The Boss is Watching: How Monitoring Decisions Hurt Black Workers

Costas Cavounidis, Kevin Lang & Russell Weinstein

(This paper also appears as CRETA Discussion paper 74)

August 2022 (updated March 2023) No: 1424

This paper has been updated & accepted for publication in the Economic Journal

Warwick Economics Research Papers

ISSN 2059-4283 (online)
ISSN 0083-7350 (print)
The Boss is Watching: How Monitoring Decisions Hurt Black Workers*

Costas Cavounidis† Kevin Lang‡ Russell Weinstein§

May 25, 2022

Abstract

African Americans face shorter employment durations than similar whites. We hypothesize that employers discriminate in acquiring or acting on ability-relevant information. In our model, monitoring black but not white workers is self-sustaining. New black hires were more likely fired by previous employers after monitoring. This reduces firms’ beliefs about ability, incentivizing discriminatory monitoring. We confirm our predictions that layoffs are initially higher for black than non-black workers but that they converge with seniority and decline more with AFQT for black workers. Two additional predictions, lower lifetime incomes and longer unemployment durations for black workers, have known empirical support.

*This research was funded in part by NSF grants SES-1260917 and SES-1851636. It draws on similar intuition to Cavounidis and Lang (2015) but greatly simplifies the theory and adds an empirical section testing the main new predictions. We are grateful to Cheonghum Park for excellent research assistance and to Gautam Bose, Sambuddha Ghosh, Larry Katz, Ed Lazear, Calvin Luscombe, Ioana Marinescu, Derek Neal, Marina Soley-Bori, Bill Spriggs and participants in seminars and conferences at Boston University, Cornell, CUHK-Shenzhen, EALE, IZA/OECD, NBER, the Royal Economic Society, Tufts, the University of California, Riverside, SOLE, the University of Oklahoma, UQAM and West Point Military Academy for helpful comments and suggestions on this and the earlier paper. The usual caveat applies.

†University of Warwick, c.cavounidis@warwick.ac.uk
‡Boston University, NBER and IZA, lang@bu.edu
§University of Illinois at Urbana-Champaign and IZA, weinst@illinois.edu
1 Introduction

Many Americans, especially African Americans, believe black workers ‘don’t get second chances’\(^1\) or face additional scrutiny in the workplace. Similarly, black workers are admonished to be ‘twice as good’\(^2\) in order to succeed. If black workers are subject to higher standards or scrutinized more heavily, we expect this to be reflected in more separations.

Indeed, the data support the idea of shorter employment duration for black workers.\(^3\) Bowlus, Kiefer, and Neumann (2001) detect and ponder the disparity in job destruction rates; Bowlus and Eckstein (2002) estimate that young black male high school graduates had roughly 2/3 the job spell duration of their white counterparts.\(^4\) In addition, more of their job spells end in unemployment, suggesting that black workers have much shorter employment spells. Both papers assume an exogenously higher separation rate for black workers to fit their models to the data. Lang and Lehmann (2012) show that differences in unemployment duration alone are insufficient to account for the black/white unemployment rate gap and, therefore, that black workers’ employment stints are shorter. This aspect of labor discrimination has thus far eluded theoretical explication.

In this paper, our proposed explanation for differential employment durations is, in its broadest sense and consistent with the observations above, that firms discriminate in the acquisition or use of productivity-relevant information. That is, firms either learn differently about black workers or, when information regarding ability is received, they condition how they act on it on workers’ race. Crucially, we establish that such discrimination can be self-perpetuating.

The essence of our model is that, because firms scrutinize black workers more closely, a larger share of low-performance workers will separate into unemployment. As a result, since productivity is correlated across jobs, the black unemployment pool is ‘churned’ and therefore weaker than the white unemployment pool. Since workers can, at least to some extent, hide

\(^1\)This assertion can be found in a range of occupations including football coaching (Reid, 2015), music, and films (The Guardian, 2014) and more generally (Spencer, 2014).

\(^2\)Coates (2012) and Mabry (2012)

\(^3\)Throughout this paper, we distinguish between employment duration by which we mean the length of an employment spell and job duration by which we mean the time a worker spends with a particular employer. Job duration depends on, among other factors, the arrival rate of outside offers. Our model abstracts from wage renegotiation but can be modified to incorporate it, as shown in Section 4.5.1.

\(^4\)Using the NLSY data for 1985 and 1988.
their employment histories, race serves as an indicator of expected worker productivity. This, in turn, makes monitoring newly hired black (but not white) workers optimal for firms. Figure 1 illustrates employment in the two labor markets. Our model shares the churning mechanism with Masters (2014), where information acquisition takes the form of exogenous pre-employment signals rather than endogenous monitoring on the job. Bardhi et al. (2019) explore endogenous discriminatory employee monitoring for quality, finding that only bad-news monitoring leads to persistent discrimination when worker groups are exogenously slightly different. Rather than through churning, their results arise through the dynamics of employer beliefs. In contrast with Cornell and Welch (1996), we assume no differences in the monitoring technology available for black and white workers. In their paper, white employers can screen white workers more accurately than black workers (or, in an extension, it is cheaper to monitor white workers) and are, therefore, more likely to hire a white worker.

Our empirical analysis begins with suggestive evidence that black workers are more heavily supervised even in similar occupations, at least if they have no more than a high school education, a condition applying to the vast majority of black workers during the period for which we have data on supervision.

Importantly for ‘testability,’ our model has excess empirical content, predictions not known to be true or false before we developed the theory. First, it predicts that involuntary separations from employment will initially be higher for black workers than for white workers but that these hazards will converge with seniority. As seniority increases, it is more likely that workers have passed monitoring and are good matches with the firm. We test and largely confirm this previously untested prediction using the National Longitudinal Survey of Youth 1979 (NLSY79). By two years of tenure, the magnitude of the gap has decreased
substantially. This finding is robust to various sample selection decisions, approaches to smoothing the separation hazard functions, measures of seniority and proxies for involuntary separation, and strengthens with the inclusion of controls.

In addition, our model implies that high unobserved ability will have a larger effect on reducing unemployment and layoffs among black than among white workers. Following a tradition dating from Farber and Gibbons (1996), we treat performance on the Armed Forces Qualification Test (AFQT), after controlling for observables, as unobserved by the market. We show that AFQT has a stronger negative effect on layoffs for black than non-black workers.

There are multiple equilibria in our model, a property it shares with models of rational stereotyping or self-confirming expectations (Coate and Loury, 1993). However, in our model, a group that begins with a low level of skills for which only the bad (monitoring) equilibrium exists will remain in that equilibrium even if its skill level rises to a level consistent with the existence of both the good and bad equilibria. Even if black workers are, on average, more skilled than white workers, whites can be in the good steady-state and black workers in the bad steady-state because of a history of lower access to schooling and other human capital investments. Equalizing the human capital that black and white workers bring to the labor market may be insufficient to equalize labor market outcomes. In contrast, in self-confirming expectations models, if we could convince black workers to invest in themselves and employers that they are investing, we would transition to the good equilibrium.

There is abundant evidence that black workers face lower wages and longer unemployment duration than white workers. Moreover, these disparities are less prevalent (and perhaps, in some cases, nonexistent) for the most skilled workers as measured by education or performance on the AFQT. While there are a plethora of models intended to explain wage or unemployment differentials, none addresses both and their relation to skill. Since in our model newly hired black workers are on average less productive than white workers, their wages are lower and firms that expect to hire black workers anticipate less profit from a vacancy and therefore offer fewer jobs. Consequently, black workers have longer unemployment durations.

Many models (e.g., Aigner and Cain, 1977; Becker, 1971; Bjerk, 2008; Charles and Guryan, 2011; Lang, 1986; Lang and Manove, 2011; Lundberg and Startz, 1983; Moro and Norman, 2004) assume market clearing and, therefore, cannot address unemployment patterns. Search models (e.g. Black, 1995; Bowlus and Eckstein, 2002; Lang and Manove, 2003; Lang, Manove and Dickens, 2005; Rosen, 1997) can explain unemployment differentials, but assume otherwise homogeneous workers and thus cannot address wage differentials at different skill levels. Peski and Szentes (2013) treat wages as exogenous. Bardhi et al. (2019), Cornell and Welch (2016), Coate and Loury (1993), and Fryer (2007) treat wages in specific jobs as exogenous but endogenize the assignment of workers of different races to jobs so that, in this sense, they do address wages. In general, discrimination models have not addressed employment or job duration. See the review in Lang and Lehammann (2012).
We believe that the broad implications of our model can be derived through a variety of formalizations. The key elements common to these are:

i. that a worker’s productivity at different firms is correlated,

ii. that workers cannot or do not signal their ability and that they can, at least imperfectly, hide their employment histories,\(^6\)

iii. that firms must, therefore, to some degree, statistically infer worker ability,

iv. that further information about match productivity arrives during production and is either costly, imperfect, or both, and

v. that this information, if obtained, may affect retention, so that firm behavior affects the average unemployed worker’s ability.

Our desire for a theoretically rigorous model of wage-setting in a dynamic framework with asymmetric information drives the details of our formal model. Firms and workers bargain over wages and use a costly monitoring technology to assess the quality of the match, which is correlated with the worker’s underlying type. Alternative models yielding the same intuitions include one in which signals are free and bad realizations cause black workers, but not white workers, to be fired.

Therefore, use of the monitoring technology depends on the firm’s prior: if the belief that a worker is well-matched is sufficiently high or sufficiently low, it will not be worth investing resources to determine match quality. However, if the cost of determining the match quality is not too high, there will be an intermediate range at which this investment is worthwhile. Firm beliefs about black, but not white, workers fall in this region. Consequently, they are subject to heightened scrutiny and are more likely to be found to be a poor match and fired. The increased scrutiny ensures that the pool of unemployed black workers has a higher proportion of workers revealed as a poor match at one or more previous jobs. And, therefore, employers’ expectation that black workers are more likely to be poor matches is correct in equilibrium. This, nested in a search model, generates the empirical predictions discussed above.\(^7\)

This churning equilibrium is hard to escape. Since education is observable, increased educational attainment might eliminate discrimination for those black workers who acquire

\(^6\)In particular, they must sometimes be able to omit or mischaracterize prior bad matches and misreport their time in the market.

\(^7\)Note that our model abstracts from moral hazard and that performance is observed objectively. MacLeod (2003) develops an interesting model in which biased subjective assessments interact with moral hazard concerns.
sufficient education. However, those with low education will still suffer discrimination relative to low-education white workers. Policy operating on unobservable skills - such as upgrading schools - is also unlikely to resolve the problem. Only if the skill level of black workers is raised sufficiently above that of white workers does the bad equilibrium cease to exist and white and black workers receive similar treatment.

2 The Model

2.1 Setup

There are two worker groups, ‘black’ and ‘white’. Race is observable by the worker and employers but does not have any direct impact on production.

