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Abstract

We introduce a Generalized Nested Logit model of demand for bundles that can be estimated
sequentially and virtually eliminates any challenge of dimensionality related to large choice sets.
We use it to investigate quantity discounts for carbonated soft drinks by simulating a counterfactual
with linear pricing. The prices of quantities up to 1L decrease by −31.5% while those of larger
quantities increase by +14.8%. Purchased quantities decrease by −20.4%, associated added sugar
by −23.8%, and industry profit by −20.5%. Consumer surplus however reduces only moderately,
suggesting that linear pricing may be effective in limiting added sugar intake.

Keywords: Quantity Discounts, Large Choice Sets, Demand for Bundles, Generalized Nested Logit,
Carbonated Soft Drinks, Purchase of Multiple Units.
JEL Codes: C55, C63, L4, L13, L66.

1 Introduction

In many important markets, firms offer nonlinear price schedules in which unit-prices vary with prod-
uct size or quality.1 Quantity discounts represent a common form of nonlinear pricing, where firms
offer lower unit-prices for purchases of larger quantities. They enable firms to increase profits by
screening between high-quantity and low-quantity consumers but can be detrimental for some groups
of consumers (Crawford and Shum, 2007; Maskin and Riley, 1984; McManus, 2007; Mussa and Rosen,
1978). Despite their widespread diffusion in everyday life (e.g., packaged goods, mobile internet, and
newspapers) and in services (e.g., mobile internet and newspapers) and a vast theoretical literature,
there are relatively few empirical studies of quantity discounts.2

∗University of Bristol and CEPR (alessandro.iaria@bristol.ac.uk) and University of Warwick
(ao.wang@warwick.ac.uk). We would like to thank IRI for making the data available. All estimates and analy-
sis in this paper based on data provided by IRI are by the authors and not by IRI.

1In contrast, recent findings suggest that many US retail chains may not take full advantage of other forms of price
discrimination and tend to charge uniform prices for any given quantity of a product or service across different locations
(Adams and Williams, 2019; Cho and Rust, 2010; DellaVigna and Gentzkow, 2019).

2See Anderson and Renault (2011) and Armstrong (2016) for a summary of the theoretical literature and below for
an overview of the empirical studies.
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This is partly motivated by the practical complexity of demand estimation in the context of bundles
or multiple units, which usually involves large choice sets. As is well known, the estimation of demand
for bundles is subject to a challenge of dimensionality in the number of products: the number of ways
in which consumers can combine products into bundles can grow steeply in the number of products
and the number of parameters capturing unobserved synergies among products within bundles can
quickly become too large to be handled numerically (Berry et al., 2014). As a result, empirical papers
estimating demand for bundles typically focus on applications with restricted choice sets, e.g. three
products in Gentzkow (2007), or make restrictive assumptions on the form of unobserved preference
heterogeneity, e.g. a multinomial logit in Ruiz et al. (2020).

We tackle this challenge and propose novel methods to estimate demand for bundles in the presence
of large choice sets. We propose a Generalized Nested Logit (GNL) model, called Product-Overlap
Nested Logit (PONL), that has as many overlapping nests as products and where each bundle belongs
to all the nests corresponding to its product components (the standard nested logit being only a special
case). Because of the overlapping nests, the PONL model cannot be estimated on the basis of Berry
(1994) and, because of the large choice sets, Berry et al. (1995) may be impractical. We instead devise
an optimization- and derivative-free iterative procedure that can be parallelized over both bundles
and markets, virtually eliminating any challenge of dimensionality due to large choice sets.

As first argued by Gentzkow (2007), not accounting for correlation in the unobserved preferences
of different products may confound the identification of complementarity and substitutability (Allen
and Rehbeck, 2019, 2020; Ershov et al., 2021; Fox and Lazzati, 2017; Iaria and Wang, 2019, 2021;
Wang, 2019), stressing the importance of allowing for flexible forms of unobserved heterogeneity in
the specification of demand for bundles. In applications with thousands of bundles (like the one we
study), the estimation of nonparametric models (Compiani, 2019) or even just of mixed logit models
(Gentzkow, 2007; Iaria and Wang, 2019; Liu et al., 2010) may however be prohibitive. As a practical
alternative, we propose the PONL model in which there is a nest for each product and every bundle
belongs to as many nests as the different products it includes. In a standard nested logit model where
each bundle only belongs to one nest, either all bundles have equally correlated preferences (a unique
nest) or some of the bundles with overlapping products have uncorrelated preferences (more than
one nest, Song et al., 2017). Differently, the PONL model allows for correlation in the unobserved
preferences to depend on the degree of overlap in the composition of products between any two bundles.

An essential factor behind the practical advantages of the proposed estimator is the use of
individual-level purchases in the aggregate form of bundle-level purchase probabilities. As shown
by Berry (1994), working with purchase probabilities sometimes allows one to re-write complex non-
linear demand models as linear regressions that are easier to estimate. Because of the overlapping
nests, Berry (1994)’s classic 2SLS regression does not apply to the PONL model.3 Given observations
on bundle-level purchase probabilities, we however show that the PONL model can be estimated by

3As will be clear below, the presence of overlapping nests implies a lack of observability of the within-nest purchase
probabilities, which are typically used as explanatory variables in Berry (1994)’s regression.
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a constrained 2SLS and implemented by a convenient iterative procedure. Importantly, the proposed
estimator is robust to price endogeneity and is easy to implement with large choice sets. Differently,
both the classic approach by Berry et al. (1995) and its MPEC counterpart (Dubé et al., 2012; Su and
Judd, 2012) would be impractical with large choice sets, mainly because of the large dimensionality of
the demand system.4 Also traditional likelihood-type estimators based on the direct use of individual-
level purchases would not be computationally convenient with large choice sets, mainly because of the
large number of fixed effects required to control for price endogeneity (Iaria and Wang, 2019).

In extensive Monte Carlo simulations, we investigate the numerical and finite sample properties of
the proposed iterative procedure for the estimation of the PONL model. We show that our estimator
can be successfully implemented on standard computers with choice sets of approximately 20, 000
bundles and around 4, 000, 000 demand parameters. The proposed iterative procedure allows for a
complete parallelization across bundles and markets. In this sense, its numerical convenience increases
in the number of CPU cores, and is therefore expected to improve over time as these become more
cheaply available. We illustrate that, in addition to being numerically convenient, the proposed
iterative procedure has desirable finite sample properties and delivers precise estimates even with
large choice sets and correspondingly large numbers of demand parameters.

We implement our methods to investigate the welfare consequences of quantity discounts in the
market for carbonated soft drinks (CSDs) in the USA. Using household-level purchase data by IRI for
the period 2008-2011 (Bronnenberg et al., 2008), we document that households commonly purchase
multiple units of CSDs on any shopping trip (6.6L on average) (Chan, 2006; Dubé, 2004; Ershov et al.,
2021) and the pervasiveness of quantity discounts for purchases involving larger quantities (e.g., the
average unit-price of a Diet Coke is higher for a 12oz can than for a 2L bottle).5

We observe that, according to intuition, larger households tend to purchase larger quantities of
CSDs, both as multiple units of the same product and as combinations of different products. Despite
being unable to price discriminate directly on the basis of household size (third-degree price discrimi-
nation), firms may rely on quantity discounts as a screening device to induce households of different
sizes to self-select alternative prices (Maskin and Riley, 1984; Mussa and Rosen, 1978). We however
document that, because also single-person households purchase multiple units of CSDs, quantity dis-
counts only achieve imperfect screening among households of different sizes. In this complex situation
of imperfect screening in an oligopolistic market with differentiated products, the welfare effects of
quantity discounts are ambiguous (Anderson and Leruth, 1993; Armstrong, 2013; Varian, 1989).

We then estimate a flexible PONL model with around 16, 900 bundles of CSDs and 176, 700
demand parameters and empirically assess the welfare effects of the observed quantity discounts by
simulating a counterfactual with linear pricing (i.e., forcing constant unit-prices for all products).

4For example, in our application we observe around 16, 900 bundles purchased over 1, 200 markets. In the classic
fixed point implementation of Berry et al. (1995), this would require the computation of 1, 200 separate demand inverses
with up to 16, 900 equations each. Analogously, the MPEC implementation of Berry et al. (1995) would require the
computation of up to 1, 200 × 16, 900 nonlinear constraints and their derivatives.

5O’Connell and Smith (2020) document similar patterns for the market of soft drinks in the UK.
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Our counterfactual simulations suggest that linear pricing would lead to a reduction of −31.5% in
the average price of small quantities (up to one liter) and to an increase of +14.8% in the average
price of larger quantities (more than one liter), making purchases of smaller quantities relatively more
attractive for all households. While such drastic price changes would have important consequences on
quantity purchased and industry profit, they would have less of an impact on consumer surplus.

Total quantity purchased would decrease by −20.4% and, as a consequence, industry profit would
shrink by −20.5%. Despite the substantial reduction in quantity purchased, consumer surplus would
not however reduce too sharply, with a compensating variation of +3.6$ per household-year (amounting
to 2.7% of total expenditure on CSDs). This is the result of two intuitive countervailing forces: on the
one hand, consumer surplus would decrease because of the contraction in purchases of larger quantities
at relatively higher prices; on the other, consumer surplus would increase because of the more frequent
purchases of single units at relatively lower prices. While the negative effect would slightly dominate
the positive for all households, there would still be some heterogeneity: multi-person households would
substitute less away from the more expensive larger quantities toward the cheaper small quantities,
facing larger losses in consumer surplus (a compensating variation of +3.9$ as opposed to +1.5$).

These results open up an important avenue for future research: a ban on quantity discounts
could serve as a previously unexplored policy tool to limiting the consumption of CSDs and the
intake of added sugar (Allcott et al., 2019; Bollinger et al., 2011; Dubois et al., 2020; O’Connell and
Smith, 2020; Wang, 2015). Ricciuto et al. (2021) report that in the USA, in the period 2011-2012,
42.4% of the added sugar intake came from CSDs. Linear pricing would lead households to drastically
reduce the purchased quantities of CSDs while only marginally reducing consumer surplus, potentially
causing large reductions in added sugar intake at the expense of a contraction in industry profit but
none of the extra information (e.g., quantifying the marginal externality of added sugar) required to
implement effective sugar taxes (Allcott et al., 2019; O’Connell and Smith, 2020). Our back-of-the-
envelope calculations suggest that linear pricing would indeed reduce added sugar intake from CSDs
by −23.8%, a similar amount as that implied by various sugar taxes in the UK and USA.6

There is a large empirical literature leveraging the estimation of demand for bundles.7 Part of this
literature investigates quantity discounts, as for example: Allenby et al. (2004); Aryal and Gabrielli
(2020); Crawford and Shum (2007); Ivaldi and Martimort (1994); Leslie (2004); Levitt et al. (2016);
Liu et al. (2010); Luo (2018); McManus (2007); McManus et al. (2020); Shiller and Waldfogel (2011).
Because of the challenge of dimensionality in the number of products, papers in this empirical literature

6O’Connell and Smith (2020) find that an optimal sugar tax in the UK would result in a decrease of −28.4% in the
purchased quantities of added sugar from soft drinks. Similarly, Dubois et al. (2020) find that a sugar tax of the form
and size typically implemented in the UK and many US locations would lead to a reduction of around −21% in the
purchased quantities of added sugar from soft drinks on-the-go. Seiler et al. (2021) document that a sugar tax introduced
in Philadelphia led to a decrease of −16% in the purchased quantities of added sugar from soft drinks. There are also
studies that do not find significant effects of sugar taxes in the USA on the reduction of purchased quantities of added
sugar from soft drinks, such as Bollinger and Sexton (2018); Rojas and Wang (2017); Wang (2015).

7Some examples are: Crawford and Yurukoglu (2012); Florez-Acosta and Herrera-Araujo (2020); Fosgerau et al.
(2021); Gentzkow (2007); Gentzkow et al. (2014); Hendel (1999); Ho et al. (2012); Manski and Sherman (1980); Ruiz
et al. (2020); Thomassen et al. (2017).
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either focus on applications with restricted choice sets or limited forms of unobserved heterogeneity.
Our methods can enable empirical researchers to scale up the numbers of bundles while allowing
for realistic forms of unobserved heterogeneity: demand across multiple product categories involving
many products, like grocery or online shopping (Reimers and Waldfogel, 2021; Smith, 2006), mergers in
markets with both substitutes and complements (Cournot, 1838; Ershov et al., 2021), mixed bundling
pricing strategies (Adams and Yellen, 1976; Chu et al., 2011), (unintended) spillovers of taxes from a
product category to others (Allcott et al., 2019; Dubois et al., 2020), and many more.

Two novel approaches to addressing large choice sets in the estimation of demand for bundles were
recently proposed by Ershov et al. (2021) and Lewbel and Nesheim (2019). Ershov et al. (2021) allow
for a very large number of products, but restrict the way they can be combined into bundles (at most
two different products, one unit each) and the number of parameters capturing unobserved synergies
among products (one per market, the same across all bundles). While this approach is appealing in
applications with “many but small” bundles, ours is better suited to handle larger bundles involving
multiple units of the same or of different products, such as in the case of quantity discounts. Lewbel
and Nesheim (2019) instead depart from the use of standard discrete choice models and specify a more
general discrete-continuous choice model along the lines of Dubin and McFadden (1984). They address
the problem of large choice sets with sparsity, by assuming that each consumer tends to purchase
positive quantities of only a few products. While allowing for more flexible unobserved heterogeneity
than the PONL model, Lewbel and Nesheim (2019) assume prices to be exogenous. Our approach
complements the one by Lewbel and Nesheim (2019) and is more suitable to applications in which
consumers purchase larger varieties of products and/or price endogeneity is a concern.

The proposed PONL model contributes to the literature on Generalized Extreme Value (GEV)
models started by McFadden (1978), which famously includes the multinomial logit and the nested
logit. The PONL model is a specialization of Generalized Nested Logit (GNL) model (Abbe et al.,
2007; Ben-Akiva and Bierlaire, 1999; Bierlaire, 2006; Wen and Koppelman, 2001), the most general
example of GEV model, to the case of demand for bundles. Our econometric treatment of the PONL
model contributes to a small but growing literature on the use of GEV models for the convenient
estimation of demand from aggregate market-level data (Bresnahan et al., 1997; Davis and Schiraldi,
2014; Fosgerau et al., 2021; Grigolon, 2021), as initiated by Berry (1994) for the multinomial logit and
the nested logit. In particular, our constrained 2SLS estimator and iterative procedure can be helpful
also for the estimation of other GNL models with large choice sets.

Our empirical analysis contributes to the applied literature on the industry for CSDs. Some of the
papers in this literature rely on the estimation of demand for multiple units (Chan, 2006; Dubé, 2004;
Ershov et al., 2021; Hendel and Nevo, 2013; Wang, 2015), while many others direct their efforts to
other important aspects of the industry, such as vertical relations between manufacturers and retailers
or sugar taxes (Allcott et al., 2019; Bonnet and Dubois, 2010; Dubois et al., 2020; Huang and Liu,
2017; Molina, 2020; O’Connell and Smith, 2020). To the best of our knowledge, we are the first to
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explicitly investigate the welfare effects of quantity discounts in this industry.8

2 The Product-Overlap Nested Logit (PONL) Model

Let there be T independent markets indexed by t ∈ T and J products indexed by j ∈ J that can be
purchased in isolation or in combination in each market. A bundle is any combination of products and
number of units of each product (e.g., three units of j, one unit of k, and two units of r). Denote the
set of single units of any product and (multi-unit) bundles by C1 and its size by |C1| = C1, the full
choice set by C = C1 ∪ {0} and its size by |C| = C, where 0 is the outside option of not purchasing
anything. Denote the set of (multi-unit) bundles by C2 = C1 \ J and its size by |C2| = C2 = C1 − J .
Each element of this set is a bundle made of multiple units of one or of different products.

As first argued by Gentzkow (2007), accounting for correlation in the unobserved preferences of
different products is crucial for the identification of demand for bundles (Allen and Rehbeck, 2019,
2020; Ershov et al., 2021; Fox and Lazzati, 2017; Iaria and Wang, 2021; Wang, 2019). Each b ∈ C1

is a combination products, and any pair of bundles will have a certain degree of overlap in terms
of product components. It is then important to account for such overlapping structure and the
potential correlation patterns this may imply among the unobserved preferences of different bundles.
For example, the unobserved preferences of bundle (j, k) may differentially correlate to those of any
other bundle that either includes only j (correlation only via j), only k (correlation only via k), both
(correlation via both channels), or neither (lack of correlation).

On the one hand, simple models like the Multinomial Logit (MNL) or the Nested Logit (NL), which
can be easily estimated with large choice sets (Crawford et al., forthcoming), cannot appropriately
capture these intuitive patterns of correlation.9 On the other hand, more appropriate non-parametric
(Compiani, 2019) or even mixed logit models can be unfeasible in application with large choice sets
(Gentzkow, 2007; Iaria and Wang, 2019; Liu et al., 2010).10 As a solution, we propose a special case of
Generalized Nested Logit (GNL) model (Abbe et al., 2007; Ben-Akiva and Bierlaire, 1999; Bierlaire,
2006; Wen and Koppelman, 2001) with overlapping nests that specifically accounts for the product
overlap between bundles in terms of unobserved preferences but is still practical with large choice sets.
We call this the Product-Overlap Nested Logit (PONL) model.

8Bonnet and Dubois (2010) do not study nonlinear pricing with respect to “final” consumers (as we do in this paper),
but rather two-part tariff contracts between manufacturers and retailers. See also Bonnet et al. (2013) for a related
analysis of the market for coffee. While close in spirit to our paper, Hendel and Nevo (2013) studies the welfare effects
of intertemporal price discrimination (i.e., temporary price reductions) rather than quantity discounts.

9The MNL implies that the unobserved preferences of any two bundles are independent. The NL instead requires
every bundle to belong uniquely to one nest, so that either all bundles have equally correlated preferences (a unique
nest) or some of the bundles with overlapping components end up with uncorrelated preferences (more than one nest,
Song et al., 2017). We return to this point below.

10See also discussion in section 4.3.
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2.1 Unobserved Preferences and their Correlations Across Bundles

In the PONL model, each nest Nj is defined as the set of bundles that include at least one unit of
product j, for j = 1, ..., J : Nj = {b ∈ C1 : b includes at least one unit of j}, while the outside option
belongs to its own singleton nest N0. By construction, Nj and Nj′ are overlapping as long as there
exists at least a bundle b that includes both one unit of j and one of j′. The membership of b to nest
Nj is determined by the allocation parameter ωbj = 1b∈Nj

× (∑J
j′=1 1b∈Nj′ )−1, where 1E denotes the

indicator function for event E. Every ωbj is observed and equals either zero if b /∈ Nj (b does not
include any unit of j) or one divided by the number of nests b belongs to, if b ∈ Nj .

