

Warwick Economics Research Papers

ISSN 2059-4283 (online)

ISSN 0083-7350 (print)

Predicting Inflation with Neural Networks

Livia Paranhos

April 2021 No: 1344

Predicting Inflation with Neural Networks

Livia Paranhos∗

University of Warwick

First version: November 2020

This version: March 2021

Abstract

This paper applies neural network models to forecast inflation. The use of a particular

recurrent neural network, the long-short term memory model, or LSTM, that summarizes

macroeconomic information into common components is a major contribution of the paper.

Results from an exercise with US data indicate that the estimated neural nets usually present

better forecasting performance than standard benchmarks, especially at long horizons. The

LSTM in particular is found to outperform the traditional feed-forward network at long

horizons, suggesting an advantage of the recurrent model in capturing the long-term trend

of inflation. This finding can be rationalized by the so called long memory of the LSTM that

incorporates relatively old information in the forecast as long as accuracy is improved, while

economizing in the number of estimated parameters. Interestingly, the neural nets containing

macroeconomic information capture well the features of inflation during and after the Great

Recession, possibly indicating a role for nonlinearities and macro information in this episode.

The estimated common components used in the forecast seem able to capture the business

cycle dynamics, as well as information on prices.

Keywords: forecasting, inflation, neural networks, deep learning, LSTM model

∗PhD Candidate, Department of Economics, University of Warwick, Coventry, West Midlands, CV4 7AL, UK.
E-mail: L.Silva-Paranhos@warwick.ac.uk

1

1 Introduction

A good forecast model for inflation is essential for economic agents and policy makers. Yet,

inflation dynamics has evolved substantially in the past decades, and the search for a reliable

model is still an ongoing research question. Up until recently, it was hard to improve over simple

univariate models for inflation, such as the unobserved components with stochastic volatility

(UC-SV) model of Stock and Watson (2007), or autoregressive models. But the recent advances

in machine learning methods have spurred the interest of economists in different techniques for

inflation prediction, yielding promising results so far.1

This paper investigates the ability of neural networks to forecast inflation, with a special

focus on recurrent neural networks. On the one hand, neural networks are well known by their

flexibility in modelling nonlinearities while able to process large amounts of data efficiently.2 On

the other, recurrent neural networks, a sub-class of neural networks, were specifically designed

to model sequences of observations, and are therefore appealing for the study of time series. I

consider a specific recurrent neural network to predict inflation, the long-short term memory

(LSTM) model. There are two main reasons why this model is well suited for this task.

The first is related to the way the model handles past information. While the traditional

feed-forward neural network processes all input lags forwards and simultaneously in the network,

recurrent models process each time period sequentially, where the input of a given time step is

the output of the previous one. This recursion usually continues until a fixed lag L is reached.

In practice, this translates into modelling explicitly the dependence between consecutive time

periods along the series, which may explain the wide success of the LSTM model in the fields of

speech recognition (audio to text), text translation (text to text), and sentiment analysis (text to

rating), to name a few.

The second reason that makes the LSTM model attractive refers to its so called “long memory”.

This feature differentiates the LSTM from the plain recurrent neural network and refers to its

ability in using information far in the past as long as this helps improving the accuracy of the

prediction. In practice, this is achieved by incorporating in the recurrent model a number of

filters that control the flow of information across time. This long-memory characteristic may be

particularly important to predict the long-term trend of the series. Intuitively, it is likely that in

1Medeiros et al. (2019) is an important example, where the authors find that random forests significantly improve
upon standard benchmarks when predicting US inflation.

2The universality theorem of neural networks, first studied by Cybenko (1989), suggests that a relatively simple
feed-forward model can approximate any continuous function up to an arbitrary degree of accuracy.

2

order to predict far away in the future the practitioner is better off if she has a good understanding

of the dependence of observations across a relatively long period of time. My results indeed

indicate that recurrent networks overperform the feed-forward model (as well as commonly used

benchmarks) in terms of out-of-sample performance at the one and two years ahead horizons.

Although the focus of the analysis resides on the recurrent model, other neural network

structures are also considered for comparison. These are a feed-forward neural network and a

combination of the LSTM and the feed-forward. Broadly speaking, the class of neural network

models itself is very appealing for economic forecasting, and inflation forecasting in particular,

given its ability in modelling highly nonlinear processes as well as in providing a solution to the

curse of dimensionality.

The study of nonlinearities is important to inform macroeconomic theory as well as for

economic forecasting (Barnett et al., 2015 is an early contribution on the topic). When it comes to

inflation specifically, there is still a vivid, on-going debate on whether the slope of the Phillips

curve would be time-varying (Stock and Watson, 2019, Hazell et al., 2020). Additionally, the

inflation forecasting literature points to considerable out-of-sample gains of nonlinear machine

learning methods over linear specifications (e.g. Nakamura, 2005, Sermpinis et al., 2014, Medeiros

et al., 2019; see next section for more details on the literature). This suggests that at least to

some extent inflation behaves nonlinearly with respect to other macroeconomic variables, which

supports the study of nonlinear models for inflation forecasting. Neural networks are well suited

to model nonlinearities given their ability in approximating a wide range of nonlinear functions

(Cybenko, 1989). This paper estimates relatively deep networks (the depth of the network is

related to the number of stacked computational units), investigating the accuracy of networks

with up to four layers of computational units.

The second advantage of using neural networks for the purpose of inflation prediction,

or economic prediction more generally, is that it offers an effective solution to the curse of

dimensionality. A common criticism of traditional models of inflation relates to the relative small

amount of conditioning information used to forecast the inflation series, which may lead to an

omitted-variable estimation bias (Stock and Watson, 2009 provide a survey). It is well understood

however that more classical parametric methods (e.g. BVARs) are quickly overwhelmed by a large

number of predictors because of the increased dimension of the parameter space. Data reduction

methods represent a remedy to this problem, from which factor models are the classical example.

The more recent deep learning techniques can be viewed as an alternative, nonlinear solution to

3

the curse of dimensionality.3 These methods can produce relatively accurate predictions despite

the large set of covariates. Intuitively, the estimation process of a neural network consists of

finding the lower dimensional representation of the data by attributing negligible weights to

irrelevant information, and relative higher weights to information that improves the prediction.

With the purpose of understanding the role of activity-related variables on inflation as part

of the debate discussed in Stock and Watson (1999, 2009), I create distinct sets of predictors.

Specifically, I consider three sets of inputs: a data set with inflation-only information, a pool of

economic predictors excluding inflation data, and a combination of both. Importantly, the pool of

economic predictors does not include inflation data as a way of removing the effect of inflation

itself on the forecast. In this application, I consider 128 economic variables, extracted from the

FRED-MD data base.4

The paper makes several empirical contributions. First, with respect to its accuracy, neural

networks are found to beat common benchmarks mainly at medium-long horizons (most of the

models are significantly superior to benchmarks at the two-year forecast horizon).5 The LSTM

model in particular is found to have better forecast performance than the feed-forward neural

network, controlling for the same information set. In fact, as opposed to the feed-forward model,

the number of parameters in the recurrent model does not increase with the number of lags,

which facilitates the estimation with long series of past information. Second, I show that general

macroeconomic information, as opposed to CPI data only, was important to forecast inflation

during the Great Recession and in its aftermath, a result that is in line with other works in the

literature suggesting that economic information plays a substantial role in the prediction during

episodes of high uncertainty (Chakraborty and Joseph, 2017, Medeiros et al., 2019). Third, the

output of the LSTM model provides interesting insights on the signals of the economy that are

particularly important to predict inflation. These signals seem to capture the dynamics of the

business cycle, as well as information on prices. Additionally, the set of economic predictors

as implied by the estimation of the neural network models seems to be nonsparse, a result in

line with the findings in Giannone et al. (2018) that support the view that dense models should

be preferred in the context of economic forecasting, although variables on output, income and

3In fact, most of machine learning models are able to deal with a large set of covariates, deep learning models
being a subset of this class.

4The FRED-MD data base is a significant compilation of monthly US data made available by McCracken and Ng
(2016).

5The benchmarks are the autoregressive model of order 1, the UC-SV model of Stock and Watson (2007) and the
factor-augmented distributed lag (FADL) model. Appendix D provides the specifications.

4

consumption are found to be important predictors for inflation.

The organization of the paper is as follows. The next subsection provides a brief review of

the literature. Section 2 introduces the econometric framework and the neural network models.

Section 3 presents the data, the out-of-sample performance results and further quantitative

analysis. Appendices B and C provide details on the estimation procedure and model specification

respectively. Section 4 concludes.

Related work

The traditional literature on inflation forecasting usually refers to Phillips curve-based models, in

which inflation is a function of some activity-based variable and autoregressive terms. Although

well-established, forecasts based on the Phillips curve have varying performance over time and

can be quickly overperformed by univariate models, as the UC-SV model (Stock and Watson,

2007), the random walk model (Atkeson and Ohanian, 2001) or autoregressive models.6 Other

widely used benchmarks are BVARs (Giannone et al., 2015) and dynamic factor models (Stock

and Watson, 2002, Ludvigson and Ng, 2007), the later being especially good at short horizons.

However, forecasting inflation is far from an easy task, and despite the extensive literature, the

search for a reliable model of inflation is still an open question.

The rapid improvement of machine learning techniques in recent decades have shifted the

attention of econometricians to this class of models.7 This paper contributes in particular to

the inflation forecasting literature by studying the suitability of neural networks to predict the

inflation series, and is more broadly connected to the growing literature of economic forecasting

using machine learning tools.

So far, studies on inflation prediction using machine learning have shown very promising

results and usually involve models describing nonlinear mappings between inputs to outputs,

such as random forests (Medeiros et al., 2019) and support vector regressions (Sermpinis et al.,

2014). Although there is now a substantial number of papers that addresses the performance of

neural networks in the context of inflation forecasting, most of them adopts the basic algorithm of

6Hasenzagl et al. (2018) are an exception, and find that a semi-structural model of inflation featuring a Phillips
curve framework provides a good forecast performance for CPI inflation, especially at long horizons.

7Coulombe et al. (2020) provide a general framework to assess the usefulness of machine learning models to
macroeconomic forecasting. In the field of economics more broadly, see for example Mullainathan and Spiess (2017)
and Athey (2019) for an assessment of these methods applied to policy analysis and causal inference respectively. For
financial applications, see e.g. Refenes and White (1998) and Gu et al. (2019). Varian (2014) provides a discussion about
big data in economics.

5

the class, or the feed-forward neural network. Nakamura (2005) is an early implementation of a

simple neural network for inflation prediction, and more recently Chakraborty and Joseph (2017)

forecasts the two-year ahead inflation using a feed-forward neural network. I complement these

studies by focusing on different neural network structures to forecast inflation, in particular the

LSTM model which is new in this literature.8 The main distinction between the recurrent model

and the models previously studied is the assumption of dependence across time steps and involves

explicitly modelling sequences of observations. This is specific of recurrent neural networks, while

other models are silent about this time dependence. Another related work that applies the LSTM

model in the context of economic forecasting is Cook and Hall (2017). The authors are interested

in forecasting the civilian unemployment and find satisfactory results out-of-sample.

