn’s preferences are aligned with Dema’s.

It is thus optimal for Knowyn to disclose interval [ω, ω]. Similarly, in the set [ω, ω] of

“feasible” alternatives, the preferences of Knowyn’s types that observe state ω = ω

and have a positive bias are perfectly aligned with Dema’s preferences.

Proposition 3 In all equilibria, it is α(ω, β) = ω if β ≤ 0 and α(ω, β) = ω if β ≥ 0.

Proof. Consider Knowyn’s type (ω, β) with β ≤ 0. Disclosing interval [ω, ω] is

possible for this type and induces Dema to select x = ω. Dema never selects x < ω

because it is known that ω ∈ [ω, ω] and Knowyn prefers x = ω to any outcome x > ω.

Similarly, disclosing interval [ω, ω] is possible for Knowyn’s type (ω, β) with β ≥ 0

and induces Dema to select x = ω, which is preferred by Knowyn to any x < ω. No

x > ω is ever selected by Dema.
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4 The Uniform Model

To elaborate on the main results and insights and describe the equilibrium structure

in the most transparent way, in this section we simplify the model by assuming that

the expert’s bias and the state of the world are independent, uniformly distributed,

random variables.

4.1 The Unbounded Case

By Proposition 3, at the boundary of the state space types whose ideal decision is

outside [ω, ω] cannot do better than fully disclosing the state. The boundedness of the

set of states of the world also constrains the equilibrium outcome for interior states

that are close to the boundary. In order to gain intuition for the amount of manipu-

lation the expert is able to achieve, and to focus on the equilibrium configuration in

the interior of the state space, in this sub-section we make an additional modification

to the model so as to eliminate the boundary effects. We assume that ω = −∞, and

ω =∞. When combined with the assumption that the state is uniformly distributed,

this implies that ω has an improper, diffuse distribution over the real line. In the

next sub-section, we will go back to analyze the model with a bounded state space.

We begin with the additional assumption that βL = −βH . This implies that the

expected bias is zero. More importantly, it implies that the expected value of the state

of all Knowyn’s types that have x as their favorite choice is x, E [ω |ω + β = x] = x.

Suppose that the two “twin” Knowyn’s types (x− β ′, β ′) and (x+ β ′,−β ′) disclose

the same interval (e.g., they disclose [x− β ′, x+ β ′]). Suppose no other type discloses

this interval. It is then immediate that Dema’s best response to such a disclosure is to

choose outcome x, because x is the average value of the state. It is also immediate that

the two twin Knowyn’s types have no profitable deviation, because they induce Dema

to choose their ideal outcome. Finally, note that since there is no state space boundary

and βL = −βH , for any Knowyn’s type (ω, β) there is a twin type (ω + 2β,−β). Thus,
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βH

β = 0

βL

(ω1, 0) (ω2, 0) (ω3, 0)

Figure 2: Unbounded Uniform Model, −βL = βH .

all Knowyn’s types may just pool with their twin and fully manipulate the outcome.

This argument is formalized in the following proposition.

Proposition 4 In the unbounded uniform model, if −βL = βH , then α(ω, β) = ω+β

for all expert types; the choice made by the decision maker always coincides with the

expert’s optimal (first-best) choice.

Proof. We claim that the following equilibrium strategies implement the outcome

map α(ω, β) = ω + β. If β ≥ 0, then sK(ω, β) = [ω, ω + 2β] and if β ≤ 0, then

sK(ω, β) = [ω + 2β, ω]; sD([x, y]) = x+y
2

. First, note message [x, y] is sent in equilib-

rium only by Knowyn’s types
(
x, y−x

2

)
and

(
y, x−y

2

)
. Hence it is E [ω | [x, y]] = x+y

2

and sD is a best response for Dema. Second, given Dema’s strategy, by following

sK all types of expert obtain their first-best outcome, hence they are playing a best

response.5

Figure 2 describes the equilibrium in this case. The state varies along the hori-

zontal coordinate and the bias along the vertical coordinate of the two dimensional

5Note that there is also an equilibrium in which all Knowyn’s types that have the same ideal

choice x pool and disclose the same interval (e.g., they disclose interval [x− βH , x+ βH ]).

14



Cartesian space. All Knowyn’s types on a negatively sloped 45 degree line have the

same ideal outcome, x = ω1, ω2, ω3, and are able to induce Dema to choose it. In this

version of the model, all expert types fully manipulate the decision maker.

In the unbounded version of our model, pure cheap talk messages, as we have

defined them, are not available, but they could be easily reintroduced by adding an

additional dimension to the expert’s message. With this modification, the equilibrium

in the unbounded uniform model with βL = −βH can also be sustained by pure cheap

talk messages. All that is needed is that all types (ω, β) with ω + β = x, and only

them, send the same message; no expert type would have an incentive to deviate. This

is an exception. As we shall see, in all other versions of the model the equilibrium

outcome cannot be sustained by pure cheap talk messages.

Suppose now that βH > −βL; that is, there are more Knowyn’s types with a

positive than with a negative bias. The average bias is positive and the expected

value of the state of all Knowyn’s types that have x as their first best choice is less

than x, E [ω |ω + β = x] < x. In this case, not all types have a twin with whom they

can pool. More precisely, types with a high positive bias do not have a twin and they

will only be able to partially manipulate the outcome by pooling with types that have

a smaller ideal choice than them. Thus, a positive measure of expert types get their

first-best outcome, while all other types get less than their first-best choice.

To aid the formal statement of the equilibrium in this case, we define the parameter

β∗H :

β∗H = βH −
√

(βH)2 − (βL)2 (4)

Proposition 5 In the unbounded uniform model, if −βL < βH , then the equilibrium

outcome map is the following:

α(ω, β) =


ω + β = if β ≤ β∗H

ω + β∗ = if β ≥ β∗H
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Proof. Fix x and consider the set of Knowyn types that induce choice x according

to the outcome map α; denote this set by Tα(x). It is composed by the union of types

(x− β, β) with β ∈ [βL, β
∗
H ] and types (x− β∗H , β) with β ∈ [β∗H , βH ].

For all x, take the equilibrium strategy chosen by all Knowyn types in the set

Tα(x) to be disclosing the interval [x− β∗H , x− βL].