At all times, a steady flow of new workers is born into each population group. A proportion \(g \in (0, 1) \) of new workers are type \(\alpha \), for whom every job is a good match.\(^{10}\) The rest, referred to as type \(\beta \), have probability \(\beta \in (0, 1) \) of being a good match at any particular job. The probability of a worker being good at a job, conditional on her type, is independent across jobs. Worker type is private to the worker. Workers begin their lives unemployed. Without conditioning on type, the ex-ante probability that a new worker is good at a particular job is

\[
\theta_0 = g + (1 - g) \beta. \tag{1}
\]

Employers cannot directly observe worker type or employment history\(^{11}\) but can instead draw statistical inferences from race.

2.2 Match Quality

Production, the payment of wages, and the use of the monitoring technology occur in continuous time using a common discount rate \(r \).

Workers can be either well-suited to a task (a ‘good’ match), producing \(q \) per unit time; or ill-suited (a ‘bad’ match), producing expected output \(q - \lambda c \) per unit time. We can interpret the lower productivity of bad workers as errors or missed opportunities, each costing the firm \(c \), that arrive at a constant rate \(\lambda \). Under this interpretation, opportunities for error are

\(^{8}\)Technically, if the proportion of good workers is sufficiently high.

\(^{9}\)We do not allow for death but could do so at the cost of a little added complexity.

\(^{10}\)Having type \(\alpha \) workers perform well at every job is not essential to the argument but simplifies presentation significantly.

\(^{11}\)At a more informal level, we believe that workers have some ability to hide their employment history and that they will not report information speaking to their own low ability.
also opportunities to learn the quality of the match, as well-matched workers are observed to avoid errors.\footnote{Alternatively, we could assume that the flows are \(q - d \) and \(q \) with \(d \equiv \lambda c \) and that \(\lambda \) is the arrival rate of opportunities to measure the flows.}

The employer does not know the match quality without monitoring. During production, the firm may use a technology that may produce a fully informative signal about match quality. If the signal shows the match to be bad, the firm may terminate it immediately, receiving 0. Each moment, the firm chooses whether or not to monitor.

In keeping with the opportunities-for-errors interpretation, we assume the signal arrives at a constant rate \(\lambda \). The monitoring technology costs \(b \) per unit time, so that the expected cost of information is \(\int_0^\infty be^{-\lambda t}dt = b/\lambda \) and its expected discounted cost is \(\int_0^\infty (e^{-rt}b)e^{-\lambda t}dt = b/(\lambda + r) \). As the signal arrives at the same rate regardless of match quality, this cost is unaffected by the firm’s beliefs. The principal benefit of a signal whose arrival is exponentially distributed, rather than deterministic, is that it makes the employment survival function more realistic. In addition, it allows for a certain stationarity in the model: so long as no signal has arrived, the underlying incentives do not change. Optimally, following a signal that reveals the match to be good, the firm ceases monitoring and the match continues indefinitely.

Conversely, for monitoring ever to be useful, matches revealed to be bad must separate. A sufficient condition for this is that \(q - \lambda c < 0 \). Additionally, we intend that \(\beta \) workers will not be willing to reveal their type in bargaining. To this end, we make the sufficient and simple assumption that such a match is unproductive, regardless of the monitoring choice:

\[
(C1) \quad \max \left\{ q - (1 - \beta)\lambda c, \frac{\beta q}{r} + (1 - \beta)\frac{q - \lambda c}{\lambda + r} - \frac{b}{\lambda + r} \right\} \leq 0.
\]

It is \textit{much} stronger than necessary. In general, it is sufficient that any wage at which a firm would knowingly hire a \(\beta \) worker is low enough that the worker would rather reject it in order to rematch at a higher (pooling) wage. Assumption (C1) ensures that such separation in search of a new match is beneficial regardless of the expected duration of unemployment.

2.3 Job Search

When a worker is born or her match is terminated, she becomes unemployed. Unemployed workers are stochastically matched to firms, which occurs at a constant hazard \(\mu \). For the moment, we treat this rate as exogenous; it will be endogenized in Section 4.4 to address unemployment duration. When a match dissolves, transfers cease and the worker becomes
unemployed. A firm does not recoup a vacancy and therefore receives a payoff of 0 on termination.\footnote{This occurs naturally due to free entry when vacancy creation is endogenized; see Section 4.4.}

In the unemployed state, workers merely search for new jobs; we normalize the flow utility from this state to 0. The value from unemployment is thus simply the appropriately discounted expected utility from job-finding and is invariant to history. The expected discount on job-finding is $\int_0^\infty e^{-rt} \mu e^{-\mu t} dt = \mu / (\mu + r)$; the value of a new job will depend on the equilibrium. We denote the expected present discounted value of future wages for an unemployed worker as U_α^θ for type α workers and U_β^θ for type β workers, when employers believe new matches to be good with probability θ. These will be constant in steady-state.

2.4 Wage Setting

Given the asymmetry in information between the worker, who knows her type, and the firm, the Nash bargaining model is unusable and the Rubinstein (1982) one suffers from a multiplicity of equilibria. If a β worker does not want to reveal her type, as follows from our assumptions, then the β worker will have to bargain as if she were an α worker. Since in this case the firm cannot distinguish with which type it is bargaining, it should act as if it were bargaining with a random draw from the unemployment pool. Thus an intuitively appealing solution is the outcome that would be reached in Nash bargaining between a firm calculating its rents on the assumption of a random draw from the pool and a worker calculating her rents as if she were an α worker.

We posit a simple wage bargaining model akin to Lauermann and Wolinsky (2016) that produces this outcome, albeit only in expectation. When a worker and firm meet, a wage offer w is randomly drawn from some distribution F. They then simultaneously choose whether to accept or reject the offer. If either rejects the offer, the match is dissolved; the firm receives 0 while the worker searches for the next firm. If both parties accept the offer, production proceeds at that wage. We are looking for Perfect Bayesian Equilibria in which neither party uses a weakly dominated strategy.\footnote{This is needed to rule out equilibria where both parties reject mutually acceptable wages.} Using a randomly drawn take-it-or-leave-it offer allows us to escape both multiplicity of equilibria enforced by unreasonable off-path beliefs if the worker can make offers, and the Diamond paradox if only the firm makes offers.\footnote{Earlier versions of this paper used an alternating-offers bargaining model with off-path belief restrictions and derived an equivalent set of theoretical results. The somewhat artificial nature of the current wage-setting structure dramatically simplifies the presentation without fundamentally changing the results.}

To ensure that the wage process does not end in disagreement in equilibrium, we assume only agreeable wages are proposed. Specifically, we assume that F is a uniform distribution on the set of wages the firm and worker would both accept; thus, wage negotiation
is as though an arbitrator proposes any wage on the contract curve with equal likelihood. Crucially, this assumption guarantees that, once we endogenize the job-finding rate, only lower demand for black workers, and not the bargaining process, causes disparities in the formation of new matches.\footnote{This makes F an equilibrium object, as the acceptability of wages depends on F; but the solution is unique in steady-state. We could instead assume F is uniform on $[0,q]$ but then unacceptable wages would be encountered, and the probability of disagreeable wages would vary between matches with black and white workers. Notice that F does not depend on worker type as due to assumption (C1) there are no wages the firm and β workers would accept but α workers would not. As equilibrium acceptable wages will form an interval, we could, instead of a uniform, use any distribution with connected, compact support by scaling it to the acceptable wage interval.} Fortuitously, the assumption also results in simple solutions.

Jointly, our assumptions will ensure that every match will find a mutually acceptable wage, that equilibrium in steady-state will be unique, that wages are uniformly distributed over the contract curve, and that they are on average equal to the equal-weights Nash bargaining solution (between a firm with beliefs given by θ and an α worker), despite the asymmetric information.

2.5 Steady State

A steady-state of a labor market is a mass of α job seekers, a mass of β job seekers and a mass of monitored β workers along with equilibrium firm and worker wage acceptance and monitoring strategies that make these populations constant over time. There is one steady state in which all employees are monitored until match quality is revealed, and one in which no monitoring occurs at all.\footnote{Technically, there is a third steady state in which firms sometimes monitor and sometimes don't; but it is fragile for reasonable values of the matching speed μ.}

Consider the case where no employees are monitored: the white labor market. Matches never deteriorate, and, therefore, the only source of job seekers is newly born workers. In this scenario, a firm just matched with a worker believes that the worker’s probability of being of type α is the population prevalence g; the chance of a white job-seeker being good at a job to which he is matched is therefore

$$\theta_W = \theta_0 = g + (1 - g)\beta.$$

Now suppose that all newly hired black employees are monitored, and all bad matches are terminated. Newly matched black workers will be worse than average. Surprisingly, the steady-state new match quality θ_B of this process does not depend on the rate of information λ, the worker matching rate μ, or the rate at which new workers enter the market. This is an artifact of the assumption that workers are infinitely lived.\footnote{In a model in which workers do not live forever, the steady state expressions would be decidedly less} Simply, the quality of
every match with a black worker is eventually revealed, and bad matches are terminated. Therefore, every black worker will rematch until they enter a good match. Thus, it takes one match for a black α worker to exit unemployment forever, but an average of $1/\beta$ matches for a black β worker. Consequently, black βs will be overrepresented in the unemployed pool by a factor of $1/\beta$. Thus, the chance a new match is good is

$$\theta_B = \frac{g}{g + \frac{1}{\beta}(1-g)} \cdot 1 + \frac{\frac{1}{\beta}(1-g)}{g + \frac{1}{\beta}(1-g)} \cdot \beta = \frac{1}{g + \frac{1}{\beta}(1-g)}.$$ (2)

Our first lemma formalizes this result.

Lemma 1 The probability a newly hired black worker is in a good match is

$$\theta_B = \frac{1}{g + \frac{1}{\beta}(1-g)} < \theta_W.$$ (3)

Proof. See A.1 ■

Therefore, although monitoring may be individually prudent for each firm, it creates a negative externality by feeding a stream of workers who are worse than the population average (i.e. containing more β types) back into the job-seeker pool.

2.6 Parametric Assumptions

Now we impose certain restrictions on the joint values of parameters sufficient to ensure the existence of both steady states.

For an equilibrium with no monitoring to exist for white workers, we want to assume that monitoring costs are not too low. For monitoring not to be optimal, the instantaneous monitoring cost must not be worth paying to detect bad matches, accounting for the fact that the cost must be recouped on the surviving fraction of workers.

(C2) $\lambda > \frac{\lambda c}{r} \cdot (1 - \theta_W) \cdot \theta_W$

For the black labor market, antisymmetrically to (C2), we posit that “monitoring costs must not be too high”. We want to ensure that all new black employees will be monitored in elegant. On the other hand, in such a model we could allow for (slower) learning even in the absence of monitoring at the cost of some complexity. We interpret this as robustness to some kinds of endogenous monitoring intensity.
equilibrium. If there were no variation in black workers’ wages, the relevant condition would simply be

\[(4) \quad \frac{b}{\lambda} < (1 - \theta_B) \frac{\lambda c}{r} \cdot \theta_B.\]

However, as the monitoring decision is increasing in the wage, for all black workers to be monitored, a condition is needed at the lowest wage in that market. As the lowest wage in the market depends on the speed at which workers match rather than simply the firm’s break-even point, the relevant expression is a bit more complex.

\[(C3) \quad \frac{b}{\lambda} < (1 - \theta_B) \frac{\lambda c}{r} \theta_B - 2(1 - \theta_B) q - (1 - \theta_B) \frac{\lambda c}{\mu + 2r}.\]

As the matching frictions vanish \((\mu \to \infty)\), \((C3)\) becomes \((4)\).