2 The framework

I consider two sets of predictive variables: zt = (z1t, ..., zNt)
′ generically denotes the macroeco-

nomic variables used as predictors, and wt = (w1t, ..., wMt)
′ denotes the set collecting CPI inflation

and its components, for t = 1, ..., T. Importantly, the set wt is not contained in zt, which allows

me to isolate the predictive effect of the macroeconomic variables on inflation. Without loss of

generality, I set the first element of wt, i.e. w1t, as the CPI inflation to be forecast, and denote it by

yt.

Let xt be the set collecting the predictors at time t. In this paper, I consider predictor sets of the

form xt = (zt, ..., zt−(L−1))
′, xt = (wt, ..., wt−(L−1))

′ or xt = (zt, ..., zt−(L−1), wt, ..., wt−(L−1))
′, where

the number of lags L may differ across sets.

I assume that the h-step ahead inflation yt+h evolves nonlinearly with respect to the predictors

xt. Mathematically, yt+h is modelled as a nonlinear function of the predictors, G, plus a non pre-

dictable component εt that is assumed to be iid with zero mean and variance σ2 and independent

of xt,

yt+h = G(xt; Θh) + εt+h (1)

where Θh represents the model parameters. The underlying statistical problem consists therefore

in estimating the unknown function G : xt → yt+h.

In this application, G takes the form of a neural network structure, in which case fitting the

8Sermpinis et al. (2014) estimate a more traditional recurrent neural network (RNN) in the context of inflation
prediction, while the present paper goes further and estimates the RNN with LSTM units, a more elaborate version of
the RNN, able to model longer sequences of values.

6

function to the data corresponds to estimating Θh given a network architecture. An architecture

AG is specified as being a collection of choices that defines the functional form of G. It embeds

two elements: the neural network model (or a combination of neural network models), and a set

of parameters specific to each model, referred to as hyperparameters. Importantly, the choice of

the network model is defined ex-ante by the researcher while the hyperparameters are optimized

via grid search for each network model.9 Making an analogy to the nonparametric literature, the

hyperparameters can be viewed as tuning parameters that are model-specific, e.g. the bandwidth

in kernel regression, or the choice of k in k-nearest-neighbors estimation. As neural network

models, I consider the feed-forward (FF) neural network, the recurrent neural network with LSTM

units, also referred here as the LSTM model for simplicity, and a combination of both, called the

FF-LSTM model (the next sections provide details).

Let SAG be the set of parameters specific to architecture AG. The parameters Θh ∈ SAG are

estimated by minimizing the mean squared error loss

Θ̂h = argmin
Θh∈SAG

{ 1
T − h

T−h

∑
t=1

(
yt+h − G(xt; Θh)

)2}
(2)

for a given set of predictors xt and target variable yt+h, where the estimation is implemented by

gradient descent (appendix B provides more details). The prediction Ĝ(xt, Θ̂h) can be interpreted

as the conditional mean of the target variable.

The next sections present a detailed description of the three different model structures con-

sidered: the FF model, the LSTM model and the FF-LSTM model. They mainly differ from

one another in two dimensions: they embed different neural network models, and they assume

different predictor sets.

2.1 The feed-forward (FF) model

The feed-forward model is the fundamental structure of a neural network, inspired by the behavior

of the human brain. The intuition behind this model is very simple. It consists of a potentially

large number of simple elements, called nodes, that are organized into layers. The first is the input

layer, carrying the input information, the last is the output layer, the one delivering the prediction

of the model, and the layers in between are called hidden layers, in which the information

flows in one direction, from inputs to outputs. A feed-forward network is said to be deep if it

9Details on the grid search process are provided in appendix C.

7

contains many hidden layers, normally ranging between 2 and 8 layers. Each node of the network,

excluding the nodes in the input layer, processes the information coming in from the previous

layer and delivers its output to the next layer. The computation behind these units consists on a

weighted average over the output of all nodes in the previous layer, and a subsequent nonlinear

transformation, referred to as the activation function. The weights applied to each node are the

parameters of the model.

Formally, consider a feed-forward neural network with Q hidden layers. Let xt be the predictor

set, and ai
t ∈ Rn×1 be the hidden layer vectors containing n nodes each, for i = 1, 2, ..., Q.10 The

feed-forward model takes the form

G(xt; Θh) = gFF(xt) (3)

where gFF denotes a feed forward neural network with inputs xt, and can be expressed as

gFF(xt) = WQ+1aQ
t + bQ+1

ai
t = ReLu(Wiai−1

t + bi), i = 1, 2, ..., Q

a0
t = xt

(4)

where Θh = ({Wi}Q
i=1, {bi}Q

i=1)
′ collects the parameters of the model. {Wi}Q

i=1 are parameters

relating the different layers of the network, {bi}Q
i=1 are intercept terms, and ReLu : R → R is

the rectified linear unit activation function ReLu(z) = max{0, z}, applied element-wise. Other

activation functions can also be considered, as the hyperbolic tangent and sigmoid functions, but

the ReLu remains the preferred choice since it avoids estimation problems due to the simple form

of its gradient. In fact, the ReLu function usually overperforms other activation functions in terms

of statistical performance and computational cost.11

The hyperparameters of this model are the number of layers Q, the number of nodes per layer

n and the number of lags L. Note here that the size of the input layer depends on the choice of

the predictor set as well as the number of lags L (e.g. (ML + 1)× 1, where the additional input

stands for the bias term set equal to one), while the size of the output layer is fixed and set to one

given the single-valued target variable. Figure 1 provides a graphical interpretation of this model.

10The restriction that each layer must contain the same n number of nodes is imposed for simplification purposes
but could be relaxed, in which case the layer-specific number of nodes n would be selected via grid search.

11A recent work shows that the estimator of a deep ReLu network can achieve nearly optimal convergence rates for
different constraints on the target function (Schmidt-Hieber, 2017).

8

Figure 1: The feed-forward neural network model

The figure is a representation of a feed-forward neural network with hidden layers ai
t, for i = 1, ..., Q, a vector-

valued input xt, and a single-valued output yt+h. The hidden layers are defined as ai
t = ReLu(Wiai−1

t + bi)

for i = 1, 2, ..., Q, with a0
t = xt, while the target is modelled as a linear combination of the vector aQ

t ,
gFF = WQ+1aQ

t + bQ+1. The arrows link the elements of the network and represent the parameters of the
model, i.e. ({Wi}Q

i=1, {bi}Q
i=1)

′. The arrows in between the hidden layers as well as the intercept terms
{bi}Q

i=1 are omitted for ease of visualization.

The feed-forward model, as the building block of a neural network, serves as a baseline for

comparison with other, more complex neutral network structures. I consider estimating this model

with both CPI-only data, xt = (wt, ..., wt−(L−1))
′, as well as with the pool of economic predictors

excluding CPI data, xt = (zt, ..., zt−(L−1))
′. The first case, named FF-cpi, is a natural extension of

the autoregressive model, in which a function relates lags of inflation (and its components) to the

h-step ahead inflation through a (highly) nonlinear mapping. The total number of parameters in

this model is (ML + 1)n + (Q− 1)(n + 1)n + (n + 1). The second case, named FF-pool, forecasts

inflation with a large set of macroeconomic predictors and its lags. This choice of input set is

useful to identify the ability of other macroeconomic variables in predicting inflation. In this case,

the total number of parameters amounts to (NL + 1)n + (Q− 1)(n + 1)n + (n + 1).

2.2 The LSTM model

Recurrent neural networks (RNN) are promising models for time series forecasting, as they

efficiently perform dimensional reduction while taking into account the time dependence within

sequences of observations. This is possible because these models “remember” the information

contained in previous time steps through a feedback loop. The main difference between the RNN

9

and the feed-forward network is the way the algorithm handles past information. While the latest

processes all the input lags forwards and simultaneously in the network, the RNN processes each

time step sequentially, allowing the output of a previous time step to be an input of the following

one. This characteristic makes RNNs quite attractive to model time series dynamics.

As described formally below, RNNs have a so called internal memory that is updated at

each time step. The model estimates the parameters such that its memory embeds the relevant

information to forecast the target. Supposing that we feed the model with a large set of economic

predictors, this internal memory would be interpreted as signals from the macroeconomic outlook

that help predict inflation. This memory in practice takes the form of a vector that contain the

cross-sectional and lagged information from the data set of predictors, and can be understood as

common components in an analogy to factor analysis.

Consider the predictor set xt = (zt, ..., zt−(L−1))
′, with zt being a N-vector of predictors. At

each point in time the point forecast of the RNN is a function of its internal memory (or in the

machine learning jargon, its hidden state). The internal memory is a p-vector denoted ft, and is a

function of the current input information zt and the lagged internal memory ft−1. Importantly,

this recursion is limited to a fixed lag L in a way that past information can only be traced back up

to lag L. In order to embed this idea in the notation, I write ft|L ≡ ft|t,t−1,...,t−(L−1). This internal

memory can be interpreted as a filter that reduces the dimension of the original predictor space N

into a smaller number of common components p, where in general p << N, while incorporating

past information through a recursion equation. The RNN model can be described as

G(xt; Θh) = g
(

ft|L

)
(5)

where g is a linear function on its inputs, and ft|L is the internal memory expressed as

ft|L = Γ(W ′zt + U ft−1|L + b)

f0|L = 0
(6)

where Θh collects the parameters of ft|L, (W, U, b)′, with W ∈ RN×p, U ∈ Rp×p and b ∈ Rp×1, as

well as those of the linear function g.12 The hyperparameters of this model are the number of

12In this example, and throughout the paper, I assume an RNN with an architecture many-to-one, where at each time
step the network receives the inputs, updates the internal memory, and only delivers the output after all lags l = 1, ..., L
have been processed through the recursion equation. Other variations exist, such as the specification many-to-many,
in which the network delivers an output at each time step. See Goodfellow et al. (2016) for additional details on the
different specifications of this model.

10

common components p in ft|L and the number of lags L. p is the equivalent of the number of

nodes per layer n in the feed-forward network, and ultimately determines the degree of complexity

of the model. Function Γ is applied element-wise, and may vary between applications, although

the hyperbolic tangent and sigmoid functions are widely used in empirical applications.