Compute the expected value of the state conditional on Knowyn’s type belonging

to Tα(x). Given the uniform distribution of types, it is:

E[ω | (ω, β) ∈ Tα(x)] = (x− β∗H) · βH − β
∗
H

βH − βL
+

(
x− β∗H + x− βL

2

)
· β
∗
H − βL
βH − βL

= x− β∗H +
(β∗H − βL)2

2 (βH − βL)

= x

Thus, given the equilibrium strategy chosen by Knowyn, after observing the dis-

closure of the interval [x− β∗H , x− βL] it is a best reply for Dema to choose x. For

any interval [a, b] that Knowyn is not supposed to send in equilibrium, assume that

Dema believes that the state is a and so she chooses a.

To see that the strategy of Knowyn is a best reply for all Knowyn types, first

observe that types with bias lower than β∗H induce the choice of their most preferred

alternative, and hence could not profitably deviate. Types (ω, β) with bias β > β∗H

induce choice ω+β∗H by disclosing interval [ω, ω+β∗H −βL]; deviating to a disclosure

of any interval [a, b] is feasible for these types only if a ≤ ω ≤ b, but such a disclosure

can never move up the choice made by Dema. Thus the strategy of all Knowyn’s

types is a best reply to Dema’s equilibrium strategy. This completes the proof.

Figure 3 describes the equilibrium outcome. The set of types that are able to

induce the same choice x = ω1, ω2, ω3 (the x-decision set) includes the types on the

portion of the negatively sloped 45 degrees line segment from type (x− β∗H , β∗H) to

type (x− βL, βL), and the set of types on the vertical segment from type (x− β∗H , β∗H)

to type (x− β∗H , βH). The critical value of the bias β∗H > 0 is computed so that the

expected value of the state on the x-decision set is equal to x. Thus, choosing x is
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(ω1 − β∗H , β∗H)

βH

β = 0

βL

(ω1, 0) (ω2, 0) (ω3, 0)

Figure 3: Unbounded Uniform Model, −βL < βH .

indeed a best response for Dema. Expert types on the diagonal portion of the x-

decision set obtain their first best outcome. Hence only types on the vertical portion

could possibly want to deviate, if they could induce a higher choice than x. The only

way to induce a choice higher than x is to disclose an interval with a left boundary

higher than x − β∗H , which is impossible for the types of the vertical portion of the

x-decision set, since x− β∗H is the true state that they observe.

The case βH < −βL, when there are more Knowyn’s types with a negative

than with a positive bias, is just the mirror image of the case just analyzed. Now

E [ω |ω + β = x] > x and the equilibrium is described in Figure 4. Define:

β∗L = βL +

√
(βL)2 − (βH)2.

The x-decision set includes the types on the negatively sloped 45 degrees line segment

from type (x− βH , βH) to type (x− β∗L, β∗L) and the types on the vertical segment

from type (x− β∗L, β∗L) to type (x− β∗L, βL). Now it is types with a large negative bias

(below β∗L) that can only partially manipulate the decision maker. All types above

β∗L fully manipulate and induce Dema to pick their ideal choice.
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(ω1 − β∗L, β∗L)

βH

β = 0

βL

(ω1, 0) (ω2, 0) (ω3, 0)

Figure 4: Unbounded Uniform Model, −βL > βH .

4.2 The Bounded Case

We now return to the bounded, uniform, model with state of the world ω ∈ [ω, ω]. As

we saw in Proposition 3, boundary types whose ideal decisions are outside the state

space fully disclose. Boundary effects also play a role for types close to the boundary.

From now on, we assume that βH ≥ −βL, as the case βH < βL is just the mirror

image of the case βH > −βL. Define the function β∗H(ω), playing the same role as β∗H

in Proposition 5 and the function β∗L(ω), playing a similar role to β∗L:

β∗H(ω) = βH −
√

(βH)2 −min
{

(w − ω)2 , (βL)2
}

(5)

β∗L(ω) = βL +
√

(βL)2 −min
{

(ω − ω)2 , (βL)2
}

(6)

It turns out that we need to consider separately the case of zero expected bias and a

state space larger than the bias space, from all other cases; hence we introduce the

following mutually exclusive assumptions.

Assumption 1 There is zero expected bias and a large state space; that is, the

following two conditions hold:

(i) βH = −βL
(ii) ω − ω ≥ −2βL.
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(ω1 − β∗L(ω1), β
∗
L(ω1))

(ω3 − β∗H(ω3), β
∗
H(ω3))

βH

β = 0

βL

(ω1, 0)

(ω2, 0) (ω3, 0)

Figure 5: Bounded Uniform Model, −βL = βH , ω − ω > 2βH .

Assumption 2 It is either (i) βH > −βL, or (ii) βH = −βL and ω − ω < −2βL.

We begin by considering the simpler case in which Assumption 1 holds, then move

to the case when Assumption 2 holds instead. With zero mean bias and a large state

space, the equilibrium is described in Figure 5. We can divide Knowyn’s type space

into three regions. All types (ω, β) in the middle region defined by ω+βH ≤ ω+β ≤

ω − βH are able to induce Dema to choose their ideal, or first best, alternative. This

is because the expected value of the state for all types that have x as their ideal

alternative is exactly x.

In the left region with ω + β < ω + βH , it is E[ω |ω + β = x] > x; there are

more types with a state above than below their ideal alternative x. Equilibrium is

like in Figure 4; expert types with a positive bias and a moderately negative bias are

able to fully manipulate Dema to choose their ideal alternative x. Types with ideal

alternative x but an extremely negative bias (and hence a relative larger observed

state) can only partially manipulate Dema; they induce her to choose an alternative

higher than x. More precisely, the pooling region of expert types inducing the same

choice x includes all types with a positive bias and x as ideal choice, types with small

negative bias and x as ideal choice (i.e., types on the 45 degree segment going from
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(ω, x − ω) to (x − β∗L(x), β∗L(x)), and types with a large negative bias and an ideal

alternative smaller than x (i.e., the types on the vertical segment with state x−β∗L(x)

and bias β < β∗L(x)). Observe that β∗L (ω) is strictly decreasing in ω for ω−ω < −βL.

This says that the ability of experts with a negative bias to manipulate Dema gets

smaller as the state ω gets closer to the left boundary ω. In the limit β∗L(ω) = 0 and

it is optimal for all types with negative bias and state ω = ω to fully disclose, as

claimed in Proposition 3.