We derive the PONL model as a combination of NL models, following the representation first
proposed by Abbe et al. (2007) for the GNL model. While this representation is not necessary to
derive the PONL model, it clarifies the connection with the NL and the ways in which the PONL
generalizes it.11 Denote by Uitbj the NL indirect utility of household i in market t from purchasing b,
as if b belonged uniquely to nest Nj :

Uitbj = δtb + ηitj + λjεitbj , (1)

where δtb is the average utility of b among the households in market t, ηitj + λjεitbj is the usual
unobserved component of preferences that gives rise to the NL model (Berry, 1994; Cardell, 1997),
ηitj is common to all bundles in nest Nj and introduces correlation in their unobserved preferences,
and λj ∈ (0, 1] is the nesting parameter that determines the strength of such correlation. Given (1),
the PONL indirect utility of household i in market t from purchasing b can then be expressed as:12

Uitb = max
j∈J

{
lnωbj + Uitbj

}
= max

j∈J

{
δtb + lnωbj + ηitj + λjεitbj

}
,

(2)

where lnωbj + ηitj + λjεitbj = −∞ for any j corresponding to a nest that does not include b (given
that ωbj = 0). Then, the elements of (lnωbj + ηitj + λjεitbj)Jj=1 that contribute to the maximum
in (2) are those corresponding to the nests that include b. This implies that (2) simplifies to (1),
i.e. the indirect utility of the NL model, for any b that only belongs to one nest, say j, given that
max
j∈J

{
lnωbj + Uitbj

}
= Uitbj in such case. Differently, for any b that belongs to multiple nests, Uitb

is determined by the largest NL indirect utility Uitbj among the nests that include b.
The PONL indirect utility (2) then implies the following correlation structure among the unob-

11Alternatively, one can derive the PONL model by an appropriate choice of generating function, as originally proposed
by McFadden (1978) for any Generalized Extreme Value model. For this more direct but less economically intuitive
derivation of the GNL model, see Wen and Koppelman (2001).

12Bierlaire (2006) shows that any GNL model, and hence also the PONL model, is consistent with random utility
maximization when λj ∈ (0, 1], j = 1, ..., J (McFadden, 1978).
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served preferences of different bundles:13

Corr(Uitb, Uitb′) = Corr
(

max
j∈J

{
lnωbj + ηitj + λjεitbj

}
,max
j∈J

{
lnωb′j + ηitj + λjεitb′j

})
, (3)

with

Corrj(ηitj + λjεitbj , ηitk + λkεitb′k) =

 0 k ̸= j(
1 − λ2

j

)
1b,b′∈Nj

k = j.
(4)

This highlights that any pair of elements from the maxima in (3) has correlation corresponding to that
of the NL model in (4). In fact, note that (3) simplifies to (4) in the case of the NL model. Starting
from the PONL model, the NL model can be obtained by setting, for each b ∈ C, ωbj = 1 for any one
nest j and ωbj′ = 0 for every other nest j′ ̸= j. Suppose that bundle b belongs to nest j. In the NL
model, (3) then implies that Corr(Uitb, Uitb′) = 1 − λ2

j if also b′ belongs to nest j, or zero otherwise.
Differently, in the PONL model, Corr(Uitb, Uitb′) will be a function of all the nesting parameters λj ,
j = 1, ..., J , corresponding to the nests Nj , j = 1, ..., J , that include both bundles b and b′.

Example 1. The possibility of any bundle to belong to multiple nests plays an important conceptual
role in empirical models of demand for bundles: for each bundle is a combination of products, any
product will typically be part of several bundles. Without overlapping nests, the unobserved prefer-
ences of any two bundles from different nests will be uncorrelated. To see why this can be unrealistic,
suppose there are three products 1, 2, and 3 and that households can buy them in isolation or can
jointly buy 1 and 2, so that the choice set is C = C1 ∪ {0} with C1 = {1, 2, 3, (1, 1), (2, 2), (1, 2)}.

The NL model would require to uniquely and arbitrarily allocate each element of C1 to a nest.
For example, one could specify three nests: Ni = {1, (1, 1), (1, 2)}, Nii = {2, (2, 2)}, and Niii = {3}.
This, however, is not fully satisfactory. While it is true that the alternatives within each nest share
some common feature, i.e. product 1 in Ni, product 2 in Nii, and product 3 in Niii, it would be
desirable that also bundle (1, 2) shared common features with the elements of both Ni and Nii. In
general, the NL model cannot accommodate this intuitive requirement for all products and bundles:
because bundle (1, 2) can only be allocated to either Ni or Nii, its unobserved preferences will either
have correlation 1−λ2

i with those of {1, (1, 1)} or 1−λ2
ii with those of {2, (2, 2)}, but will not correlate

with both.14 Any nesting structure in the NL must partition C, ruling out correlation among at least
some of the bundles with overlapping components (Song et al., 2017).

The PONL model addresses this limitation in a convenient way and without requiring arbitrary
specifications of the nests. Each product and bundle is automatically allocated to one or more of J = 3
nests: N1 = {1, (1, 1), (1, 2)}, N2 = {2, (2, 2), (1, 2)}, and N3 = {3}. Any b that uniquely belongs to

13A closed-form expression for Corr(Uitb, Uitb′ ) has not yet been derived for the GNL model. The expression we
present in (3) was first derived by Abbe et al. (2007) and is the most interpretable characterization we are aware of.
To improve understanding, some authors have also proposed interesting approximations (Marzano et al., 2013) and
simulations (Marzano and Papola, 2008).

14Specifying instead C1 as a unique nest would rule out the possibility of 1 being more closely related to (1, 1) and
(1, 2) than to 3, and similarly for 2.
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Nested Logit (NL)

Ni Nii NiiiN0

1 (1, 1) (1, 2) 2 (2, 2) 30

Product-Overlap Nested Logit (PONL)

N1 N2 N3N0

1 (1, 1) (1, 2) 2 (2, 2) 30

Figure 1: Nesting Structures of NL and PONL

nest Nj has allocation parameters ωbj = 1 and ωbj′ = 0 for j′ ̸= j, so that: ω11 = ω(1,1)1 = ω22 =
ω(2,2)2 = ω3 = 1 and ω12 = ω13 = ω21 = ω23 = ω31 = ω32 = ω(1,1)2 = ω(1,1)3 = ω(2,2)1 = ω(2,2)3 = 0.
Moreover, (1, 2), which belongs to multiple nests, has allocation parameters: ω(1,2)1 = ω(1,2)2 = 0.5
and ω(1,2)3 = 0. Figure 1 visualizes the nesting structures of the NL and the PONL.

In the PONL model, the unobserved preferences of bundle (1, 2) will be allowed to correlate both
with those of the bundles in N1 (that include at least one unit of product 1) and with those of bundles
in N2 (that include at least one unit of product 2), and potentially to different degrees on the basis of
λ1 and λ2. We find this intuitively appealing in the context of demand for bundles, in that the PONL
model naturally accommodates correlation in the unobserved preferences among bundles on the basis
of their degree of overlap in the composition of products. ■

2.2 Average Utilities and Demand Synergies

With some abuse of notation, we refer to the components of a bundle b simply as “products” and
denote them by j ∈ b. Despite this shortcut, we stress that bundles can contain multiple units of a
single product. In addition, we maintain throughout that for any bundle b ∈ C2, a single unit of each
product j ∈ b can also be purchased in isolation. This rules out the complication that some product
can only be purchased through bundles.15 We denote by δtj the market t-specific average utility of a
single unit of product j and, as is common in applied work, we assume it to be linear:

δtj = δj + xtjβ − αptj + ξtj , (5)
15In Appendix E, we discuss a simple procedure to extend the use of our estimator to applications in which some

product can only be purchased through bundles. We implement this procedure in the empirical analysis in section 6.
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where δj is an intercept, xtj is a K-dimensional vector of characteristics, ptj is the price of a single
unit of product j in market t, (β, α) are preference parameters, and ξtj is a residual observed by all
economic agents (e.g., households and firms) but unobserved by the econometrician. We assume that
the K × J characteristics are exogenous in each market t:

E
[
(ξtj)Jj=1

∣∣∣(xtj)Jj=1

]
= 0. (6)

Differently, the prices (ptj)Jj=1 could be set by firms on the basis of (ξtj)Jj=1 and therefore correlate
with these unobservables. Following Gentzkow (2007), we denote by δtb = ∑

j∈b δtj + Γtb the market
t-specific average utility of bundle b ∈ C2. For example, if b = (j, j, k), i.e. two units of product
j and one of product k, then δt(j,j,k) = 2δtj + δtk + Γt(j,j,k). We refer to Γtb as the demand syn-
ergy parameter, which captures the extra average utility from purchasing the products in bundle b
jointly rather than separately. In Gentzkow (2007)’s demand for on-line and printed newspapers,
Γtb represents synergies in the consumption of different news outlets. However, demand synergies
can also arise for other reasons, such as shopping costs (Florez-Acosta and Herrera-Araujo, 2020;
Pozzi, 2012; Thomassen et al., 2017) or aggregation across multiple choices (Dubé, 2004; Hendel,
1999).16 In the context of quantity discounts, for example, even excluding any other source of syn-
ergies, Γtb = −α(ptb −

∑
j∈b ptj) > 0 whenever it is cheaper to purchase the products in bundle b

jointly rather than separately, i.e. ptb −
∑
j∈b ptj < 0.

Throughout the presentation of the model and estimator, we remain agnostic about the market
t-specific demand synergies Γt = (Γtb)b∈C2 , and treat them as parameters to be estimated. In appli-
cations with observable bundle-level characteristics, one can however project these parameters onto
observables and learn more about their nature (as we do in our application with quantity discounts).

2.3 Purchase Probabilities

Denote by stb, st(b|j), sjt , and st0 the t-specific purchase probabilities of, respectively: b unconditional
on any nest, b conditional on nest Nj , any bundle in nest Nj , and the outside option. Similar to the
NL model, also in the PONL model any b that uniquely belongs to nest j has purchase probability
stb = st(b|j)s

j
t . Any b that instead belongs to multiple nests has stb given by the sum of the joint

purchase probabilities st(b|j)s
j
t over the J + 1 nests, where st(b|k) = 0 for any k such that b /∈ Nk.

Given (1), (2), and denoting Vitbj = δtb + lnωbj + λjεitbj , the purchase probability of b ∈ C1 in
16If households face shopping costs every time they visit a store, they may prefer to purchase all their products at once

rather than over several trips (one-stop shoppers). Moreover, if households delegate grocery shopping to one person,
then the need to accommodate different requests within the household may lead to the purchase of multiple units of the
same or of different products on any shopping trip.
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market t can be obtained as:17

stb = Pr(i in t purchases b)

=
J∑

j=0
Pr(i in t purchases b|i in t purchases bundle in Nj) Pr(i in t purchases bundle in Nj)

=
J∑

j=0
Pr (Vitbj > Vitb′j ,∀b′ ̸= b,b′ ∈ Nj) Pr

(
max

b′∈Nj

{Vitb′j + ηitj} > max
b′∈Nℓ

{Vitb′ℓ + ηitℓ},∀ℓ ̸= j

)

=
J∑

j=0

(ωbj exp(δtb))1/λj∑
b′∈Nj

(ωb′j exp(δtb′))1/λj︸ ︷︷ ︸
st(b|j)

(∑
b′∈Nj

(ωb′j exp(δtb′))1/λj

)λj

∑J
ℓ=0
(∑

b′∈Nℓ
(ωb′ℓ exp(δtb′))1/λℓ

)λℓ︸ ︷︷ ︸
s

j
t

.

(7)

Because the outside option belongs to its own singleton nest N0, by further assuming δt0 = 0 we get:18

st0 = 1∑J
ℓ=0

(∑
b′∈Nℓ

(ωb′ℓ exp(δtb′))1/λℓ

)λℓ
. (8)

2.4 Demand Inverse

Similar to the NL studied by Berry (1994), also the PONL purchase probabilities (7) and (8) can be
conveniently “inverted” with respect to the average utilities, giving rise for any bundle b ∈ C2 to:

ln stb − ln st0 = ln

 J∑
j=0

(ωbj exp(δtb))1/λj

 ∑
b′∈Nj

(ωb′j exp(δtb′))1/λj

λj−1


= δtb + ln

 J∑
j=0

ωbj
(
st(b|j)

)1−λj


=
∑
j∈b

δtj + Γtb + ln

∑
j∈b

ωbj
(
st(b|j)

)1−λj

 .
(9)

Different from a NL model, however, the possibility of overlapping nests leads λj , j ∈ b, to be
nonlinear in (9). In unrestricted versions of the GNL model, analogous nonlinearities appear also in
the equations corresponding to a single unit of any product. However, in the special case of the PONL
model, any single unit of product j has allocation parameters ωjj = 1 and ωjj′ = 0 for j′ ̸= j, so that:

ln stj − ln st0 = δtj + (1 − λj) ln(st(j|j)). (10)

Plugging (5) into (10) and, respectively, into (9), we obtain:

ln stj − ln st0 = δj + xtjβ − αptj + (1 − λj) ln(st(j|j)) + ξtj . (11)
17See footnote 11.
18In the context of demand for bundles, this otherwise standard normalization has important repercussions for the

identification of the demand synergy parameters. We discuss this in detail in the empirical application.
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Γtb = ln(stb) − ln(st0) −
∑
j∈b

(δj + xtjβ − αptj + ξtj) − ln

∑
j∈b

ωbj
(
st(b|j)

)1−λj

 . (12)

3 Identification

An important and distinctive feature of our approach is to use different parts of system (9) to identify
and estimate different parts of the PONL model. We restrict attention to the T ×J linear equations in
(11), corresponding to the purchases of single units, for the identification and estimation of (δ, β, α, λ),
and then rely on the remaining T × C2 nonlinear equations in (12), corresponding to the purchases
of multiple units, for the identification and estimation of the demand synergies (Γtb)b∈C2 , t ∈ T.
Alternatively, one could identify and estimate the entire PONL model simultaneously from the T ×C1

nonlinear equations in (9). While both approaches are possible, we pursue the former because the
latter leads to a more complex problem of endogeneity (as discussed in the next section) and practically
less convenient estimators, especially in applications with large choice sets (as discussed in section 4).

3.1 Endogeneity in System (9)

By relying sequentially on (11) and (12) for the identification and estimation of the PONL model,
we face a practically simpler problem of endogeneity than by relying simultaneously on system (9).
Intuitively, our approach only uses the T × J equations for single units in (11) as a linear regression
to learn about (δ, β, α, λ) and then uses the remaining T × C2 equations for multiple units in (12)
as a plug-in to learn about the demand synergies. This way, the problem of endogeneity is limited
to the linear regression in (11), i.e. the correlation of (ptj , st(j|j)) with ξtj , and can be addressed
by instruments that satisfy moment conditions at the level of the single unit j.19 Differently, the
simultaneous use of all the equations in (9) would lead to a more complex problem of endogeneity
that can only be addressed by moment conditions both at the single unit j and at the bundle b level.

To illustrate this additional complexity, suppose to observe prices and characteristics both of single
units (ptj , xtj)Jj=1 and of bundles (ptb, xtb)b∈C2 .20 Then the market t-specific average utility of bundle
b is δtb = ∑

j∈b(δj + xtjβ − αptj + ξtj) + Γtb, with demand synergy:

Γtb =

δb −
∑
j∈b

δj

+

xtb −
∑
j∈b

xtj

β − α

ptb −
∑
j∈b

ptj

+

ξtb −
∑
j∈b

ξtj

 ,
19Price endogeneity arises because the vector (ξtj)J

j=1 is observed by all price-setting firms but unobserved to the
econometrician, while the dependence of ln (stj/st0) on st(j|j) is typical of NL models (independently of price endogeneity),
see Berry (1994).

20If (ptb, xtb)b∈C2 were unobserved, the endogenity problem discussed here would be even more severe, while the
approach described in the next section would be unaffected.
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where ξtb is an unobserved residual. Given these, system (9) can be re-written as:

ln(stb) − ln(st0) = δb + xtbβ − αptb + ln

∑
j∈b

ωbj
(
st(b|j)

)1−λj

+ ξtb. (13)

The term ξtb is a bundle-specific unobserved residual analogous to ξtj in (11). If one relied on (13) to
simultaneously identify and estimate all the parameters of the PONL model, moment conditions (6)
would not be sufficient for the bundle-level characteristics (xtb)b∈C1 to be exogeneous in each market
t. In fact, such bundle-level exogeneity would require:

E
[
(ξtj)Jj=1

∣∣∣(xtj)Jj=1, (xtb)b∈C2

]
= 0

E
[
(ξtb)b∈C2

∣∣∣(xtj)Jj=1, (xtb)b∈C2

]
= 0,

(14)

where the first set of moment conditions in (14) already implies (6). Importantly, when moment
conditions (14) do not hold, all the K + J + 1 regressors in (13)—excluding the intercepts—will be
endogenous, substantially complicating the task of finding a sufficient number of valid instruments.
Differently, as we discuss next, none of the additional moment conditions in (14) is required for the
exogeneity of (xjt)Jj=1 in (11), so that the weaker moment conditions (6) plus the availability of J + 1
valid instruments will suffice to addressing the endogeneity of ptj and st(j|j) with respect to ξjt.

3.2 Identification from (11) and (12)

We now discuss the identification of (δ, β, α, λ), with δ = (δj)Jj=1 and λ = (λj)Jj=1, and of
Γt = (Γtb)b∈C2 in (11) and (12) from data on bundle-level purchase probabilities (stb)b∈C1 and char-
acteristics of single units (xtj , ptj)Jj=1 across T markets, with T → ∞.21 Note that, if the within-nest
purchase probabilities (st(b|j))b∈C1,j∈J were observed, then identification would immediately follow
from a sequential version of the classic instrumental variables argument by Berry (1994). One could
first identify (δ, β, α, λ) from linear regression (11) by instrumental variables (for the endogenous ptj
and st(j|j)) and then Γt from nonlinear system (12) by a simple plug-in. However, the overlapping nest-
ing structure of the PONL model prevents the observability of the within-nest purchase probabilities
(st(b|j))b∈C1,j∈J, which in turn leads to a different identification and estimation strategy.