Thus, our condition stipulates that \(\theta_B\), the belief about the average ability in the black unemployed pool, is sufficiently low that the firm monitors at all equilibrium wages. Strictness of the inequality ensures stability of the resulting steady state.

Finally, for labor markets to exist at all, it must be that workers can, in expectation, be gainfully employed. A sufficient condition for workers from both labor markets to be employable is that the expected product of workers drawn from the black unemployed pool who are never monitored is positive:

\[(C4) \quad q - (1 - \theta_B) \lambda c > 0.\]

3 Solution

First, we will use the model’s properties to characterize the firm’s and worker’s strategies. The main intuition behind the following result is that the firm is more willing to monitor if the bad matches terminated by monitoring are costlier, due to higher wages.

Lemma 2 The firm’s monitoring decision is increasing in the wage \(w\) and decreasing in its belief about match quality \(\theta\).

\(^{19}\)To see how this inequality is used in proving Proposition C3, see Appendix A.4.
Proof. See A.2

Our next result shows that the wages acceptable to both the firm and the workers form an interval.

Lemma 3 For a labor market with expected match quality θ, there is an interval of wages, $[w_\theta, \bar{w}_\theta]$, the worker and firm both accept.\(^{20}\)

Proof. see A.3

An intervalic structure for the wages in each market will simplify analysis significantly. From Lemma 3 we have that the mutually acceptable wages are an interval $[rU_\theta, \bar{w}_\theta] = [w_\theta, \bar{w}_\theta]$. As α workers never separate once they find a job, we have that the lowest wage is equal to the expected wage they’d get at another firm, adjusted for search time:

$$w_\theta = \frac{\mu}{\mu + r} \int_0^q w dF = \frac{\mu}{\mu + r} [0.5w_\theta + 0.5\bar{w}_\theta]$$

so that

$$w_\theta = \frac{\mu}{\mu + 2r \bar{w}_\theta}. \tag{5}\$$

We now present the main theoretical results of the paper: existence and uniqueness of equilibria in the two markets that perpetuate their associated steady states.

3.1 The Non-Monitored Market

Proposition 1 Assuming (C1)-(C4), the white (non-churned) labor market has a unique solution where the monitoring technology is not used. The average wage in this market is

$$w_{\theta_W}^{avg} = \frac{\mu + r}{\mu + 2r} [q - (1 - \theta_W)\lambda c]. \tag{6}\$$

Proof. see A.4

The main intuition for the proposition comes from Lemma 2. Since the value of monitoring is increasing in w, for a non-monitoring solution we need only check whether the firm chooses to monitor at the break-even wage \bar{w}_{θ_W}. And (C2) ensures that monitoring does not occur at that wage. Since firms do not learn workers’ types in this labor market, white workers’ types have no effect on their lifetime wages.

3.2 The Monitored Market

Here, as workers are monitored, β workers sometimes face separation and therefore have a low outside option. However, they cannot accept low wages at which monitoring would

\(^{20}\)Incentives are weak at the interval’s endpoints, but this is immaterial as F will put zero probability on them.
not occur at beliefs θ_B without revealing their type; thus, such wages are not accepted by
the firm. Therefore this equilibrium is effectively a pooling one as well, despite the fact β
workers receive significantly lower utility than α workers.

Proposition 2 Assuming (C1)-(C4), the black (churned) labor market has a unique solution
where the monitoring technology is used in every match. The average wage in this market is

$$w_{\theta_B}^{avg} = \frac{\mu + r}{\mu + 2r} \left[q - \frac{r(\lambda c(1 - \theta_B) + b)}{\lambda \theta_B + r} \right]. \quad (7)$$

Proof. see A.5 ■

The intuition here again comes from (2), which tells us that the monitoring decision is
increasing in w and therefore if monitoring occurs at w_θ it occurs at all matches, and (C3)
which ensures this condition holds. As the equilibrium strategies induce monitoring at every
equilibrium wage, employees who are revealed to be in bad matches separate from the firm.
This sends only β workers back into the job-seeking pool, churning the market quality to θ_B.

4 Implications for Labor Markets

The previous sections establish conditions under which there are two distinct steady-states of
the labor market. This section compares labor market outcomes for workers in these steady
states. We first discuss a prediction that has not previously been tested and then discuss
the relation of our other predictions to known labor market regularities.

4.1 Job Duration

Absent monitoring, there is no new information to dissolve the match. Therefore, taken
literally, the model implies no turnover in the white equilibrium. In contrast, with moni-
toring, some workers prove ill-suited for the job and return to the unemployment pool. We
interpret this as predicting that black workers will have lower average job duration. Recall
that workers who return to the unemployment pool are all type β. Therefore, turnover is
even higher than if only new entrants were monitored. The model, again taken literally,
implies that the separation hazard for black workers is

$$h(t) = \frac{(1 - \beta)(1 - g) \lambda e^{-\lambda t}}{1 - (1 - \beta)(1 - g) e^{-\lambda t}} \quad (8)$$

which is decreasing in t, the amount of time passed in the match.
Importantly, h declines with t and asymptotes to 0, the hazard rate for whites. We expect this prediction to be robust to important real world elements not addressed by the model. Whether the hazard rates actually converge is not something we are aware of the literature addressing and is the subject of our empirical investigation later in this paper.

As our model abstracts from firm-to-firm hiring, we have no prediction regarding it. Although it may seem that firms would be out to poach black workers with high seniority (that are likely to have passed monitoring)21, adverse selection (with the worst workers more willing to leave) could unravel such effects. Still, our predictions are in terms of employer-initiated separations, not moves to better jobs. Therefore, in the empirical section, we treat spells that end in a job-to-job transition as censored and, in the main specification, treat all quits as censored.

We take this prediction one step further. Taken literally, our model implies that white workers are never laid-off regardless of their type. In contrast, black βs but not black αs are sometimes laid-off depending on whether they are good matches. We interpret this as a prediction that black layoffs will be more responsive than white layoffs to a measure of unobserved worker quality.

4.2 Wages

As $w_{\theta B}^{\text{avg}} < w_{\theta W}^{\text{avg}}$, black workers, on average, earn less than white ones. The highest wage firms are willing to pay is lower for black than for white workers since the average quality of new hires is lower. The lowest wage black workers are willing to accept is lower because they expect other employers to pay less, as well. Interestingly, because white workers are not monitored, their lifetime utility does not depend on type, and both types have higher utility than black αs who, in turn, have higher lifetime utility than black βs:

$$U_{\theta W}^\alpha = U_{\theta W}^\beta > U_{\theta B}^\alpha > U_{\theta B}^\beta.$$

Comparing utilities within type across the two groups, both types of black workers are disadvantaged due to coming from a churned unemployed pool. This leads to lower wages and, when firms can direct searches as in Section 4.4, having to wait longer for matches. But black β workers also suffer an additional consequence of being monitored more intensely - separation. This last group, therefore, suffers a combination of wage and retention discrimination.

21We show in Cavounidis and Lang (2015) that one can write a very similar model in which β workers always match badly but monitoring can result in false positive good matches. Much of the analysis would remain unchanged in such a model. In such a model, black workers would not eventually be better matched, on average, than white ones.
For some parameter values, black and white wage ranges overlap; for others, they do not. Figure 2 illustrates an example for which they do. Importantly, the average wage differential between black and white workers is a consequence of differential monitoring but not a requirement for it. If the (legal) requirement of equal wages for black and white workers is effectively enforced, employers’ incentives to monitor black workers are stronger due to increased wages, and their incentives to monitor white workers are weaker due to reduced wages. Therefore, the range of parameter values consistent with discriminatory monitoring is broadened under such a requirement.

![Diagram of wage ranges](image)

Figure 2: An illustration in which the black and white wage ranges overlap.

4.3 Persistence of Discrimination

A key feature of the churning mechanism in this paper is that deleterious steady states are persistent. We now discuss the difficulty of eliminating the bad steady-state through policy aimed at upgrading the unobservable skills of black workers (e.g. by improving schooling quality). The existence of a range of g values for which both steady states exist allows us to talk about *persistence* of the deleterious equilibrium.

Suppose now that rather than being identical, skill levels are $g_B \neq g_W$. Monitoring will persist as an equilibrium in the black labor market until g_B rises above some critical level while the no monitoring equilibrium will exist in the white market provided that g_W remains above a lower critical level. In principle, we can have the black workers in the bad equilibrium
and the white workers in the good equilibrium provided that (C2) and (C3) hold for \(\theta_W \) and \(\theta_B \) calculated using \(g_W \) and \(g_B \) respectively. Put simply, this means that discrimination in wages and monitoring (and therefore also separations) can continue even if black workers are significantly better, on average, than white workers.

4.4 Unemployment Duration

We have so far treated unemployed workers’ matching rate, \(\mu \), as exogenous. Making the standard assumption of free entry, we now allow firms to post and maintain vacancies at a cost \(k \) per unit time. When a firm creates a vacancy, it can direct its search. This can take several forms, most notably locating production operations in an area with specific population characteristics or advertising the vacancy in different areas and through different media. In general, a firm can target markets indexed by \(i \) where a proportion \(\rho_i \) of unemployed workers are white. The open vacancy cost \(k \) is invariant to this target choice. We assume that in each market \(i \) the bargaining equilibria and population group steady states break down along the discriminatory lines described so far.

Define \(\varphi \) as market tightness and let the worker job-finding rate function follow the commonly assumed form

\[
\mu(\varphi) = m \varphi^\gamma
\]

for constants \(m > 0 \) and \(0 < \gamma < 1 \). Note that if firms expect a match to be worth \(V \), the free-entry level of \(\varphi \) in such a market sets

\[
\frac{\mu(\varphi)}{\varphi} V - k = 0
\]

so that

\[
\varphi = \left(\frac{Vm}{k} \right)^{\frac{1}{1-\gamma}}.
\]

Therefore, \(\varphi \) is an increasing function of \(V \).

Assuming the parametric assumptions hold for the entire breadth of derived matching rates, we can now derive the free-entry equilibrium level of \(\mu_{\rho_i} \) for each market \(i \). When hiring from pool \(i \), the firm’s expected payoff from a new match is

\[
V_i = \rho_i \frac{1}{\mu + 2r} \left[q - \lambda c(1 - \theta_W) \right] + (1 - \rho_i) \frac{1}{\mu + 2r} \left[q - \frac{r(\lambda c(1 - \theta_B) + b)}{\lambda \theta_B + r} \right]
\]

The above expression is strictly increasing in \(\rho_i \). Therefore, for the same \(\mu \), markets with more black workers will have a lower expected payoff for a filled vacancy. Therefore,
the free-entry $\varphi(\rho_i)$ and $\mu(\varphi(\rho_i))$ are strictly increasing in ρ_i, so that workers searching for jobs in markets with a higher proportion of black workers take longer, on average, to find employment. Appendix A.6 shows that this implies that an unemployed black worker must wait longer for a match, on average.