In the right region with ω+ β > ω− βH it is E[ω |ω+ β = x] < x; there are more

types with a state below than above their ideal alternative x, and equilibrium is like

in Figure 3. The pooling region of expert types inducing the same choice x includes

all types with a negative bias and x as ideal choice, types with small positive bias and

x as ideal choice (i.e., types on the 45 degree segment going from (x− β∗H(x), β∗H(x))

to (ω, x−ω)), and types with a large positive bias and an ideal alternative larger than

x (i.e., the types on the vertical segment with state x− β∗H(x) and bias β > β∗H(x)).

Note also that β∗H (ω) is strictly decreasing in ω for ω > ω + βL. This says that the

ability of experts with a positive bias to manipulate Dema gets smaller as the state

ω gets closer to the right boundary. In the limit, β∗H(ω) = 0 and it is optimal for all

types with positive bias and boundary state ω = ω to fully disclose.

Proposition 6 In the bounded uniform model, under Assumption 1 the equilibrium

decision map is:

α(ω, β) =



ω + β if


ω + βH ≤ ω + β ≤ ω − βH

ω + β ≤ ω + βH and β ≥ β∗L(ω)

ω + β ≤ ω − βH and β ≤ β∗H(ω)

ω + β∗L(ω) if ω + β ≤ ω + βH and β ≤ β∗L(ω)

ω + β∗H(ω) if ω + β ≥ ω − βH and β ≥ β∗H(ω)

Proof. By Assumption 1 it is −βL = βH and ω − ω ≥ 2βH . Consider first the set of

expert types Tα(x) that induce Dema to choose an alternative x in the middle region
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ω + βH ≤ x ≤ ω − βH . It is Tα(x) = {(ω, β) : ω + β = x}. Suppose these types’

strategy is to disclose interval Ix = [x − βH , x + βH ]. It follows that Dema’s best

reply is to choose E[ω |x ∈ Ix] = E[ω |ω + β = x] = x−βH+x+βH
2

= x and that these

Knowyn’s types have no profitable deviation, as x is their ideal choice.

The set of expert types that induce Dema to choose an alternative x < ω + βH

is Tα(x) = {(ω, β) : ω + β = x and β ≥ β∗L(ω)} ∪ {(x − β∗L(x), β) : β ≤ β∗L(x)}. Let

these types’ strategy be to disclose interval Ix = [ω, x − β∗L(x)]. Similarly, the set

of expert types that induce Dema to choose an alternative x > ω − βH is Tα(x) =

{(ω, β) : ω+β = x and β ≤ β∗H(ω)}∪{(x+β∗H(x), β) : β ≥ β∗H(x)}. Let these types’

strategy be to disclose interval Ix = [x− β∗H(x), ω].

Let Dema’s equilibrium strategy be: (i) choose x if the interval disclosed is the

one that expert types in Tα(x) send in equilibrium. While if the interval disclosed is

[a, b] with no x such that [a, b] = Tα(x), then (ii) choose b if a ≤ ω+ βH , b ≤ ω− βH ;

(iii) choose a if b ≥ ω−βH , a ≥ ω+βH and (iv) choose y, with ω+βH ≤ y ≤ ω−βH ,

if a ≤ ω+βH , b ≥ ω−βH . Given Dema’s equilibrium strategy, no type of Knowyn has

a feasible deviation that is profitable. Deviations by types in Tα(x) with x < ω + βH

can only lead to the choice of an alternative greater than x, while deviations by types

in Tα(x) with x > ω−βH can only lead to the choice of an alternative smaller than x.

Hence all feasible deviations lead to choices further away from Knowyn’s ideal choice.

Using (6) and −βL = βH , note that Dema’s best reply when observing a disclosure

made by types in Tα(x) with x < ω + βH is to choose:

E[ω |x ∈ Ix] =
1

x− ω + βH

(
ω + x− β∗L(x)

2
(x− ω − β∗L(x)) + (x− β∗L(x)) (βH + β∗L(x))

)
= x.

Finally, using (5), note that Dema’s best reply when observing a disclosure made

by types in Tα(x) with x > ω − βH is to choose:

E[ω |x ∈ Ix] =
1

βH + ω − x

(
x− β∗H(x) + ω

2
(β∗H(x) + ω − x) + (x− β∗H(x)) (βH − β∗H(x))

)
= x.
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(ω∗ − β∗H(ω∗), β∗H(ω∗))

(ω∗ + β∗L(ω∗), β∗L(ω∗))

βH

(ω, 0) (ω, 0)

βL

(ω∗, 0) (ω1, 0)

Figure 6: Bounded Uniform Model, −βL < βH , ω − ω > −2βL.

This concludes the proof.

We now consider the case when Assumption 2 holds and either there are more

expert types with a positive than a negative bias, or the state space is small. The

equilibrium is depicted in Figure 6 for the case of a large state space. The main

difference with the previous case is that now there is a positive measure of expert

types that disclose the same interval in equilibrium and induce Dema to choose the

same cut-off alternative x = ω∗. More precisely, there is a positive measure of Knowyn

types with a positive bias (and an observed state less than ω∗) and a positive measure

of types with negative bias (and an observed state higher than ω∗) that induce Dema

to choose ω∗. In Figure 6 this is represented by the two shaded areas. Types on

the negatively sloped 45 degrees segment joining the two areas, which includes type

(ω∗, 0), also induce Dema to choose ω∗. The two shaded areas are such that the

expected state conditional on the expert types belonging to them (or to the zero

measure 45 degrees segment joining them) is equal to ω∗.

To the right of the cut-off ω∗ the equilibrium outcome is similar to that in Figure 3.

The choice of any outcome ω > ω∗ is induced by types on the negatively sloped 45 de-

gree segment going from type (ω − β∗H (ω) , β∗H (ω)) to type (min{ω − βL, ω},max{βL, ω − ω})
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and by types on the vertical segment going from (ω − β∗H (ω) , β∗H (ω)) to (ω − β∗H (ω) , βH).

Note that for ω ≤ ω+βL it is β∗H (ω) = β∗, as defined in (4). This says that for types

to the right of ω∗ and sufficiently far away from the right boundary ω = ω equilibrium

takes the same form as in the case of an unbounded state space (see Figure 3).

The equilibrium map to the left of ω∗ resembles the one of the equilibrium in Figure

4. Any outcomes ω to the left of the cut-off ω∗ is induced by types on the negatively

sloped 45 degree segment going from type (ω, ω − ω) to type (ω − β∗L(ω), β∗L(ω)) and

by types on the vertical segment going from (ω − β∗L(ω), β∗L(ω)) to (ω − β∗L(ω), βL).