The drawback of traditional RNNs is that they usually suffer from vanishing gradients that

compromises the estimation process through a slow rate of improvement. Suppose that we

seek to estimate an RNN with number of lags L. In brief terms, the estimation of the RNN

involves computing the gradient of the loss function with respect to the parameters, which implies

evaluating the gradient at every time step within sequences of observations of length L. If the

parameters are significantly small (usually they are close to zero), the higher L, the smaller the

contribution of observations sufficiently back in time, given the multiplicative effect of the chain

rule and the fact that the derivative of the activation function is bounded by 1 (supposing the

commonly used hyperbolic tangent or sigmoid functions). In other words, the model will not

properly estimate long-term dependencies because the estimation process is compromised for

sufficiently long sequences.13

The RNN with long-short term memory (LSTM) units solves this problem by avoiding the

gradients to be too small, which is key to explaining the long-memory feature usually attributed

to LSTMs. The intuition behind this algorithm relies on the existence of a cell state that turns

out to be more stable than its counterpart in the traditional RNN, stabilizing the gradients as a

consequence. This stability comes from the additive nature of the cell state, as well as the presence

of filters that control the flow of information. These features together ensure suitable values for

the gradient. For instance, if information from time step l shouldn’t be forgotten to predict yt+h,

the parameters of specific filters are estimated accordingly so that the gradient at the l-time step is

sufficiently large to account for this information when updating the model parameters. Intuitively,

this mechanism allows the information to effectively flow across time periods.

It is common practice in machine learning to relate the internal memory of an LSTM to the

target variable using a feed-forward network. This can be viewed as a generalization of the

RNN case, where the internal memory is related to the prediction through the linear function g.

Consider again the predictor set xt = (zt, ..., zt−(L−1))
′, with zt being a N-vector of predictors. The

13In practice, the vanishing gradients problem may also occur in significantly deep feed-forward networks. The use
of the ReLu activation function in these cases helps preventing the problem because its derivative is either 0 or 1.

11

LSTM model can be expressed as

G(xt; Θh) = gFF

(
ft|L

)
(7)

where gFF is the feed-forward network from equation 4. The internal memory ft|L of the LSTM

takes a different, more complex format compared to the plain recurrent model introduced above.

Its internal memory mainly reflects the LSTM as a control of the flow of information through time.

Mathematically, ft|L is computed as

ft|L = φt|L � tanh(ct|L)

ct|L = ψt|L � ct−1|L + ζt|L � tanh(W ′czt + Uc ft−1|L + bc)

φt|L = sigmoid(W ′φzt + Uφ ft−1|L + bφ)

ψt|L = sigmoid(W ′ψzt + Uψ ft−1|L + bψ)

ζt|L = sigmoid(W ′ζzt + Uζ ft−1|L + bζ)

f0|L = 0, c0|L = 0

(8)

In this model, a cell state ct|L is updated recursively where a first filter denoted ψt|L controls what

past information to retain, and a second filter ζt|L controls what new information to retain at the

current time period. The internal memory ft|L is then a function of the cell state where a final

filter φt|L controls what information from the cell state to use for prediction.

Θh collects the parameters of ft|L, (W(j), U(j), b(j))
′ for j = c, φ, ψ, ζ, where W(j) ∈ RN×p,

U(j) ∈ Rp×p, and b(j) ∈ Rp×1, as well as the parameters of the feed-forward network gFF,

({Wi}Q
i=1, {bi}Q

i=1)
′, where Wi and bi have appropriate dimensions given n and Q. The functions

sigmoid and hyperbolic tangent (tanh) are applied element-wise, and the symbol � is the element-

wise multiplication of two vectors. In this setting, the hyperparameters are the number of common

components p in ft|L, the number of lags L, the number of nodes per layer n in the feed-forward

network as well as the number of layers Q. A graphical representation of the model is provided in

figure 2.

I consider estimating this model with two data sets: the pool of economic predictors excluding

CPI data, xt = (zt, ..., zt−(L−1))
′, and the full data set, xt = (zt, ..., zt−(L−1), wt, ..., wt−(L−1))

′. The

first case, called LSTM-pool has a total number of parameters of 4(Np+ p2 + p) + (p+ 1)n+ (Q−

1)(n + 1)n + (n + 1), while the second case, called LSTM-all, has a total number of parameters of

12

Figure 2: The LSTM model

The figure represents an LSTM model that receives the predictor set xt = (zt, ..., zt−(L−1))
′. On the left, the

LSTM structure is shown unfolded, up to L lags. The output of the LSTM ft|L in turn enters as the predictor
set of a feed-forward network, depicted on the right, which predicts the single-valued output yt+h.

4((N + M)p + p2 + p) + (p + 1)n + (Q− 1)(n + 1)n + (n + 1).

2.3 The FF-LSTM model

The third model structure analysed in this paper, called FF-LSTM, is constructed based on the

two models described above. It can be viewed as an augmented FF-cpi model, where CPI

data xt = (wt, ..., wt−(L−1))
′ is combined to information on the state of the economy to form a

composite input to a feed-forward neural network. The state of the economy is taken to be the

p-dimensional internal memory ft|L of an LSTM that receives information on the pool of predictors

excluding CPI data, xt = (zt, ..., zt−(L−1))
′. For clarification purposes, I rename the predictor sets

as xw
t = (wt, ..., wt−(L−1))

′ and xz
t = (zt, ..., zt−(L−1))

′, and write ft|L(xz
t).

In fact, this model can be interpreted as a generalized dynamic factor model, in which inflation

is a (usually linear) function of common components and its lags, describing the economic state,

as well as lags of inflation itself. A dynamic factor model is estimated as a benchmark (the FADL

model specified in appendix D) and receives the same predictor set for the estimation of the

factors as the LSTM model, or xt = (zt, ..., zt−(L−1))
′.

The FF-LSTM is therefore defined as a feed-forward model gFF that receives the composite

predictor set (xw
t , ft|L(xz

t))
′, which is essentially an augmented FF-cpi with additional input

information on the common components ft|L(xz
t). Mathematically,

G(xt; Θh) = gFF

(
(xw

t , ft|L(xz
t))
′
)

(9)

where gFF is the feed forward network from equation 4, ft|L takes the same form as in equation

13

8, and Θh collects the parameters of ft|L as well as the feed-forward network gFF. Similarly to

the LSTM model, the hyperparameters are the number of common components p in ft|L, the

number of lags L, the number of nodes per layer n in the feed-forward network as well as

the number of layers Q. In this setting, there are two distinct L lags to be determined, each

specific to a set of predictors, xz
t and xw

t . The number of parameters in this case amounts to

4(Np + p2 + p) + (p + ML + 1)n + (Q − 1)(n + 1)n + (n + 1). Figure 3 provides a graphical

illustration.

Figure 3: The FF-LSTM model

The FF-LSTM model is essentially a feed-forward network with a composite predictor set: (i) data on the
CPI and components (wt, ..., wt−(L−1))

′, and (ii) a p-dimensional internal memory ft|L of an LSTM structure
computed from the pool of economic predictors (zt, ..., zt−(L−1))

′. In this way, the FF-LSTM model nests
both the FF-cpi and LSTM-pool models.

3 Empirical Analysis

3.1 Data

The data used in the empirical study is collected from the FRED-MD data base, a compilation of

monthly US data made available by McCracken and Ng (2016), and corresponds to the vintage of

October 2019. This data set is comprised of 128 series with 730 observations each, spanning the

period from January 1959 to October 2019. Table 2 in appendix A provides the description of all

the series as well as information on the data transformation. Departing from this data set, I create

two sets of variables: the first comprises the ten series with direct CPI information, i.e. the CPI

and its components (corresponding to series indexed by 110 to 199 in table 2), and the second

14

comprises all the remaining series. The first set is denoted wt, and the second, zt.

The series undergo a sequence of transformations before estimation. First, I transform the

data following the specifications in McCracken and Ng (2016) to guarantee stationarity. The only

exception is the CPI series, which here is specified in log differences, πt = log(Pt)− log(Pt−1),

where Pt is the price index at time t. Second, missing observations are replaced with the

unconditional mean for each series. And third, the data is normalized within the interval [−1, 1].

This normalization is carried out in the in-sample set and extrapolated to the out-of-sample set

such that there is no look-ahead bias. It is worth mentioning that neural networks may very

well handle non-stationary data, hence the transformations that guarantee stationarity could

potentially be relaxed. However it is much less evident whether these models can perform well

in the presence of covariates with numerical values significantly different from one another. In

fact, the evidence suggests that neural networks perform better when the inputs share a similar

order of magnitude.14 It is therefore very common in the literature to implement feature scaling

to the data (feature standing for covariates), which is similar to assuming an equal importance of

covariates ex-ante.

3.2 Predictions as an ensemble

The usual non-convex loss function of neural networks implies that the estimated parameters are

in general very sensitive to initial values (initial parameters are randomly drawn from a specific

uniform distribution; see appendix B). In practice, this means that the neural network predictions

will be very much dependent on the initialization. To overcome this issue, the empirical literature

usually adopts the solution of averaging out the predictions from models estimated with different

initial values.

Consider the set of models {Mk}K
k=1 estimated from the same neural network architecture

but with different initial values. Let {ŷk,t+h}P
t=1 be the forecast associated with modelMk, where

P is the out-of-sample size. The ensemble prediction at period t + h is defined as ŷens,t+h =

1
K ∑K

k=1 ŷk,t+h, which is essentially a model-averaging technique that attributes an equal weight

to each forecast ŷk,t+h. Section 3.6 shows empirically that this solution is at least as good as the

individual forecasts in terms of mean squared error according to a standard Diebold and Mariano

(1995) (DM) test procedure.

14This fact is related to the gradient descent optimization process, which seems to converge much faster when the
input data is normalized (see Ioffe and Szegedy, 2015). For details on the optimization procedure, see appendix B.

15

I therefore adopt this ensemble technique and estimate each neural network specification

K = 1400 times letting vary the initialization.15 The main out-of-sample results reported below

(section 3.5) refer to the ensemble prediction ŷens,t+h across the 1400 forecasts.

3.3 The dynamics of the internal memory ft|L

In this section, I extract the internal memory ft|L of estimated neural network models and evaluate

it over the full sample period as an attempt to characterize its dynamics and association with

the business cycle. The focus of this exercise is therefore on the three models embedding LSTM

structures, i.e. LSTM-pool, LSTM-all and FF-LSTM (the optimal architecture for each model is

selected ex-ante via grid search; see table 3 in appendix C).

As previously discussed, the p-dimensional internal memory ft|L of the LSTM is estimated

from a large set of economic predictors, and can be interpreted as signals of the economy that

are important to predict inflation. The elements of ft|L can be similarly interpreted as common

components of variation from the set of predictors. However, the vector ft|L is not uniquely

determined given the common lack of identification of neural network models. This is usually

caused by the symmetric nature of neural networks (such that a swap of nodes from a given

layer leads to the same function value) as well as the cross-dependence of parameters inside the

network. Appendix B provides a more detailed discussion on that matter.

In order to recover a single vector ft|L, I first estimate a set of models {Mk}K
k=1 with different

initial values but same neural network architecture. I then select the modelMk with lowest out-

of-sample error over a validation sample (see appendix C), which essentially implies selecting an

optimal initialization.16 Finally, given a modelMk, it is possible to evaluate the internal memory

ft|L over the full sample period using rolling windows of L observations, for t = L, ..., (T − h).

The outcome of this exercise is displayed in figure 4 for the three models of interest at horizon

h = 24. The figure plots the p components of the internal memory ft|L together with the CPI

inflation series computed at the annual rate of change. Note that the dimension p is selected

via grid search, where p = 2 for all three models. Also note that the internal memory ft|L is

constrained to lie in the interval [−1, 1], as imposed by the structure of the LSTM.17

15In order to guarantee optimal computational time, the number of iterations was chosen such that it is proportional
to the number of available processors.