4.5 Extensions and Further Discussions

4.5.1 Wage Renegotiation and Evolution

There are many ways to think of wage evolution in models with learning about match quality. For instance, Bose and Lang (2017) envision the firm and worker as splitting the instantaneous surplus according to a fixed rule. However, the presence of asymmetric information in our model complicates this. In line with Lazear (2009) and Postel-Vinay and Robin (2002), we choose to model wage renegotiation as responding to outside offers.

As in Postel-Vinay and Robin, new wage offers come from firms with the same information as the incumbent; they know if monitoring concluded successfully (alternatively, the worker can credibly disclose a success). Consistent with our wage determination model, the outside offer is uniformly distributed between the worker’s current wage and the wage at which the outside firm expects to break even, given the available information. The incumbent firm then matches this offer and keeps the worker. \(^{22}\)

For white workers and black workers whose monitoring had not yet concluded, this upper bound would be the same as the break-even wage at the incumbent firm. The outside firm would prefer to monitor a black worker who is being monitored. If a black worker had been revealed to be a good match in the past, on the other hand, this would be informative. However, being a good match at one job does not mean the worker would automatically be good at the next one! The probability of a black worker being an α given a monitoring success is

$$P(\alpha|\text{success}) = \frac{P(\text{success}|\alpha)P(\alpha)}{P(\text{success})} = \frac{1 \cdot \frac{g}{g+\frac{1}{2}(1-g)}}{1 \cdot \frac{g}{g+\frac{1}{2}(1-g)} + \beta \cdot \frac{\frac{1}{2}(1-g)}{g+\frac{1}{2}(1-g)}} = g$$

which is the same as that for a white worker who has never been monitored. Thus, an outside firm would offer a wage uniformly distributed between the old wage and the highest white wage.

Allowing for renegotiation, our predictions regarding average wages by race would be

\(^{22}\)To model both transitions and within-firm wage evolution without adding firm heterogeneity, we could assume the incumbent only sometimes has the opportunity to respond.
preserved, conditional on any of age, experience, or job spell duration. However, black workers would at all times see larger average increases in log wages - a steeper wage profile. This is because white workers and black workers with a monitoring success both approach a wage of \(q - \lambda c(1 - \theta_w) \) at a rate proportional to their distance from it, but black workers begin at a lower starting wage. Bratsberg and Terrell (1998) find that the return to tenure is no lower and often higher for black than for white male high school graduates although this finding is somewhat sensitive to choice of estimation technique.

4.5.2 Skill level and discrimination

Further, we can allow for observable heterogeneity among workers. If there are groups of workers for whom \(g \) is high, only the no-monitoring equilibrium will exist for these groups, regardless of race. This is also true at very low \(g \) and very low \(\beta \) (although we have assumed away this case to simplify the proofs). The first result is consistent with similar outcomes for black and white workers with high levels of skill as measured by education (Lang and Manove, 2011). The latter is consistent with some evidence that the bottom of the labor market is similarly bad for black and white workers. On the other hand, Lang and Manove find that the market learns the productivity of white but not black high school dropouts. This is consistent with an equilibrium in which white unemployed dropouts are, on average, more skilled than black unemployed dropouts and therefore in which white but not black dropouts are monitored. Nevertheless, without additional, largely ad hoc assumptions, this story cannot account for the very high unemployment rate among black dropouts.

4.5.3 Changing screening and monitoring technology

Autor and Scarborough (2008) examine the effect of bringing in a new screening process. They find that the screening process raised the employment duration of both black and white workers with no noticeable effect on minority hiring. In our model, we can think of this technology as allowing the firm to screen for job match quality prior to employment, successfully detecting bad matches with some probability. This increases the proportion of hired black workers who become permanent since some bad matches are not hired. If the screening mechanism is good enough, the firm will choose not to monitor the black workers it hires, and all black workers will be permanent. Formally, since all white workers are permanent in the absence of the screen, the screen does not affect this proportion. Informally,

\[\text{Naturally, as workers are able to use evidence of a good match to negotiate higher wages, firms benefit less from monitoring. This means that they are less willing to monitor. We would thus need different parametric assumptions for both of our equilibria to exist, which we could phrase in terms of the arrival rate of opportunities for renegotiation to be slow enough.} \]
if poor matches are more likely to depart even without monitoring, then there will also be positive effects on white employment duration.24 Similarly, Wozniak (2015) shows that drug testing increases black employment and reduces the wage gap; we interpret this as confirming evidence for the notion that employers are more uncertain about the quality of black workers, and therefore that black workers benefit more from early resolution of such uncertainty.25

We note that improved technology appears to have reduced monitoring costs. This is unambiguously good for black workers who share the cost of being monitored. Unless the reduction shifts whites into the monitoring equilibrium, they are unaffected by the cost reduction. However, if firms begin monitoring white workers, white αs and firms will initially be better off. Firms will be able to better screen their workers, and as a consequence can offer higher wages, which should make α workers better off as the monitoring does not put them at risk. On the other hand, β workers will generally be worse off. In a collective bargaining setting, the union might resist monitoring. The more interesting point is that since monitoring creates an externality, it is easy to develop an example in which monitoring makes both types of workers and capital worse off in the long run.26

4.5.4 Segregation

It would be a clear violation of U.S. civil rights law for firms to monitor black but not white workers. However, we will show that black workers, coming from a low-quality unemployment pool, will prefer to apply to jobs with monitoring while the opposite will be true for white workers, who come from an unchurned pool. Consequently, our results will go through, with necessary tighter parametric restrictions, provided workers and/or firms can target their searches. In this section, we make this point for a world with heterogeneous jobs, but it holds mutatis mutandis for homogeneous jobs.

So far, we have assumed that monitoring is available at all firms at an identical cost. But what if it isn’t? Would the equilibrium necessarily unwind as black workers take jobs without monitoring, and the black unemployed pool becomes less churned? In the simplest model, in which some firms simply can’t monitor, if matching is fast enough that black workers can afford to avoid no-monitoring jobs, the answer is no.

24Formally, the model would have to be modified to ensure that some β workers are never perfectly matched and/or that some β workers are still in bad matches when they exit the labor force.

25Wozniak (2015) is not to be interpreted as evidence that monitoring is good for black workers in the aggregate. As in the present paper, it can be beneficial on an individual level (as it allows good workers to get higher wages than otherwise); our model, however, shows it can also create a worse externality.

26Suppose that g_0 is just sufficient to sustain a no-monitoring equilibrium. A small reduction in b puts the labor market into a monitoring equilibrium. Initially, α workers and firms would experience a slight gain, but the churning will wipe this out and more. Firms always make zero profit on vacancies, but if we allow for a distribution of vacancy costs, then the rents earned by firms with low costs of creating vacancies will also fall.
Suppose the probability of matching to a firm with no monitoring technology is \(p \), and with a firm with the usual technology is \((1 - p)\). Black workers receive lower average wages at no-monitoring jobs, so black \(\alpha \) workers (who lose nothing from being monitored) prefer to match with firms where monitoring is available. As black \(\beta \)s take any wage the \(\alpha \)s do, at any wage a non-monitoring firm and black worker agree on in equilibrium, that firm’s beliefs can at best be \(\theta_B \). Thus, the highest wage that could occur in such a match is \(q - \lambda(1 - \theta_B)c \). For a black \(\alpha \) worker to take such a wage it must be that they prefer it to their utility from searching until a monitoring firm is found; or

\[
q - \lambda(1 - \theta_B)c \geq \frac{\mu(1 - p)}{\mu(1 - p) + 2r} \left[q - r\left(\frac{\lambda c(1 - \theta_B) + b}{\lambda \theta_B + r}\right)\right].
\]

However, in the limit as \(\mu \) goes to infinity, this is strictly ruled out by (C3). Therefore, if \(\mu \) is high enough, black \(\alpha \) workers won’t take no-monitoring jobs, so that if black \(\beta \) workers took such jobs, they’d be revealed (and the firm would thus reject). As a consequence, no black workers take a no-monitoring job in equilibrium.

The take-away is that black \(\alpha \)s don’t want no-monitoring jobs, and will avoid them if they can wait for monitoring ones; thus forcing \(\beta \) workers to follow suit or be revealed. The fact that monitoring is beneficial to individual black \(\alpha \) workers is part of what makes the bad equilibrium black workers find themselves in so robust. So, rather than sorting to no-monitoring jobs and unchurning the unemployed pool, black workers avoid such jobs, whereas white workers do not.

5 Empirics

5.1 Are Black Workers Monitored More?

Our theoretical analysis assumes that black and white workers are in different equilibria and that, consequently, black workers are more heavily monitored. Of course, it is possible that some black workers end up in low-wage jobs where monitoring is unnecessary after employers observe their previous separation history. In addition, a more realistic model would have black workers more heavily monitored than white workers but would not predict that white workers are never monitored.

However, the spirit of the model is that black workers are monitored more heavily, and therefore, we look for direct evidence related to this result. The evidence we have been able to find is minimal. We rely on a single question from the 1977 wave of the Panel Survey of Income Dynamics (PSID) that asks whether the respondent’s supervisor checks his work
“several times a day, once a day, once a week, every few weeks, or less often than that.” We code the reported level of supervision from one to six, where six denotes supervision several times per day, and one denotes reporting not having a supervisor.

We do not know the nature of the supervision. Ideally, we would like a measure of supervision designed to assess the worker’s quality rather than supervision to prevent shirking or other malfeasance. Neal (1993) uses this variable to study differences in supervision focused on the latter. Still, this is what appears to be available to us.

We have supervision data only on household heads who are actively employed or temporarily laid off private-sector workers. We exclude individuals who are supervisors. We estimate the model by ordered probit and weight by the 1977 family weight. Early experimentation found only weak evidence of monitoring differences when we did not further restrict the sample and no evidence that black workers with more than a high school education were monitored more frequently than their white counterparts. Perhaps, as suggested in Section 4.5.2, more educated workers are more likely to be good types and therefore educated workers of both types are in the no-monitoring equilibrium. Alternatively, the question may not be good at revealing monitoring differences among more skilled workers. Nevertheless, in the remainder of the paper, we focus on workers with no more than high school education. Recall that black workers with more than a high school education were a relatively elite group during this period. Only 11% of the black workers in the sample (16% weighted) were in this group.

The first column of Table 1 presents the results with no controls; black workers are more likely to report being monitored frequently. However, the coefficient is imprecisely estimated and significant at only the .1 level. Including twelve occupation and eleven

27 In a small number of cases, a non-household head answers about supervision of the household head at the head’s job. We exclude these cases given concerns about measurement error. The PSID asks the employment survey questions to individuals with an employer and who “are working now or are reasonably likely to return to work in the near future.” Thus, temporarily-laid-off workers should respond based on the job to which they soon expect to return.