When Assumption 2 holds and the state space is small (i.e., ω − ω < −2βL)

equilibrium is similar to the one in Figure 6, except that now the shaded region of

expert types with state greater than ω∗ that induce Dema to choose ω∗ extends to

the right boundary with types (ω, β) with β ≤ β∗L(ω∗).

As we pointed out, the cut-off value ω∗ is defined so that it is equal to the expected

value of the state in the shaded areas shown in Figure 6. Consider the 45 degree line

that goes through type (ω∗, 0). The first shaded area is the one above the 45 degree

line, starting from type (ω∗ − β∗H(ω∗), β∗H(ω∗)). The second is the area below the

45 degree line starting from type (ω∗ − β∗L(ω∗), β∗L(ω∗)). Formally, ω∗ is implicitly

defined by the equation ψ(ω) = 0, where the function ψ is given by:

ψ(ω) =

∫ max{ω,ω−β∗
H(ω)}

ω

(x− ω) (βH − ω + x) dx+

∫ min{ω,ω−βL}

min{ω,ω−β∗
L(ω)}

(x− ω) (−βL − x+ ω) dx.

The next lemma shows that ω∗ exists and is uniquely defined.

Lemma 5 In the bounded uniform model, under Assumption 2 there exists a unique

state of the world ω∗ such that ψ(ω∗) = 0.

We are now ready to present formally the equilibrium characterization.
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Proposition 7 In the bounded uniform model, under Assumption 2, the equilibrium

decision map is:

α(ω, β) =



ω + β if

 ω + β ≥ ω∗ and β ≤ β∗H(ω)

ω + β ≤ ω∗ and β ≥ β∗L(ω)

ω + β∗H(ω) if ω ≥ ω∗ − β∗H(ω∗) and β ≥ β∗H(ω)

ω − β∗L(ω) if ω ≤ ω∗ − β∗L(ω∗) and β ≤ β∗L(ω)

ω∗ if

 ω∗ − β∗H(ω∗) ≥ ω ≥ ω∗ − β

ω∗ − β ≥ ω ≥ ω∗ − β∗L(ω∗)

Proof. For x > ω∗, the set Tα(x) of Knowyn types inducing the choice x is the union

of types (x − β, β) with β ∈ [max{βL, x− ω}, β∗H(x)] and types (x − β∗H(x), β) with

β ∈ [β∗H(x), βH ]. Let the equilibrium strategy of types in the set Tα(x) be to disclose

the interval [x− β∗H(x), x−max{βL, x− ω}]. Setting γ(x) = min
{

(βL)2 , (x− ω)2
}

and using (5), the expected value of the state of Knowyn’s types in Tα(x) is:

E[ω | (ω, β) ∈ Tα(x)]

=
(x− β∗H(x)) (βH − β∗H(x))

βH −max{βL, x− ω}
+

(
x− β∗H(x) + x−max{βL, x− ω}

2

)
· β
∗
H(x)−max{βL, x− ω}
βH −max{βL, x− ω}

= x− β∗H(x) +
(β∗H(x)−max{βL, x− ω})2

2 (βH −max{βL, x− ω})

= x− β∗H(x) +

(
β∗H(x) +

√
min

{
(βL)2 , (x− ω)2

})2

2

(
βH +

√
min

{
(βL)2 , (x− ω)2

})

= x−
(
βH −

√
(βH)2 − γ(x)

)
+

(
βH −

√
(βH)2 − γ(x) +

√
γ(x)

)2

2
(
βH +

√
γ(x)

)
= x− βH +

(
βH +

√
γ(x)

)2
+ (βH)2 − γ(x)

2
(
βH +

√
γ(x)

)
= x
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Thus, after observing the disclosure of interval [x− β∗H(x), x−max{βL, x− ω}] with

x > ω∗, it is a best reply for Dema to choose alternative x.

For x < ω∗, Tα(x) is the union of types (x − β, β) with β ∈ [β∗L(x), x− ω] and

types (x − β∗L(x), β) with β ∈ [βL, β
∗
L(x)]. Take the equilibrium strategy of types in

Tα(x) to be disclosing [ω, x− β∗L(x)]. Since (βL)2 > (x− ω)2, by (6) it is β∗L(x) =

βL +
√

(βL)2 − (x− ω)2 and the expected value of the state of types in Tα(x) is:

E[ω | (ω, β) ∈ Tα(x)]

=
(x− β∗L(x)) (β∗L(x)− βL)

x− ω − βL
+

(
x− β∗L(x) + ω}

2

)
· (x− ω)− β∗L(x)

x− ω − βL

= x− β∗L(x)− (x− ω − β∗L(x))2

2 (x− ω − βL)

= x−
(
βL +

√
(βL)2 − (x− ω)2

)
−

(
x− ω − βL −

√
(βL)2 − (x− ω)2

)2

2 (x− ω − βL)

= x− βL −
(x− ω − βL)2 + (βL)2 − (x− ω)2

2 (x− ω − βL)

= x

Thus, it is also a best reply for Dema to choose x after observing the disclosure of

[ω, x− β∗L(x)] with x < ω∗.

Finally, Tα(ω∗) is the union of types (ω∗ − β, β) with β ∈ [β∗L(ω∗), β∗H(ω∗)], types

(ω∗ − β, β ′) with β ′ ≥ β ∈ [β∗H(ω∗), ω∗ − ω], and types (ω∗ − β, β ′) with β ′ ≤

β ∈ [βL, ω
∗ − β∗L(ω∗)]. Let the equilibrium strategy of types in Tα(ω∗) be to disclose

[ω, ω∗ − βL]. As proven in Lemma 5, ω∗ is defined so that it is equal to the expected

value of the state in the shaded areas shown in Figure 6, which are the set of Knowyn’s

types belonging to Tα(ω∗). It is thus optimal for Dema to choose ω∗ when the interval

interval [ω, ω∗ − βL] is disclosed.

We now need to define the equilibrium strategy of Dema for all the off-the-

equilibrium-path disclosures. After any such disclosure [a, b], let Dema’s equilibrium

strategy be to choose b if b < ω∗, to choose ω∗ if a ≤ ω∗ ≤ b, and to choose a if
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ω∗ < a. This strategy is optimal for some off the equilibrium path beliefs by Dema

(e.g., if she believes that the state is equal to her choice with probability one).