16Note that the ensemble strategy cannot be applied here given the non-identifiability of the model. Indeed, it
would be meaningless to average out non-identifiable components.

17The vector-valued output of the LSTM takes the form of an element-wise multiplication between a sigmoid
function, constrained to [0, 1], and a hyperbolic tangent function, constrained to [−1, 1] (see equation 8).

16

Figure 4: The p-components of the internal memory ft|L

The figure plots the p = 2 components of the internal memory ft|L of three estimated neural network
models together with the CPI inflation series. The plots correspond to estimations at horizon 24 and cover
the full sample period. The correlation between each component and the inflation series is indicated in
the legend. The internal memory ft|L can be interpreted as signals of the economy that are relevant to
predict inflation, where the number of components is pre-selected via grid search. The grey areas are NBER
recessions.

(a) LSTM-pool

(b) LSTM-all

17

Figure 4: Common components - continued

(c) FF-LSTM

I discuss two points. First, the components of the internal memory ft|L seem to capture well

some elements of the inflation series. In particular, some of the series track well the hyperinflation

period during the 1970’s and 1980’s, as well as the downward trend of inflation during the last

decades. This is mostly visible for the LSTM-pool and LSTM-all models. Note also that some of

the series are successful in capturing the abrupt movements of inflation during the Great Recession

(LSTM-pool and FF-LSTM).

Second, the internal memory ft|L also conveys information on the business cycle. This is more

evident in the FF-LSTM model, where one of the series fluctuates significantly around recessions.

Note that for models where the internal memory ft|L is the only element used for prediction

(i.e. LSTM-pool and LSTM-all), one of the ft|L components shows significant correlation with the

inflation series, while this is not the case for the FF-LSTM model for which the predictor set is

augmented with CPI data. Instead, the internal memory ft|L of this later model appears to be

capturing only the information in excess of what is already provided by the CPI data. In this case

the components of ft|L can be viewed as filtered versions of previous models’ ft|Ls, where the

contribution of CPI data for prediction is removed. This eventually explains the explicit relation

of ft|L to the business cycle according to the estimation of the FF-LSTM model.

18

3.4 Variable selection

In this section, I provide insights on variable selection as implied by the estimation of the models

containing either the pool of economic predictors (FF-pool, LSTM-pool) or all the variables in the

data set (LSTM-all and FF-LSTM).

The analysis employs a perturbation method that identifies the importance of each variable

to the prediction. Specifically, I re-estimate the models such that at each estimation a specific

input variable i is perturbed with a 3 standard deviation shock. The resulting prediction series

is then compared to a benchmark series where none of the variables are shocked using a mean

squared error-type loss over the out-of-sample period, which is referred as the gain of variable i.

The variable-specific gains are then averaged out within groups, where I follow McCracken and

Ng (2016) and allocate the variables into eight groups: output and income, labor market, housing,

consumption, money and credit, interest rates and exchange rates, prices and stock market.18

Figure 5 provides a visual outlook of the gains across groups and models. The values displayed

correspond to the frequency that each group had the highest gain and/or the second highest

gain across horizons (3, 6, 12 and 24). Results are presented across different levels of aggregation:

at the model level, over all models, and over all models excluding the FF-LSTM. I discuss two

points. First, the groups “output and income” and “consumption” clearly stand out in variable

importance. When looking at frequencies across all models, “consumption” presents the largest

frequency of high gains, followed by “output and income” and “prices”. Groups as “labour

market” and “interest and exchange rates” appear to have little relative importance to the forecast.

Note that the large frequency of the “price” group implied by the FF-LSTM is compatible with its

structure. Recall that in this model CPI data enters directly in the feed-forward part of the model,

rather than through the LSTM, such that a shock to a CPI component is likely to have a larger

impact on the prediction than a variable processed first by the LSTM. Excluding the FF-LSTM

when aggregating gains across models, “output and income” and “consumption” present again

the largest frequency of high gains. And second, including CPI data in the model does not

increase the relative importance of the price group (LSTM-pool vs LSTM-all). This means that CPI

data itself does not seem crucial when already controlling for macroeconomic information. This

result supports the findings of Giannone et al. (2018) that promote the use of dense models in the

context of economic forecasting.

18For models that do not include data on the CPI and its components (i.e. FF-pool and LSTM-pool), the group
“Prices” does not include these variables.

19

Figure 5: Variable selection

The values displayed correspond to the frequency that each group had the highest gain and/or the second
highest gain across horizons (3, 6, 12 and 24). I refer to the gain of variable i as the mean squared error
over the out-of-sample period between a benchmark prediction and a prediction resulting from perturbing
variable i by a 3 standard deviation shock. Variable-specific gains are then averaged out within economic-
based groups. Results are presented across different levels of aggregation: at the model level, over all
models, and over all models excluding the FF-LSTM.

3.5 Out-of-sample analysis

In this section, the performance of the neural network models is compared to three benchmarks,

the autoregressive model of order 1, the UC-SV model of Stock and Watson (2007), and the factor-

augmented distributed lag (FADL) model. These are widely used benchmarks in the literature of

inflation forecasting and are presented in appendix D, together with details on their estimation.

Table 1 presents the out-of-sample results. The entries correspond to loss ratios with respect

to the AR(1) benchmark over the out-of-sample period (2006M08 - 2019M10), where both the

root mean squared error and the mean absolute error losses are considered. The results indicate

that the neural network models have in general a lower forecast error than the benchmarks,

especially at the one and two years ahead forecast horizons. However, statistically significant

results according to a DM test are mainly found at the two year horizon, implying that these

models are good at forecasting the long term trend of inflation, but are less appropriate for

shorter horizons. The models incorporating LSTM structures do particularly well compared to the

20

feed-forward specifications. For instance, keeping constant the predictor set, the LSTM-pool is at

least as good as the FF-pool across almost all horizons (except at the 6-step ahead). Regarding the

importance of predictors for the forecast, it is possible to infer that the use of CPI data does not

necessarily imply in greater forecast performance once controlling for a large set of macroeconomic

variables. This can be seen from the similar forecast accuracy of the LSTM-pool and LSTM-all

models, the later incorporating CPI data on top of the pool of macroeconomic predictors. In the

same way, it is possible to argue that the model carrying only CPI information, FF-cpi, does not

excel compared to the alternatives, including those models without CPI data (i.e. FF-pool and

LSTM-pool). Overall these results support the idea that the LSTM structure, when estimated in

a big data environment, has advantages over commonly used benchmarks as well as over the

feed-forward model.

It is important to note that a possible reason behind the poor performance of the FF-pool

model could be linked to the large number of estimated parameters. For the same input set, the

number of parameters of the FF-pool is almost 15 times the one of the LSTM-pool (see table 3 in

appendix C). This difference is in part one of the advantages of the LSTM model with respect

to the feed-forward structure: the LSTM is not penalized in terms of number of parameters as

the number of lags increases. The intuition is straightforward given the recurrent nature of the

LSTM, since all lagged values enter the model through the same recurrent cell, implying that the

algorithm estimates only one set of parameters for all lags. On the other hand, the number of

parameters of the feed-forward model is increasing in the number of lags, as each lag is treated as

a new predictor.

As a way of illustrating the different model performances, figure 6 plots the realized inflation

series together with the predictions of two neural network models, FF-pool and LSTM-pool, and

the predictions of the factor model, at the 24-step ahead horizon. Note that the factor model is

more sensitive to new information, and sees its performance penalized with respect to the neural

networks once data on the financial crisis period comes in. The neural network models on the

other hand are able to produce much smoother prediction series. In the comparison between

the two neural network models, note that the FF-pool underestimates the trend of inflation for

a relative long period, possibly indicating more unstable predictions given its large amount of

parameters, as discussed previously.

In order to get a clearer picture of the models’ performance over time, as opposed to the

average performance, I employ the Fluctuation Test introduced by Giacomini and Rossi (2010).

21

Table 1: Out-of sample forecast performance

The table presents the loss ratios with respect to the AR(1) model for specific horizons over the
period 2006M08 - 2019M10, as well as the data included in each model. In the column ‘Data’, ‘CPI’
is the CPI series (series 110 in table 2), ‘CPI+cp.’ is the CPI and its nine components (series 110 to
119 in table 2), ‘Pool’ groups all the series from table 2 except ‘CPI+cp.’, and ‘All’ refers to all series
in table 2. The loss functions are the root mean squared error (RMSE) and the mean absolute error
(MAE). Stars denote significance of the Diebold and Mariano (1995) test at a 10%, 5% and 1% level.

Horizon (months)

Model Data 1 3 6 12 24

RMSE

AR(1) CPI 1.00 1.00 1.00 1.00 1.00

UC-SV CPI 1.13 1.05 1.03 1.02 1.00

Factor-aug DL Pool (excl CPI+cp.) 1.05 1.09 1.08 1.01 1.00

FF-cpi CPI+comp 1.07 1.01 1.01 0.98 0.91**

FF-pool Pool (excl CPI+cp.) 1.09 0.92 0.90* 0.94 0.99

LSTM-pool Pool (excl CPI+cp.) 1.00 0.93 1.03 0.93* 0.92**

LSTM-all All 0.98 0.94 1.04 0.92** 0.91**

FF-LSTM All 1.06 0.99 0.99 0.97 0.89***

MAE

AR(1) CPI 1.00 1.00 1.00 1.00 1.00

UC-SV CPI 1.05 1.05 1.04 1.00 1.08

Factor-aug DL Pool (excl CPI+cp.) 0.99 1.07 1.07 0.98 1.01

FF-cpi CPI+comp 1.03 0.98 1.00 0.94 0.91**

FF-pool Pool (excl CPI+cp.) 1.09 0.95 0.95 0.98 1.02

LSTM-pool Pool (excl CPI+cp.) 0.97 0.93 1.09 0.92 0.90**

LSTM-all All 0.97 0.95 1.10 0.91 0.91**

FF-LSTM All 1.02 0.96 0.97 0.91 0.88***

The proposed statistic tests for an equal forecast accuracy of two forecasting models and is robust

to instability on their relative forecast performance. The statistic is much similar to the DM test

procedure, except that it is computed over a rolling window of fixed size m. In this application, I

use the one-sided test where the rejection of the null hypothesis (i.e. a test statistic larger than the

critical value) implies that the candidate model is statistically superior to the benchmark for a

given point in the out-of-sample period. The value of m is chosen such that m/P ≈ 0.3, in which

case the one-sided critical value at the 5% confidence level is 2.77 according to Giacomini and

Rossi (2010).

Figure 7 provides the statistic series with respect to the AR(1) model. I discuss several points.