28 We exclude supervisors, as black workers who supervise other workers are intuitively more likely to have passed monitoring. We also restrict our sample to respondents living in the United States who report a wage. Respondents are only asked to report a wage if they report being salaried or paid hourly. Respondents who replied “other” or “NA; Don’t Know” to whether they were paid by the hour or salaried were not asked for their wage. The question about supervision is also asked separately to individuals who report working for someone else and being self-employed. We do not include these individuals as we cannot separately identify the occupation and industry for these two jobs.

29 We note that earlier versions of this paper used workers regardless of education. In general, our results are strengthened by restricting the sample, but we did not think to use this restriction until we began to look at supervision directly.

30 Throughout this subsection, we use one-tailed tests because we will not consider large negative t-statistics as evidence in favor of our alternative hypothesis, and we do not seek to identify evidence that rejects no difference against the alternative that black workers are monitored less than white ones.
Table 1: Likelihood of Employer Monitoring by Race

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>0.150</td>
<td>0.212</td>
<td>0.176</td>
<td>0.185</td>
</tr>
<tr>
<td></td>
<td>(0.099)</td>
<td>(0.104)</td>
<td>(0.110)</td>
<td>(0.110)</td>
</tr>
<tr>
<td>Other Race</td>
<td>-0.248</td>
<td>-0.225</td>
<td>-0.350</td>
<td>-0.334</td>
</tr>
<tr>
<td></td>
<td>(0.176)</td>
<td>(0.199)</td>
<td>(0.208)</td>
<td>(0.211)</td>
</tr>
<tr>
<td>Completed Education ≤12</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Occupation, Industry FE</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Other controls</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Ln(Hourly Wage)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>1,095</td>
<td>1,095</td>
<td>1,089</td>
<td>1,089</td>
</tr>
</tbody>
</table>

Notes: Robust standard errors in parentheses. Estimates are from an ordered probit using data from the 1977 PSID. Dependent variable: level of employer supervision. A value of six corresponds to employer checking the individual’s work several times per day, five to once a day, four to once a week, three to every few weeks, two to less often, and one corresponds to no supervisor. Other controls: highest grade completed, age, age squared, tenure, tenure squared and indicators for temporarily laid off, south, north central, northeast, salaried, male, and union job. The sample includes household heads employed or temporarily laid off by private employers, who reported a wage and are not themselves supervisors. Observations are weighted by the family weights of the survey. See text for details.

industry fixed effects (column 2, see Appendix B.1 for details) increases the coefficient, which is now significant at the .05 level. Note that adding these controls may be necessary or problematic. If monitoring costs varied among firms, we anticipate that black workers would be more likely matched with jobs in which monitoring is relatively inexpensive (as in section 4.5.4); on the other hand, if the sensitivity of output to skill varied between jobs, we anticipate more black workers would be matched to firms with low skill sensitivity. In the former case, the mechanisms in our model explain why black workers are ending up in occupations and industries in which monitoring is more frequent. As a result, controlling for occupation and industry would obscure black-white differences between occupations explained by our model. If black workers end up in occupations and industries with low skill sensitivity because of the mechanisms of our model, they will be monitored less frequently. As a result, failing to control for occupation and industry will obscure black-white differences within occupation and industry that may arise due to the mechanisms in our model. Adding these controls is a conservative approach.31

Column 3 includes additional controls for years of education, quadratics in tenure (trun-

31For the coefficients on the controls, see Appendix Table B.1
cated at the 99th percentile or 444 months) and age, male, union job, whether the worker is salaried, living in the Northeast, North Central, or South of the U.S. (with West the omitted region), and whether the worker is temporarily laid off. Note that some of these controls are potentially endogenous in a fuller model. This yields a smaller coefficient that falls just short of significance at the .05 level. Finally, as a potentially better but obviously endogenous control for worker skill, column 4 adds the natural log of the individual’s wage, and the coefficient is again significant at the .05 level.\footnote{Our model implies that white workers earn more than black workers. Thus, conditional on wage, black workers should be more skilled than white workers on average. If more skilled workers are less likely to be supervised, then controlling for wage should underestimate the true difference.}

Marginal effects in column 4 suggest that black workers are 6.2 percentage points more likely to be monitored several times per day than white workers. Weighting by the 1977 family weight, 34.4% of white workers report being monitored several times per day. Thus, black workers are 18% more likely than white workers to be monitored several times per day. Black workers are less likely to a) report no supervisor (2.3 percentage points equivalent to 26% less, given 8.9% of white workers report no supervisor), b) be monitored less often than every few weeks (2.6 pp equivalent to 15% less, given 16.9% of white workers report this level of supervision), c) be monitored every few weeks (.5 pp equivalent to 10% less, given 5% of white workers report this level of supervision), and d) be monitored once a week (.7 pp equivalent to 6.4% less, given 11% of white workers report this level of supervision). There is no difference in the likelihood of monitoring once a day.

Our model implies that monitoring should decline faster with tenure for black workers than white workers. We tried including interactions between race and tenure and tenure squared. Unsurprisingly given the small sample, the results were uninformative.

5.2 Unemployment, Race, and AFQT

Building on a literature starting with Farber and Gibbons (1996), we use AFQT to capture both unobservable and observable predictors of quality such as education. It is well known that black individuals score lower than white individuals on the AFQT and increasingly well known that, conditional on AFQT, black workers get more education than white workers. Thus, it would be surprising if black unemployed workers did not have lower scores than their white counterparts on the AFQT. Nevertheless, for completeness, we verify this expectation as it confirms employers may find greater reason to monitor newly hired black workers than white workers.

We use the National Longitudinal Survey of Youth 1979, a nationally representative sample of 12,686 individuals, 14-22 years old when first surveyed in 1979, with oversamples
of black, Hispanic, and poor white individuals. These individuals are surveyed annually through 1994, and biennially afterward. We restrict ourselves to the non-Hispanic sample of black and non-black individuals and eliminate the poor and military oversamples, and use the most recent scaling of the AFQT. Respondent’s current labor force status was recorded only in the waves through 1998 and again in 2006. We drop the waves after 1998 and, in each wave, individuals who were out of the labor force. We use the survey-week labor-force status from the NLSY, which asks about the respondent’s main survey week activity.

AFQT is measured on an ordinal scale, at least with respect to worker productivity. Therefore, monotonic transformations of the scale can affect whether one group has higher AFQT unless the scores of one group are higher in the sense of first-order stochastic dominance (FOSD). Using the scale score rather than the percentile rank could change the ordering of groups. Consequently, we test for FOSD, or more precisely its absence, using the Kolmogorov-Smirnov test. Formally, this tests whether we can reject the null hypotheses that the distribution of group W(hite) dominates that of group B(lack) and that B dominates W. If we cannot reject either hypothesis, we conclude that we cannot reject that the distributions are equal. Importantly, rejecting that B dominates W but not that W dominates B does not allow us to accept the null that W dominates B. However, when combined with visual evidence suggesting stochastic dominance, we will conclude that W dominates B.

The Kolmogorov-Smirnov test requires dividing the sample into two groups, such as black and white workers. When comparing employed and unemployed workers, some sample members may be employed in some years and unemployed in others. Our primary analysis divides workers between those unemployed at the time of any interview and those who never report being unemployed, whom we informally call “always employed” although they may have been out of the labor force at some interview.33 We define education as the highest educational attainment the respondent reports in any year. We only retain respondents who never report education beyond high school.

Ever unemployed non-black individuals have higher AFQT scores than ever unemployed black individuals both visually - seen in Figure 3 - and statistically. We can reject that black scores dominate non-black scores at any conventional level while the test statistic for the opposite hypothesis is < 0.0005. We also residualized AFQT using a regression of AFQT on education, a dummy for whether the individual lived in an SMSA when the AFQT was administered, their age in 1979, and three region dummies. Among those ever experiencing

33In principle, we could use multiple observations per individual and split the sample by whether the individual was employed or unemployed in a given year. However, the Kolmogorov-Smirnov test would then not have a standard distribution.
unemployment on an interview date, non-black individuals have higher residualized AFQT scores than black individuals, both visually and statistically.

Our model also implies that unemployed black workers should be more adversely selected than their white counterparts. Unfortunately, we are unable to determine whether this prediction is empirically valid. For the reasons discussed in Bond and Lang (2013), it turns out that which group is more adversely selected depends on our choice of mapping from AFQT score to ability.34

5.3 Initial Black versus Non-Black Gaps in the Layoff Hazard, and Convergence Over Time

We now test the model’s prediction that the layoff hazard is initially higher for black workers but converges to that for white workers. To our knowledge, this prediction has not previously been tested. The model also predicts longer unemployment durations and lower lifetime incomes for black relative to white individuals. These are known to be strongly empirically

34Relative to Bond and Lang, we have an additional degree of freedom in choosing our metric for “more adversely selected.” Consider for example, what happens if we define a \(\beta \) to be someone with an AFQT below the \(i \)th percentile for \(i = (1, 2, 3, \ldots, 88) \). If our metric is the difference in the odds ratio of being a \(\beta \), black unemployed workers are more adversely selected than their non-black counterparts are for all \(i \) except for \(i = 82 \) or \(i = 83 \). However, if we use the difference in the log odds ratios, the opposite is true except for \(i = 1 \) or \(i > 83 \). Finally, suppose we use the absolute difference in the proportions. In that case, black unemployed workers are more adversely selected for values of \(i \) below the median of our black observations (weighting each individual by the number of times they appear in the sample of employed or unemployed). Choosing our scale and metric simply leaves us with too many degrees of freedom.
supported (see Lang and Lehmann 2012). As discussed above, there is some evidence that the return to tenure is higher for black workers than for white workers as an extension of our model predicts.

Ideally, we would restrict separations to terminations for cause. While both layoffs and firings are involuntary separations, layoffs are technically not for cause. However, individuals may not respond with these distinctions in mind or may not want to respond that they were fired. Additionally, employers may choose to include some individuals in a layoff, rather than terminate them for cause.35 For these reasons, we consider the hazard of being fired or laid-off.

Focusing only on firings produces somewhat better results. Nevertheless, we show this as the robustness check we intended it to be. We show in the appendix that layoffs due to plant closings do not exhibit the pattern we predict for firings.36 Our results may underestimate the racial gap by including some exogenous layoffs. Further, many separations reported as quits may be induced quits. If this is more common for black workers, this will also underestimate the racial gap in firing/layoffs. As a robustness check, we show in the appendix that treating quits into nonemployment as layoffs does not substantially change our results.

5.3.1 Methods

We estimate the layoff hazard using the first full-time spell of each individual at each employer. We censor spells ending for any reason other than the employee being fired or laid off. For these censored spells, we assert we do not know when the spell would have ended in a layoff. We use both nonparametric and semiparametric survival analysis methods to estimate the hazard.