It now only remains to prove that the equilibrium strategy of Knowyn is a best

reply to Dema’s strategy. First consider the types that induce a choice x > ω∗. As is

clear from Figure 6 these types either induce their ideal choice or would like to induce

a higher choice, but if the types who would like a higher choice disclose any feasible

(i.e., including the true state) interval different from their equilibrium interval, then

Dema will choose a lower alternative. Hence these types have no profitable deviation.

Similarly, consider the types that induce a choice x < ω∗. These types either get their

ideal choice or would like a lower choice, but by disclosing any feasible (i.e., including

the true state) interval different from their equilibrium interval, they induce Dema

to choose a higher alternative. Thus, these types also have no profitable deviation.

Finally, consider the types that induce the choice of ω∗. Again, given Dema’s strategy,

any feasible deviation by types in this set that would like a higher choice can only

induce a lower choice and any feasible deviation by types who would like a lower

choice can only induce a higher choice. This completes the proof.

The qualitative features of the equilibrium of the bounded uniform model de-

scribed in Proposition 7 remain valid in the model with a general type distribution

and bounded state space, but there might be multiple regions with pooling by a pos-

itive measure of types. These positive measure regions separate two regions of the

type space where the set of expert types that pool and disclose the same interval is a

zero measure set. Both of these zero measure regions have a a 45 degree segment and

a vertical segment; in one region the vertical segment includes types with an extreme

negative bias, in the other it includes types with an extreme positive bias. With gen-

eral type distributions, there is an issue of existence of a pure strategy equilibrium,

but under mild regularity conditions existence is guaranteed.

26



5 Mean Bias and Variance

In the uniform model, the mean and variance of the state and the expert’s bias fully

describe the information setting. In this section, we first study the effect of changes

in the mean and variance of the expert’s bias. We then consider chances in the mean

and variance of the state.

Intuitively, keeping the variance in Knowyn’s bias fixed and maintaining the as-

sumption that her mean bias in non negative (i.e., βH ≥ −βL), an increase in mean

bias makes Knowyn’s preferences more predictable and should then hurt her while

benefiting Dema. The effect of an increase in the bias variance keeping the mean

constant is less intuitively clear. As we shall see, it hurts Dema as it expands the

average distance between Dema’s ideal choice and the chosen alternative, but has no

effect on Knowyn. To formally derive these results in the simplest way, we consider

the unbounded uniform model. We maintain the assumption that βH ≥ −βL ≥ 0.

Using Proposition 5, it is convenient to work with the equilibrium loss functions

of Dema and Knowyn for a given type (ω, β), defined by:

LD(ω, β) =
√
−V (α(ω, β), ω) =


√
β2 if β ≤ β∗H

β∗H if β ≥ β∗H

LK(ω, β) =
√
−U(α(ω, β), ω, β) =

 0 if β ≤ β∗H

β − β∗H if β ≥ β∗H

Since the agents’ losses do not depend on the state ω, we might write the expected

losses for each state as follows:

E [LD] = −
∫ 0

βL

β
dβ

βH − βL
+

∫ β∗
H

0

β
dβ

βH − βL
+

∫ βH

β∗
H

β∗H
dβ

βH − βL

=
(βL)2

βH − βL
;
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E [LK ] =

∫ βH

β∗
H

(β − β∗H)
dβ

βH − βL

=
βH + βL

2
,

where the last equalities in both expressions follow from the definition of β∗H in (4).

Since Knowyn’s bias is uniformly distributed in the interval [βL, βH ], it is imme-

diate that the mean bias is E[β] = βH+βL
2

and the standard deviation in the bias is

σβ = βH−βL
2
√
3

. Thus, the expected losses can be written as:6

E [LD] =

(√
3σβ − E [β]

)2
2
√

3σβ

E [LK ] = E [β]

Parts (i) and (ii) of the next proposition are easily proven by differentiating the

agents’ expected losses.

Proposition 8 In the unbounded uniform model with βH ≥ −βL ≥ 0:

(i) An increase in the mean bias of the expert, keeping the standard deviation

constant, decreases Dema’s expected loss and increases Knowyn expected loss;

(ii) An increase in the standard deviation of the expert’s bias, keeping the mean

constant, increases Dema’s expected loss and has no effect on Knowyn expected loss.

(iii) The measure of expert types that fully manipulate the outcome decreases with

the expert’s mean bias and increases with the standard deviation of the bias.

To see that (iii) holds, note that the measure of expert types that fully manipulate

and induce choice α(ω, β) = ω + β is:

β∗H − βL
βH − βL

= 1−

√
(βH)2 − (βL)2

βH − βL

= 1−

√
E[β]√

3σβ

6Note that, since βL ≤ 0 and βH ≤ 2
√

3σβ , it is
√

3σβ ≥ E[β].
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The intuition for the effect of the mean bias is clear. For a fixed support size

βH − βL in the bias, or equivalently a fixed standard deviation, if the mean bias is

sufficiently large, then the direction of the bias is known (because βL = 0 and βH > 0)

and full disclosure is the equilibrium outcome. On the other hand, if the mean bias is

zero we are in the case described in Figure 1, (i.e., −βL = βH) and all expert’s types

fully manipulate the outcome. The proposition shows that as the mean bias increases

we move monotonically from one extreme to the other.

We now consider changes in the distribution of the state of the world ω. A change

in the mean of the state with a constant variance clearly has no substantive effect on

the equilibrium outcome and the agents’ payoff. On the other hand, since the expert’s

ability to manipulate the decision maker’s choice is smaller near the boundaries, an

increase in the variance of the state with constant mean benefits Knowyn at the

expense of Dema, as it expands the middle region relative to the boundary regions.

To derive this result formally in the simplest way, we consider the uniform model

with zero expected bias and a large state space (i.e., we postulate that Assumption 1

holds).

Proposition 9 In the uniform, bounded model under Assumption 1, an increase in

the standard deviation of the state increases the measure of expert types that fully

manipulate, decreases the expected loss of the expert, and increases the expected loss

of the decision maker.

Proof. Since the state space is large, i.e., ω − ω > 2βH = −2βL, the losses of

Knowyn and Dema conditional on being either in the left or in the right boundary

regions are independent from the standard deviation of the state σω = ω−ω
2
√
3

. The losses

conditional on the expert ideal choice being x (i.e., conditional on (ω, β) ∈ Tα(x)),

with x = ω + β in the middle region of the type space, are also the same; Knowyn’s

loss is zero and Dema’s loss is higher than the loss conditional on any set Tα(x) of

Knowyn’s types belonging to the two boundary regions. Since an increase in the
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standard deviation of the state increases the probability that the expert’s ideal choice

is in the middle region, the proposition follows.