First, I argue that models carrying broad macroeconomic information, as opposed to models

22

Figure 6: Realized versus predicted

This graph plots the realized inflation series (Realized) together with 24-step ahead predictions of two
neural network models (FF-pool and LSTM-pool) and predictions of the factor-augmented model (FADL)
over the out-of-sample period. Realized inflation is specified in log differences ×102.

carrying only CPI information, are more appropriate to predict inflation, especially for certain

periods during the business cycle. More specifically, there is a clear distinction between two

groups of models during the period covering the Great Recession and its aftermath, i.e. from the

end of 2008 until mid 2010. In this first part of the sample, the first group (FF-pool, LSTM-pool,

LSTM-all) presents systematically a better forecast accuracy than the second group, or models

that contain mainly CPI information (FF-cpi, FF-LSTM). Moreover the first group is statistically

superior to the benchmark at the 5% level, while the second cannot beat the benchmark during the

same period. The exception is at horizon 24 where all models have a similar, good performance.

Still on the importance of macroeconomic information, note that the inclusion of CPI data in the

LSTM model (LSTM-pool versus LSTM-all) does not increase significantly its performance, in

fact we observe a decrease in performance over some periods of the sample (e.g. horizons 3 and

6). On the opposite side, the inclusion of the common components in the feed-forward model

(FF-cpi versus FF-LSTM) proves to improve forecast performance for all horizons, supporting the

23

Figure 7: Test for equal forecast accuracy

The figure exhibits the one-sided fluctuation test (Giacomini and Rossi, 2010) for equal forecast accuracy
between the neural network specifications and the AR(1) benchmark. A positive statistic for a given point
in time implies that the specified model has a lower forecast error than the benchmark over a window of 48
observations around that point. The dashed line represents the critical value at the 5% confidence level.

(a) Horizon 1 (b) Horizon 3

(c) Horizon 6 (d) Horizon 12

(e) Horizon 24

24

relevance of economic information also during normal times.

Second, the choice of the neural network model is crucial for forecast performance. Consider

the models LSTM-all and FF-LSTM. Both receive the same input information but they treat the

data in a slight different way. While the LSTM-all processes the entire data set within the LSTM

structure, the FF-LSTM supplies the CPI information directly to the feed-forward network, which

to some extent increases the weight of CPI data in the final prediction compared to other economic

predictors. As figure 7 shows, the performance of these two structures differs substantially over

time, and the larger importance given to CPI data under the FF-LSTM framework proved to be

detrimental for its performance. This point substantiates the idea that the network architecture,

leaving aside the estimation of the parameters, appears to play an important role in the forecasting

exercise and should be considered with caution.

Third, the LSTM model shows a better forecast performance than the feed-forward network

systematically over the out-of-sample period, especially at medium to long horizons. For a similar

predictor set (FF-pool versus LSTM-pool), the only instances where the FF model outperforms the

LSTM is during the unstable period of the crisis for horizons 3 and 12 as well as for the entire

sample at horizon 6, where the LSTM shows a particularly bad performance. However if one

considers horizons of policy interest (one and two years ahead), these results indicate that the

LSTM model is an interesting candidate in light of its advantage with respect to usual benchmarks,

but also with respect to other neural network structures. As previously discussed, this result is

also robust to the data set of predictors, as the presence of CPI data in the input set does not affect

the outcome significantly.

3.6 Uncertainty over initial values

As discussed before, neural network predictions are in general very sensitive to initial conditions.

This is mainly a consequence of the non-convexity of the loss function, where the presence of

non-linearities tends to complicate the search for a global optimum. In fact, it is likely that the

algorithm will converge to some local optimum, which explains why predictions usually differ

across estimations under different initial values.

Natural questions that emerge are how different are the performances of forecasts embedding

different initializations, and more importantly how the performance of the ensemble forecast

{ŷens,t+h}P
t=1 compares with the performance of individual forecasts {ŷk,t+h}P

t=1, for k = 1, ..., K.

To address these points, I compute a Diebold and Mariano (1995) test statistic of equal forecast

25

accuracy between the individual forecasts and the ensemble forecast for each k = 1, ..., K. This

exercise essentially yields a distribution of the DM test statistic over specifications embedding

different initial values.

Let {ek,t+h}P
t=1 and {eens,t+h}P

t=1 be forecast errors associated with forecast {ŷk,t+h}P
t=1 and with

the ensemble forecast {ŷens,t+h}P
t=1 respectively over the out-of-sample period. Now consider a

loss-differential series {dk,t+h}P
t=1, where dk,t+h ≡ [e2

k,t+h − e2
ens,t+h], such that positive values are

associated with a better performance of the ensemble prediction. For a given horizon h, I compute

the following Diebold and Mariano (1995) test statistic of equal forecast accuracy:

∆k,h =
d̄k,h√
2π f̂d(0)

P

, k = 1, ..., K (10)

where d̄k,h = 1
P ∑P

t=1 dk,t+h is the sample mean loss differential, and f̂d(0) is the estimate of the

spectral density of the loss differential at frequency 0, fd(0). A consistent estimate for 2π fd(0) is

obtained by taking a weighted sum of the sample autocovariances

2π f̂d(0) =
P−1

∑
τ=−(P−1)

1
(

τ

S(P)

)
γ̂d(τ)

where γ̂d(τ) =
1
P ∑P

t=|τ|+1(dk,t+h − d̄k,h)(dk,t+h−|τ| − d̄k,h), and 1
(

τ
S(P)

)
is the uniform lag window,

taking the value of 1 if
∣∣∣ τ

S(P)

∣∣∣ ≤ 1 and 0 otherwise. S(P) is the truncation lag that I define as

S(P) = P1/3 following standard practice.19

I carry out the analysis considering h = 24 and K = 1400. Figure 8 plots ∆k,24, for k = 1, ..., 1400,

for each neural network model. Also plotted are the critical values at the 5% (blue dashed line)

and 1% (red dashed line) significance levels based on a Normal distribution for a two-sided test

of equal forecast accuracy.

According to figure 8, the ensemble forecast {ŷens,t+24}P
t=1 appears to be at least as good as

any of the forecasts {ŷk,t+24}P
t=1, for k = 1, ..., 1400. In fact, at the 5% confidence level, the majority

of the forecasts shows significantly worse performance than the ensemble forecast, while the

remaining forecasts are as good as the ensemble. This finding is reported for all models except

19The spectral density estimator considered may in rare occasions take on negative values. In the present application,
this is the case for approximately 0.3% of the K estimated forecasts. I follow Diebold and Mariano (1995) and treat the
estimator as 0 for these cases which implies in an automatic rejection of the null hypothesis of equal forecast accuracy.
Because in this application I am interested in a specific value for the statistic ∆k,h, I set it at [4× sign(d̄k,h)], which
corresponds to a 4 standard deviation from the mean of a standard normal, scaled by the sign of the sample mean loss
differential.

26

Figure 8: Distribution of the DM statistic ∆ over different initializations

This figure plots the test statistic ∆k,24, for k = 1, ..., 1400, for each neural network model. The statistic
∆k,24 is defined such as positive values imply a better forecast performance of the ensemble prediction
{ŷens,t+24}P

t=1 over the individual forecast {ŷk,t+24}P
t=1, where different forecasts k are associated with

different initializations. Forecasts are computed over the out-of-sample period of size P. The vertical
dashed lines represent critical values at the 5% (blue) and 1% (red) significance levels based on a Normal
distribution for a two-sided test of equal forecast accuracy.

the FF-pool, where the majority of forecasts does as good as the ensemble while a small amount

of them shows superior performance. All in all, these results are not very surprising as they

support the claim that ensemble estimators help improving forecast accuracy in the presence of

models with intrinsic high variance. In the case of neural networks, the variance across predictions

is related to the uncertainty over initial values, which is reduced substantially with the use of

ensembles. Additionally, due to the highly nonlinear setting, it is plausible that the best initial

values change over time. Combining the outcome of different forecasts in an ensemble-like

approach is therefore a way of making the final prediction more robust to this type of uncertainty.

As pointed before, note that the ensemble prediction is less attractive for the FF-pool than it is

for all the other models. This is likely related to its large amount of estimated parameters (9×

compared to the FF-cpi and FF-LSTM, and 15× compared to the LSTM-pool and LSTM-all; see

27

table 3 in appendix C). As such, the contribution of each single parameter tends to be quite small

hence diminishing the initialization effect on the prediction. Also note that interestingly LSTM

models appear to be less sensitive to initial values than feed-forward networks, with the exception

of the FF-pool, as discussed.

4 Conclusions

This paper examines the suitability of neural networks to forecast inflation. To this end, it analyses

the out-of-sample forecasting performance of a number of different neural network specifications

with respect to standard benchmarks, and carries in-sample analysis as an attempt to clarify their

behaviour. I consider the estimation of a feed-forward neural network as well as a recurrent neural

network with long-short term memory (LSTM) units, the later being a novelty in the literature

of inflation forecasting. The recurrent neural network is specially attractive for the task given its

ability to combine dimensional reduction with long memory information under a highly nonlinear

setting. In an empirical analysis with monthly US data, I distinguish between specifications

containing data on inflation only, on a pool of economic predictors excluding CPI data, and a

combination of both. This modelling choice is a way of isolating the effect of other economic

predictors on the forecast.

The main results suggest that the LSTM model have advantages in predicting the long-term

trend of inflation with respect to the more traditional feed-forward network (and standard

benchmarks). This finding can be rationalized by the ability of the LSTM in incorporating

information from long sequences of past observations in the prediction, while economizing in

the number of estimated parameters. Additionally, the results point to an important role for

macroeconomic information during periods of high economic uncertainty, in line with previous

evidence. Throughout the period covering the Great Recession and its aftermath, the out-of-sample

accuracy of neural networks is superior to standard linear benchmarks, pointing to a possible

role for nonlinearities during this episode. Moreover, an in-sample analysis of the LSTM model

demonstrates that the estimated common components of variation among the macro predictors

capture well the dynamics of the business cycle. Finally, data on output, income and consumption

are found to be important predictors of inflation.

28

References

Anders, U., and O. Korn. (1996). “Model selection in neural networks.” In “CZEW Discussion

Papers 96-21,” .

Athey, S.. (2019). “The Impact of Machine Learning on Economics.” In “Ajay Agrawal, Joshua

Gans, and Avi Goldfarb (Eds.), The Economics of Artificial Intelligence: An Agenda,” 507–547,

Chicago: University of Chicago Press.

Atkeson, A., and L. E. Ohanian. (2001). “Are Phillips curves useful for forecasting inflation?”

Quarterly Review, Federal Reserve Bank of Minneapolis 2–11.

Barnett, W., A. Medio, and A. Serletis. (2015). “Nonlinear and Complex Dynamics in Economics.”

Macroeconomic Dynamics 19, 8, 1749–1779.

Carriero, A., A.B. Galvão, and G. Kapetanios. (2019). “A comprehensive evaluation of macroeco-

nomic forecasting methods.” International Journal of Forecasting 35, 4, 1226–1239.

Chakraborty, C., and A. Joseph. (2017). “Machine learning at central banks.” Bank of England

Working Papers 674.