First, using standard techniques, we calculate the hazard over time intervals with the intervals large enough not to require further smoothing. For each non-overlapping time interval, \((t_{j-1}, t_j]\), \(j = 1...k + 1\), we obtain the number of employment spells at the start, the number of spells ending in a layoff (failures) over the interval, and the number of spells ending but not in a layoff (censored). A conventional way of calculating the hazard in this setting is to assume that censoring and death times are uniformly distributed within each

35Oyer and Schaefer (2000) find evidence consistent with firms substituting towards layoffs and away from firings for black men relative to white men following the Civil Rights Act of 1991. The Civil Rights Act of 1991 increased the expected litigation costs of discharging employees protected by the legislation.

36We show the hazard for spells that we know end in layoffs due to plant closings, reported as a separate category starting in 1984. We do not treat these as layoffs in our main analysis. This exercise is underpowered, with approximately 850 spells ending in a layoff (failures) over the interval, and the number of spells ending but not in a layoff (censored). A conventional way of calculating the hazard in this setting is to assume that censoring and death times are uniformly distributed within each

25
interval. The hazard at the midpoint \(m \) for each non-overlapping interval is then:

\[
\hat{h}(t_{mj}) = \frac{d_j}{(t_j - t_{j-1})(Y_j - d_j/2)} \tag{13}
\]

The variable \(Y_j \) is the number of spells at the start of the interval minus half of the spells censored over the interval, and \(d_j \) is the number of failures over the interval (Klein and Moeschberger 2003).\(^{37}\)

We use intervals of 26 weeks through durations of 520 weeks. After this point, 26-week intervals no longer include at least one black worker who was laid off and at least one non-black worker who was laid off, and so we use intervals of 39 weeks. This facilitates comparison of black and non-black worker hazards in our subsequent Cox analysis, as these models provide estimates only at failure times.\(^{38}\) We calculate the hazard separately over these intervals for black and non-black workers. We obtain confidence intervals based on the estimated standard deviation of the hazard function at the midpoint of interval \(j \), using the property that the number of failures in the interval is a binomial random variable.\(^{39}\)

This nonparametric method does not allow controlling for covariates. So we additionally plot baseline hazard functions for black and non-black workers from a Cox proportional hazards model stratified by race. The stratified Cox model allows for different baseline hazard functions for black and non-black workers, rather than assuming their baseline hazards are proportional. As in the traditional Cox model, we constrain the coefficients on the covariates to be the same for black and non-black workers. We use the time intervals defined above as our measures of time so that the baseline estimates do not require further smoothing.\(^{40}\)

The baseline contributions we obtain from this model are the same as the Nelson-Aalen contributions in the case of no covariates, using the week intervals as a measure of time.\(^{41}\)

Specifically, we estimate

\(^{37}\)This is referred to in the literature as the life-table method. We note that without the adjustments for the timing of failures and censorings, this is simply the fraction of spells still ongoing at the start of the interval that fail during the interval.

\(^{38}\)These 39 week intervals include at least one black and one non-black worker failure through durations of 793 weeks (15.25 years). While we use all durations for estimation, our figures show hazard estimates through 793 weeks.

\(^{39}\)The formula for the estimated standard deviation of the hazard comes from Klein and Moeschberger (2003) and is used in STATA. Gehan (1969) derives a similar formula.

\(^{40}\)Using time intervals rather than week as a measure of time creates more instances of failures occurring at the same "time" since time is now a larger unit. There are several methods for dealing with these ties, all requiring assumptions about the timing of these failures. We present results using the Breslow approximation, one of the conventional methods, and the STATA default. This is based on the assumption that the subjects failed at different times, but we do not know the order.

\(^{41}\)There are several estimators of the baseline hazard rate in a proportional hazards model. We use the estimator from Kalbfleisch and Prentice (2002), also the default in STATA.
\[h(t|W, Z) = h_W(t) \exp(Z'\gamma) \] (14)

The variable \(W \) is an indicator for whether the individual is non-black and \(Z \) includes highest grade completed, indicators for geographic region (Northeast; North Central; South; West is omitted), whether the individual lived in an urban area, age, occupation and industry fixed effects, and year fixed effects, all measured at the start of the spell, and the AFQT percentile. As described in Appendix B.2.4, we classify occupation into 18 groups and industry into 14 groups.

Baseline hazard contributions are functions of the estimated coefficients from a Cox model. As a result, we obtain the variance of the difference in the black and non-black hazards at each failure time based on a nonparametric bootstrap, and 10,000 bootstrap samples. We then use these variances to construct confidence intervals for the difference between the hazard for black and non-black workers. As we describe in detail in Appendix B.2.5, for each bootstrap sample, we estimate the Cox model and then follow Kalbfleisch and Prentice (2002) to obtain the baseline hazard contributions at each failure time by solving for the maximum likelihood estimates using an iterative procedure.

In a robustness check, we determine the hazards at each week, rather than for an interval of weeks, and then smooth using a kernel-smoother and local linear smoothing. These methods require choices of kernels and bandwidths and, in the former case, an approach to addressing bias in the boundary regions.

5.3.2 Data

We use the NLSY79 to test the model’s prediction that the layoff hazard is initially higher for black workers but eventually converges to that of non-black workers. We construct job spells using the Employer History Roster, which greatly facilitates linking job spells across survey years, by assigning each job a unique identification number consistent across surveys.42 We define job spells as the first full-time spell with each employer, defining full time as at least 30 hours per week. For each survey year in which an individual reported employment at a given employer, we collect the start and end week of employment with that employer reported in the survey.

We construct the total length of the job spell by grouping all consecutive full-time spells at the employer across survey years. We treat gaps at the same employer of less than or

42Information for jobs six through 10 reported in some of the early survey years may not have been added by NLSY to the roster due to difficulty recovering these data. This is unlikely to have a large impact on the results given these jobs are a small proportion of those ever reported, for a small proportion of individuals (National Longitudinal Survey of Youth 2019).
equal to 26 weeks as continuations of the same job spell at the employer but subtract the
length of the gap from the duration.43 We evaluate whether the individual is fired or laid off
only at the end of the linked spell. For robustness, we do not link noncontinuous reported
spells at the same employer. We focus on the layoff hazard, which we define as the hazard
of a job ending due to the employee being fired or laid off.44

Our sample includes non-Hispanic individuals who had obtained no more than a high
school degree at the start of the job spell, consistent with our earlier analysis.45 We exclude
spells in which the worker ever reports self-employment or working for a family business.
As we describe in Appendix B.2.1, we further exclude individuals with missing start or end
weeks for any full-time spell, and individuals with full-time spells that end before they begin.

Because the survey is conducted every two years starting in 1994, we do not know the
values of some of the control variables in some years and must impute their values from
adjacent years. Appendix section B.2.2 describes these imputations in detail. To avoid
excluding individuals with missing covariates, we include an indicator for whether the indi-
vidual is missing the covariate, and set the covariate to zero. As described in Appendix
B.2.4, we convert all occupation and industry codes, which vary across survey year, to 1990
Census occupation or industry codes.

Table 2 shows summary statistics for nearly 34,000 job spells, which are the first full-time
job spells at each employer for individuals in the sample. There are 20,140 job spells for
non-black workers and nearly 13,700 for black workers. For non-black workers, the average
spell duration is 91.5 weeks, while for black workers, the average spell duration is 82.4 weeks,
though these are underestimated due to censoring. The table shows other differences between
the average non-black and black job spells, including the worker’s age, education, AFQT,
urban location, occupation, and region. Importantly, the stratified Cox proportional hazard
models will include these as covariates. The proportion of job spells ending in a layoff or
firing is 2pp lower for non-black than for black workers.

43The individual could report multiple job spells at the same employer, reporting a start and end week
for each span. Additionally, for a given spell, the individual can report a within-job gap at the employer
and the start and end week of that gap. We exclude spells in which the individual reported a gap of more
than 26 weeks within the given start and end week they reported at the employer. The reported reasons for
these within-job gaps make it difficult to identify whether the gap was due to the individual being fired or
laid off, and so we exclude these spells.

44From 1979 through 1983, the NLSY groups together “layoff, plant closed, or end of temporary or seasonal
job” as one reason for the job ending. Starting in 1984, these three categories are separated, and we treat
layoffs as failures and the other two categories within the original group as censored. NLSY groups together
fired and discharged as a reason for leaving the job. For simplicity, we refer to this category as a firing.

45We show results for individuals with more than a high school degree at the spell’s start for completeness.
As above, we exclude the poor and military oversamples and include all surveys through 2010. We use the
NLSY racial/ethnic cohort coding from the 1978 screener interview, which codes individuals as Hispanic;
black; or non-black, non-Hispanic.
Table 2: Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>Non-Black</th>
<th>Black</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spells Ends in Layoff/Firing</td>
<td>0.21</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>[.41]</td>
<td>[.42]</td>
</tr>
<tr>
<td>Spell Duration</td>
<td>91.5</td>
<td>82.4</td>
</tr>
<tr>
<td></td>
<td>[178.8]</td>
<td>[158.7]</td>
</tr>
<tr>
<td>Male</td>
<td>0.55</td>
<td>0.61</td>
</tr>
<tr>
<td></td>
<td>[.5]</td>
<td>[.49]</td>
</tr>
<tr>
<td>Age at Spell Start</td>
<td>25.8</td>
<td>27.3</td>
</tr>
<tr>
<td></td>
<td>[8.01]</td>
<td>[7.9]</td>
</tr>
<tr>
<td>Highest Grade Completed at Spell Start</td>
<td>11.3</td>
<td>11.4</td>
</tr>
<tr>
<td></td>
<td>[1.23]</td>
<td>[1.11]</td>
</tr>
<tr>
<td>AFQT (percentile)</td>
<td>42.3</td>
<td>18.6</td>
</tr>
<tr>
<td></td>
<td>[25.2]</td>
<td>[17.5]</td>
</tr>
<tr>
<td>Urban Location at Spell Start</td>
<td>0.72</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td>[.45]</td>
<td>[.37]</td>
</tr>
<tr>
<td>Spells per Person</td>
<td>5.65</td>
<td>6.26</td>
</tr>
<tr>
<td></td>
<td>[5.17]</td>
<td>[5.28]</td>
</tr>
<tr>
<td>Occupation: Managerial and Professional</td>
<td>0.06</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>[.24]</td>
<td>[.19]</td>
</tr>
<tr>
<td>Occupation: Technical, Sales, Administrative</td>
<td>0.22</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>[.41]</td>
<td>[.38]</td>
</tr>
<tr>
<td>Occupation: Service</td>
<td>0.18</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>[.38]</td>
<td>[.43]</td>
</tr>
<tr>
<td>Occupation: Precision Production, Craft, and Repairers</td>
<td>0.13</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>[.34]</td>
<td>[.3]</td>
</tr>
<tr>
<td>Occupation: Operatives and Laborers</td>
<td>0.23</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>[.42]</td>
<td>[.45]</td>
</tr>
<tr>
<td>Spells at Risk of Ending in Non Employment at</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 weeks</td>
<td>2298</td>
<td>1406</td>
</tr>
<tr>
<td>400 weeks</td>
<td>1071</td>
<td>578</td>
</tr>
<tr>
<td>600 weeks</td>
<td>587</td>
<td>288</td>
</tr>
<tr>
<td>800 weeks</td>
<td>331</td>
<td>160</td>
</tr>
<tr>
<td>1000 weeks</td>
<td>197</td>
<td>99</td>
</tr>
<tr>
<td>Total Spells</td>
<td>20140</td>
<td>13674</td>
</tr>
</tbody>
</table>