Example 2. We illustrate the lack of observability due to the overlapping nests by slightly modifying
Example 1 and adding bundle (1, 3) to the choice set C1. The NL model would require to uniquely
allocate each element of C1 to a nest. Suppose that we specified three nests: Ni = {1, (1, 1), (1, 2)},
Nii = {2, (2, 2)}, and Niii = {3, (1, 3)}. Then, given (stb)b∈C1 , one could directly obtain each within-
nest purchase probability as st(b|g) = stb/(

∑
b′∈Ng

stb′), g = i, ii, iii. Differently, because in the PONL
21Song and Chintagunta (2006), Sher and Kim (2014), Allen and Rehbeck (2019), and Wang (2019) study a different

identification problem, where only the product-level purchase probabilities (marginals over bundles) are observed, rather
than the bundle-level purchase probabilities.
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model some b belongs to multiple nests, one cannot determine the within-nest purchase probabilities
from the observed (stb)b∈C1 .22 In the current example, we would have three overlapping nests:
N1 = {1, (1, 1), (1, 2), (1, 3)}, N2 = {2, (2, 2), (1, 2)}, and N3 = {3, (1, 3)}. This leads to a system
with 8 observed purchase probabilities and 9 unknowns:

stk =st(k|k)s
k
t k = 1, 2, 3

st(j,j) =st(j,j|j)s
j
t j = 1, 2

st(1,2) =st(1,2|1)s
1
t + (1 − st(2|2) − st(2,2|2))s2

t

st(1,3) =(1 − st(1|1) − st(1,1|1) − st(1,2|1))s1
t + (1 − st(3|3))s3

t

st0 =1 −
3∑

k=1
skt ,

(15)

which would prevent the determination of the within-nest purchase probabilities. ■

In this context, identification can be achieved following Berry and Haile (2014) given the availability
of valid instruments for ptj and st(j|j). While this is standard, the associated derivations are useful to
understand how to select valid instruments in practice (as discussed in the next section) and how to
obtain a computationally convenient estimator (as discussed in section 4). Start by defining

πtj = s
j
t /st0 =

 ∑
b′∈Nj

(
ωb′j exp(δtb′)

)1/λj

λj

and by plugging δtj = λj ln[stj/st0] + (1 − λj) ln πtj in (12), so to obtain:

Γtb = Γb(Γtb;πt, λ, st)

= ln[stb/st0] −
∑
j∈b

(λj ln[stj/st0] + (1 − λj) ln πtj)

− ln

 J∑
j=1

exp
(

Γtb(1 − λj)
λj

)(
ωbj

) 1
λj π

1− 1
λj

tj

∏
r∈b

[str/st0]
λr(1−λj )

λj π

(1−λr)(1−λj )
λj

tr

 ,
(16)

where πt = (πtj)Jj=1. Then, using δtb′ = ∑
j∈b′ δtj + Γtb′ , plug δtj = λj ln[stj/st0] + (1 − λj) ln πtj in

the definition of πtj and obtain:

πtj = ϕj(πt; Γt, λ, st)

=

 ∑
b′∈Nj

ω
1/λj

b′j exp (Γtb′/λj)
∏
r∈b′

[
str

st0

]λr/λj

π
(1−λr)/λj

tr

λj

.
(17)

Note that, given λ and st, (16) and (17) define a system of C1 equations and C1 unknowns (Γt and
22Obviously, if there is no b that belongs to at least two nests (i.e., each b = (j, ..., j) only contains multiple units of

a same product j), the PONL model simplifies to a standard NL whose nests partition C1.
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πt) for each t. Because each within-nest purchase probability st(b|j) is a function of Γt and πt (see the
last equality in (7)), one can then address the lack of observability of (st(b|j))b∈C1,j∈J by expressing
Γt and πt in terms of λ and st. To summarize, PONL model (11) and (12) implies:

ln stj − ln st0 = δj + xtjβ − αptj + (1 − λj) ln
(
stj/st0
πtj

)
+ ξtj , subject to

Γt = (Γb(Γtb;λ, πt, st))b∈C2
from (16)

πt = (ϕj(πt;λ,Γt, st))j∈J from (17).

(18)

While the presence of constraints (16) and (17) complicates estimation, it basically does not affect
identification, in that (18) is subject to the same endogeneity concerns as (11): both ptj and stj/st0

πtj

are functions of the unobserved residuals ξt = (ξtj)Jj=1. Suppose that a vector of Q instruments ztj
with Q ≥ J + 1 is available, and that they satisfy the following moment conditions:

E [ξtj |ztj = z] = 0, for all j ∈ J and z ∈ Dz, (19)

where Dz is the support of z. The next result confirms that the PONL model is identified on the basis
of (18), the exogeneity of (xtj)Jj=1, and the availability of instruments ztj that satisfy (19).23

Proposition 1 (Identification). Suppose that moment conditions (6) and Assumption 1 in Appendix
A.1 hold. Then (δ, β, α, λ), Γt, and πt are identified for all t ∈ T.

Proof. See Appendix A.1.

This shows that standard instrumental variables ztj that satisfy (19) are sufficient not only to identify
(δ, β, α, λ), but also (Γt, πt) for t = 1, ..., T with T → ∞. One can prevent any incidental parameter
problem by relying on constraints (16) and (17) to concentrate out (Γt, πt) given (λ, st) for each t. As
a result, identification of the entire PONL model (including every (Γt, πt)) boils down to the unique
determination of (δ, β, α, λ) by instrumental variables from a nonlinear system. This is important
because the estimation of price elasticities and marginal costs, and the simulation of counterfactuals
(e.g., alternative pricing strategies and mergers) usually require knowledge of the entire model.

3.3 Choice of Instruments

Proposition 1 demonstrates that the PONL model is identified on the basis of (19) given the availability
of at least 1 + J valid instruments. While theoretically reassuring, this result is silent about how to
practically choose them among the several possible alternatives appeared in the literature (Berry and
Haile, 2016; Gandhi and Houde, 2019). In this section, we complement Proposition 1 and provide
some practical guidance on the selection of valid instruments.

23Formally, following Berry and Haile (2014), Proposition 1 relies on the completeness condition embedded in As-
sumption 1 (as detailed in Appendix A.1) rather than on condition (19). More practically, however, its essence can be
summarized by the availability of at least J + 1 valid instruments, as in (19).

15



Different categories of instruments were proposed in the literature to address, respectively, the
endogeneity of ptj and that of stj/st0

πtj
in (18) (Berry and Haile, 2016; Gandhi and Houde, 2019).

Classical instruments for ptj are excluded cost-shifters (e.g., input prices) or, when these are not
available, some proxies for these or for marginal costs. For example, Hausman (1996) proposed to
proxy the marginal cost of a product in a specific market by the price of the same product from
different markets, relying on the idea that the marginal cost of a product should be similar across
markets (Nevo, 2001). As popularized by Berry et al. (1995), other classic instruments for ptj are the
exogenous characteristics xtk for any product k ̸= j, with the idea that more or less substitutability
in characteristic space should lead to more or less price competition among products.

Despite the lack of observability of πtj , appropriate instruments for stj/st0
πtj

can be selected on the
basis of their correlation with st(j|j). To see this, denote by πt = (πj(λ; st))j∈J a solution to constraints
(16) and (17) for given λ and st.24 By a first-order Taylor approximation of ln(πtj) = ln(πj(λ; st)) in
(18) around its true value ln(π0

tj) = ln(πj(λ0; st)), we obtain:

ln stj − ln st0 = δj + xtjβ − αptj + (1 − λj)
[
ln
(
stj/st0
π0
tj

)
− 1

s
j
t

∂πj(λ0; st)
∂λ

(λ− λ0)
]

+ ξtj

= δj + xtjβ − αptj + (1 − λj)
[
ln st(j|j) − 1

s
j
t

∂πj(λ0; st)
∂λ

(λ− λ0)
]

+ ξtj ,

(20)

where the leading term of the first-order Taylor expansion is ln st(j|j).25 As a consequence, and similar
to a scenario in which πtj were observed, a valid instrument here is “something” that shifts st(j|j)

independently of ξtj , therefore helping to identify 1 − λj (Berry, 1994). From (7), we can also re-
express st(j|j) as:

st(j|j) = exp(δtj)1/λj∑
b′∈Nj

(ωb′j exp(δtb′))1/λj
= 1

1 +∑
b′∈Nj ,b′ ̸=j(ωb′j exp(δtb′ − δtj))1/λj

. (21)

Given the last two equations, δtb = ∑
j∈b δtj+Γtb, moment conditions (6), and the overlapping nesting

structure of the PONL model, it is simple to construct appropriate instruments for stj/st0
πtj

relying
both on product-level and bundle-level exogenous characteristics. For instance, the characteristics of
product k, xtk with k ̸= j, will be valid product-level instruments for stj/st0

πtj
as long as the nests j

and k are overlapping, Nj ∩ Nk ̸= ∅ (there exist bundles including at least a unit of both j and k).
Moreover, if one observes bundle-level characteristics xtb ̸= ∑

k∈b xtk and is willing to additionally
assume the first set of moment conditions in (14), then (21) implies that xtb′ − xtj is a valid bundle-
level instrument given its correlation with st(j|j) through δtb′ − δtj (Gandhi and Houde, 2019). As a
special case, note that in applications with xtb = ∑

k∈b xtk, such as the one we study in this paper,
24By substituting (16) into (17), for given λ and st, πt is the only argument of the resulting system. As a consequence,

we can express πt in terms of λ and st. See Assumption 2 in Appendix B for more details.
25Note that the second term inside the square brackets is proportional to λ− λ0. Its contribution to pin down λj will

then diminish when λ is close enough to λ0, i.e. when the estimator of λ0 is consistent. Consequently, in practice, the
main channel to identify λj will be the leading term ln st(j|j).

16



moment conditions (6) are sufficient also for the validity of this type of bundle-level instruments.
Through a similar mechanism, also instruments for excluded prices (i.e., all but ptj) can be valid

for stj/st0
πtj

: for example, any excluded cost-shifter for product k ̸= j such that Nj∩Nk ̸= ∅ would affect
st(j|j) through ptk independently of ξtj . The validity of the instruments for price to addressing also
endogeneity of the within-nest purchase probability is specific to the exclusion restrictions embedded in
(20) and (21). In more general demand models than PONL, endogeneity of the purchase probabilities
calls for a source of exogenous variation independent of prices (Berry and Haile, 2016). In such general
models, when additional data are not readily available, the exogenous characteristics may be the only
valid instruments to addressing endogeneity of the purchase probabilities (Berry and Haile, 2014).

4 Estimation

Given data on bundle-level purchase probabilities (stb)b∈C1 , a natural approach to estimating
(δ, β, α, λ) and (Γtb)t∈T,b∈C2 is the Generalized Method of Moments (GMM) estimator proposed
by Berry et al. (1995).26 This could be obtained on the basis of purchase probabilities (7)-(8) and
moment conditions (14), and then relying either on the fixed point approach (Aguirregabiria and
Mira, 2002; Berry et al., 1995; Rust, 1987) or on the MPEC approach (Dubé et al., 2012; Su and
Judd, 2012) for implementation. Unfortunately, this GMM estimator would be impractical with large
choice sets, mainly because of the large dimensionality T × C1 of the demand system. In particular,
the fixed point implementation of Berry et al. (1995) would require the computation of T separate
demand inverses with C1 equations each (and no readily available contraction mapping results), while
the MPEC implementation would require the computation of up to T ×C1 nonlinear constraints and
their derivatives.27

To overcome this challenge, we mimic our identification strategy and propose a Constrained Two
Stage Least Square (C2SLS) estimator on the basis of (18). The proposed C2SLS estimator is a natural
extension of the Two Stage Least Square (2SLS) estimator by Berry (1994) to the case of unobserved
within-nest purchase probabilities (arising from the overlapping nests). Importantly, the C2SLS can
be implemented by a convenient iterative procedure that is optimization- and derivative-free, and
parallelizable over both bundles and markets, virtually eliminating any challenge of dimensionality
due to large choice sets. We show that the C2SLS estimator has desirable asymptotic properties and
that, upon numerical convergence, the proposed iterative procedure always implements it.

26Given the lack of observability of the within-nest purchase probabilities (st(b|j))b∈C1,j∈J, one cannot directly con-
struct an estimator on the basis of (9) as for NL models with non-overlapping nests (Berry, 1994), but must rely on the
more general approach by Berry et al. (1995).

27See footnote 4.
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4.1 A Constrained Two Stage Least Square (C2SLS) Estimator

Our constructive identification strategy readily leads to a C2SLS estimator based on (18) and instru-
ments (19), as a solution to the following nonlinear system:


(δ, β, α, 1 − λ) =

(
XT(ZZT)X

)−1 (
XT(ZZT)Y

)
Nonlinear equations (16): Γt = (Γb(Γtb;λ, πt, st))b∈C2

Nonlinear equations (17): πt = (ϕj(πt;λ,Γt, st))j∈J

(22)

where Z = (Zt)Tt=1, X =
(

(ej)Jj=1, xt,−pt,
(
ln
(
stj/st0
πtj

))J
j=1

)T
t=1

, ej is a vector of zeros with jth element

equal to 1, and Y =
(
(ln stj − ln st0)Jj=1

)T
t=1

. Denote by (δ0, β0, α0, λ0) and (π0
t ,Γ0

t )Tt=1 the true
parameter values. The C2SLS in (22) is a natural extension of the 2SLS proposed by Berry (1994) for
NL models with non-overlapping nests. To see this, suppose that the within-nest purchase probabilities
(st(b|j))b∈C1,j∈J were observed, as in the classic NL. Then one could, first, estimate (δ, β, α, λ) by 2SLS
as a solution to the linear equations in (22) and, second, estimate Γt from nonlinear system (12) by a
plug-in. Differently, with overlapping nests one does not observe the within-nest purchase probabilities,
but however knows that they must satisfy both the linear (as the 2SLS) and the nonlinear equations
in (22), giving rise to the C2LS estimator.

Proposition 2 (Asymptotic Properties). Suppose Assumptions 2 and 3 in Appendix B hold.

• A solution to (22) in a neighbourhood of (δ0, β0, α0, λ0) and (π0
t ,Γ0

t )Tt=1, denoted by (δ̂, β̂, α̂, λ̂)
and (π̂t, Γ̂t)Tt=1, exists with probability one as T → ∞.

• (δ̂, β̂, α̂, λ̂) and (π̂t, Γ̂t)Tt=1 is consistent and asymptotically normal.

Proof. See Appendix B.

The first result of Proposition 2 confirms that the C2SLS estimator is well defined and always exists in
large samples, while the second guarantees that it has desirable asymptotic properties. In Appendix
B.1, we derive the asymptotic variance-covariance matrix and a simple plug-in procedure to compute it.
Even though well behaved in theory, the C2SLS estimator can be challenging to implement, especially
with large choice sets. While the 2SLS by Berry (1994) only solves the linear equations in (22), the
C2SLS requires the solution of the entire nonlinear system (22). With large C, the nonlinear part of
system (22) introduces practical complexities not present in the 2SLS: in addition to (δ, β, α, λ), one
also needs to compute T ×J values of (πt)Tt=1 and T ×C2 values of (Γt)Tt=1 that simultaneously satisfy
(16) and (17). We circumvent this computational challenge by proposing an iterative procedure that
does not attempt the direct numerical solution of nonlinear system (22), but only executes a sequence
of 2SLS estimators and parallelizable plug-in operations. Together, these simple steps largely reduce
the computational time and memory requirements needed to implement the C2SLS estimator.

18



4.2 A Convenient Iterative Procedure

Denote the algorithm’s iterations by k = 1, ..., K̄ and the parameter values obtained at iteration k

by superscript (k). Given starting values
(
δ(0), β(0), α(0), λ(0)

)
and

(
π

(0)
t ,Γ(0)

t

)
t∈T

, at each iteration k
execute the following steps:28

Step 1. Given π
(k−1)
t , λ(k−1), and Γ(k−1)

t , for each (t, j) compute π(k)
tj as a plug-in from the right-hand

side of (17).

Step 2. Given π(k)
t , compute

(
δ(k), β(k), α(k), λ(k)

)
by 2SLS from the linear equations in (22), i.e. ignoring

nonlinear equations (16) and (17).

Step 3. Given π
(k)
t , λ(k), and Γ(k−1)

t , for each (t,b)—independently of any other market and bundle—
compute Γ(k)

tb as a one-step Newton-Raphson approximation to the unique solution of (16).29

Step 4. If k < K̄, move on to the next iteration k + 1. If instead k = K̄, exit the algorithm.

Step 2 of the proposed algorithm leverages on the observation that, for any given value of πt, the
linear equations in (22) are nothing but the 2SLS popularized by Berry (1994) for the estimation
of NL models. Then, steps 1 and 3 simply update the values of (Γtb)b∈C2 and πt rather than fully
solving nonlinear equations (16) and (17). From a computational perspective, each of these steps is
very convenient. Step 2 only requires the estimation of a 2SLS, while steps 1 and 3 consist of a fully
parallelizable sequence of plug-ins (which do not involve any numerical optimization or derivative).30

The proposed algorithm mimics the classic Gauss-Seidel method for the solution of linear systems
to implementing the C2SLS estimator, a solution of nonlinear system (22). While similar algorithms
were shown to practically facilitate the implementation of linear (Guimaraes and Portugal, 2010) and
nonlinear fixed effects estimators (Hospido, 2012), little is known about their numerical convergence:
despite the practical convenience, it is often unclear whether these algorithms numerically converge
to the desired estimators. Importantly, the next result establishes that whenever our simple sequence
of regressions and plug-ins numerically converges, it will attain the C2SLS estimator.

Proposition 3 (Numerical Convergence). Suppose that for all t = 1, ..., T and b ∈ C2, as K̄ → ∞,
π

(K̄)
t → π∗

t and Γ(K̄)
tb → Γ∗

tb for some π∗
t ∈ RJ and Γ∗

tb ∈ R. Then, as K̄ → ∞,
(
δ(K̄), β(K̄), α(K̄), λ(K̄)

)
and

(
π

(K̄)
t ,Γ(K̄)

t

)T
t=1

converge to the C2SLS estimator.

Proof. See Appendix D.
28While here we only sketch the main features of the proposed iterative procedure, in Appendix C we discuss several

implementation details: from the choice of starting values (parameter values at iteration 0) and stopping criteria (K̄),
to the updating in steps 1 and 3.

29Importantly, as shown in Lemma 1, Appendix A.1, (16) has a unique solution Γtb which is independent of any other
market and bundle other than (t,b).

30As discussed in Appendix C, the updating in step 3, despite being a one-step Newton-Raphson approximation, does
not require any numerical differentiation: the derivatives of (16) have a simple analytical form.
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This guarantees that the convergence of each π(K̄)
t and Γ(K̄)

tb can only happen to the C2SLS estimator.
To test if the algorithm has implemented the C2SLS estimator, it suffices to verify whether the
iterative procedure has numerically converged.31 Even though Proposition 3 does not guarantee the
numerical convergence of the proposed algorithm, and thus its ability to produce the C2SLS estimates,
reassuringly, in the large number of estimates we performed between the Monte Carlo simulations and
the empirical application, we never experienced any lack of numerical convergence. In the hypothetical
case of lack of numerical convergence, we suggest to re-launch the algorithm from different starting
values (as typically done for validation in analogous numerical procedures, Robert and Casella, 2013).

4.3 Discussion

In the context of the PONL model, the C2SLS estimator in (22) is simpler to implement than the
classic GMM estimator by Berry et al. (1995). The greater simplicity comes from the possibility to
fully parallelize the estimation of the T ×C2 demand synergies, which can be performed for each Γtb
in isolation. This independence would not be exploited in the classic GMM estimator by Berry et al.
(1995), which would instead compute an inverse of the entire demand system (C1 equations) within
each market (so parallelizing only over markets but not over bundles). Despite this computational
advantage, as discussed above, a standard implementation of the C2SLS estimator by directly solving
(22) could still be problematic with large C. However, the proposed iterative procedure virtually
eliminates any challenge of dimensionality related to large choice sets.

An essential factor behind the practical advantages of the proposed C2SLS estimator is the use of
individual-level purchases in the aggregate form of bundle-level purchase probabilities. Bundle-level
purchase probabilities are not typically directly observed (with the exception of a few industries, see
Crawford and Yurukoglu, 2012; Song et al., 2017) but rather computed from samples of individual-level
purchases (Ershov et al., 2021) and thus subject to sampling error. When the number of bundles is
large relative to the sample of individual-level purchases, sampling error in the bundle-level purchase
probabilities can be pronounced and lead to estimation bias (Gentzkow et al., 2019), for example
because of the large number of observed “zeros” (Gandhi et al., 2020). Even though, in the interest of
space, we do not address this complication in the current paper, the C2SLS estimator can be extended
to control for sampling error in the bundle-level purchase probabilities by building on the de-biasing
technique proposed by Freyberger (2015).