Cook, T. R., and S. Hall. (2017). “Macroeconomic Indicator Forecasting with Deep Neural Net-

works.” In “Federal Reserve Bank of Kansas City, Research Working Paper 17-11,” .

Coulombe, P. G., M. Leroux, D. Stevanovic, and S. Surprenant. (2020). “How is Machine Learning

Useful for Macroeconomic Forecasting?” ArXiv 2008.12477.

Cybenko, G. (1989). “Approximation by superposition of a sigmoidal function.” Mathematics of

Control, Signals and Systems 2, 303–314.

Diebold, F., and R. Mariano. (1995). “Comparing Predictive Accuracy.” Journal of Business &

Economic Statistics 13, 3, 253–263.

Gaier, A., and D. Ha. (2019). “Weight Agnostic Neural Networks.” https://weightagnostic.

github.io.

Giacomini, R., and B. Rossi. (2010). “Forecast Comparisons in Unstable Environments.” Journal of

Applied Econometrics 25, 595–620.

29

https://weightagnostic.github.io
https://weightagnostic.github.io

Giannone, D., M. Lenza, and G. Primiceri. (2015). “Prior selection for vector autoregressions.”

Review of Economics and Statistics 97, 2, 436–451.

Giannone, D., M. Lenza, and G. Primiceri. (2018). “Economic predictions with big data: The

illusion of sparcity.” Working paper, Northwestern University .

Glorot, X., and Y. Bengio. (2010). “Understanding the difficulty of training deep feedforward

neural networks.” Journal of Machine Learning Research - Proceedings Track 9, 249–256.

Goodfellow, I. J., Y. Bengio, and A. Courville (2016). Deep Learning. MIT Press, http://www.

deeplearningbook.org.

Gu, S., B. Kelly, and D. Xiu. (2019). “Empirical Asset Pricing via Machine Learning.” In “Chicago

Booth Research Paper No. 18-04; 31st Australasian Finance and Banking Conference 2018; Yale

ICF Working Paper No. 2018-09.”, .

Hanin, B., and D. Rolnick. (2018). “How to start training: The effect of initialization and architec-

ture.” In “Advances in Neural Information Processing Systems 31,” 569–579, Curran Associates,

Inc.

Hasenzagl, T., F. Pellegrino, L. Reichlin, and G. Ricco. (2018). “A Model of the Fed’s View on

Inflation.” Science Po OFCE Working Paper , 3.

Hazell, J., J. Herreno, E. Nakamura, and J. Steinsson. (2020). “The Slope of the Phillips Curve:

Evidence from U.S. States.” NBER Working Paper No 28005 .

He, K., X. Zhang, Ren S., and J. Sun. (2015). “Delving deep into rectifiers: surpassing human-level

performance on imagenet classification.” In “Proceedings of the IEEE international conference

on computer vision.”, 1026–1034.

Ioffe, S., and C. Szegedy. (2015). “Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift.” ArXiv abs/1502.03167.

Jain, P., and P. Kar. (2017). “Non-convex Optimization for Machine Learning.” Foundations and

Trends in Machine Learning 10, 3-4, 142–336.

Kingma, D., and J. Ba. (2015). “Adam: A method for stochastic optimization.” In “ICLR,” .

30

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Ludvigson, S., and S. Ng. (2007). “The empirical risk return relation: A factor analysis approach.”

Journal of Financial Economics 83, 1, 171–222.

McCracken, M. W., and S. Ng. (2016). “FRED-MD: A monthly database for Macroeconomic

Research.” Journal of Business & Economic Statistics 34, 4, 574–589.

Medeiros, M. C., G. Vasconcelos, A. Veiga, and E. Zilberman. (2019). “Forecasting Inflation in a

Data-Rich Environment: The Benefits of Machine Learning Methods.” Journal of Business &

Economic Statistics 1–45.

Moody, J., and J. Utans. (1995). “Architecture selection strategies for neural networks: application

to bond rating prediction.” In “Refenes, A.-P.N. (ed.), Neural Networks in the Capital Markets,”

New York: Wiley.

Mullainathan, S., and J. Spiess. (2017). “Machine Learning: An Applied Econometric Approach.”

Journal of Economic Perspectives 31, 2, 87–106.

Nakamura, E.. (2005). “Inflation forecasting using a neural network.” Economics Letters 86,

373–378.

Refenes, A. N., and A. D. Zapranis. (1999). “Neural Model Identification, Variable Selection and

Model Adequacy.” Journal of Forecasting 18, 299–332.

Refenes, A.P., and H. White. (1998). “Neural Networks and Financial Economics.” International

Journal of Forecasting 17, 347–495.

Schmidt-Hieber, J.. (2017). “Nonparametric regression using deep neural networks with ReLU

activation function.” .

Sermpinis, G., C. Stasinakis, K. Theofilatos, and A. Karathanasopoulos. (2014). “Inflation and

Unemployment Forecasting with Genetic Support Vector Regression.” Journal of Forecasting 33,

471–487.

Stock, J. H., and M. W. Watson. (1999). “Forecasting Inflation.” Journal of Monetary Economics 44,

293–335.

Stock, J. H., and M. W. Watson. (2002). “Macroeconomic forecasting with diffusion indexes.”

Journal of Business & Economic Statistics 20, 147–162.

31

Stock, J. H., and M. W. Watson. (2007). “Why Has U.S. Inflation Become Harder to Forecast?”

Journal of Money, Credit and Banking. 39, 7, 1849–1849.

Stock, J. H., and M. W. Watson. (2009). “Phillips Curve Inflation Forecasts.” In “Fuhrer J, Kodrzycki

Y, Little J, Olivei G Understanding Inflation and the Implications for Monetary Policy.”, 99–202,

Cambridge: MIT Press.

Stock, J. H, and M. W. Watson. (2019). “Slack and Cyclically Sensitive Inflation.” NBER Working

Paper No 25987 .

Stone, M.. (1974). “Cross-Validatory choice and assessement of statistical predictions.” Journal of

the Royal Statistical Society 36, 2, 111–147.

Varian, H. R.. (2014). “Big data: New tricks for econometrics.” The Journal of Economic Perspec-

tives 28, 2, 3–27.

32

A Data description

Table 2: Data description

The table describes the data used in the empirical analysis, collected from the FRED monthly database on November 2019. I follow
McCracken and Ng (2016) and divide the series into eight economic groups. The column Tcode refers to the transformation applied
to each series xt, where (1) no transformation, (2) ∆xt, (3) ∆2xt, (4) log(xt), (5) ∆log(xt), (6) ∆2log(xt), (7) ∆(xt/xt−1 − 1.0). The
comparable series in Global Insight is given in the column GSI.

Tcode Fred mnemonics Description GSI GSI: description

Group 1: Output and income

1 5 RPI Real Personal Income M_14386177 PI

2 5 W875RX1 Real personal income ex transfer receipts M_145256755 PI less transfers

3 5 INDPRO IP Index M_116460980 IP: total

4 5 IPFPNSS IP: Final Products and Nonindustrial Supplies M_116460981 IP: products

5 5 IPFINAL IP: Final Products (Market Group) M_116461268 IP: final prod

6 5 IPCONGD IP: Consumer Goods M_116460982 IP: cons gds

7 5 IPDCONGD IP: Durable Consumer Goods M_116460983 IP: cons dble

8 5 IPNCONGD IP: Nondurable Consumer Goods M_116460988 IP: cons nondble

9 5 IPBUSEQ IP: Business Equipment M_116460995 IP: bus eqpt

10 5 IPMAT IP: Materials M_116461002 IP: matls

11 5 IPDMAT IP: Durable Materials M_116461004 IP: dble matls

12 5 IPNMAT IP: Nondurable Materials M_116461008 IP: nondble matls

13 5 IPMANSICS IP: Manufacturing (SIC) M_116461013 IP: mfg

14 5 IPB51222s IP: Residential Utilities M_116461276 IP: res util

15 5 IPFUELS IP: Fuels M_116461275 IP: fuels

16 2 CUMFNS Capacity Utilization: Manufacturing M_116461602 Cap util

Group 2: Labor market

17 2 HWI Help-Wanted Index for United States Help wanted indx

Continued on next page

33

Table 2 – Continued

Tcode Fred mnemonics Description GSI GSI: description

18 2 HWIURATIO Ratio of Help Wanted/No. Unemployed M_110156531 Help wanted/unemp

19 5 CLF16OV Civilian Labor Force M_110156467 Emp CPS total

20 5 CE16OV Civilian Employment M_110156498 Emp CPS nonag

21 2 UNRATE Civilian Unemployment Rate M_110156541 U: all

22 2 UEMPMEAN Average Duration of Unemployment (Weeks) M_110156528 U: mean duration

23 5 UEMPLT5 Civilians Unemployed - Less Than 5 Weeks M_110156527 U < 5 wks

24 5 UEMP5TO14 Civilians Unemployed for 41760 Weeks M_110156523 U 41760 wks

25 5 UEMP15OV Civilians Unemployed - 15 Weeks & Over M_110156524 U 15+ wks

26 5 UEMP15T26 Civilians Unemployed for 15-26 Weeks M_110156525 U 15-26 wks

27 5 UEMP27OV Civilians Unemployed for 27 Weeks and Over M_110156526 U 27+ wks

28 5 CLAIMSx Initial Claims M_15186204 UI claims

29 5 PAYEMS All Employees: Total nonfarm M_123109146 Emp: total

30 5 USGOOD All Employees: Goods-Producing Industries M_123109172 Emp: gds prod

31 5 CES1021000001 All Employees: Mining and Logging: Mining M_123109244 Emp: mining

32 5 USCONS All Employees: Construction M_123109331 Emp: const

33 5 MANEMP All Employees: Manufacturing M_123109542 Emp: mfg

34 5 DMANEMP All Employees: Durable goods M_123109573 Emp: dble gds

35 5 NDMANEMP All Employees: Nondurable goods M_123110741 Emp: nondbles

36 5 SRVPRD All Employees: Service-Providing Industries M_123109193 Emp: services