Notes: Standard deviations in brackets. Sample excludes Hispanic workers.
5.3.3 Results

Figure 4 shows the nonparametric hazard estimates using bins of weeks, with no control variables. The patterns are consistent with our model. The one inconsistency, the higher initial point estimate for the layoff hazard for non-black workers, will be reversed once we add controls and is also not present in the nonparametric analysis limited to firings. The layoff hazard for black workers is significantly higher than that for non-black workers starting in week 26.\footnote{The nonparametric survival function for black workers, constructed using the life table method, evaluated at the first 26-week period is roughly 86%. While only about 50% of spells are still at risk of failure after this first 26-week period, the decline in spells is largely due to censoring from quits rather than layoffs.}

We focus our discussion on changes in the absolute gap in the layoff hazard between black and non-black workers. If involuntary separations reflect the forces in our model and some race-neutral factor not in our model, then the ratio is \((b(t) + c(t))/(w(t) + c(t)) \), where \(b(t) \) and \(w(t) \) are the black and white rates due to the forces in our model and \(c(t) \) is due to some other source. The change in the absolute gap is always \(\Delta b - \Delta w \) and thus reflects only the source in our model. Whether the relative gap increases or decreases depends on what is happening to \(c \). When \(c \) falls rapidly relative to \(\Delta b \) and \(\Delta w \), the relative rate will increase. Similarly, the relative rate would increase if both \(b \) and \(w \) fell by the same amount, but \(c \) did not change. Nevertheless, in a robustness check, we will present a more parametric model that facilitates examining changes in the relative gap.

The difference in the layoff hazard between black and non-black workers starts declining around 1.5 years of tenure, when it falls by roughly 54% relative to the preceding 26-week tenure interval. This decline is statistically significant with \(p = .05 \), using a one-tailed test.\footnote{There is a 17 percentage point decline in the percentage (relative) gap between black and non-black hazards between these periods.} The layoff-hazard gap at 1 to 1.5 years of tenure is statistically higher (at the 5% level) than the average of the gaps between 1.5 and 3.5 years.\footnote{We see a roughly 10 percentage point decline in the percentage gap here.} We cannot reject at the 10% level that the gap is zero at around 3 years of tenure.

We can reject a zero gap in some later periods, but they are interspersed among periods in which we cannot reject a zero gap. It is difficult to determine whether these later significant differences are simply spurious. There are many potential tests; all will lead to over-rejection due to multiple hypothesis testing. To provide some discipline to our testing, for each period in which there is an insignificant gap between black and non-black workers, we test whether the difference continues to be insignificant when successively adding later periods. We find the interval from 520-560 weeks of tenure is the last in which the hazard difference between black and non-black workers was statistically significant on its own or when combined with
some number of later periods. Thus, we have no good evidence of significance for anything after 560 weeks of tenure. We conclude that evidence for a notable gap ends somewhere between three and eleven years of tenure.\footnote{Lange (2007) concludes that employers learn about half the information embedded in the AFQT in three years. We analyze the timing of when people are laid-off, and show this is consistent with the result in Lange. We find that 70\% of workers would be laid-off over 14.5 years of tenure, among workers at risk of being laid-off. Roughly half of these would be laid-off in the first three years. We calculate these statistics using the default life table methodology for calculating the survival probability, which assumes that half of the workers who quit over the interval were at risk of being laid-off during that period.}

Figure 4: Nonparametric Estimates of the Layoff Hazard by Week Bins, Without Control Variables: first full-time spell at each employer. We show 90\% confidence intervals for the difference between the hazard for black and non-black workers. These are based on the estimated standard deviation of the hazard function at the midpoint of the interval, using that the number of failures in the interval is a binomial random variable. If these confidence intervals exclude zero, then we can reject the one-tailed test that B-W=0 with p=.05. Sample excludes Hispanic workers.

Appendix Figure B3 shows nonparametric plots with hazards by week rather than larger bins, smoothed using kernel smoothers with various bandwidths and kernels, and local linear smoothing. Based on the absence of a gap in the first 26 weeks in figure 4, it is not surprising...
that, due to smoothing, most of these plots, which also do not include control variables, show a smaller or nonexistent gap in the first year followed by an opening of the gap. As before, by year twelve, the point estimates suggest no gap in the layoff hazard.

In Figure 5, we present Cox proportional hazard estimates using the multi-week intervals and include the control variables we list in Section 5.3. When adjusting for individual-level covariates, the point estimates suggest a slightly higher, not a lower, hazard for black workers in the first 26 weeks.50 Other than this difference, the pattern is similar to that in Figure 4. We again find a statistically significant gap in the layoff hazards from .5 to 1.5 years of tenure.

The layoff-hazard gap starts declining at around 1.5 years of tenure, when it falls by roughly 40% relative to the preceding 26-week tenure interval. This decline in the gap is statistically significant at the 10% level, using a one-tailed test.51 The gap at 1 to 1.5 years of tenure is also statistically higher than the average of the gaps for the four intervals between 1.5 and 3.5 years of tenure at the 10\% level and between 1.5 and 4 years of tenure at the 5\% level.52 We cannot reject that the gap is zero at three years of tenure at the 5\% level but can reject at the 10\% level using a one-tailed test. Using the test described in the nonparametric analysis above, we have no good evidence that the layoff-hazard gap between black and non-black workers is significantly different from zero after 560 weeks of tenure. Our broad conclusion that the gap is statistically negligible starting somewhere between three and eleven years of tenure continues to be valid.

Appendix Figure B3 shows additional plots in which we estimate Cox regressions using week rather than larger bins and smoothing hazard contributions using kernel smoothers with various bandwidths and kernels. Similar to Figure 5, these plots show an early gap in the hazards of black and non-black workers, which then falls over time. Additionally, the estimated hazard at the earliest tenure is always at least as large for black workers as for non-black workers. Appendix Figure B3 further shows results using local linear smoothing of the hazard contributions, without any controls. These results are similar to the other nonparametric results in Appendix Figure B3.

We also estimated a Cox model with the same covariates but modeled the percentage gap between the black and non-black hazards to be a cubic in seniority. To allow the effect of race on the hazard to vary over time, we include an observation for each job spell at each

50See Appendix Table B2 for coefficients on the covariates. Omitting the region, industry, and occupation fixed effects in the Cox estimation yields a larger hazard for non-black workers than for black workers in the first 26 weeks.

51The percentage gap between black and non-black hazards falls over these two periods by roughly 13 percentage points.

52Here, too, we see a decline in the percentage gap, of roughly 4 percentage points.
Failure time in the data (as Cox models are only estimated when failures occur). We find that the gap at week one is 3.3%, and this becomes statistically significant at the 10% level at week seven (Appendix Figure B4).

Over the range from 1 to 793 weeks, the absolute gap reaches its maximum (over 26 week periods) at two to two and a half years, while the maximum relative gap (64.5 percent) occurs at 266 weeks (roughly five years). The relative gap then falls, ceasing to be significant at the 5% level at approximately ten and a half years, and reaches zero at roughly 14 and a half years.\footnote{Modeling the percentage gap to be a quartic in seniority yields very similar results.} Convergence begins earlier in Figure 4 than in Appendix Figure B4 because the latter models the proportional rather than the absolute gap between the hazards. As discussed above, changes in the absolute gap better reflect the forces in our model. In

Figure 5: Estimates of the Layoff Hazard by Week Bins, Based on a Cox Model Stratified by Race. We show 90% confidence intervals for the difference between the hazard for black and non-black workers. Variance of the difference between black and non-black hazards is based on a nonparametric bootstrap, and 10,000 bootstrap samples. If these confidence intervals exclude zero, then we can reject the one-tailed test that B-W=0 with p=.05. Sample excludes Hispanic workers.
addition, the appendix figure imposes that the ratio is cubic in seniority while our main model is nonparametric in this respect. Together these results are consistent with our earlier analysis, suggesting large gaps arising by roughly one to one and a half years of tenure and then declining.

5.3.4 Robustness

Our main analysis focuses on the hazard of being laid off or fired. Appendix Figure B1 shows an alternative specification in which we analyze the hazard only of being fired. The nonparametric results show that relative to non-black workers, black workers are more likely to be fired starting in the first 26 weeks (though not significantly). This gap becomes significant starting in weeks 26-52 and then converges. From weeks 638 to 793 (roughly 12.25 to 15.25 years of tenure), no black workers are fired. Our results from the stratified Cox model are similar.\(^{54}\)

The incentive to monitor new workers is relevant mainly for individuals hired out of nonemployment. For robustness, we identify employment spells for which the individual entered from nonemployment and restrict the sample to those spells.\(^{55}\) We continue to see a gap emerging within the first year of the job spell, and convergence by the twelfth year (Appendix Figure B2(c) and (d)). Some readers may feel the model is more applicable to younger workers. When we restrict the sample to workers no older than 30 at the start of the spell, there is suggestive evidence that the gaps in the first two years are larger in magnitude and remain nonoverlapping for an additional 26 weeks (Appendix Figure B2(g) and (h)).

When restricting to workers with more than a high school degree, there is much less evidence of differences in hazards between black and non-black workers at early tenures (Appendix Figure B2(i) and (j)). Similar to our findings above, this suggests the mechanisms in our model are most relevant for less-educated workers.\(^{56}\)

Appendix B.2.6 presents additional analyses showing our results are robust to treating quits into nonemployment as involuntary and treating any gap at an employer as ending the spell.

\(^{54}\)Based on the Cox estimation, the point estimate of the hazard in the first 26 weeks is only very slightly (0.4\%) larger for non-black workers than for black workers.

\(^{55}\)We define individuals as hired out of nonemployment if there is more than one week between the end of their last spell and the start of the current spell. Further, we identify individuals as hired from nonemployment for their first full-time spell. If the individual did not respond to the following survey after the previous spell, and the year the last spell was reported was at least one year before the current spell was reported (or two years earlier after 1994), the individual is not coded as coming from nonemployment.

\(^{56}\)Appendix Figures B2(o)-B2(r) show broadly similar results for men and women.
Table 3: Differential Effect of AFQT on the Layoff Hazard, by Race

<table>
<thead>
<tr>
<th></th>
<th>Non-Black</th>
<th>Black</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFQT (Percentile)</td>
<td>-0.0014</td>
<td>-0.0049</td>
<td>-0.0012</td>
</tr>
<tr>
<td></td>
<td>(0.0007)</td>
<td>(0.0012)</td>
<td>(0.0007)</td>
</tr>
<tr>
<td>AFQT*Black</td>
<td>-0.0040</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0013)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>-0.188</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.222)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>19,293</td>
<td>13,334</td>
<td>32,627</td>
</tr>
</tbody>
</table>

Notes: Conventional standard errors in parentheses. Coefficients are from a Cox Proportional Hazards model, using week bin as a unit of time. Each observation is a job spell. We model the layoff hazard, and the failure variable is an indicator for whether the job spell ended because the worker was fired or laid off. The regression additionally includes highest grade completed at spell start (and interacted with black in column 3), indicators for male, region at spell start (northeast, north central, south, and omitting west), urban location at spell start, age at spell start, fixed effects for year, occupation (18 groups), and industry (14 groups) all measured at the start of the spell, as well as indicators for whether AFQT, region, and urban location are missing. All columns exclude individuals with missing AFQT. Sample excludes Hispanic workers. See text for details.