Following a different route, one could instead opt for more traditional likelihood-type estimators
based on the direct use of individual-level purchases (Aryal and Gabrielli, 2020; Gentzkow, 2007; Grzy-
bowski and Verboven, 2016; Iaria and Wang, 2019; Kwak et al., 2015; Ruiz et al., 2020). Unfortunately,

31In practice, numerical convergence is usually defined by a stopping criterion, such as that the distance in the
parameter values between two consecutive iterations is smaller than a threshold. For instance, in our simulations and
empirical application, we consider the algorithm to have converged when the absolute values of Γ(k)

tb −Γ(k−1)
tb , π(k)

tj −π(k−1)
tj ,

and
(
δ(k), β(k), α(k), λ(k))−

(
δ(k−1), β(k−1), α(k−1), λ(k−1)) are small enough for all t and b. As shown in section 5, our

Monte Carlo simulations suggest that 5 iterations can already be sufficient to achieve this form of numerical convergence.
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also this approach would not be computationally convenient with large choice sets, mainly because of
the large number of fixed effects required to control for price endogeneity (Iaria and Wang, 2019). In
this sense, in applications with large choice sets, the proposed iterative procedure may be the only
practically viable estimation alternative.

5 Monte Carlo Simulations

We now present simulation results to investigate the finite sample performance of the C2SLS estimator
as a function of both the choice set size C and the number of iterations K̄ in the proposed algorithm.

5.1 Data Generating Process

We generate data from a PONL model with J = 10 products and bundles that combine multiple
units these. Across experiments, we vary the maximum “dimension” of the bundles included in the
choice set: the maximum number of units that can be jointly purchased as a bundle, and consequently
the size of the choice set. For example, with bundles of dimension up to two, individuals can choose
among 66 bundles of the kind (j1, j2), with jk ∈ {0} ∪ J, k = 1, 2; while with bundles of dimension up
to three, individuals can instead choose among 286 bundles of the type (j1, j2, j3) with jk ∈ {0} ∪ J,
k = 1, 2, 3.32 In particular, we consider choice sets of increasing size, with C ∈ {66, 286, 1001, 3003,
8008, 19448}, where 66 is the number of bundles of dimension up to two, 286 the number of bundles
of dimension up to three, and so on until 19448, the number of bundles of dimension up to seven.

We specify ((δj = 1, λj = 0.4)10
j=1, β = 2, α = 2), the demand synergies as Γtb ∼ N(0, 0.1), the

product-specific unobserved residuals as ξtj ∼ N(0, 0.2), the product-specific exogenous characteristic
as log(xtj) ∼ N(1, 0.1) (we set K = 1 for simplicity), and the product-specific marginal cost as
log(ztj) ∼ N(1, 0.1). We assume that in each market t, a monopolist sets the unit prices of the 10
products (independently across markets), (ptj)10

j=1, and linear pricing: the price of each bundle b is
given by the sum of the unit prices of the units it includes, ptb = ∑

j∈b ptj . We assume that the
monopolist faces no technological advantage or disadvantage in selling bundles: the marginal cost of
any bundle b is given by the sum of the marginal costs of the units it includes, ztb = ∑

j∈b ztj .
Despite assuming δj = δk and λj = λk for any j ̸= k in the data generating process, we do not

impose such constraint in estimation and allow for different δj and λj for each j = 1, ..., 10. We use
two types of instruments to deal with the endogeneity of ptj and stj/st0

πtj
. First, we instrument price ptj

by polynomials of the exogenous characteristic xtj and of the marginal cost ztj . Second, we instrument
stj/st0
πtj

by weighted averages of xtb = ∑
j∈b xtj and of ztb among the bundles that belong to Nj \{j}.33

32For example, the 66 bundles in the case of bundles of dimension up to two are: the choice of not purchasing any
product (0, 0), the 10 single units of the products in J, and the 55 bundles of dimension two in C2 = J × J. Note that
we allow for the purchase of bundles that include multiple units of the same product.

33More precisely, we use the following list of instruments: Ztj =
(
eT

j , xtj , x
2
tj , x

3
tj , ztj , z

2
tj , z

3
tj , xtjztj , x

2
tjztj , xtjz

2
tj ,(∑

b∈Nj \{j} ωbjxtb

)
eT

j ,
(∑

b∈Nj \{j} ωbjztb

)
eT

j

)T
, where ej is a vector of zeros with jth element equal to 1.
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5.2 Simulation Results

We compare the finite sample performance of the proposed iterative procedure for the C2SLS estimator
in (22) with respect to the infeasible two-step procedure that relies on the observability of the within-
nest purchase probabilities, i.e. first estimating the 2J + K + 1 = 22 parameters in (11) by 2SLS
and then each of the C2 × T demand synergies by an independent plug-in as in (12). In terms of
performance, the infeasible two-step procedure is an upper bound for the C2SLS, which estimates the
same parameters but without relying on the observability of the within-nest purchase probabilities.

Figure 2: Median of RMSEs of C2SLS Estimator

(a) Parameters (δ, β, α, λ), T = 200 markets
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Figure 2 summarizes our simulation results. Figure 2(a) illustrates results for the estimation of
(δ, β, α, λ) in different scenarios with choice set size C ∈ {66, 286, 1001, 3003, 8008, 19448}. For each
C, we simulate 100 datasets/repetitions with T = 200 markets and then average estimation results
across these. We summarize the finite sample performance of each estimator in terms of its median
Root Mean Square Error (RMSE).34 The solid line represents the median RMSE of the infeasible 2SLS,
while the others plot the median RMSE of the proposed algorithm after iteration 0 (see Appendix C
for a detailed description of this starting iteration), iteration 1, and iteration 5.

Figure 2(a) shows how, in practice, the proposed iterative procedure converges very fast to the
infeasible 2SLS estimator, the theoretical upper bound for the C2SLS estimator. After only five
iterations, the median RMSE of the proposed algorithm is almost indistinguishable from that of the
infeasible 2SLS estimator. Importantly, the fast convergence holds irrespectively of the choice set size
C, confirming that a few iterations may be sufficient to implement the C2SLS estimator (Proposition
3) also in empirical applications with large choice sets.

Figure 2(b) illustrates results for the estimation of all parameters in various scenarios with a
constant choice set size C = 286 (i.e., all bundles of size 3) but an increasing number of markets
T ∈ {200, 500, 1000}. For each T , we simulate 100 datasets/repetitions and plot the median RMSE
of the proposed algorithm after five iterations. The dashed line plots the median RMSE of (δ, β, α, λ),
while the solid line represents the median RMSE of the demand synergy parameters. While for any T
the demand synergy parameters are less precisely estimated than (δ, β, α, λ), a larger T—in line with
Proposition 2—corresponds to a better performance of the C2SLS estimator.

6 Quantity Discounts and Carbonated Soft Drinks

We implement our methods to empirically investigate the determinants and welfare consequences of
quantity discounts in the market for carbonated soft drinks in the USA. Relying on household-level
purchase data from the period 2008-2011, we estimate a flexible PONL model and then assess the
welfare effects of the observed quantity discounts by simulating a counterfactual with linear pricing.

6.1 Data, Definitions, and Descriptive Statistics

We use household-level and store-level IRI data on carbonated soft drinks (CSDs) for the cities of
Pittsfield and Eau Claire (USA) in the period 2008-2011. We report a brief description of the data
here and refer the reader to Bronnenberg et al. (2008) for more detail.

We focus on the I = 6, 155 households who are observed to purchase CSDs at least once from
2008 until 2011. For these, we observe household size (number of family members) and a panel of
1, 736, 012 household-level shopping trips to 22 different grocery stores over a period of 208 weeks. A

34For given C and estimator of θ, we compute the parameter-specific RMSE for each parameter d = 1, ..., D in
θ̂r = (θ̂1r, ..., θ̂Dr) across r = 1, ..., 100 repetitions: RMSE(θ̂d, θd) =

√
1

100
∑100

r=1(θ̂dr − θd)2. We then plot the median of
the parameter-specific RMSE(θ̂d, θd) across the D parameters in θ.
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Table 1: Descriptive Statistics

Product Definition
Brand variable “L5” in IRI

Producer Coca-Cola, PepsiCo, Dr. Pepper, Others
Sample Characteristics

Num. of UPCs 1, 683
Num. of products 128

Num. of weeks 208
Num. of households 6, 155

% single-person households 24.55%
Num. of shopping trips 1, 736, 012

% shopping trips with purchase 23.71%
Shopping frequency, any purchase 1.36 times per week

Shopping freq., with CSDs purchase every 2.22 weeks
Num. of markets (four weeks × store) 1, 197
Average num. shop. trips per market 1, 450.30
Purchased Quantities (in units)

Average per household-year 117.24
Single-person households, average per year 66.02
Multi-person households, average per year 133.91

Average bundle size (units per shopping trip) 6.99
Num. of bundles 16, 873

Average num. of bundles per market 123.80
% shop. trips with multi. units (A+B) 93.24%

(A) multi. units same prod. 90.15%
(B) multi. units diff. prod. 9.85%

shopping trip is defined as a household’s purchase occasion to a grocery store in a given day. Each
shopping trip records all the Universal Product Codes (UPCs) purchased by a household across all
product categories sold by the store: during 23.71% of these, CSDs are observed to be purchased. We
consider a household to choose the outside option whenever no CSD product is purchased during a
shopping trip (in general, something must be purchased for a shopping trip to be in the data).

We observe households to purchase CSDs on average every 2.22 weeks, which suggests that, on
average, they deplete their stocks of accumulated CSDs in approximately two weeks. We then define
a market t = 1, ..., 1197 as a (four weeks × store) combination to make sure that observed purchases
correspond to consumption within the same interval of time. This mitigates concerns about stockpiling
behavior in which households buy more “now” for “later” (Hendel and Nevo, 2006, 2013; Wang, 2015).

Households are observed to purchase 1, 683 different UPCs of CSDs mainly by three large producers,
Coca-Cola, PepsiCo, and Dr. Pepper, plus some smaller ones we collectively label “Others.” From
these UPCs, we define products on the basis of the “brand” variable L5 in the IRI data (e.g., Coke
Classic or Diet Pepsi), considering all the UPCs by Others as a single product. This results in 128
products, listed in Table 10, Appendix F.6. The top two panels of Table 1 summarize this information.

We discretize purchased quantities in units of one liter (L): we consider purchases of a product up
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to 1L as one unit, between 1L and 2L as two units, and so on until 154 units, the largest purchased
quantity of a single CSD product during a shopping trip we observe in the data. We denote a bundle
b as any combination of units of the same and of different CSDs we observe to be purchased during
any one shopping trip.35 For brevity, we refer to “units” or “liters” interchangeably and call “bundles”
also the purchases of single units (i.e., bundles of size one). On average, we observe households to
purchase 117.24 units of CSDs per year.36

As summarized in the bottom panel of Table 1, we observe 16, 873 different bundles to be purchased
during any shopping trip in any market, with an average of 123.80 different bundles within each market.
As is well known (Chan, 2006; Dubé, 2004; Ershov et al., 2021), the purchase of multiple units (6.99
on average) is a common phenomenon in the market for CSDs, which we observe in 93.24% of the
shopping trips with any purchase of CSDs. In 9.85% of these, households purchase multiple units of
different CSD products, stressing the importance of allowing for mixed bundles in the demand model.
We divide households into two groups on the basis of their family size: single-person or multi-person,
hs ∈ {single, multi}. Figure 3 shows that, as expected, multi-person households tend to purchase
bundles of larger sizes than single-person households, both in terms of the same product (panel b)
and of different products (panel c). Because of this, we allow for the possibility that households of
different sizes react differently to quantity discounts: we compute choice probabilities conditional on
hs and allow for different household sizes to have different parameters. In particular, we compute each
shstb as the proportion of shopping trips in t corresponding to purchases of b by households of size hs.

We compute each bundle-level price ptb as the average observed price (in US dollars) across all
shopping trips in t corresponding to purchases of b. Note that third-degree price discrimination
cannot be implemented in this context and, within each market, households of different sizes face
the same prices. For each UPC purchased during any shopping trip in a (week×store) combination,
IRI reports the average price in that (week×store) from a separate store-level sales dataset. As a
consequence, ptb averages over (i) the purchased combinations of UPCs that correspond to the same
b (given our definitions of product and quantity) and (ii) four consecutive weeks (given our definition
of market). Because IRI records the average (week×store) price of each UPC separately, we do not
observe nonlinear prices across UPCs of different products (e.g., joint purchase of 2L Coke Classic
and 2L Sprite) and instead focus on quantity discounts across UPCs involving different volumes of the
same product (e.g., 1L Coke Classic versus 2L Coke Classic).

Table 2 provides descriptive evidence about the presence of quantity discounts. We regress the
35In some markets, some of the CSD products are only observed to be purchased through bundles and never in isolation

as single units. Without further assumptions, the C2SLS estimator cannot pin down the demand synergy Γtb of bundles
that include these products in such markets. In Appendix E, we discuss a simple procedure to extend the use of the
C2SLS estimator to cases like this where some product can only be purchased through bundles.

36The observed average purchased quantity of 117.24 units per year is smaller than the 156L reported by Allcott et al.
(2019) on the basis of the Nielsen data (for the period 2007-2016). There are at least two possible explanations. First, the
Nielsen household-level scanner data may cover a larger number of retailers than IRI, so that a larger share of purchases
of CSDs is not recorded in our data. Second, the composition of demographics sampled by Nielsen and IRI may differ,
so that Nielsen’s households purchase larger quantities of CSDs.
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Figure 3: Number of Purchased Units, Single- and Multi-Person Households

(a) All shopping trips
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(b) Shopping trips with multiple units of same product
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(c) Shopping trips with multiple units of different products
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unit-price (price per liter) paid on any shopping trip, i.e. ptb divided by the number of units (liters)
in b, on a constant, the number of units in b, and its square. In general, purchases of multiple units
of CSDs by both household sizes are associated to lower prices per unit and quantity discounts are
observed to decrease with each additional liter purchased. Moreover, multi-person households are
observed, on average, to pay around 5 cents less than single-person households for any purchased liter
of CSDs (the coefficient ∆Constant). These patterns are in line with the evidence by O’Connell and
Smith (2020) on quantity discounts for soft drinks in the UK.

Collectively, the above descriptive evidence suggests that multi-person households tend to purchase
more units of CSDs on any shopping trip and, because of quantity discounts, that they also tend
to pay lower prices per liter (approximately 5 cents less per liter) than single-person households.
While this supports the idea that firms may use quantity discounts as a screening device to price
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Table 2: Descriptive Evidence on Quantity Discounts

Price per Unit ($ per liter)
Single-person Households

Constant 0.730
(0.009)

Num. Units −0.021
(0.000)

(Num. Units)2 0.0003
(0.0000)

Multi-person Households
∆Constant −0.049

(0.002)
Num. Units −0.012

(0.000)
(Num. Units)2 0.0001

(0.000)
Product fixed effects yes

Store fixed effects yes
Time fixed effects yes

Num. of Obs. 411, 618
R2 0.185

discriminate between households of different sizes (Maskin and Riley, 1984; Mussa and Rosen, 1978),
it also highlights the imperfection of such mechanism, in that both multi-person and single-person
households are observed to purchase multiple units of CSDs on any shopping trip (even though to
a different extent). This and the oligopolistic nature of the industry complicate any a priori welfare
assessment of the observed quantity discounts. In what follows, we rely on the PONL model to
estimate the demand parameters of the different household sizes hs ∈ {single,multi} and investigate
some of the welfare implications of the observed quantity discounts in relation to linear pricing.

6.2 Model Specification

In this section, we specify our empirical PONL model of demand for multiple units of CSDs. We
rely on the general notation introduced in section 2. The average utility of a household of size
hs ∈ {single, multi} in market t from purchasing a single unit of product j is:

δhstj = δhsj − αhsptj + δstore(t) + δtime(t) + ξhstj , (23)

where δhsj is a household size and product-specific intercept, αhs is a household size-specific price
coefficient, δstore(t) is a store fixed effect, δtime(t) is a time (four weeks) fixed effect, and ξhstj is a residual
observed by all economic agents (households and producers) but unobserved by the econometrician.
The household size-specific nesting parameter for nest j is:

λhsj = λhsProducer(j), (24)
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where Producer(j) ∈ {Coca-Cola/PepsiCo,Dr.Pepper/Others} depending on the producer of product
j. Following the discussion in section 2.1, each allocation parameter ωbj is equal to the reciprocal of
the number of nests b belongs to:

ωbj = 1∑J
j′=1 1b∈Nj′

if j ∈ b and zero otherwise.
We use Hausman-type instruments (Hausman, 1996; Nevo, 2001) for the endogenous price ptj and

within-nest market share shst(j|j). Remember that our markets are located in two cities, Pittsfield and
Eau Claire. For the markets located in Pittsfield, we use the price of the same product j in the same
retailer and four-week period (i.e., same time(t)) but as observed in Boston, the prices of products
r ̸= j sold by the same retailer of j in the same time(t) but in Boston, the prices of products k ̸= j

by the same producer of j as observed in the same time(t) but in Boston, and interactions of these.
Similarly, for the markets located in Eau Claire, we use the same instruments as for Pittsfield but on
the basis of the observed prices from Milwaukee.37

As mentioned in section 2.2, the demand synergy parameter Γhstb captures—among many other
things—any indirect utility deviation due to nonlinear price ptb relative to linear price ∑j∈b ptj . To
capture this, we decompose Γhstb as:

Γhstb = −αhs
ptb −

∑
j∈b

ptj

+ γhstb , (25)

where −αhs
(
ptb −

∑
j∈b ptj

)
isolates the part due to quantity discounts while γhstb captures every

other potential source of synergy among the products in b (e.g., preference for variety or transportation
costs). To further investigate the empirical determinants of demand for bundles and quantity discounts,
given the thousands of estimated demand synergy parameters, we perform a second-step regression of
γ̂hstb = Γ̂hstb + α̂hs

(
ptb −

∑
j∈b ptj

)
on observed characteristics and fixed effects:

γhstb = γhs|b| +Xbγ
hs + γstore(t) + γtime(t) + ηhstb , (26)

where γhs|b| is a household size hs and bundle size |b|-specific intercept, Xb is a vector of b-specific
characteristics, γhs is a household size-specific vector of parameters, γstore(t) is a store fixed effect,
γtime(t) is a time (four weeks) fixed effect, and ηhstb is a residual term. As we illustrate next, interpreting
the estimated demand synergies and the results of this second-step regression requires some care due
to the (otherwise standard) normalization of the indirect utility of the outside option.

Normalization and Interpretation of Demand Synergy Parameters. Denote by δhst0 the
indirect utility of households size hs from choosing the outside option in market t. As is well known,

37Some retailers from Eau Claire are not present in Milwaukee. In these cases, we use the price of j, the prices of
k ̸= j, and the prices of r ̸= j by the same producer of j (and their interactions) as observed in Milwaukee.
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the normalization δhst0 = 0 consists in subtracting δhst0 from each δhstb , b ∈ C1. As a result, the identified
indirect utility of household size hs from purchasing bundle b corresponds to δ̃hstb = δhstb − δhst0 and, in
turn, the identified demand synergies to:

Γ̃hstb = δ̃hstb −
∑
j∈b

δ̃hstj

= (δhstb − δhst0 ) −
∑
j∈b

[
δhstj − δhst0

]
= Γhstb + (|b| − 1)δhst0 .