37 5 USTPU All Employees: Trade, Transportation & Utilities M_123111543 Emp: TTU

38 5 USWTRADE All Employees: Wholesale Trade M_123111563 Emp: wholesale

39 5 USTRADE All Employees: Retail Trade M_123111867 Emp: retail

40 5 USFIRE All Employees: Financial Activities M_123112777 Emp: FIRE

41 5 USGOVT All Employees: Government M_123114411 Emp: Govt

42 1 CES0600000007 Avg Weekly Hours : Goods-Producing M_140687274 Avg hrs

43 2 AWOTMAN Avg Weekly Overtime Hours : Manufacturing M_123109554 Overtime: mfg

Continued on next page

34

Table 2 – Continued

Tcode Fred mnemonics Description GSI GSI: description

44 1 AWHMAN Avg Weekly Hours : Manufacturing M_14386098 Avg hrs: mfg

45 6 CES0600000008 Avg Hourly Earnings : Goods-Producing M_123109182 AHE: goods

46 6 CES2000000008 Avg Hourly Earnings : Construction M_123109341 AHE: const

47 6 CES3000000008 Avg Hourly Earnings : Manufacturing M_123109552 AHE: mfg

Group 3: Housing

48 4 HOUST Housing Starts: Total New Privately Owned M_110155536 Starts: nonfarm

49 4 HOUSTNE Housing Starts, Northeast M_110155538 Starts: NE

50 4 HOUSTMW Housing Starts, Midwest M_110155537 Starts: MW

51 4 HOUSTS Housing Starts, South M_110155543 Starts: South

52 4 HOUSTW Housing Starts, West M_110155544 Starts: West

53 4 PERMIT New Private Housing Permits (SAAR) M_110155532 BP: total

54 4 PERMITNE New Private Housing Permits, Northeast (SAAR) M_110155531 BP: NE

55 4 PERMITMW New Private Housing Permits, Midwest (SAAR) M_110155530 BP: MW

56 4 PERMITS New Private Housing Permits, South (SAAR) M_110155533 BP: South

57 4 PERMITW New Private Housing Permits, West (SAAR) M_110155534 BP: West

Group 4: Consumption, orders and inventories

58 5 DPCERA3M086SBEA Real personal consumption expenditures M_123008274 Real Consumption

59 5 CMRMTSPLx Real Manu. and Trade Industries Sales M_110156998 M&T sales

60 5 RETAILx Retail and Food Services Sales M_130439509 Retail sales

61 5 ACOGNO New Orders for Consumer Goods M_14385863 Orders: cons gds

62 5 AMDMNOx New Orders for Durable Goods M_14386110 Orders: dble gds

63 5 ANDENOx New Orders for Nondefense Capital Goods M_178554409 Orders: cap gds

64 5 AMDMUOx Unfilled Orders for Durable Goods M_14385946 Unf orders: dble

65 5 BUSINVx Total Business Inventories M_15192014 M&T invent

66 2 ISRATIOx Total Business: Inventories to Sales Ratio M_15191529 M&T invent/sales

67 2 UMCSENTx Consumer Sentiment Index hhsntn Consumer expect

Continued on next page

35

Table 2 – Continued

Tcode Fred mnemonics Description GSI GSI: description

Group 5: Money and credit

68 6 M1SL M1 Money Stock M_110154984 M1

69 6 M2SL M2 Money Stock M_110154985 M2

70 5 M2REAL Real M2 Money Stock M_110154985 M2 (real)

71 6 BOGMBASE Monetary Base M_110154995 MB

72 6 TOTRESNS Total Reserves of Depository Institutions M_110155011 Reserves tot

73 7 NONBORRES Reserves Of Depository Institutions M_110155009 Reserves nonbor

74 6 BUSLOANS Commercial and Industrial Loans BUSLOANS C&I loan plus

75 6 REALLN Real Estate Loans at All Commercial Banks BUSLOANS DC&I loans

76 6 NONREVSL Total Nonrevolving Credit M_110154564 Cons credit

77 2 CONSPI Nonrevolving consumer credit to Personal Income M_110154569 Inst cred/PI

78 6 MZMSL MZM Money Stock N.A. N.A.

79 6 DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding N.A. N.A.

80 6 DTCTHFNM Total Consumer Loans and Leases Outstanding N.A. N.A.

81 6 INVEST Securities in Bank Credit at All Commercial Banks N.A. N.A.

Group 6: Interest and exchange rates

82 2 FEDFUNDS Effective Federal Funds Rate M_110155157 Fed Funds

83 2 CP3Mx 3-Month AA Financial Commercial Paper Rate CPF3M Comm paper

84 2 TB3MS 3-Month Treasury Bill: M_110155165 3 T-bill

85 2 TB6MS 6-Month Treasury Bill: M_110155166 6 T-bill

86 2 GS1 1-Year Treasury Rate M_110155168 1 T-bond

87 2 GS5 5-Year Treasury Rate M_110155174 5 T-bond

88 2 GS10 10-Year Treasury Rate M_110155169 10 T-bond

89 2 AAA Moody’s Seasoned Aaa Corporate Bond Yield Aaa bond

90 2 BAA Moody’s Seasoned Baa Corporate Bond Yield Baa bond

91 1 COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS CP-FF spread

Continued on next page

36

Table 2 – Continued

Tcode Fred mnemonics Description GSI GSI: description

92 1 TB3SMFFM 3-Month Treasury C Minus FEDFUNDS 3 mo-FF spread

93 1 TB6SMFFM 6-Month Treasury C Minus FEDFUNDS 6 mo-FF spread

94 1 T1YFFM 1-Year Treasury C Minus FEDFUNDS 1 yr-FF spread

95 1 T5YFFM 5-Year Treasury C Minus FEDFUNDS 5 yr-FF spread

96 1 T10YFFM 10-Year Treasury C Minus FEDFUNDS 10 yr-FF spread

97 1 AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS Aaa-FF spread

98 1 BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS Baa-FF spread

99 5 TWEXAFEGSMTHx Trade Weighted U.S. Dollar Index Ex rate: avg

100 5 EXSZUSx Switzerland / U.S. Foreign Exchange Rate M_110154768 Ex rate: Switz

101 5 EXJPUSx Japan / U.S. Foreign Exchange Rate M_110154755 Ex rate: Japan

102 5 EXUSUKx U.S. / U.K. Foreign Exchange Rate M_110154772 Ex rate: UK

103 5 EXCAUSx Canada / U.S. Foreign Exchange Rate M_110154744 EX rate: Canada

Group 7: Prices

104 6 WPSFD49207 PPI: Finished Goods M110157517 PPI: fin gds

105 6 WPSFD49502 PPI: Finished Consumer Goods M110157508 PPI: cons gds

106 6 WPSID61 PPI: Intermediate Materials M_110157527 PPI: int matls

107 6 WPSID62 PPI: Crude Materials M_110157500 PPI: crude matls

108 6 OILPRICEx Crude Oil, spliced WTI and Cushing M_110157273 Spot market price

109 6 PPICMM PPI: Metals and metal products: M_110157335 PPI: nonferrous

110 5 CPIAUCSL CPI : All Items M_110157323 CPI-U: all

111 6 CPIAPPSL CPI : Apparel M_110157299 CPI-U: apparel

112 6 CPITRNSL CPI : Transportation M_110157302 CPI-U: transp

113 6 CPIMEDSL CPI : Medical Care M_110157304 CPI-U: medical

114 6 CUSR0000SAC CPI : Commodities M_110157314 CPI-U: comm.

115 6 CUSR0000SAD CPI : Durables M_110157315 CPI-U: dbles

116 6 CUSR0000SAS CPI : Services M_110157325 CPI-U: services

Continued on next page

37

Table 2 – Continued

Tcode Fred mnemonics Description GSI GSI: description

117 6 CPIULFSL CPI : All Items Less Food M_110157328 CPI-U: ex food

118 6 CUSR0000SA0L2 CPI : All items less shelter M_110157329 CPI-U: ex shelter

119 6 CUSR0000SA0L5 CPI : All items less medical care M_110157330 CPI-U: ex med

120 6 PCEPI Personal Cons. Expend.: Chain Index gmdc PCE defl

121 6 DDURRG3M086SBEA Personal Cons. Exp: Durable goods gmdcd PCE defl: dlbes

122 6 DNDGRG3M086SBEA Personal Cons. Exp: Nondurable goods gmdcn PCE defl: nondble

123 6 DSERRG3M086SBEA Personal Cons. Exp: Services gmdcs PCE defl: service

Group 8: Stock market

124 5 S&P 500 S&P’s Common Stock Price Index: Composite M_110155044 S&P 500

125 5 S&P: indust S&P’s Common Stock Price Index: Industrials M_110155047 S&P: indust

126 2 S&P div yield S&P’s Composite Common Stock: Dividend Yield S&P div yield

127 5 S&P PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio S&P PE ratio

128 1 VXOCLSx VXO

38

B On the estimation of neural networks

The parameters of neural network models are estimated by minimizing a loss function between

the fitted and actual values over the in-sample period. In this application I use the mean squared

error loss as specified in equation 2. Given that the function G is nonlinear with respect to the

covariates xt, the problem of minimizing the loss usually translates into optimizing a non-convex

function. In these cases, iterative algorithms are more suitable than the classic optimization

procedures applied to convex functions because of their properties that enforce the algorithm

to rapidly converge to optima (Jain and Kar, 2017). The literature on neural networks usually

applies gradient descent as an optimization method. Gradient descent is based on the property

that, to minimize a given function L, one needs to move in the direction of the negative gradient,

-∆ΘL(Θ). The parameters are then updated iteratively, such that Θi = Θi−1− α∆ΘL(Θi−1), where

α is the learning rate, determining the size of the step, and i is the iteration. In this study, I apply

an extension of the gradient descent, called Adam optimization algorithm (Kingma and Ba, 2015),

that features an adaptive learning rate.

The computation of the gradient may involve a single, random picked observation (stochastic

gradient descent), a sub-group of observations (minibatch), or even all available observations

(batch gradient descent). For the purpose of this analysis, the number of observations to be

included, called batch size, is defined by grid search. Another important concept in machine

learning is an epoch, defined as the number of passes of all observations through the algorithm,

and not to be confounded with the number of iterations. At each time the gradient is computed,

the algorithm updates the parameters, what defines an iteration. Hence, for the case of batch

gradient descent the number of epochs coincides with the number of iterations. However for both

stochastic gradient descent and minibatch methods, the number of iterations exceeds the number

of epochs. The ultimate number of epochs is a hyperparameter selected by grid search.

The estimation process of neural networks, based on incremental updates of the parameters,

means that the choice of the initial parameters is an important one. First, assigning equal weights

to different nodes implies that they account for the same information and are therefore redundant.

Random initialization is popular because it breaks the symmetry in the network. Second, one

should avoid imposing too high or too low initial weight values in order to prevent the vanishing

(or exploding) gradient problem, mentioned in section 2.2. Modern approaches to parameter

initialization rely on the idea that the variance of the activations (output of nodes) should be

39

similar across layers (Hanin and Rolnick, 2018). This literature suggests that parameters should

therefore be randomly drawn from some zero-centered distribution with a specified variance,

while biases are usually initialized with zeros. Common approaches are the Xavier, Glorot and

He initializations (Glorot and Bengio, 2010, He et al., 2015). This application considers the Glorot

initialization, in which initial weights are drawn from a specific uniform distribution.20

The non-convexity usually encountered in neural networks tends to increase the sensitivity

of the learning algorithm to initial values. This means that in practice the model delivers a

slightly different prediction every time it is re-estimated, given the random initialization. A

common solution adopted by the empirical literature is to repeat the estimation a (large) number

of times and average out the predictions, which significantly reduces the variance of the ensemble

prediction and consequently the uncertainty around the initial value. Section 3.6 provides further

insights on this method in the context of the present empirical exercise.