Propositions 8 and 9 make it clear that experts should strive to look ex-ante

unbiased, while decision makers should look for highly biased experts. This is because

disclosures from experts with a large mean bias are easier to read; their preferences

and incentives are more transparent than the preferences of experts with equal bias

variance but a more uncertain direction of their bias. The propositions also show

that the expert is in a better position to manipulate the outcome when the decision

maker is more uncertain about the optimal choice (e.g., because she is less familiar

with the problem).

6 Related Literature

The literature on disclosure of verifiable information is large and has many disparate

applications; see Milgrom (2008) and Dranove and Jin (2010) for surveys. The seminal

papers are Grossman (1981), Grossman and Hart (1980) and Milgrom (1981). They

assume that the bias of the expert is common knowledge. Their main insight is that

the decision maker ought to be highly skeptical. When evidence is incomplete, the

decision maker assumes that any missing information is likely to be unfavourable to

the expert. As a consequence, experts will want to reveal all favourable information.

This unravel any attempt to hide information and leads to full disclosure.

A few papers have introduced some uncertainty in the expert’s preferences, but

none have gone as far as this paper in demonstrating the potential for full manipula-

tion by the expert when the bias direction is unknown. Seidmann and Winter (1997)

allow uncertainty over the expert’s preferences, but they focus on the conditions under

which there is an equilibrium with full disclosure. Giovannoni and Seidmann (2007)

focus on the totally “pooling” equilibrium with no information transmission (i.e., no

disclosure); such an equilibrium exists if and only if all expert types prefer the unin-
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formed decision maker ideal action over the ideal action of a fully informed decision

maker (a condition that cannot hold in our model with preferences à la Crawford

and Sobel, 1982). In Dye (1985) and Shin (1994), full disclosure may fail because of

uncertainty over whether the expert knows the true state. In such a case the decision

maker’s skepticism is tempered; evidence may be incomplete because the expert does

not have all the information. In Wolinsky (2003), the expert’s bias is unknown, but

it can only take two values. The expert can fully report, or underreport favorable

information. In equilibrium, the biased expert with favorable information above a

threshold fully discloses, while all other expert types play a mixed strategy. In Dzi-

uda (2011), it is uncertain whether the expert is honest or biased in favor of one of

two alternatives. Her focus is showing that a biased expert may also disclose unfavor-

able information. In the dynamic setting of Acharya et al. (2011) and Guttman et

al. (2014), full disclosure at each point in time fails because the decision maker (in-

vestors) does not know when the expert (a firm) has acquired information. Acharya

et al. (2011) show that good market news slows, and bad news triggers, the release

of information by firms. Guttman et al. (2014) show that later disclosures are in-

terpreted more favorably by the market. In a different vein, Verrecchia (1983) shows

that full disclosure may also fail if the expert must pay a cost to disclose information.

For a survey of the vast literature on cheap talk, see Sobel (2013). Here we

should first mention three papers in which the preferences of the privately informed

party (the sender) are not perfectly known by the receiver. Morgan and Stocken

(2003) consider a cheap talk model in which the expert might be biased or unbiased.

They show that bias uncertainty may increase information transmission compared

to the case where the expert has a known but intermediate bias. Dimitrakas and

Sarafidis (2005) show that revelation of the expert’s bias may diminish information

transmission when the bias size is uncertain, and Li and Madarasz (2008) show that

revelation always decreases information transmission and the welfare of both parties

when the direction of the bias is uncertain. This is very different from what happens
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in our model in which verifiable disclosures are available; in our model, revealing the

bias helps the decision maker and hurts the expert. More importantly from our point

of view, these papers show that even if the bias of the sender is uncertain, when

verifiable disclosures are not feasible and only cheap talk is available, equilibrium is

partitional as in the standard cheap talk model with known bias. In the setting of our

model with a bounded state space this means that one could find cheap talk messages

m1,m2, ...,mn with n ≥ 1 such that all Knowyn types with xj−1 ≤ ω + β ≤ xj send

message mj, with 1 ≤ j ≤ n, x0 = ω + βL and xn = ω + βH . Unlike in our paper in

which verifiable disclosure are possible, in such an equilibrium only a zero measure of

expert types is able to fully manipulate the outcome.

We should finally mention Chakraborty and Harbaugh (2010) and Kartik and

Van Weelden (2019). Chakraborty and Harbaugh (2010) studied cheap talk when the

sender, as in the persuasion literature, has state-independent preferences (i.e., an ideal

choice). Contrary to the case of a single dimensional state-space in which information

transmission would not be possible, they show that with a multidimensional state

space a partially informative equilibrium may exists; the sender can communicate

some information and influence the receiver’s choice by trading off information along

the dimensions of the state space. Kartik and Van Weelden (2019) studied a model

in which the electorate is uncertain about the preferences of a politician (the sender)

and showed that the politician may send informative cheap talk messages before the

election, and in particular espouse views not aligned with the electorate’s preferences.

The reason is that voters may prefer a politician with known biased views to one whose

bias is sufficiently uncertain. This resembles what happens in our model, where the

decision maker always prefers an expert with known bias to one with uncertain bias

direction.
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7 Conclusions

We have introduced uncertainty in the direction of an expert’s bias in a model in

which both verifiable information and cheap talk messages may be communicated by

the expert, and shown that information unravelling fails. Full disclosure is not an

equilibrium. Experts with positive bias observing a low state of the world pool with

experts with a negative bias observing a high state. Manipulation is pervasive and

a positive measure of expert types are able to get what they want (i.e., their ideal

choice). An increase in the familiarity with the problem helps the decision maker.

More interestingly, the size of an expert’s bias is less important to a decision maker

than knowledge of the bias direction. Experts that are known to be strongly biased in

one direction can be easily read and their disclosures decoded. Thus, experts should

strive to be poker faced. They should try to conceal which way they would like to

push the outcome.

A number of promising extensions of the basic idea in this paper are worth pur-

suing in future research. First, the value of keeping a poker face may shape the

composition of expert partnerships and explain, for example, the value of diversity.

If partners come from diverse backgrounds and experiences, it will naturally be more

difficult for a client to discern the direction of the organization’s bias. As a sugges-

tive example, it is broadly consistent with the theory of this paper that in 2003 the

first Bush administration sent Colin Powell, and not Dick Cheney or Donald Rums-

feld, to present to the United Nations Security Council evidence about the existence

of weapons of mass destruction in Saddam’s Iraq. As opposed to the general view

of Cheney and Rumsfeld as hawks, Powell had a reputation for being a moderate,

and hence there was more uncertainty about his willingness to selectively disclose

information to justify the Iraq war. His presenting had more “manipulative power”!