(27)

Substituting this in (25) and (26), we obtain:

Γ̃hstb = −αhs
ptb −

∑
j∈b

ptj

+ γ̃hstb ,

γ̃hstb =
|b|∑
k=2

(
γhsk − γhsk−1 + δhs0

)
+Xbγ

hs + γstore(t) + γtime(t) + η̃hstb ,

(28)

where η̃hstb = ηhstb + (|b| − 1)(δhst0 − δhs0 ), δhs0 is the average of δhst0 over markets, and γhs1 = 0. One
can then identify γhsk − γhsk−1 + δhs0 for k = 2, ..., |b|, but cannot separately identify γhsk − γhsk−1 and
δhs0 without further assumptions. While this may complicate the interpretation of the estimated
demand synergies, in that they will be “shifted” by (|b| − 1)δhst0 , all the objects of interest (e.g.,
demand elasticities, marginal costs, consumer surplus, etc.) necessary to perform our counterfactual
simulations are only functions of γ̃hstb —rather than of its individual components—and thus identified.

6.3 Estimation Results

Table 3 reports the C2SLS estimates of (23) and (24) from our iterative procedure, which (on our
standard desktops) achieves numerical convergence in less than two minutes with 16, 874 bundles (with
an average of 123.8 bundles per market) and a total of 176, 700 parameters.38 The three columns
of Table 3 summarize estimation results for three specifications of (24). In column (i) we assume a
common nesting parameter across products and household sizes λhsj = λ, in column (ii) we allow for two
nesting parameters λhsj = λhs, hs ∈ {single, multi}, while in column (iii) we specify λhsj = λhsProducer(j)

with hs ∈ {single, multi} and Producer(j) ∈ {Coca-Cola/PepsiCo,Dr.Pepper/Others}. Standard
errors are computed using the asymptotic formula detailed in Appendix B.1.

Table 3 suggests that single-person households are less price sensitive than multi-person households
(αsingle < αmulti) but also that nesting parameters are almost the same across household sizes and
close to one, suggesting that—after controlling for all the fixed effects and demand synergies—the
within-nest correlation in unobserved preferences is not very large (i.e., (1 − λhsj ) ≈ 0.1). Despite the
unconstrained estimation, all nesting parameters lie between 0 and 1, as required by consistency with

38Using the criterion discussed in footnote 31, we achieve numerical convergence after 25 iterations.
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Table 3: Demand Estimates, Price Coefficients and Nesting Parameters

(i): λhs
j = λ (ii): λhs

j = λhs (iii): λhs
j = λhs

Producer(j)
Price coefficients

αsingle 0.7369
(0.1079)

0.7338
(0.1079)

0.7479
(0.1094)

αmulti 0.9992
(0.0991)

1.0020
(0.0994)

1.0257
(0.1014)

Nesting parameters
λ 0.8990

(0.0238)
λsingle 0.8898

(0.0281)
λmulti 0.9028

(0.0254)

λsingle
Coca-Cola/PepsiCo 0.8778

(0.0301)

λsingle
Dr.Pepper/Others 0.9095

(0.0454)
λmulti

Coca-Cola/PepsiCo 0.9216
(0.0270)

λmulti
Dr.Pepper/Others 0.8549

(0.0382)
Control for δhs

j Yes Yes Yes
Store fixed effects Yes Yes Yes
Time fixed effects Yes Yes Yes

Num. of Obs. 12, 433 12, 433 12, 433
Notes: The Table reports C2SLS estimates of (23) and (24) from the iterative procedure
described in section 4. Standard errors are computed using the asymptotic formula detailed
in Appendix B.1.

utility maximizing behavior (Ben-Akiva and Bierlaire, 1999; Bierlaire, 2006; Wen and Koppelman,
2001). In what follows, we rely on the estimates from column (iii), Table 3, as our preferred model.39

Table 4 reports results for the second-step OLS regression (28) of the estimated γ̃hstb = Γ̃hstb +
αhs

(
ptb −

∑
j∈b ptj

)
, where both Γ̃hstb and αhs are replaced by the C2SLS estimates of the specification

from column (iii), Table 3.40 While Table 3 does not report the C2SLS estimates of Γ̃hstb, the top panel of
Table 4 reports their average net of quantity discounts, γ̃hstb , for single-person (first column) and multi-
person households (second column). Even though we cannot directly interpret these (see discussion
about the normalization of δhs0 above), the fact that multi-person households have on average larger
γ̃hstb (57.1 versus 36.7) suggests that they have stronger preferences (or needs) for larger quantities of
CSDs, in line with the descriptive evidence from Figure 3. Differently, the fact that both household
sizes have large average γ̃hstb is consistent with the large observed share of shopping trips with no
purchase of CSDs, 76.29% from Table 1, which leads to a large value of δhs0 .

The regression results in Table 4 highlight that quantity discounts do not fully explain demand
39Relying instead on those from column (ii), Table 3, leads to the same conclusions.
40As discussed in footnote 35, the C2SLS estimator cannot pin down the demand synergy Γtb of bundles that include

products that are never observed to be purchased in isolation as single units in market t. In our PONL model, we
have 81, 215 of these demand synergies. Because these cannot be part of the second-step OLS regression, the estimation
sample used in Table 4 only includes 82, 808 of the 164, 023 total demand synergies. As detailed in Appendix E, even
though we cannot pin down these 81, 215 demand synergies, we still account for them when estimating price elasticities
and marginal costs, and when simulating counterfactuals.
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Table 4: Demand Estimates: Demand Synergy Parameters

hs = single hs = multi
Average (std. dev.) γ̃hs

tb 36.695
(39.920)

57.124
(56.394)

OLS Estimation Results
#producers in b = 2 −2.499

(0.531)
−1.239
(0.110)

#producers in b = 3 −4.856
(2.153)

−1.461
(0.302)

#producers in b = 4 −8.179
(9.909)

−4.590
(1.589)

#products in b = 2 2.002
(0.430)

−0.432
(0.099)

#products in b = 3 6.663
(1.161)

1.330
(0.167)

#products in b = 4 7.923
(3.404)

2.827
(0.323)

#products in b = 5 8.647
(9.558)

6.818
(0.671)

#products in b = 6 − 5.503
(1.094)

#products in b = 7 − 12.485
(1.866)

#products in b = 8 − 20.118
(3.818)

#products in b = 9 − 45.993
(5.425)

Control for γhs
k − γhs

k−1 + δhs
0 yes

Store fixed effects yes
Time fixed effects yes

Num. of Obs. 82,808
R2 0.972

Notes: The Table reports results for the second-step OLS regres-
sion (28) of the demand synergy parameters as obtained from the
first-step C2SLS estimates from column (iii), Table 3. “−” de-
notes that bundles with the corresponding characteristics for the
given household size are not observed in the data and thus not
included in the regression. Standard errors are computed using
the basic OLS asymptotic formula.

synergies, and ultimately the purchase of multiple units of CSDs on any shopping trip. More precisely,
−αhs

(
ptb −

∑
j∈b ptj

)
explains between 23.19% and 91.12% of the total variance of Γhstb.41 Net of

quantity discounts, households appear to enjoy purchases of wider varieties of CSDs but also to dislike
mixing products by different producers. In other words, after controlling for quantity discounts,
households seem to like purchasing different CSDs (e.g., one liter of Coke and one of Sprite better
than two liters of Sprite) but within the variety offered by the same producer (e.g., Coke and Sprite
better than Coke and 7Up). Moreover, a comparison between the two columns of Table 4 illustrates

41We compute the lower bound as one minus the ratio between the variance of γ̃hs
tb and that of Γ̃hs

tb = Γhs
tb +(|b|−1)δhs

t0 , a
measure of the extent to which −αhs

(
ptb −

∑
j∈b ptj

)
explains variation in Γ̃hs

tb . This is a lower bound because we cannot

tease out the part of variation in Γ̃hs
tb explained by (|b| − 1)δhs

t0 . Similarly, we compute the upper bound as one minus the
ratio between the variance of Xbγ

hs +γstore(t) +γtime(t) and that of −αhs
(
ptb −

∑
j∈b ptj

)
+Xbγ

hs +γstore(t) +γtime(t).

This is an upper bound because −αhs
(
ptb −

∑
j∈b ptj

)
+Xbγ

hs + γstore(t) + γtime(t) only explains part of the variation

in Γhs
tb .
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Table 5: Price Elasticities, by Household Size

Single-person households (ptj)j∈J (ptb)b∈C2

Single units∑
j∈J s

single
tj −1.0484

(0.146)
1.1851
(0.177)

Multiple units∑
b∈C2

|b| × s
single
tb 0.0188

(0.003)
−5.0123

(0.685)
Multi-person households

Single units∑
j∈J smulti

tj −1.5072
(0.160)

3.1805
(0.452)

Multiple units∑
b∈C2

|b| × smulti
tb 0.0193

(0.002)
−7.0317

(0.603)

Notes: The Table reports the median of each price elasticity
across those markets in which the two collections of bundles
are observed to be purchased by both household sizes. We
derive the expressions used to compute these price elasticities
in Appendix F.1. Standard errors are computed using the
parametric bootstrap procedure described in Appendix B.1
with 200 repetitions.

that single-person households have stronger preferences for this type of within-producer variety.

6.4 Estimated Elasticities

Our main objective is to evaluate the welfare effects of the observed quantity discounts by simulating
a counterfactual in which producers implement linear pricing (i.e., a constant unit-price for each
product), essentially a ban on nonlinear pricing. As a way to summarize our estimation results
and provide intuition for this counterfactual simulation, Table 5 reports price elasticities of demand
computed on the basis of the C2SLS estimates from column (iii), Table 3. These capture percentage
changes in demand for a collection of bundles (Table rows: all single units ∑j∈J s

hs
tj and all multiple

units ∑b∈C2 |b| × shstb , where |b| is the number of units (liters) in bundle b) with respect to a 1%
increase in a group of prices (Table columns: all prices of single units (ptj)j∈J and all prices of multiple
units (ptb)b∈C2).42 We derive the expressions of these price elasticities in Appendix F.1, while Table 5
reports the median of each across those markets in which the two collections of bundles are observed to
be purchased by both household sizes. Standard errors are computed using the parametric bootstrap
procedure described in Appendix B.1 with 200 repetitions.

Table 5 focuses on price elasticities with respect to two groups of prices, all prices of single units
(first column) and all prices of multiple units (second column), as we expect these to be the most
relevant when comparing quantity discounts to linear pricing. In the observed scenario of quantity
discounts, the producer of each product j sets all quantity-specific prices of j: price ptj for purchases

42We measure demand in liters of CSDs by weighing each bundle b by the number of units (liters), i.e. |b|, it includes.
In the context of demand for bundles, where each “alternative” b may correspond to different quantities, we find this
measure more interpretable than the unweighted purchase probabilities.
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of a single unit of j, pt(j,j) for purchases of two units of j, and so on, pt(j,...,j) for purchases of any
number of units of j sold as a package. Then, the price of any bundle b ̸= (j, ..., j) that combines
different products other than j, ptb, is given by the sum of the quantity-specific prices of each product
in b. In the counterfactual scenario of linear pricing, instead, the producer of each product j sets
only price ptj , the unit-price of j, while the price of any bundle b is simply given by the sum of the
unit-prices of its components ptb = ∑

j∈b ptj . With linear pricing, producers lose their ability to set
any element of (ptb)b∈C2 separately from (ptj)j∈J and can instead only choose (ptj)j∈J.43

Remember from Table 3 that single-person households are less price sensitive than multi-person
households (αsingle < αmulti). This directly implies the main patterns reported in Table 5: multi-
person households appear to be at least as price elastic as single-person households given the observed
quantity discounts, both in terms of own-price and of cross-price effects. For example, a +1% increase
in (ptb)b∈C2 would lead to a decrease of −7.03% in the purchases of multiple units by multi-person
households, but only of −5.01% in those by single-person households. Symmetrically, this same +1%
increase in (ptb)b∈C2 would also lead to a +3.18% increase in the purchases of single units by multi-
person households, but only of +1.19% in those by single-person households.

6.5 Counterfactual Simulation: Linear Pricing

Here we present our results on the welfare changes of quantity discounts. To evaluate these, we first
rely on the PONL estimates from column (iii), Table 3, and calculate producers’ marginal costs.44 As
detailed in Appendix F.2, we do this under the assumption that the observed prices were generated
according to an oligopolistic Betrand-Nash price-setting game of complete information that allows
each product to have quantity-specific prices. Importantly, this model does not assume producers to
offer quantity discounts, but rather allows for the possibility that they choose to do so (along with
the possibility of offering linear or even convex prices, i.e. increasing with quantity). Second, given
the PONL estimates from column (iii), Table 3, and assuming that producers’ marginal costs are
invariant to the pricing strategy, we compute a vector of counterfactual linear prices for each market
(independently across markets) following the procedure described in Appendix F.3. Finally, given
the observed prices under quantity discounts and the simulated linear prices, we compute the implied
changes in purchased quantities, profits, and compensating variations following the steps detailed in
Appendix F.4. Tables 6 and 7 summarize these results in terms of median changes across the same
set of markets used in Table 5.45 As for the price elasticities, standard errors are computed using the
parametric bootstrap procedure described in Appendix B.1 with 200 repetitions.

43Linear pricing is a constrained version of quantity discounts in which producers cannot choose the prices of multiple
units of the same product (pt(j,...,j))j∈J separately from the corresponding unit-prices, in that (pt(j,...,j) = |(j, ..., j)| ×
ptj)j∈J, where |(j, ..., j)| is the number of units of j in bundle b = (j, ..., j).

44We allow marginal costs to differ both across products and across numbers of units for each product, e.g. two units
of j may have a different marginal cost than twice the marginal cost of one unit of j.

45Table 9 in Appendix F.6 reports the corresponding percentage changes with respect to the observed scenario of
quantity discounts.
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Table 6: Counterfactual Linear Pricing: Changes in Price and Quantity

Average Single-person households Multi-person households
Price Change ($)

∆ptj −0.433
(0.014)

∆ptb +0.881
(0.070)

Quantity Change (L per household-year) −29.958
(1.483)

−12.018
(0.735)

−34.516
(1.732)

Single units +0.453
(0.019)

+0.262
(0.027)

+0.503
(0.021)

Multiple units −30.679
(1.512)

−12.312
(0.737)

−35.216
(1.791)

Quantity Change (%) −20.38%
(1.40%)

−17.64%
(1.45%)

−20.99%
(1.45%)

Conditional on purchase −11.60%
(0.79%)

−9.46%
(0.93%)

−11.61%
(0.89%)

∆Prob. of purchasing −8.22%
(0.70%)

−7.64%
(0.78%)

−8.79%
(0.70%)

Notes: We report all the computational details of the above entries in Appendices F.2 (marginal costs), F.3 (counterfactual
simulation), and F.4 (price and quantity changes). All entries are computed as medians over the same set of markets used
in Table 5 to compute price elasticities. Standard errors are obtained using the parametric bootstrap procedure described in
Appendix B.1 with 200 repetitions.

The top panel of Table 6 shows that, in general, linear pricing would lead to a decrease in the
prices of single units (up to one liter) of −43.3 cents and to a simultaneous increase in the prices
of multiple units of +88.1 cents. With respect to the observed scenario of quantity discounts, these
price changes are substantial and correspond to a decrease of −31.53% and to an increase of +14.79%,
respectively (Table 9, Appendix F.6). Intuitively, these price changes are expected to make purchases
of smaller quantities relatively more convenient for both household sizes, and the middle panel of
Table 6 confirms this: yearly purchased quantities per household would decrease by −29.96 liters,
obtained as the difference between a small increase in purchases of single units (+0.45 liters) and a
large reduction in purchases of multiple units (−30.68 liters).46 The bottom panel of Table 6 shows
that these large reductions in purchased quantities (−20.38%) are motivated by both a substitution
from purchases of multiple units toward purchases of single units (−11.6%) and by a decrease in the
probability of purchasing CSDs altogether (−8.22%).

Despite the generalized reduction in purchased quantities, as expected, linear pricing would induce
heterogeneous responses in households of different sizes. To interpret these, one should bear in mind
the purchasing patterns under quantity discounts documented in Figure 3 and the price elasticities in
Table 5. While in relative terms multi-person households would reduce their purchased quantities only
around 3 percentage points more than single-person households (−20.99% versus −17.64%, bottom
panel, Table 6), the reductions in liters of CSDs purchased per year would look very different between
household sizes (middle panel, Table 6): multi-person households would decrease their purchases

46To avoid problems with outliers, each of the entries of Tables 6, 7, and 9 is computed as a median across markets,
so that the various decompositions of changes in quantities, profits, and compensating variations do not exactly add up
to their totals. See Appendix F.4 for more details.
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Table 7: Counterfactual Linear Pricing: Changes in Profit and Compensating Variation

Average Single-person households Multi-person households
Profit Change ($ per household-year) −7.827

(1.042)
−3.490
(0.521)

−8.922
(1.043)

Single units +0.021
(0.017)

−0.051
(0.018)

+0.044
(0.020)

Multiple units −8.018
(1.035)

−3.542
(0.534)

−9.148
(1.037)

CV ($ per household-year) +3.556
(0.278)

+1.515
(0.234)

+3.856
(0.306)

Single units −0.417
(0.015)

−0.371
(0.014)

−0.408
(0.016)

Multiple units +3.974
(0.275)

+1.931
(0.244)

+4.410
(0.284)

CV/Expenditure (% per household-year) +2.65%
(0.12%)

+2.87%
(0.36%)

+2.54%
(0.11%)

Notes: CV denotes compensating variation. We report all the computational details of the above entries in Appendices F.2
(marginal costs), F.3 (counterfactual simulation), and F.4 (profit changes, CV, and CV/expenditure). All entries are computed
as medians over the same set of markets used in Table 5 to compute price elasticities. Standard errors are obtained using the
parametric bootstrap procedure described in Appendix B.1 with 200 repetitions.

by −34.52 liters per year, almost three times more than single-person households (−12.02 liters per
year). The vast majority of this difference stems from the substantially larger reduction in purchases
of multiple units by multi-person relative to single-person households (−35.22 versus −12.31 liters per
year). This can be explained by noting that multi-person households both have higher price elasticity
of demand for multiple units than single-person households (−7.03% versus −5.01%, Table 5) and
purchase multiple units in far greater amounts under quantity discounts (panel c, Figure 3).

The top panel of Table 7 (Table 9, Appendix F.6, for the percentage changes) illustrates that
this striking reduction in purchased quantities of −20.38% would cause a decrease in yearly profit per
household of around −7.83$ (−20.53%), obtained as the difference between a very small per household-
year profit increase from purchases of single units (+2 cents) and a very large per household-year profit
reduction from purchases of multiple units (−8.02$). In line with the heterogeneous quantity changes
reported in Table 6, producers would lose more than double yearly profit on multi-person households
than on single-person households (−8.92$, or −21.27%, versus −3.49$, or −15.48%), simply losing
more on those households whose purchased quantities would drop more sharply.