The non-convexity also means that the estimated model is not guaranteed to be globally

optimal. In fact, multiple local minima and flatten regions are likely to be present in many

practical problems. An intuitive interpretation of these phenomena relies on the architecture

of neural networks. For instance, the intrinsic symmetry of these models implies that if two

nodes swap places, the final prediction would remain the same while the weight vector would

be permuted, which translates into multiple optima. Another possibility relates to the mutual

dependence of weights through the network. For example, if a zero weight is assigned to a

particular node, all weights leading to that node can take any value, in which case the set of

optimal solutions contains flat regions. In both cases described above, the model is not identified.

Given the non-identifiability typically present in neural networks, the recent literature con-

verged to a model selection method that does not rely on any probabilistic assumptions and

therefore is not affected by identification problems, called cross-validation (Stone, 1974, Moody

and Utans, 1995, Anders and Korn, 1996, Refenes and Zapranis, 1999). Cross-validation is the

most generally applicable strategy for model selection with neural networks and involves the

estimation of the so called prediction risk, defined in the words of Moody and Utans (1995) as the

expected performance of an estimator in predicting new observations. This makes this method

quite appropriate for deep learning problems because these in general are interested in a good

prediction accuracy on unseen data, and not necessarily on the statistical relevance of a particular

20Glorot initialization: W ∼ U
[
−

√
6√

nq+nq+1
,

√
6√

nq+nq+1

]
, where nq is the number of input units to layer q.

40

covariate, in which case classical inference would play a more important role.

In fact, non-identification in neural networks seems to not affect forecast performance, as

implied by the recent work of Gaier and Ha (2019). The authors propose a parameter agnostic

neural network and show that model specifications with strong inductive biases towards a specific

task can perform relatively well without training. This is an important finding because it questions

the relative importance of estimated parameters compared to model specification, and suggests

that the ultimate parameter value is not crucial to achieve relative good performances.

C Model specification

The estimation of a neural network requires selecting a number of hyperparameters via cross-

validation. For a feed-forward model, this implies in for example choosing the combination

of number of nodes and number of layers more appropriate to our data. Table 3 indicates the

compiled list of hyperparameters specific to the models considered, as well as the candidate and

optimal values of each hyperparemeter.

The cross-validation process is split into two stages. Stage 1 focuses on hyperparameters

specific to the model’s architecture, while stage 2 selects the hyperparameters related to the

optimization procedure. For example, the number of nodes in the network would be selected in

stage 1, while the batch size in stage 2. This method shrinks significantly the computational time

compared to the option of selecting all hyperparameters at once. Moreover, previous tests (not

reported) indicated that the relative performance of the models are not very sensitive to changes in

the number of epochs or batch size. The grid search around these hyperparameters is nonetheless

performed for robustness purposes in stage 2. I henceforth refer to “specification” as a particular

selection of a set of hyperparameters.

During stage 1, I follow a step-by-step procedure: the FF-cpi and FF-pool models are estimated

first, followed by the LSTM-pool and LSTM-all models. As explained below, the cross-validation

on the FF-LSTM model only occurs in stage 2. Both FF-cpi and FF-pool are estimated over

64 different specifications, where I let vary the number of lags, the number of nodes in the

feed-forward layer(s) and the number of hidden layers in the network, as indicated in table 3.

Second, I use the optimal selection of number of nodes as estimated from the feed-forward

models as fixed hyperparameters in the cross-validation of the LSTM models (recall that this

model also includes a feed-forward section stacked to the LSTM unit). A cross-validation is then

41

performed over 32 different specifications for the LSTM models, including the number of lags,

the number of hidden layers and the number of hidden states (referred in the main text as the

internal memory). Finally, I set as fixed in the FF-LSTM model the optimal specifications selected

from the previous steps. More specifically, I set the number of lags L in the feed-forward part of

the model as equal to the optimal value from the FF-cpi, and the number of lags L to be included

in the LSTM unit as equal to the optimal value from the LSTM-pool model, as well as the optimal

values of nodes and hidden states. The reason behind these choices relies on the similarities

between the underlying model structures. The strategy of fixing hyperparameters based on

optimal values of nested models facilitates the comparison between models and significantly

decreases the computational time. Finally, during stage 2, the hyperparameters related to the

optimization process are allowed to vary for all models.

Each model specification is evaluated over a so called validation set. First consider splitting

the full sample with T observations between an in-sample period, of size R, and an out-of-sample

period, of size P, such that T = R + P + h. The in-sample period is further split into two

consecutive sets, the training and validation samples. Each specification is then estimated over the

training sample and evaluated over the validation sample.21 The corresponding performance is

used to differentiate between specifications. Figure 9 provides an illustrative setup of the method.

More specifically, the cross-validation exercise is implemented as follows: (i) split the data

into consecutive samples: training, validation (three different lengths) and out-of-sample set,

known as test sample in the machine learning jargon;22 (ii) for each specification, estimate the

model over the training sample and predict over the validation sample; (iii) repeat this process 140

times, and compute the average prediction, defined as the series that averages out the predictions

of the 140 series at each point in time; (iv) measure the performance of the average prediction

over each of the three sections of the validation sample; and (v) choose the specification with

best average performance over the three sections of the validation sample. The out-of-sample

performance is then obtained by evaluating the best specification on unseen data, in which case

the final prediction is the average over 1400 different prediction series.23

21The forecast performance is measured as the root mean squared error.
22Choosing the length of each sample can be quite arbitrary and ultimately depends on each application. Here I

split the data such that approximately 60% of the total sample is devoted to training only, 20% to validation and 20% to
testing. The precise splits are shown in figure 9.

23The number of iterations for cross-validation is much smaller than the one used for out-of-sample performance
as a way of minimizing the computational time given the high number of specifications to estimate. The choice is
nonetheless somewhat arbitrary, and the number of repetitions were ultimately set such that it is a multiple of the
number of available processors (28).

42

I use a modified version of the more traditional k-fold cross-validation to account for time

series characteristics. By estimating and cross-validating the model on consecutive samples it is

possible to avoid the look-ahead bias, since the performance is measured only on future data.

At each time step, during cross-validation and out-of-sample performance, the estimation set

expands by one observation and the prediction is compared with the actual value. In addition, I

evaluate each specification over three nested sub-samples of the validation sample, the longest

being the full validation set, and choose the model with best average performance over the

splits. This is a simple way to add robustness to the analysis, since it minimizes the chances of

sample-dependent results. For instance, with a single validation set, the chosen model is the one

with best performance over those particular observations, but there is no guarantee it is going to

continue outperforming the alternatives once we move towards the out-of-sample set. In practice,

the choice of the number of splits is quite arbitrary. Here the splits are selected such that the

minimum sub-sample size comprises approximately four years of observations.

43

Figure 9: Illustrative setup of the cross-validation and out-of-sample forecasting

Part 1 (top) depicts the cross-validation over the validation sample for the one-step ahead model. For each
specification of hyperparameters, the model is trained over the training sample, and at each step over the
validation sample one more data point is added for estimation. The performance over the validation sample
is then given by the average performance over three sub-samples: 1993M05 - 1997M10, 1993M05 - 2002M03,
1993M05 - 2006M07. Part 2 (middle) depicts the same cross-validation procedure but for a three-steps
ahead model. Note that the predictions cover all data points in the validation set. Finally, part 3 (bottom)
illustrates the out-of-sample forecasting for a one-step ahead model. The resulting performance is the one
recorded for each specification. The model is re-estimated every 48 months for both the cross-validation
and out-of-sample performance.

44

Table 3: Candidate and optimal values for hyperparameters

The table reports the candidate values for each hyperparameter as well as the optimal value selected by grid-search. The optimal hyperparameters
of the FF-cpi and LSTM-pool selected in stage 1 are applied to the FF-LSTM model. Lag L imply that all the lags up to the specified number are
included in the model. The batch size specified as max corresponds to the batch gradient descent method.

FF-cpi FF-pool LSTM-pool LSTM-all FF-LSTM

Candidates Optimal Candidates Optimal Candidates Optimal Candidates Optimal Candidates Optimal

Stage 1

lags L 6,12,24,48 24 6,12,24,48 48 6,12,24,48 48 6,12,24,48 48 24, 48

nodes n 16, 32, 64, 128 128 16, 32, 64, 128 128 128 128 128 128 128

layers Q 1,2,3,4 4 1,2,3,4 3 3, 4 4 3, 4 4 4

ft|L-size p 2,4,6,8 2 2,4,6,8 2 2

parameters 80513 758273 51017 51097 81737

Stage 2

epochs 200,400,600 200 200,400,600 400 200,400,600 400 200,400,600 400 200,400,600 400

batch 128, max 128 128, max 128 128, max max 128, max max 128, max 128

45

D Benchmark specifications

Consider the inflation series πt = log(Pt)− log(Pt−1), where Pt is the price index at time t (Pt

corresponds to the series indexed by 110 in table 2).

D.1 Autoregressive model

I estimate an autoregressive (AR) model of order 1,

πt = c + Φπt−1 + νt, νt ∼ iid(0, σ2)

for each horizon. The model is estimated by least squares and the h-step ahead forecast is

π̂t+h|t =
c
(
1− Φ̂h)(
1− Φ̂

) + Φ̂hπt

D.2 Unobserved components with stochastic volatility (UC-SV)

A second benchmark is the UC-SV model from Stock and Watson (2007) which can be described

as follows

πt = τt + eht/2εt

τt = τt−1 + ut

ht = ht−1 + vt

where {εt} ∼ iidN (0, 1), {ut} ∼ iidN (0, ω2
τ), and {vt} ∼ iidN (0, ω2

h). The state processes

are initialized with τ1 ∼ N (0, Vτ) and h1 ∼ N (0, Vh), where Vτ = Vh = 0.12. It is assumed

independent inverse-gamma priors for ω2
τ and ω2

h. The model is estimated using Markov Chain

Monte Carlo (MCMC) methods, and the h-step ahead forecast is given by

π̂t+h|t = τ̂t

46

D.3 Factor-augmented Distributed Lag (FADL) model

I specify a FADL(p) model for each horizon h, as in Carriero et al. (2019), such as

πt+h = β0 +
p−1

∑
i=0

βiπt−i +
r

∑
j=1

γj f j,t + νt

where r is the number of factors, and the number of factor lags is set to one. The factors are

estimated by principal components applied to the data set of predictors xt (see section 3.1 for

more details on the data). The set xt is previously transformed to guarantee stationarity following

McCracken and Ng (2016), and then standardized. The point forecast is the average of the density

forecast computed by fixed regressor bootstrap over 5000 replications.

47

	Insert from: "twerp_1344_-_Paranhos.pdf"
	Introduction
	The framework
	The feed-forward (FF) model
	The LSTM model
	The FF-LSTM model

	Empirical Analysis
	Data
	Predictions as an ensemble
	The dynamics of the internal memory ft|L
	Variable selection
	Out-of-sample analysis
	Uncertainty over initial values

	Conclusions
	Data description
	On the estimation of neural networks
	Model specification
	Benchmark specifications
	Autoregressive model
	Unobserved components with stochastic volatility (UC-SV)
	Factor-augmented Distributed Lag (FADL) model