Second, when the decision maker is an active agent (and not the market, or a

mass of customers), it is often possible to seek a second option. Intuitively, a second

opinion ought to be valuable, even with a priori identical experts, because there is
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always a chance the new expert has a different bias. Indeed, if it is known that the

decision maker will seek a second opinion, the first expert will want to change her

disclosure policy. More careful analysis is needed to understand what would happen.

For example, it is not clear whether the decision maker should consult two different

experts simultaneously or sequentially. It is also not clear whether the decision maker

should disclose the information revealed by an expert she has previously visited.

Third, manipulation and in particular market manipulation, often involves taking

actions, as opposed to disclosing information. For example, transactions which create

an artificial security price are regarded as market manipulation by the Securities

Exchange Act of 1934. In general, taking actions involves both elements of pure

information disclosure and elements of costly signaling. The difference between the

two hinges on what is observable to the market and on the cost of divulging the

information. The basic insight of this paper ought to go through, however. If the

market is not certain whether the manipulator is trying to push price up or down,

market manipulation is likely to have a good chance of succeeding, at least partially.

Finally, it is important to study ways for decision makers to improve reliability of

the disclosure process. In this regard, it is instructive to look at the measures taken by

the editors of several top medical journals. Because data manipulation, or “fudging

the data”, is thought to be common, they have decided to stop publishing drug

research sponsored by pharmaceutical companies unless the research was registered

from its beginning in a public database.7 In essence, this is a way to put constraints

on the disclosures available to the companies.

7Note that while it is perfectly sensible to be skeptical of sponsored research, it is not obvious

that the individual researcher should be always assumed to have no integrity. Thus, it is reasonable

to say that the exact direction of the bias is at least to some extent unknown.
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Appendix

Proof of Lemma 2.

(i) Expert type (ω, β′) can mimic type (ω, β′′) by disclosing the same interval.

Hence, it must be:

− [α (ω, β′)− ω − β′]2 ≥ − [α (ω, β′′)− ω − β′]2 , or

2 (ω + β′)α (ω, β′)− α (ω, β′)
2 ≥ 2 (ω + β′)α (ω, β′′)− α (ω, β′′)

2
, or

2 (ω + β′) [α (ω, β′)− α (ω, β′′)] ≥ α (ω, β′)
2 − α (ω, β′′)

2
. (7)

Similarly, since type (ω, β′′) can mimic type (ω, β′):

2 (ω + β′′) [α (ω, β′′)− α (ω, β′)] ≥ α (ω, β′′)
2 − α (ω, β′)

2
(8)

and hence, adding up each side of the two inequalities:

(β′ − β′′) [α (ω, β′)− α (ω, β′′)] ≥ 0.

This shows that α (ω, β) is weakly increasing in β and hence continuous almost ev-

erywhere.

(ii) Take β′ < β′′ and β ∈ [β′, β′′]. By (7) and (8) we have

2 (ω + β′′) [α (ω, β′′)− α (ω, β′)] ≥ α (ω, β′′)
2−α (ω, β′)

2 ≥ 2 (ω + β′) [α (ω, β′′)− α (ω, β′)] .

(9)

Note that the inequalities in (9) hold as equalities if α (ω, β′) = α (ω, β′′) . Suppose

instead α (ω, β′) 6= α (ω, β′′) . By (i) it is α (ω, β′) < α (ω, β′′), and we can write (9)

as

2 (ω + β′′) ≥ α (ω, β′) + α (ω, β′′) ≥ 2 (ω + β′) .

Taking limits as β′ and β′′ converge to β, we obtain α (ω, β) = ω + β at all points

where α is continuous. This also implies that there cannot be any jump discontinuity

and hence α must be continuous in β.
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Proof of Lemma 3.

By Lemma 2, either α(ω, β) is constant or is equal to ω + β. Suppose α(ω, β)

is constant in an interval [β′, β′′] with βL < β′ < β′′ < βH , while it is increasing

for values of β in the intervals (β′ − ε, β′) and (β′′, β′′ + ε) . By Lemma 2, it must be

α(ω, β′) = ω+β′ < ω+β′′ = α(ω, β′′). This contradicts the assumption that α(ω, β) is

constant in the interval [β′, β′′] . Thus, it can only be constant in an interval including

one of the endpoints of the bias support.

Proof of Lemma 4.

For β = 0 the statement is true, since α(ω, 0) = ω for all ω by Lemma 1. Fix

β > 0. First, if α(ω, β) = ω, then α(ω, β) is strictly increasing to the right of ω,

since it must be α(ω′, β) ≥ ω′ for all ω′ > ω, as type (ω′, β) could induce the choice

of ω′ by reporting the true state. Second, suppose α(ω, β) > ω. Then, type (ω, β)

must disclose an interval [a, b] with a ≤ ω and b ≥ α(ω, β). Since type (ω′, β) with

ω < ω′ < b could mimic (disclose the same interval as) type (ω, β), it must be

[ω′ + β − α(ω′, β)]
2 ≤ [ω′ + β − α(ω, β)]

2
, or

2 (ω′ + β) [α(ω, β)− α(ω′, β)] ≤ [α(ω, β) + α(ω′, β)] [α(ω, β)− α(ω′, β)] , or

α(ω, β) ≤ α(ω′, β),

where the third inequality holds because by β > 0 and Lemma 3, ω′ + β > ω + β ≥

α(ω, β) and ω′+β ≥ α(ω′, β), which implies, adding up the inequalities, 2 (ω′ + β) >

[α(ω, β) + α(ω′, β)] . This shows that for β > 0 the map α(ω, β) is increasing in ω.

The proof for β < 0 is analogous.

Proof of Lemma 5.

First observe that

ψ(ω) =

∫ min{ω,ω−βL}

ω

(x− ω) (−βL − x+ ω) dx > 0.

Then observe that

ψ(ω) =

∫ ω

ω

(x− ω) (βH − ω + x) dx < 0.
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Since ψ is continuous in ω, this already proves that there exists ω such that ψ(ω) = 0.