The middle and bottom panels of Table 7 show that a compensation of +3.56$ per household-year
would be necessary for households to remain indifferent between quantity discounts and linear pricing,
corresponding to 2.65% of their yearly expenditure on CSDs with quantity discounts. In line with the
results from Table 6 and economic intuition, the compensating variation associated to linear pricing
would vary between household sizes: while being generally small relative to yearly expenditure for
all households, multi-person households would require more than double the compensation of single-
person households: +3.86$ per household-year (2.54% of expenditure) as opposed to +1.52$ (+2.87%
of expenditure). As we illustrate in Appendix F.5, these compensating variations can intuitively be
understood in terms of the relative weights that households of different sizes place on the price changes.
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Because multi-person households care relatively more about larger quantities and these would become
more expensive, they would tend to lose more by linear pricing.

7 Concluding Discussion

From the above counterfactual simulation results, we can draw some important conclusions about
quantity discounts and linear pricing. A first conclusion is that quantity discounts seem to be profitable
for producers of CSDs in the USA. Despite the imperfect screening and the multi-product oligopolistic
nature of the industry, this is in line with the standard textbook single-product monopoly model of
quantity discounts with two types of consumers (Varian, 1992, pp. 244-248).

A second and perhaps more surprising conclusion is that, despite the substantial reduction in
quantity purchased (−20.38%), consumer surplus would not reduce too sharply, with a compensating
variation of +3.6$ per household-year (amounting to 2.7% of total expenditure on CSDs). This is
the result of two countervailing forces: on the one hand, consumer surplus would decrease because of
the contraction in purchases of larger quantities at relatively higher prices; on the other, however, it
would increase because of the more frequent purchases of single units at relatively lower prices.47

These observations open up an important avenue for future research: a ban on quantity discounts
could serve as a previously unexplored policy to limiting the consumption of CSDs and the intake of
added sugar (Allcott et al., 2019; Bollinger et al., 2011; Dubois et al., 2020; O’Connell and Smith, 2020;
Wang, 2015). Ricciuto et al. (2021) report that in the USA, in the period 2011-2012, 42.44% of the
added sugar intake came from CSDs. Linear pricing would lead households to drastically reduce the
purchased quantities of CSDs while only marginally reducing consumer surplus, potentially inducing
large reductions in added sugar intake at the expense of a contraction in industry profit but none of
the extra information (e.g., quantifying the marginal externality of added sugar) typically required to
implement effective sugar taxes (Allcott et al., 2019; O’Connell and Smith, 2020).

Relying on additional nutrition label data and on the PONL estimates from column (iii), Table 3,
we attempt a first step in this direction and simulate the reduction in purchased quantities of added
sugar from CSDs implied by linear pricing. Our attempt here is subject to apparent limitations and is
only intended to be illustrative of the potential for future investigations. We collect information on the
amount of added sugar per liter for each of the 128 products included in our analysis from producers’
and nutrition websites: as detailed in Table 10, Appendix F.6, 50% of the CSDs in our analysis have
added sugar (the sugary CSDs), while the remaining 50% do not (the non-sugary CSDs).48 Households
purchase an average of 60L a year (51.2%) of sugary CSDs and 57.24L (48.8%) of non-sugary CSDs.

By following a procedure similar to that used in Table 6, we then compute the counterfactual
47As illustrated in Table 7, while the negative effect would slightly dominate the positive for all households, there

would still be heterogeneity across household sizes. Multi-person households would substitute less away from the more
expensive larger quantities toward the cheaper small quantities, facing larger losses in consumer surplus.

48We compute the amount of added sugar of each bundle by adding the amounts of added sugar per liter of its
components.
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Table 8: Counterfactual Linear Pricing: Changes in Added Sugar

Amount per household-year Percentage
Predicted added sugar change −1, 753.6

(166.875)
g −23.77%

(2.40%)

Quantity change (average) −29.958
(1.483)

L −20.38%
(1.40%)

Sugary CSDs −18.933
(2.070)

L −24.59%
(2.71%)

Non-Sugary CSDs −12.353
(1.041)

L −17.49%
(1.86%)

Notes: The above changes are obtained in a similar manner to the counterfactual quantity
changes in Table 6, see computational details in Appendix F.4. All entries are computed as
medians over the same set of markets used in Table 5 to compute price elasticities.

change in purchased quantities of added sugar implied by linear pricing (see details in Appendix
F.4). Table 8 summarizes these results in terms of median changes across the same set of markets
used in Table 5. The top panel of Table 8 reports our simulated counterfactual: with linear pricing,
households would reduce their yearly purchased quantities of added sugar from CSDs by −1.75kg
(−23.77%). The bottom panel of Table 8 instead shows that linear pricing would induce a larger
decrease in the yearly purchased quantities of sugary CSDs relative to non-sugary CSDs (−24.59%
and −17.49%, respectively). This suggests that some of the decrease in purchased quantities of added
sugar may be motivated by substitution from sugary to non-sugary CSDs.

Comparing these results to the existing literature, one notices that the decrease in purchased
quantities of added sugar from CSDs implied by linear pricing may be of a similar order as that
obtained by sugar taxes. For example, O’Connell and Smith (2020) find that an optimal tax in the
UK would result in a reduction of −13.5% in the purchased quantities of sugary drinks and, in turn,
a decrease of −28.4% in the purchased quantities of added sugar from soft drinks. Similarly, Dubois
et al. (2020) find that a sugar tax of the form and size typically implemented in the UK and many US
locations would lead to a reduction of around −21% in the purchased quantities of added sugar from
soft drinks on-the-go. Seiler et al. (2021) document that a sugar tax introduced in Philadelphia led
to a decrease of −16% in the purchased quantities of added sugar from soft drinks.49

Further research should investigate the many fundamental dimensions of comparison with sugar
taxes we did not discuss, such as heterogeneity across income levels and in averted internalities.
However, our results suggest that linear pricing could potentially serve as a policy to constrain the
intake of added sugar from CSDs. Its main advantage over sugar taxes being the greater simplicity of
implementation. Linear pricing can be obtained by banning quantity discounts and by enforcing that
producers and retailers abide to this ban. Differently, the effective design and implementation of sugar
taxes require not only demand and marginal cost estimates, but also information not always easy to
obtain, for example on the externalities and the internalities associated to sugar intake (Allcott et al.,

49There are also studies that do not find significant effects of sugar taxes in the USA on the reduction of purchased
quantities of added sugar from soft drinks, such as Bollinger and Sexton (2018); Rojas and Wang (2017); Wang (2015).
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2019; O’Connell and Smith, 2020). In addition, sugar taxes require a more involved participation of
governmental agencies to the market, especially for the collection and redistribution of tax revenue.
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Appendix

A Proofs

A.1 Proof of Proposition 1

We rely on the following assumption for Proposition 1.

Assumption 1.

(i) For any j = 1, ..., J , Nj includes at least another bundle in addition to a single unit of j.

(ii) The support of (pt, Xt, (stj)Jj=1) contains an open subset, where pt = (ptj)Jj=1 and Xt = (xtj)Jj=1.
Moreover, the support of st = (stb)b∈C1 is {(stb)b∈C1 : ∑b∈C1 stb < 1, stb > 0,b ∈ C1}

(iii) (pt, Xt, st) are complete for Zt.

Assumption 1(i) is necessary for λj to be identifiable: if Nj only included j, then PONL model (7)
would not depend on λj . Assumption 1(ii) requires a local support condition on (pt, Xt, (stj)Jj=1) and
a standard large support condition on st. Assumption 1(iii) is a standard completeness condition in
the literature on identification of demand using instrumental variables (Berry and Haile, 2014).

Define πt = (πtj)Jj=1. We first prove the following Lemma.

Lemma 1 (Uniqueness of Demand Synergies). Given (st, λ, πt), Γtb is uniquely determined by (16).

Proof. Note that the left-hand side of (16) is increasing in Γtb while the right-hand side is decreasing
in Γtb. As Γtb increases from −∞ to +∞, the left- and the right-hand sides will cross only once.
Consequently, given λ and πt, (16) has a unique solution.

1University of Bristol and CEPR (alessandro.iaria@bristol.ac.uk) and University of Warwick
(ao.wang@warwick.ac.uk).
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Due to Lemma 1, denote the unique solution to (16) by Γtb = Γb(λ, πt; st). For any given λ and each
t ∈ T, (17) defines a system of J equations in πt ∈ RJ+: for j = 1, ..., J ,

πtj =

 ∑
b′∈Nj

ω
1/λj

b′j exp (Γb′(λ, πt; st)/λj)
∏
r∈b′

[
str

st0

]λr/λj

π
(1−λr)/λj

tr

λj

. (29)

Denote the true values of (α, β, δ, λ) by (α0, β0, δ0, λ0). Then, the true value πt = π0
t is a solution to

(29) when λ = λ0. Denote π0
t = π0(λ0; st). Then, at (α0, β0, δ0, λ0), for j = 1, ..., J ,

ln stj − ln st0 = δ0
j + xtjβ

0 − α0ptj + (1 − λ0
j ) ln

(
stj/st0
π0
tj

)
+ ξtj ,

E
[
g0
j (st, ptj , xtj ;α0, β0, δ0, λ0)|Zt = Z

]
= 0,

(30)

where

g0
j (st, ptj , xtj ;α, β, δ, λ) = ln stj − ln st0 −

(
δj + xtjβ − αptj + (1 − λj) ln

(
stj/st0
π0
j (λ; st)

))
.

Applying Assumption 1(iii), we identify g0
j = g0

j (st, ptj , xtj ;α0, β0, δ0, λ0) as a function of (st, ptj , xtj)
for each j = 1, ..., J . Then, due to Assumption 1(ii), we can use the derivatives of g0

j with respect to ptj
and xtj to identify α0 and β0. Moreover, for j = 1, ..., J , by focusing on any market t such that stj → 1
and therefore ln

(
stj/st0
π0

j (λ0;st)

)
= ln

(
stj/s

j
t

)
→ 0, we identify δ0

j . As a result, we identify the quantities

A0
tj = (1 − λ0

j ) ln
(

stj/st0
π0

j (λ0;st)

)
= (1 − λ0

j ) ln
(
stj/s

j
t

)
for t ∈ T and j ∈ J. Using ∑J

j=1 π
0
tj + 1 = 1/st0,

we obtain that for each t ∈ T, λ = λ0 satisfies:

J∑
j=1

stj

1 − st0
exp

(
−A0

tj

1 − λj

)
= 1 (31)

or equivalently
J∑
j=1

1
1 − st0

(
s
j
t

) 1−λ0
j

1−λj s

λ0
j

−λj

1−λj

tj = 1. (32)

We now show that λ0 is the only λ ∈ RJ that satisfies (32) and therefore identified. Because of
Assumptions 1(i) and 1(ii), for each j = 1, ..., J , we can keep all stb, b ∈ Nj and b ̸= j constant and

positive, while let stj → 0. Note that 1
1−st0

(
s
j
t

) 1−λ0
j

1−λj is always bounded away from zero and bounded

from above for all j = 1, ..., J ; in contrast, s
λ0

j
−λj

1−λj

tj tends to +∞ if λ0
j < λj . Then, for (32) to hold,

we must have λ0
j ≥ λj for j = 1, ..., J . Note that given st and {A0

tj}Jj=1, the left-hand side of (31) is
strictly increasing with respect to λj for j = 1, ..., J . Then, the only feasible λ that satisfies λ0

j ≥ λj

and (31) is λ = λ0. Finally, using Lemma 1, we identify all the Γtb’s.
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B Proof of Proposition 2

According to Lemma 1, given st, λ, and πt, Γt = Γ(λ, πt; st) is uniquely determined. Plugging
Γt = Γ(λ, πt; st) in (17), we obtain: for j = 1, ..., J ,

πtj = ϕj(πt;λ, st) =

 ∑
b′∈Nj

ω
1/λj

b′j exp (Γb′(λ, πt; st)/λj)
∏
r∈b′

[
str

st0

]λr/λj

π
(1−λr)/λj

tr

λj

. (33)

Define Φ(πt;λ, st) = (πtj − ϕj(πt;λ, st))Jj=1.

Assumption 2. There exist a, b, η,M > 0 such that

sup
t∈T,|λ−λ0|≤a,|πt−π0

t |≤b

∣∣∣∣Det
(
∂Φ(πt;λ, st)

∂π

)∣∣∣∣ > η, (34)

and
sup

t∈T,|λ−λ0|≤a,|πt−π0
t |≤b

∣∣∣∣Det
(
∂Φ(πt;λ, st)

∂λ

)∣∣∣∣ ≤ M, (35)

where λ0 and π0
t are the true values of λ and πt, respectively. Moreover, ∂Φ(πt;λ,st)

∂π is continuous at
(π0
t , λ

0), uniformly for t ∈ T.

Regularity condition (34) is a rank condition of nonlinear constraints (33) with respect to πt, uni-
formly for all t ∈ T. This guarantees that each πt can be expressed as a function of λ given st in
a neighborhood of λ0. Regularity condition (35) further ensures that this function from λ to πt is
uniformly bounded in the neighborhood of λ0 uniformly for t ∈ T.
We prove Proposition 2 in three steps.

Step 1: Uniqueness of πt and Γt. Note that at λ = λ0 and πt = π0
t , Φ(π0

t ;λ0, st) = 0 for all t ∈ T.
Then, using Assumption 2 and applying the implicit function theorem, we can find 0 < d < a such
that for any λ with |λ− λ0| < d, there exists a unique πt satisfying |πt − π0

t | < b and Φ(πt;λ, st) = 0
for all t ∈ T.50 Consequently, we can write πt = π(λ; st) for λ with |λ− λ0| < d and all t ∈ T. Then,
Γt is also uniquely determined by λ and st: Γt = Γ(λ, π(λ; st); st).

Given the uniqueness of πt = π(λ; st), we can then re-write (22) as:

θ = (δ, β, α, 1 − λ) = ψT (θ)

=
(
XT(θ)(ZZT)X(θ)

)−1
XT(θ)(ZZT)Y

(36)

where X(θ) = (xtk(θ))t=1,...,T ;k=1,...,2J+K+1 =
(

(ej)Jj=1, xt,−pt,
(
ln
(

stj/st0
πj(λ;st)

))J
j=1

)T
t=1

and Y =

(yt)t=1,...,T = (ln (st1/st0, ..., stJ/st0))t=1,...,T ∈ RJT×1.
50Because ∂Φ(πt;λ,st)

∂π
is continuous at (π0

t , λ
0) uniformly for t ∈ T and because of the uniform lower bound η and upper

bound M in Assumption 2, d does not depend on t ∈ T.
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Step 2: (Finite sample) Existence of a solution to (36). We now prove that when T is large
enough, (36) has a solution in a fixed neighborhood of θ0 (i.e., the neighborhood does not depend on
T ). Define

GXZ(θ) = (E [xtk(θ)ztk′ ])k=1,...,2J+K+1,k′=1,...,P ∈ R(2J+K+1)×P ,

GY Z = (E [ytztk′ ])Pk′=1 ∈ RP×1,

ψ(θ) =
(
GXZ(θ)GT

XZ(θ)
)−1

GXZ(θ)GY Z .

Assumption 3.

(i) There exists r > 0 and d0 ∈ (0, 1/2) such that for all |θ − θ0| ≤ d0, and v ∈ R2J+K+1,

r|v| ≤
∣∣∣∣(ψ(θ)

∂θ
− I
)
v

∣∣∣∣ ≤ 1
r

|v|,
∣∣∣∣∣∂2ψ(θ)
∂θ2

∣∣∣∣∣ ≤ 1
r
.

(ii)

sup
|θ−θ0|≤d0


{∣∣∣∣∣ 1T ∂

kXT(θ)Z
∂θk

− ∂kGXZ(θ)
∂θk

∣∣∣∣∣
}
k=0,1,2

,

∣∣∣∣∣Y TZ

T
−GY Z

∣∣∣∣∣
 p→ 0.

Because of Assumption 3(ii), ∂kϕT (θ)
∂θk converges uniformly to ∂kϕ(θ)

∂θk in |θ − θ0| ≤ d0 with probability
one. Then, combining this with Assumption 3(i), we obtain that there exists M1 > 0 such that∣∣∣∣∣

(
ψT (θ)
∂θ

− I
)−1

v

∣∣∣∣∣ ≤ M1|v|,
∣∣∣∣∣
(
ψT (θ)
∂θ

− I
)−1∣∣∣∣∣×

∣∣∣∣∣∂2ψT (θ)
∂θ2

∣∣∣∣∣ ≤ M1 (37)

uniformly for v ∈ R2J+K+1 and |θ − θ0| ≤ d0 with probability one as T → ∞.
Now consider the following Newton-Raphson procedure:

θ0 = θ0,

θk+1 = −
[
∂ψT (θk)
∂θ

− I
]−1

(ψT (θk) − θk) + θk.
(38)

Note that when θ = θ0, we have πt = π0
t . Consequently, ψT (θ0) = ψT (θ0) coincides with the (infeasible)

2SLS estimator obtained if we could observe st(j|j), which we denote by θ2SLS
T . Note that ψT (θ0) =

θ2SLS
T

p→ θ0 as T → ∞.

Lemma 2. Suppose that Assumptions 2-3 and (37) hold. In addition, |θ2SLS
T − θ0| ≤ ϵ, where ϵ > 0

and ϵ×M1 < d0/2. Then, for any k > 0,|θk − θk−1| ≤
(
d0
2

)k
and |ψT (θk) − θk| ≤ ϵ

(
d0
2

)k
.

Proof. We prove Lemma 2 by induction. First, using Assumption 3, we have

|θ1 − θ0| ≤ M1 × |ψT (θ0) − θ0| = M1 ×
∣∣∣θ2SLS
T − θ0

∣∣∣ ≤ 1
2d0.
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Then, using the second-order Taylor expansion of ψT ((1−r)θ0 +rθ1)−((1 − r)θ0 + rθ1) around r = 0,
the updating rule in (38), and Assumption 3, we obtain:

|ψT (θ1) − θ1| =
∣∣∣∣ψT (θ0) − θ0 +

[
∂ψT (θ0)
∂θ

− I
]

(θ1 − θ0) + r2(θ1 − θ0)
∣∣∣∣

≤ M1 |ψT (θ0) − θ0|2

≤ M1ϵ
2

≤ d0ϵ

2 .

Suppose that the conclusions hold for k. We now prove that they hold for k + 1. First, note that
|θk − θ0| < d0. Then, using Assumption 3, we have

|θk+1 − θk| ≤ M1 × |ψT (θk) − θk| = M1 × ϵ

(
d0
2

)k
≤
(
d0
2

)k+1
.

Then, |θk+1 − θ0| ≤ |θk+1 − θk| + |θk − θ0| ≤
∑k+1
r=1

(
d0
2

)r
and therefore |θk+1 − θ0| ≤ d0. Using

Assumption 3, we obtain:

|ψT (θk+1) − θk+1| =
∣∣∣∣ψT (θk) − θk +

[
∂ψT (θk)
∂θ

− I
]

(θk+1 − θk) + r2(θk+1 − θk)
∣∣∣∣

≤ M1 |ψT (θk) − θk|2

≤ M1ϵ
2
(
d0
2

)2k

≤ ϵ

(
d0
2

)2k+1

≤ ϵ

(
d0
2

)k+1
.

The proof is complete.

Note that the event that (37) and |θ2SLS
T − θ0| ≤ ϵ jointly hold occur with probability one as T → ∞.

Because d0 ∈ (0, 1/2), then Lemma 2 implies that with probability one: (1) θk converges to some θ∗

such that |θ∗ − θ0| ≤ d0 and (2) ψT (θ∗) = θ∗, i.e. the existence of a solution to (36). Without loss of
generality, define θ̂ = (δ̂, β̂, α̂, 1 − λ̂) = θ∗.

Step 3: Asymptotic properties of θ̂ and (π̂t, Γ̂t). Because of the existence of a solution to (36),
we can re-formulate θ̂ as an extremum estimator:

θ̂ = argmin
θ:|θ−θ0|≤d0

QT (θ),

QT (θ) = ∥θ −
(
XT(θ)(ZZT)X(θ)

)−1
XT(θ)(ZZT)Y ∥2,

(39)
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where ∥ · ∥ is the Euclidean distance. We rely on Theorem 2.1 of Newey and McFadden (1994) and
verify the required conditions to show consistency. Define

Q(θ) =
∥∥∥∥θ −

(
GXZ(θ)GT

XZ(θ)
)−1

GXZ(θ)GY Z
∥∥∥∥2
.

Note that the true θ0 satisfies θ0 = ψ(θ0). Then, combining the implicit function theorem and
Assumption (3)(i), we obtain the identification of θ0 in a neighborhood of θ0. This implies that
θ = θ0 is the unique minimizer of Q(θ) = 0 in the compact set {θ : |θ − θ0| ≤ d0}. Moreover, due
to the definition of xtk(θ) and Assumption 3, Q(θ) is continuous. Finally, because of Assumption
3, XT(θ)Z/T p→ GXZ(θ) uniformly for θ in |θ − θ0| ≤ d0. Then, QT (θ) p→ Q(θ) uniformly for θ in
|θ − θ0| ≤ d0. The conditions of Theorem 2.1 by Newey and McFadden (1994) are verified and θ̂ is
consistent.

To show the asymptotic normality of θ̂, we develop the first-order Taylor expansion of (36) at
θ = θ̂ around θ = θ0:

0 = θ̂ − ψT (θ̂)

= θ0 − ψT (θ0) +
[
I − ∂ψT (θ̃)

∂θ

] (
θ̂ − θ0

)
= θ0 − θ2SLS

T +
[
I − ∂ψT (θ̃)

∂θ

] (
θ̂ − θ0

)
,

where θ̃ is a convex combination of θ0 and θ̂. Then,

√
T
(
θ̂ − θ0

)
=
[
I − ∂ψT (θ̃)

∂θ

]−1 √
T
(
θ2SLS
T − θ0

)
d→ N(0,ΣV 2SLSΣT), (40)

where V 2SLS is the asymptotic variance-covariance matrix of θ2SLS
T and

Σ =

I −
∂

[(
GXZ(θ0)GT

XZ(θ0)
)−1

GXZ(θ0)GY Z
]

∂θ


−1

. (41)

The asymptotic normality of π̂t and Γ̂t follow from the uniqueness of πt and Γt (as a function of θ̂
given st) and the asymptotic normality of θ̂.

B.1 Inference

Here we describe how to conduct inference on θ and Γt, t ∈ T, and objects that we derive from them
in our counterfactual.
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Inference on θ. We provide consistent estimators of V 2SLS and Σ in (40). Given the consistency of
θ̂, a plug-in estimator of V 2SLS is:

V̂ 2SLS =
(
ĜXZ(θ̂)ĜT

XZ(θ̂)
)−1

ĜXZ(θ̂)Z
TΩ̂Z
T

ĜT
XZ(θ̂)

(
ĜXZ(θ̂)ĜT

XZ(θ̂)
)−1

,

where ĜXZ(θ̂) =
(∑T

t=1 xtk(θ̂)ztk′
T

)
k=1,...,2J+K+1,k′=1,...,P

∈ R(2J+K+1)×P and Ω̂ is a consistent estima-

tor of the variance-covariance matrix of ξt. Because of the definition of xtk(θ̂), one can simply plug in
π̂t, t = 1, ..., T .

Similarly, we can compute a plug-in estimator of Σ, denoted by Σ̂. For this, it is sufficient to
further compute ∂GXZ(θ)

∂θ and GY Z :

∂

[(
GXZG

T
XZ

)−1
GXZGY Z

]
∂θ

=

∂
[(
GXZG

T
XZ

)−1
]

∂θ
GXZ +

(
GXZG

T
XZ

)−1 ∂GXZ
∂θ

GY Z
=
(
GXZG

T
XZ

)−1
[
∂GXZ
∂θ

− ∂GXZ
∂θ

GT
XZ(GXZGT

XZ)−1GXZ −GXZ
∂GT

XZ

∂θ
(GXZGT

XZ)−1GXZ

]
GY Z .

(42)
Then, we replace GXZ , ∂GXZ(θ)

∂θ , and GY Z by their finite-sample counterparts and θ = θ̂ in (42) to

obtain a consistent estimator of
∂

[
(GXZG

T
XZ)−1

GXZGY Z

]
∂θ . Finally, we plug this consistent estimator

in (41) to obtain Σ̂. When computing the empirical counterpart of ∂GXZ
∂θ , we need to compute the

derivative of πt with respect to λ. To this end, we obtain their explicit formulae from (33).
Obtaining an explicit formula for Σ̂ could be laborious in practice. We recommend instead a

numerical alternative. The key is to compute the derivative ∂ψT (θ̂)
∂θ , where ψT (θ̂) is defined as the

2SLS solution given πt = π(λ̂; st). Then, one can compute this derivative by the following central
finite-difference formula:

∂ψT (θ̂)
∂θ

= ψT (θ̂ + h/2) − ψT (θ̂ − h/2)
h

,

where h is small enough. Both ψT (θ̂+h/2) and ψT (θ̂−h/2) can be easily obtained using our proposed
iterative procedure (see Appendix C for details). In practice, we iterate steps 1 and 3 at each iteration
of the procedure (i.e., θ̂ is fixed). At the end of the procedure, we implement step 2 once more to obtain
ψT (θ̂ + h/2) and ψT (θ̂ − h/2). We recommend this central finite-difference rather than forward (or
backward) formulae because it is more robust to numerical errors caused by the iterative procedure.51

51The iterative procedure stops when the nonlinear system is approximately solved, giving rise to a very small numerical
error. Intuitively, this numerical error is however orthogonal to the statistical error of the model. Moreover, it exists
in both ψT (θ̂ + h/2) and ψT (θ̂ − h/2) computed using the iterative procedure. The proposed central finite-difference
formula differences out this numerical error, achieving higher precision.
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In our empirical application, we use h = 10−6.

Inference on Γt. We recommend a parametric bootstrap method to conduct inference on Γt. For
each b = 1, ..., B, we re-sample θb from asymptotic distribution of θ̂ in (40). Then, for each θb, we
use the proposed iterative procedure to compute the corresponding Γbt and construct its confidence
interval using quantiles of the sample {Γbt}Bb=1. In the empirical application, we set B = 200.

Counterfactual Objects. Objects in the counterfactual are often functions of θ and Γt, t ∈ T.
We rely on the same parametric bootstrap method described above also to conduct inference on any
counterfactual object.

C Details on the Iterative Estimation Procedure

C.1 Iteration 0: Choice of Starting Values

Similar to the practical implementation of any iterative procedure, one needs to set some starting
values to launch the proposed algorithm. As intuition suggests, in extensive Monte Carlo simulations
we noticed that the proposed iterative estimation procedure performs better (e.g., faster convergence
and higher precision) when these starting values are closer to the true but unknown values of the
parameters. The following three steps generate the starting values we found to perform best:

Step 0.1 For each (t, j) set π(0)
tj =

∑
b∈Nj

ωbjstb

st0
, replacing each unobserved within-nest market share st(b|j)

by its corresponding (and observed) allocation parameter ωbj .

Step 0.2. Given π(0)
t , compute

(
δ(0), λ(0), β(0), α(0)

)
by 2SLS from the linear equations in (22), i.e. ignoring

nonlinear constraints (16) and (17).

Step 0.3. Given π(0)
t and λ(0), for each (t,b) independently compute Γ(0)

tb by numerically solving constraint
(16). This step can be executed in parallel for each (t,b).

C.2 More Precise Formulation of the Algorithm

We provide some further mathematical detail on the formulae used in each step of the iterative
estimation procedure. Given starting values

(
δ(0), β(0), α(0), λ(0)

)
and

(
π

(0)
t ,Γ(0)

t

)T
t=1

, at each iteration
k execute the following steps:

Step 1. (Direct update of πtj) Given π(k−1)
t , λ(k−1), and Γ(k−1)

t , for each (t, j) compute π(k)
tj as a plug-in

from the right-hand side of (17):

π
(k)
tj =

 ∑
b′∈Nj

ω
1/λ(k−1)

j

b′j exp

Γ(k−1)
tb′

λ
(k−1)
j

 ∏
r∈b′

[
str

st0

]λ(k−1)
r /λ

(k−1)
j (

π
(k−1)
tr

)(1−λ(k−1)
r

)
/λ

(k−1)
j

λ
(k−1)
j

.

(43)
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This step can be executed in parallel for each (t, j).

Step 2. Given π(k)
t , compute

(
δ(k), β(k), α(k), λ(k)

)
by 2SLS as in Berry (1994) from the linear equations

in (22), i.e. ignoring nonlinear equations (16) and (17).

Step 3. (One-step Newton-Raphson update of Γtb) Given π(k)
t , λ(k), and Γ(k−1)

t , for each (t,b) compute

G
(k−1)
tb = exp

Γ(k−1)
tb

(
1−λ(k)

j

)
λ

(k)
j

(ωbj
) 1

λ
(k)
j

(
π

(k)
tj

)1− 1
λ

(k)
j
∏
r∈b [str/st0]

λ
(k)
r

(
1−λ

(k)
j

)
λ

(k)
j

(
π

(k)
tr

)(1−λ
(k)
r

)(
1−λ

(k)
j

)
λ

(k)
j (44)

and then Γ(k)
tb as the following plug-in:

Γ(k)
tb = Γ(k−1)

tb −

Γ(k−1)
tb −

ln
(
stb
st0

)
−
∑
j∈b

(
λ

(k)
j ln

(
stj

st0

)
+
(
1 − λ

(k)
j

)
ln π(k)

tj

)+ ln
J∑
j=1

G
(k−1)
tb

×
∑J
j=1G

(k−1)
tb∑J

j=1G
(k−1)
tb /λ

(k)
j

.

This step can be executed in parallel for each (t,b).

Step 4. If k < K̄, move on to the next iteration k + 1. If instead k = K̄, exit the algorithm.

D Proof of Proposition 3

Our iterative estimation procedure is:

X(k) =

(ej)Jj=1, xt,−pt,

ln

stj/st0

π
(k)
tj

J
j=1


T

t=1

,

(α(k+1), β(k+1), δ(k+1), 1 − λ(k+1)) =
(
X(k)T(ZZT)X(k)

)−1 (
X(k)T(ZZT)Y

)
,

Γ(k+1)
tb = Γ(k)

tb −

Γ(k)
tb −

ln[stb/st0] −
∑
j∈b

(
λ

(k+1)
j ln[stj/st0] +

(
1 − λ

(k+1)
j

)
ln π(k)

tj

)+ ln
J∑
j=1

G
(k)
tb


×

∑J
j=1G

(k)
tb∑J

j=1G
(k)
tb /λ

(k+1)
j

π
(k+1)
tj =

 ∑
b′∈Nj

ω
1/λ(k+1)

j

b′j exp
(
Γ(k+1)

b′ /λ
(k+1)
j

) ∏
r∈b′

[
str

st0

]λ(k+1)
r /λ

(k+1)
j [

π
(k)
tr

](1−λ(k+1)
r )/λ(k+1)

j

λ
(k+1)
j

,

where G(k)
tb is defined in (44). Because π(k)

t → π∗
t for all t ∈ T, then X(k) as well as (α(k), β(k), δ(k), 1 −

λ(k)) converge. Denote by (α∗, β∗, δ∗, 1−λ∗) the limit of (α(k), β(k), δ(k), 1−λ(k)). Because Γ(k)
tb → Γ∗

tb,
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then we obtain:

Γ∗
tb = ln[stb/st0] −

∑
j∈b

(
λ∗
j ln[stj/st0] +

(
1 − λ∗

j

)
ln π∗

tj

)

− ln

 J∑
j=1

exp
(

Γ∗
tb(1 − λ∗

j )
λ∗
j

)(
ωbj

) 1
λ∗

j (π∗
tj)

1− 1
λ∗

j
∏
r∈b

[str/st0]
λ∗

r (1−λ∗
j

)
λ∗

j (π∗
tr)

(1−λ∗
r )(1−λ∗

j
)

λ∗
j


Consequently, at (α∗, β∗, δ∗, 1 − λ∗), Γ∗

tb, and π∗
t , constraints (16) are satisfied. Similarly, constraints

(17) are satisfied. Therefore, (δ∗, β∗, α∗, λ∗) and (π∗
t ,Γ∗

t )t∈T satisfy (22).

E Dealing with Products with Undefined stj

Without further assumptions, the C2SLS estimator cannot pin down the demand synergy Γtb of
bundles that include products which are not observed to be purchased in isolation as single units in
market t. This can be readily seen in equation (16): if product j′ is not observed to be purchased in
isolation as a single unit in market t, then stj′ is not defined and, consequently, any Γtb corresponding
to a b that includes j′ will not be defined in market t. Whenever the incidence of bundles of this
type is not very prominent, a simple solution is just be to exclude them from the analysis. However,
when there are many of these bundles, excluding them may correspond to dropping a large share of
purchases and may not be advisable. In this Appendix, we provide a practical solution to this problem
that exploits all the available data (i.e., does not involve excluding these bundles from the analysis)
and does not require any modification of the C2SLS estimator.

The main idea of the proposed approach is simple and consists of three steps. In the first step, we
“separate away” from bundles any sub-bundle collecting those products whose purchase probability of a
single unit stj is defined. In the second step, we implement the C2SLS estimator only on the products
observed to be purchased as single units in isolation (i.e., with defined stj) and the corresponding
bundles and sub-bundles obtained in the first step. In the third step, we rely on the C2SLS estimates
and the observed purchase probabilities to recover the average utility δtb of those sub-bundles not used
in the C2SLS estimation, i.e. those made of products whose purchase probability of a single unit stj

is not defined. Given these, we then proceed to the computation of price elasticities, marginal costs,
and counterfactual simulations as detailed in Appendix F.

Suppose the J ′ products in J′, indexed by j′ = 1, ..., J ′, are only observed to be purchased as
part of bundles, but not in isolation as single units. These products have undefined stj′ . In the first
step, we partition any bundle b that includes at least one unit of any product in J′ in at most J ′ + 1
sub-bundles of the form b =

(
(bj′)J ′

j′=1,b−J′

)
, where each bj′ = (j′, ..., j′) collects all units of product

j′ in b and b−J′ is the complement of (bj′)J ′
j′=1.52 To save on notation, we use the symbol b−J′ also to

52For each bundle b and product j′ ∈ J′, bj′ could be empty if b does not include even one unit of j′, bj′ = j′ if b
includes exactly one unit of j′, bj′ = (j′, j′) if b includes two units of j′, and so on. Because each of the J ′ sub-bundles
bj′ can be empty, b will be partitioned in “up to” J ′ + 1 non-empty sub-bundles.
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refer to the original bundles b that do not include any purchase of products in J′ and can directly be
used in estimation. In the second step, we implement the C2SLS estimator on the J/J′ products and
the bundles and sub-bundles denoted by b−J′ . Finally, in the third step, given the C2SLS estimates
and the observed purchase probabilities, we recover the remaining average utilities δtbj′ , j′ ∈ J′. By
re-writing the average utility of bj′ as in equation (13), δtbj′ = δbj′ + xtbj′β − αptbj′ + ξtbj′ , we can
back out its remaining unknown component simply as:

δbj′ + ξtbj′ = ln(stbj′ ) − ln(st0) − xtbj′β + αptbj′ − (1 − λj) ln
(
st(bj′ |j′)

)
, (45)

where st(bj′ |j′) is known because of the specific way we partitioned bundles in the first step: (i)
bj′ = (j′, ..., j′) only belongs to nest Nj′ and (ii) nest Nj′ only includes bundles made of a single or
multiple units of j′ (i.e., it only includes sub-bundles bj′).

After having recovered δbj′ + ξtbj′ from (45) for all “problematic” sub-bundles bj′ , j′ = 1, ..., J ′,
we can proceed without further complications to computing price elasticities, marginal costs, and
counterfactual simulations as detailed in Appendix F. The results presented in the empirical application
in section 6 rely on this procedure. However, in unreported robustness checks, we repeated the
empirical analysis by excluding all bundles b that include at least one unit of any product j′ ∈ J′

and—despite the smaller sample used—our estimates and counterfactual simulation results remain
qualitatively similar.

F Empirical Application

F.1 Elasticities in Table 5

To simplify exposition, we drop the indexes of household size hs and of market t. Here we derive
expressions for the demand elasticities we report, respectively, in the first and in the second column
of Table 5: the percentage changes in the collective units for single-unit products in J and the multi-
unit bundles in C2 due to a 1% increase in all prices of the single-unit products in J and that due
to a 1% increase in all prices of multi-unit bundles in C2. We denote these elasticities by EAB for
A,B ∈ {J,C2}.

EAB =
∑

b∈A |b| ×
∑

b′∈B
∂sb
∂pb′

pb′∑
b∈A |b| × sb

=
∑

b∈A |b| × sb
∑

b′∈B ϵbb′∑
b∈A |b| × sb

where |b| is the number of units (liters) in bundle b and ϵbb′ is the cross-price elasticity of b with
respect to pb′ :

ϵbb′ = −αpb′

sb

 J∑
j=1

[(
1 − 1

λj

)
sb|j × sb′|j × sj + 1b=b′

1
λj

sj × sb|j

]
− sb′sb

 .
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F.2 Computation of Marginal Costs

In the observed scenario, producers set single-unit prices for their products, e.g. pj , as well as for
bundles of multiple units of the same product, e.g. p(j,...,j). Denote by J1 the set of single-unit products
(where J1 = J) and by J2 the set of bundles of multiple units of the same products, e.g. (j, j), (k, k),
or (k, k, k). We rely on vector mb ∈ {0, 1}(|J1|+|J2|), with mbℓ ∈ {0, 1} corresponding to element ℓ
in J1 ∪ J2, to describe the composition of bundle b in terms of elements of J1 ∪ J2. For example, if
b = (1, 2, 3, 3, 3), J1 = {1, 2, 3}, and J2 = {(1, 1), (2, 2), (3, 3, 3)}, then mb = (1, 1, 0, 0, 0, 1), with—for
instance—second element mb2 = 1 and fifth element mb(2,2) = 0.

To compute the producers’ marginal costs given PONL estimates, we assume that the observed
prices in the data were generated by an oligopolistic Bertrand-Nash price-setting game of complete
information that allows each product to have quantity-specific prices. We allow the marginal costs to
be specific to any product-quantity combination (e.g., could be cheaper to produce larger quantities)
but assume that are not affected by the pricing scheme (will hold them constant in the counterfactual
linear pricing). Denote by O the ownership matrix in the observed scenario in the data. This matrix
is of dimension (|J1| + |J2|) × (|J1| + |J2|), and the element at position (k, ℓ), ok,ℓ = 1 if k and ℓ in
∈ J1 ∪ J2 are owned by the same producer, or 0 otherwise. For example, o1,2 = 1 if products 1 and 2
are owned by the same producer, or 0 otherwise. Moreover, o1,(1,1) = 1 because multiple units of the
same product are still sold by the same producer.