To prove uniqueness and complete the proof, we will show that ψ(ω) is decreasing in

ω for all states ω such that ψ(ω) = 0. We must distinguish between two main cases,

each with different sub-cases. In Case A, it is ω − ω > −2βL; in this case the size of

the state space is large relative to the size of highest negative bias. In Case B, it is

ω − ω < −2βL. We begin by considering the three sub-cases of Case A.

Case A1: ω < ω − βL. In this case, it is β∗H(ω) = βH −
√

(βH)2 − (βL)2 = β∗H ,

β∗L(ω) = βL +
√

(βL)2 − (ω − ω)2 and:

ψ(ω) =

∫ max{ω,ω−β∗
H}

ω

(x− ω) (βH − ω + x) dx+

∫ ω−βL

ω−β∗
L(ω)

(x− ω) (−βL − x+ ω) dx.

First note that if ω < ω + β∗H , then the first term on the rhs is a constant equal to

zero. If ω > ω + β∗H , by setting y = x − ω and changing variable of integration the

first terms becomes: ∫ −β∗
H

ω−ω
y (βH + y) dy

and is decreasing in ω since βH > −βL. Now consider the second term; again change

the variable of integration to be y = x− ω. The term becomes:∫ −βL
−β∗

L(ω)

y (−βL − y) dy

and it is also decreasing in ω. This completes the proof that ψ(ω) is a decreasing

function in Case A1.

Case A2: ω−βL < ω < ω+βL. In this case, it is β∗H(ω) = βH−
√

(βH)2 − (βL)2 =

β∗H , which implies that ω− β∗H > ω− βL− β∗H > ω. It is also, β∗L(ω) = βL and hence:

ψ(ω) =

∫ ω−β∗
H

ω

(x− ω) (βH − ω + x) dx =

∫ −β∗
H

ω−ω
y (βH + y) dy

Differentiating with respect to ω we obtain:

ψ′(ω) = (ω − ω) (ω − ω − βH) < (ω − ω) (ω − βL − ω − βH) < 0
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where the last inequality follows from βH > −βL, by Assumption 2. Hence, in Case

A2 ψ(ω) is also decreasing in ω.

Case A3: ω + βL < ω. In this case, it is β∗H(ω) = βH −
√

(βH)2 − (ω − ω)2,

β∗L(ω) = βL and:

ψ(ω) =

∫ ω−β∗
H(ω)

ω

(x− ω) (βH − ω + x) dx =

∫ −β∗
H(ω)

ω−ω
y (βH + y) dy < 0

where the inequality follows from the integrand being negative (as y < 0 and βH >

β∗H(ω)) for all values of y. This shows that in Case A3 there does not exists an ω

such that ψ(ω) = 0.

We can then conclude that if we are in Case A (i.e., it is ω − ω > −2βL ), then

ψ(ω) is decreasing at all ω such that ψ(ω) = 0 and hence there is a unique ω∗.

We now consider Case B, when it is ω − ω < −2βL. There three sub-cases.

Case B1: ω < ω + βL. In this case, it is β∗H(ω) = βH −
√

(βH)2 − (βL)2 = β∗H ,

β∗L(ω) = βL +
√

(βL)2 − (ω − ω)2 and ψ(ω) is the same as in Case A1. The proof

that it is a decreasing function is also the same.

Case B2: ω+βL < ω < ω−βL. In this case, it is β∗H(ω) = βH−
√

(βH)2 − (ω − ω)2,

β∗L(ω) = βL +
√

(βL)2 − (ω − ω)2. Since it is ω < ω − βL:

ψ(ω) =

∫ max{ω,ω−β∗
H(ω)}

ω

(x− ω) (βH − ω + x) dx+

∫ ω

min{ω,ω−β∗
L(ω)}

(x− ω) (−βL − x+ ω) dx.

If ω < ω + β∗H(ω), then the first term on the rhs is a constant equal to zero. If

ω > ω + β∗H(ω), by setting y = x − ω and changing variable of integration the first

terms becomes: ∫ −β∗
H(ω)

ω−ω
y (βH + y) dy

and differentiating with respect to ω it can be seen to be decreasing in ω. Now

consider the second term; if ω > ω+β∗L(ω), then it is equal to zero. If ω < ω+β∗L(ω),

by setting y = x− ω and changing variable of integration the second terms becomes:∫ ω−ω

−β∗
L(ω)

y (−βL − y) dy
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Differentiating with respect to ω we obtain:

ψ′(ω) = (ω − ω) (βL + ω − ω) +
∂β∗L(ω)

∂ω
β∗L(ω) (βL − β∗L(ω)) < 0.

Hence, to conclude that in Case B2 ψ(ω) is a strictly decreasing function, it only

remains to show that it cannot be the case that both first and second term on the

rhs of ψ(ω) are zero. Suppose to the contrary that both terms are zero. For the first

term to be zero it must be:

ω ≤ ω + β∗H(ω) = ω + βH −
√

(βH)2 − (ω − ω)2 (10)

and since the rhs of (10) is decreasing in βH , a necessary condition for the inequality

to hold is that it holds at βH = −βL, the smallest value βH can take. For the second

term on the rhs of ψ(ω) to be zero it must be:

ω ≥ ω + β∗L(ω) = ω + βL +

√
(βL)2 − (ω − ω)2 (11)

and since the rhs is decreasing in βL, a necessary condition for the inequality to hold

is that it holds at βL = −ω−ω
2

, the highest value that βL can take in this case. Thus,

replacing βH = −βL and βL = −ω−ω
2

in (10) and (11), a necessary condition for both

terms on the rhs of ψ(ω) to be zero is:

ω + ω

2
+

√(
ω − ω

2

)2

− (ω − ω)2 ≤ ω ≤ ω + ω

2
−

√(
ω − ω

2

)2

− (ω − ω)2

which cannot hold.

Case B3: ω − βL < ω, which implies that ω − β∗H(ω) > ω − βL − β∗H(ω) > ω. In

this case, it is β∗H(ω) = βH −
√

(βH)2 − (ω − ω)2. It is also β∗L(ω) = βL and:

ψ(ω) =

∫ ω−β∗
H(ω)

ω

(x− ω) (βH − ω + x) dx =

∫ −β∗
H(ω)

ω−ω
y (βH + y) dy < 0

where the inequality follows from the same argument used in the study of Case A3.

Thus in Case B3 there does not exists an ω such that ψ(ω) = 0.

We have thus shown that in all sub-cases of Cases A and B the function ψ(ω) is

decreasing at all ω such that ψ(ω) = 0 and hence there is a unique ω∗. This concludes

the proof of the lemma.
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