Define M = (mb)b∈C1 ∈ RC1×(|J1|+|J2|). Then, the first-order conditions (FOCs) of the oligopolis-
tic Bertrand-Nash price-setting game in the observed scenario with quantity discounts can be written
as:

F (pJ1∪J2) =
[
O ◦

(
MT ∂sC1

∂pC1
M
)]

(pJ1∪J2 − cJ1∪J2) + OTsC1 = 0(|J1|+|J|2)×1, (46)

where sC1 and pC1 are the vectors of purchase probabilities and prices of all bundles in C1, and pJ1∪J2

and cJ1∪J2 are the vectors of prices and marginal costs of the single and multiple units of all products
in J1 ∪ J2. Importantly, the FOCs in (46) do not assume producers to offer quantity discounts, but
rather allow for the possibility that they choose to do so (along with the possibility of offering linear
or even convex prices, i.e., increasing with quantity). Note that each sb in sC1 is a weighted sum of
the household size-specific purchase probabilities of b (i.e., our PONL estimates):

sb =
∑
hs

whss
hs
b ,

and therefore,
∂sC1

∂pC1
= −

∑
hs

whsα
hs∂s

hs
C1

∂δhsC1

,

where whs is the weight of household size hs in the population and δhsC1
is the vector of the average

utilities of the bundles in C1 among the households of size hs. Then, we can back out the vector of
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marginal costs cJ1∪J2 from FOCs (46):

cJ1∪J2 = pJ1∪J2 −
[
O ◦

(
MT

( 2∑
hs=1

whsα
hs∂s

hs
C1

∂δhsC1

)
M
)]−1 (

OTsC1

)
.

F.3 Counterfactual Simulation: Linear Pricing

To simulate the counterfactual scenario with linear pricing, we start from the setting in Appendix
F.2 and rule out quantity-specific prices for every product j: p(j,...,j) for any (j, ..., j) ∈ J2 equals
|(j, ..., j)| times pj , j ∈ J1. In practice, we do this by setting the term capturing quantity dis-
count −αhs

(
pb −

∑
j∈b pj

)
= 0 in the estimated demand synergy (28), so that Γ̃hsb = γ̃hsb for

hs ∈ {single,multi} and b ∈ C2, and by letting producers re-optimize with respect to pJ1 = (pj)j∈J1

as described in what follows.
Define a matrix of dimension (|J1| + |J2|) × |J1|, M12, whose (ℓ, k) element is equal to the number

of units of product k ∈ J1 in ℓ ∈ J1 ∪ J2. For example, if ℓ = 1 and k = 1, then the corresponding
element in M12 is 1. If ℓ = (1, 1) and k = 1, then the corresponding element in M12 is 2. If ℓ = (2, 2)
and k = 1, then the corresponding element in M12 is 0. Define M∗

12 = (M12 > 0), i.e., an element in
M∗

12 is equal to 1 if the corresponding element in M12 is equal or greater than 1, or 0 otherwise. Then,
the equilibrium linear prices p∗

J1
in the counterfactual must satisfy the following FOCs:

M∗T
12 F (M12p

∗
J1) = 0|J1|×1, (47)

where F (·) is defined in (46) and cJ1∪J2 is the vector of marginal costs obtained in Appendix F.2
(we assume that marginal costs are not affected by the pricing scheme). We consider any solution to
the nonlinear system of FOCs (47) as the equilibrium counterfactual vector of linear prices p∗

J1
. To

implement this solution in practice, one can rely on any standard algorithm (e.g., fsolve in MATLAB)
using as initial guess of p∗

J1
the observed single-unit prices pJ1 . Even though possible, in extensive

attempts using multiple initial guesses, we never found more than on solution to FOCs (47) in each
market.

F.4 Computation of Tables 6, 7, and 8

In this section, we detail the computation of the entries of Tables 6, 7, and 8 which summarize changes
due to the counterfactual linear pricing relative to the observed scenario of quantity discounts. Here
we only discuss the computation of absolute changes (in $, liters (L), or grams), but relative changes
(in %) are obtained analogously. For results to be more interpretable, we measure absolute changes
per household during a year: e.g., change in liters of CSDs purchased in a year by a typical household
of size hs. To this purpose, we first predict the absolute changes at the same level of aggregation used
in estimation, the shopping trip level by household size, and then multiply these by the average yearly
number of shopping trips specific to the household size (single, multi, or average). In the data, the
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average number of shopping trips in a year is 63.9 for a single-person household, 72.9 for a multi-person
household, and 70.7 for an average household.

Price change. We define the changes in prices ∆ptj and ∆ptb as follows:

∆ptj = Median
{∑

j∈J p
linear
tj −

∑
j∈J p

observed
tj

|J|
, t ∈ T0

}
,

∆ptb = Median
{∑

ℓ∈C2 p
linear
tℓ −

∑
ℓ∈C2 p

observed
tℓ

|C2|
, t ∈ T0

}
,

where T0 is the set of markets in which the three collections of bundles from Table 5 are observed to
be purchased by both household sizes, and superscripts “linear” and “observed” refer to the scenarios
of counterfactual linear pricing and observed quantity discounts, respectively.

Quantity change. The quantity of CSDs from a collection of bundles B ∈ {J,C2} by households
of size hs in market t is:

Qhs(B) =
∑
b∈B

|b| × shstb ,

where |b| is the number of units (liters) in bundle b. Then, the quantity change for households of size
hs in Table 6 is:

∆Qhs(B) = Median

∑
b∈B

|b| × s
hs,linear
tb −

∑
b∈B

|b| × s
hs,observed
tb , t ∈ T0

 .
The relative quantity change conditional on purchase for households of size hs is:

∆Qhscond = Median
{∑

b∈C1 |b| × s
hs,linear
tb∑

b∈C1 s
hs,linear
tb

/∑
b∈C1 |b| × s

hs,observed
tb∑

b∈C1 s
hs,observed
tb

− 1, t ∈ T0

}

and the relative change in the probability of purchase for households of size hs is:

∆Prob. of Purchasehs = Median
{ ∑

b∈C1 s
hs,linear
tb∑

b∈C1 s
hs,observed
tb

− 1, t ∈ T0

}
.

To compute the quantity change of (non-)sugary CSDs, denote by |b|s the number of sugary CSD
units (liters) in bundle b. Then, the quantity change of sugary CSDs in Table 8 is:

∆Qsugary = Median

 ∑
b∈C1

|b|s × slinear
tb −

∑
b∈C1

|b|s × sobserved
tb , t ∈ T0

 ,
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and that of non-sugary CSDs is:

∆Qnon-sugary = Median

 ∑
b∈C1

(|b| − |b|s) × slinear
tb −

∑
b∈C1

(|b| − |b|s) × sobserved
tb , t ∈ T0

 .
Profit change. The profit change generated by households of size hs is:

∆πhs(B) = Median

∑
b∈B

(plinear
tb − ctb)shs,linear

tb −
∑
b∈B

(pobserved
tb − ctb)shs,observed

tb , t ∈ T0

 ,
where ctb is the marginal cost of bundle b in market t (see Appendix F.2).

Compensating variation. In the setting of PONL model (2), income effects enter linearly into the
indirect utilities Uitb for all b ∈ C. As a consequence, using the definition in (Bhattacharya, 2018,
equation 3), for households of size hs ∈ {single,multi}, the compensating variation is:

CVhs
t = CShs,observed

t − CShs,linear
t

αhs
, (48)

where CShs,observed
t and CShs,linear

t are defined as:

CShs,dt = ln

 J∑
ℓ=0

 ∑
b′∈Nℓ

(ωb′ℓ exp(δhs,dtb′ ))1/λhs
ℓ

λhs
ℓ

 (49)

with d ∈ {observed, linear}. It follows that the average compensating variation across hs’s is:

CVt =
∑
hswhsα

hsCVhs
t∑

hswhsα
hs

. (50)

Finally,
CV = Median {CVt, t ∈ T0} .

Denote by “single unit” the scenario in which only (pobserved
tj )j∈J change to (plinear

tj )j∈J in
(δhs,observed
tj )j∈J, while (δhs,observed

tb )b∈C2 remain unchanged. Then, for households of size hs, the com-
pensating variation due to the changes in (ptj)j∈J is defined as:

CVhs,single unit
t = CShs,observed

t − CShs,single unit
t

αhs
,

while that due to the changes in (ptb)b∈C2 as CVhs
t − CVhs,single unit

t . Their average across household
sizes is then defined as in (50).
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Compensating Variation/Expenditure. The expenditure on CSDs for households of size hs in
market t in the observed scenario of quantity discounts is:

Expenditurehst =
∑

b∈C1

ptbs
hs,observed
tb .

Then, the median of the ratio CV/Expenditure for households of size hs is:

CV/Expenditurehs = Median
{

CVhs
t

Expenditurehst
, t ∈ T0

}
,

while that across hs’s is:

CV/Expenditure = Median
{

CVt∑
hswhsExpenditurehst

, t ∈ T0

}
.

Predicted added sugar change. Denote by τj the added sugar content (grams) in one unit (liter)
of CSD j. The added sugar amount (grams) in bundle b is τb = ∑

j∈b τj . Then, the predicted sugar
change in Table 8 is:

∆Qadded sugar = Median

 ∑
b∈C1

τb × sobserved
tb −

∑
b∈C1

τb × slinear
tb , t ∈ T0

 .
F.5 Understanding Compensating Variations in Table 7

Here we discuss a simple example useful to get some insight about the compensating variations reported
in Table 7. Consider a setting with J = {1} and C2 = {(1, 1)}. From (49), the consumer surplus for
households of size hs = {single,multi} at prices (p1, p(1,1)) is:

CShs(p1, p(1,1)) = ln

1 +
(

exp
{
δhs1 − αhsp1

λhs

}
+ exp

{
2δhs1 − αhsp(1,1) + Γhs

λhs

})λhs .
By a first-order Taylor expansion of (48), the compensating variation associated to a change in prices
from (p1, p(1,1)) to (p1 + ∆1, p(1,1) + ∆(1,1)) can be approximated as:

CVhs(∆1,∆(1,1)) =
CShs(p1, p(1,1)) − CShs(p1 + ∆1, p(1,1) + ∆(1,1))

αhs

≈ − 1
αhs

[
∂CShs(p1, p(1,1))

∂p1
∆1 +

∂CShs(p1, p(1,1))
∂p(1,1)

∆(1,1)

]
= shs1 ∆1 + shs(1,1)∆(1,1).

This shows that the compensating variation due to ∆(1,1) (or ∆1) is approximately proportional to hs’s
probability to purchase (1, 1) (or 1) at (p1, p(1,1)). As documented in Figure 3, in the observed scenario
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Table 9: Counterfactual Linear Pricing: Percentage Changes in Price, Quantity, and Profit

Average Single-person households Multi-person households
Price Change (%)

∆ptj −31.53%
(0.79%)

∆ptb +14.79%
(1.68%)

Quantity Change (%) −20.38%
(1.40%)

−17.64%
(1.45%)

−20.99%
(1.45%)

Single units +50.20%
(2.17%)

+32.45%
(3.44%)

+60.65%
(3.12%)

Multiple units −21.06%
(1.41%)

−18.70%
(1.62%)

−21.83%
(1.51%)

Profit Change (%) −20.53%
(3.32%)

−15.48%
(3.82%)

−21.27%
(3.41%)

Single units +1.99%
(1.30%)

−4.04%
(1.64%)

+5.46%
(1.39%)

Multiple units −21.53%
(3.41%)

−17.58%
(4.20%)

−22.43%
(3.49%)

Notes: We report all the computational details of the above entries in Appendices F.2 (marginal costs),
F.3 (counterfactual simulation), and F.4 (price, quantity, and profit changes). All entries are computed as
medians over the same set of markets used in Table 5 to compute price elasticities. Standard errors are
obtained using the parametric bootstrap procedure described in Appendix B.1 with 200 repetitions.

with quantity discounts, multi-person households are far more likely than single-person households to
purchase multiple units of CSDs, so that smulti

(1,1) > s
single
(1,1) and smulti

1 < s
single
1 . In addition, our simulated

counterfactual suggests that going from quantity discounts to linear pricing would result in ∆1 < 0
and ∆(1,1) > 0 (Table 6). Combining these observations should clarify the patterns reported in
Table 7. In particular, using the simpler notation from the current example: CVmulti(∆1,∆(1,1)) >
CVsingle(∆1,∆(1,1)) because of the larger weight s

single
1 single-person households place on ∆1 < 0 and

the larger weight smulti
(1,1) multi-person households instead place on ∆(1,1) > 0.

F.6 Additional Tables

Table 10: Carbonated Soft Drink Products and their Added Sugar Content

“L5” variable in IRI (Product) Added Sugar (gr. per L)
7 UP 70
7 UP POMEGRANATE 100
7 UP RETRO 107.08
A & W 121.73
AIRFORCE NUTRISODA 0
BARQS 123.98
CAFFEINE FREE COKE CLASSIC 106
CAFFEINE FREE DIET COKE 0
CAFFEINE FREE DIET DR PEPPER 0
CAFFEINE FREE DIET PEPSI 0
CAFFEINE FREE PEPSI 0
CANADA DRY 98.62
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CANFIELD 0
CHERRY 7 UP 107.08
CHERRY COKE 118.35
CHERRY R C 120.83
CHERRY VANILLA DR PEPPER 106.51
CITRUS BLAST 0
COKE CHERRY ZERO 0
COKE CLASSIC 106
COKE ZERO 0
CRUSH 121.17
DIET 7 UP 0
DIET BARQS 0
DIET CHERRY 7 UP 0
DIET CHERRY CHOCOLATE DR PEPP 0
DIET CHERRY COKE 0
DIET CHERRY VANILLA DR PEPPER 0
DIET CITRUS BLAST 0
DIET COKE 0
DIET COKE PLUS 0
DIET COKE WITH LIME 0
DIET COKE WITH SPLENDA 0
DIET DR PEPPER 0
DIET MOUNTAIN DEW 0
DIET MOUNTAIN DEW CAFFEINE FR 0
DIET MOUNTAIN DEW CODE RED 0
DIET MOUNTAIN DEW ULTRA VIOLE 0
DIET MTN DEW SUPERNOVA 0
DIET MTN DEW VOLTAGE 0
DIET MUG 0
DIET PEPSI 0
DIET PEPSI JAZZ 0
DIET PEPSI NFL KICKOFF 0
DIET PEPSI TWIST 0
DIET PEPSI VANILLA 0
DIET PEPSI WITH LIME 0
DIET R C 0
DIET RITE 0
DIET RITE PURE ZERO 0
DIET SCHWEPPES 0
DIET SIERRA MIST 0
DIET SIERRA MIST CRANBERRY SP 0
DIET SIERRA MIST RUBY SPLASH 0
DIET SQUIRT 0
DIET SUN DROP 0
DIET SUNKIST 0
DIET TROPICANA TWISTER 0
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DIET VERNORS 0
DIET WILD CHERRY PEPSI 0
DR PEPPER 108.20
DR PEPPER HERITAGE 79.37
DR PEPPER TEN 6.8
FANTA 123.42
FANTA ZERO ORANGE 0
FRESCA 0
GRAFS 135.21
GRAFS 50 50 112.68
HIRES 112.33
IBC 126.12
MELLO YELLO 129.58
MELLO YELLO THE ORIGINAL SMOO 129.58
MELLO YELLO ZERO 0
MOUNTAIN DEW 130.29
MOUNTAIN DEW CAFFEINE FREE 130.18
MOUNTAIN DEW CODE RED 128.49
MOUNTAIN DEW DISTORTION 129.62
MOUNTAIN DEW GAME FUEL 50.71
MOUNTAIN DEW PITCH BLACK 126.80
MOUNTAIN DEW REVOLUTION 126.8
MOUNTAIN DEW SUPERNOVA 129.6
MOUNTAIN DEW THROWBACK 123.5
MOUNTAIN DEW TYPHOON 132.28
MOUNTAIN DEW VOLTAGE 129.62
MOUNTAIN DEW WHITE OUT 128.49
MR PIBB ZERO 0
MT DEW LIVE WIRE 130.18
MUG 120.25
PEPSI 116.28
PEPSI MAX 0
PEPSI MAX CEASE FIRE 0
PEPSI NFL KICKOFF 121
PEPSI ONE 0
PEPSI THROWBACK 113.28
PIBB XTRA 107.08
R C 116.67
RUBY RED SQUIRT 123.98
SCHWEPPES 92.99
SEAGRAMS 97.00
SIERRA MIST 104.91
SIERRA MIST CRANBERRY SPLASH 97.22
SIERRA MIST FREE 0
SIERRA MIST FREE UNDERCOVR OR 0
SIERRA MIST NATURAL 170.83
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SIERRA MIST RUBY SPLASH 0
SIERRA MIST UNDERCOVER ORANGE 109.90
SPRITE 107.08
SPRITE ZERO 0
SQUIRT 107.04
SUN DROP 139
SUNKIST 122.4
SUNKIST CITRUS FUSION 132.77
SUNKIST SOLAR FUSION 198.66
TAB 0
TAHITIAN TREAT 138.07
TAVA BRAZILIAN SAMBA 0
TAVA MEDITERRANEAN FIESTA 0
TAVA TAHITIAN TAMURE 0
TROPICANA TWISTER 101.3
VANILLA COKE 118.35
VANILLA COKE ZERO 0
VAULT 129.9
VAULT RED BLITZ 135
VAULT ZERO 0
VERNORS 108.21
WELCHS 138.03
WILD CHERRY PEPSI 123.46
OTHERS 57.94

Notes: For the products still available (10/2021), we collected added sugar information from nutrition labels on producers’

websites. For those discontinued, we instead collected added sugar information from nutrition comparison websites. By

definition, diet products have zero added sugar. We assume that the residual product “Others” has an amount of sugar

per liter equal to the average of the remaining 127 products. All web links to retrieve this information are available on

request.

20


	Insert from: "twerp_1378_-_Wang.pdf"
	Introduction
	The Product-Overlap Nested Logit (PONL) Model
	Unobserved Preferences and their Correlations Across Bundles
	Average Utilities and Demand Synergies
	Purchase Probabilities
	Demand Inverse

	Identification
	Endogeneity in System (9)
	Identification from (11) and (12)
	Choice of Instruments

	Estimation
	A Constrained Two Stage Least Square (C2SLS) Estimator
	A Convenient Iterative Procedure
	Discussion

	Monte Carlo Simulations
	Data Generating Process
	Simulation Results

	Quantity Discounts and Carbonated Soft Drinks
	Data, Definitions, and Descriptive Statistics
	Model Specification
	Estimation Results
	Estimated Elasticities
	Counterfactual Simulation: Linear Pricing

	Concluding Discussion
	Proofs
	Proof of Proposition 1

	Proof of Proposition 2
	Inference

	Details on the Iterative Estimation Procedure
	Iteration 0: Choice of Starting Values
	More Precise Formulation of the Algorithm

	Proof of Proposition 3
	Dealing with Products with Undefined stj
	Empirical Application
	Elasticities in Table 5
	Computation of Marginal Costs
	Counterfactual Simulation: Linear Pricing
	Computation of Tables 6, 7, and 8
	Understanding Compensating Variations in Table 7
	Additional Tables