5.3.5 Layoff Hazard Declines with Ability for Black Workers More than for Non-Black Workers

If higher ability reduces the likelihood that a worker makes mistakes or has poor performance, and monitoring allows employers to discover such problems, monitored low-ability workers should be more likely to be fired than monitored workers who are higher ability. This relation should be weaker for nonmonitored workers, as mistakes are less likely to be discovered. We test this prediction using AFQT percentile to measure worker ability and estimating a separate Cox model for non-black and black workers. We compare the coefficient on AFQT percentile in the two regressions, while recognizing the caveats based on the Bond and Lang (2013) critique discussed above.

There is a negative effect of AFQT on the layoff hazard, and the magnitude for black workers is four times the size of the coefficient for non-black workers (Table 3, for all coefficients, see Appendix Table B3). The difference is significant at the 1% level. We also estimate a Cox model including both black and non-black workers, an interaction between black and AFQT, and between black and highest grade completed, given the correlation between AFQT and education. This specification yields similar results, and the coefficient on the interaction between black and AFQT is significant at the 1% level. These results present further evidence consistent with differential monitoring of black workers.
6 Conclusion

We develop a model that predicts known disparities between black and white workers: black workers earn lower wages, have longer unemployment duration, and obtain more education conditional on measured ability. It also predicts one previously unstudied disparity: the layoff hazard is higher for black workers at low tenure, but the hazard rates converge as tenure increases. In addition, the effect of a measure of unobserved skills on layoffs should be more beneficial for black than for white workers.

As we have argued previously, while the model, of necessity, relies on some special assumptions, the key elements are 1) that worker productivity is correlated across jobs, 2) that ability is neither perfectly observed or signalled and workers can to some extent hide past firings, 3) that firms therefore use race to statistically infer worker ability, 4) that additional information arrives during employment and is either imperfect, costly or both so that a worker’s productivity can never be known perfectly at zero cost, and 5) that firms can and do act on new information by firing some workers.

The predictions are largely confirmed. In our stratified Cox models, conditional on observables, black workers are more likely to be laid off than non-black workers before one year of seniority. By two years of tenure, this gap has roughly halved. While it is difficult to establish precisely when the layoff-hazard gap falls to 0, we have no evidence of a statistically significant gap after roughly 11 years of tenure. We also confirm that higher unobservable skills, as measured by AFQT, more strongly reduces the likelihood that a black worker is laid off, relative to a non-black worker.

Contrary to the model’s prediction, our results show that, in the presence of controls, the layoff hazard, while initially larger for black than for non-black workers, declines less for black workers between weeks 1-26 and weeks 26-52 of tenure. Obviously, it is up to the reader to decide how problematic this is. It is plausible that layoffs during the first six months reflect factors not captured by our model and that these initially obscure our model’s mechanism. It is not hard to come up with post hoc stories in which some set of white workers would have a higher rate of very short-term employment. As one example, given their better outside options, whites might be more willing to try jobs where bad matches are readily and quickly observed. The mechanism we underline becomes increasingly important with tenure and dominates after this initial probationary period.

Our message is in some ways depressing. Evidence in this paper and elsewhere suggests that black workers with high levels of education above the median for American workers can escape the churning equilibrium. However, simply addressing education or human capital disparities between black and white people need not eliminate labor market disparities. The
‘bad equilibrium’ in which many black people find themselves is difficult to escape.
References

A Theoretical Appendix

A.1 Proof of Lemma 1

Proof. Define the quantities

\[\begin{align*}
\xi & \quad \text{Flow mass of workers born per unit time} \\
A & \quad \text{Mass of unemployed black type } \alpha \text{ workers} \\
B & \quad \text{Mass of unemployed black type } \beta \text{ workers} \\
\Lambda & \quad \text{Mass of currently monitored black type } \beta \text{ workers}
\end{align*}\]

As \(g \) is the fraction of new workers that is type \(\alpha \) and unemployed \(\alpha \) workers are becoming employed each at a Poisson rate \(\mu \) and never separate, \(A \) obeys

\[\frac{dA}{dt} = \xi g - \mu A\]

Similarly, a proportion \((1 - g) \) of new workers is type \(\beta \) and such unemployed workers are also being hired at a Poisson rate \(\mu \) each. However, as \(\Lambda \) workers who are of type \(\beta \) are being monitored, a flow mass \(\Lambda \lambda (1 - \beta) \) of black \(\beta \) workers are separating after monitoring reveals a bad match are also coming in to the black unemployed pool. Hence, \(B \) obeys

\[\frac{dB}{dt} = \xi (1 - g) - \mu B + \Lambda \lambda (1 - \beta)\]

Finally, unemployed \(\beta \) workers are becoming employed with monitoring at a Poisson rate \(\mu \) and once they are employed they cease being monitored when match quality is revealed, which occurs at a rate \(\lambda \). Thus the mass of monitored black \(\beta \) workers \(\Lambda \) must satisfy

\[\frac{d\Lambda}{dt} = \mu B - \Lambda \lambda\]

Steady state implies that

\[\frac{dA}{dt} = \frac{dB}{dt} = \frac{d\Lambda}{dt} = 0\]

Solving, we obtain

\[A = \frac{\xi g}{\mu}\]
\[B = \frac{\xi(1-g)}{\mu\beta} \]

and therefore the proportion of \(\alpha \) workers in the unemployed pool is

\[\frac{A}{A+B} = \frac{\frac{\xi g}{\mu} + \frac{\xi(1-g)}{\mu\beta}}{g + \frac{1}{\beta}(1-g)} = \frac{g}{g + \frac{1}{\beta}(1-g)}. \]

Thus, a new match from the black job-seeker pool is of average quality

\[\frac{g}{g + \frac{1}{\beta}(1-g)} \cdot 1 + \left(1 - \frac{g}{g + \frac{1}{\beta}(1-g)}\right) \cdot \beta = \frac{\beta}{\beta g + (1-g)} \equiv \theta_B. \]

As \(\beta < 1 \) this is less than \(\theta_W \).

A.2 Proof of Lemma 2

Proof. Fix a wage \(w \) and a belief \(\theta \) for the firm. If the firm doesn’t monitor the worker, it receives the production net of the wage and the expected cost of errors, forever:

\[V_{\theta,N}^w = \frac{q - w - (1-\theta)\lambda c}{r}. \]

(15)

On the other hand, the firm can choose to monitor the worker. If it is optimal to do so at any instant, it is optimal to do so until the signal arrives as the problem doesn’t otherwise change. With probability \(\theta \), the match is good and the production net of wages \(q - w \) is received by the firm forever as no separation will occur; with the complementary probability the match is bad so \(q - w - \lambda c \) is received by the firm only until the signal arrives and the match ends; in either case, the monitoring cost of \(b \) is paid until revelation. The firm’s expected lifetime payoff if it monitors is therefore

\[V_{\theta,M}^w = \theta \frac{q - w}{r} + (1-\theta) \frac{q - w - \lambda c}{\lambda + r} - \frac{b}{\lambda + r}. \]

(16)

For monitoring to be optimal for the firm, we need

\[V_{\theta,M}^w \geq V_{\theta,N}^w \]

(17)

which reduces to

\[w \geq q - \lambda c + \frac{rb}{\lambda(1-\theta)}. \]

(18)
or equivalently

\[\theta \leq 1 - \frac{rb}{\lambda(w - q + \lambda c)}. \]

(19)

\[\text{A.3 Proof of Lemma 3} \]

Proof. As we require that strategies are not weakly dominated and form a PBE, the worker must at every wage draw be using an undominated action. As the worker’s action doesn’t affect his payoff if the firm rejects the wage, but does if the firm accepts it, she must always act as though the firm will accept the wage. Then, it follows that \(\alpha \) workers will accept the wage offer if

\[w \geq rU_{\theta}^{\alpha}. \]

(20)

On the other hand, \(\beta \) workers will accept wages of

\[w \geq rU_{\theta}^{\beta} \]

(21)

regardless of whether they think the firm is likely to monitor and possibly fire them.\(^{57}\) As \(\alpha \) workers can mimic the \(\beta \) acceptance rule and not suffer separation, we have \(U_{\theta}^{\alpha} \geq U_{\theta}^{\beta}. \)

There are thus no wages \(\alpha \) workers accept that \(\beta \) workers do not. If \(U_{\theta}^{\alpha} > U_{\theta}^{\beta} \) there are wages that \(\beta \) workers accept that \(\alpha \) workers do not; but then the firm will assign probability 1 to a worker accepting such a wage being type \(\beta \) and by (C1) refuse such a wage. Thus no wage below \(rU_{\theta}^{\alpha} \) is ever accepted by both parties. On the other hand, since all workers accept higher wages, accepting such a wage does not shift beliefs; therefore, firms will accept all wages higher than \(rU_{\theta}^{\alpha} \) at which they make profits when they believe \(\theta \). The requirement that the firm makes nonnegative expected profit corresponds to at least one of \(V_{\theta,M}^{w} \) and \(V_{\theta,N}^{w} \) being positive; as they both are decreasing and continuous in \(w \), we have that there is a single upper cutoff

\[w_{\theta} = \max\{w \mid \max\{V_{\theta,M}^{w}, V_{\theta,N}^{w}\} \geq 0\}. \]

(22)

The fact that \(w_{\theta_B} \) and \(w_{\theta_W} \) are positive follows from C4 and the fact that both \(V_{\theta,M}^{w} \) and \(V_{\theta,N}^{w} \) are increasing in \(\theta \). Accordingly the lower cutoff is \(w_{\theta} = rU_{\theta}^{\alpha}. \) \[57\]

\(^{57}\)Considerations about monitoring by other firms enter \(U_{\theta}^{\beta} \), but the worker’s decision to accept a match does not depend on whether the firm will monitor.
A.4 Proof of Proposition 1

Proof. First, we show that in the white labor market, at the maximal wage \(w_\theta W \), the employer does not monitor the worker. Suppose \(w = q - (1 - \theta W)\lambda c \). Then we have

\[
V^w_{\theta W, M} = \theta W \frac{q - w}{r} + (1 - \theta W) \frac{q - w - \lambda c}{\lambda + r} - \frac{b}{\lambda + r} \tag{23}
\]

\[
V^w_{\theta W, M} = \frac{1}{r(\lambda + r)} \left[\theta W (1 - \theta W)\lambda c - \frac{b}{\lambda} \right] \tag{24}
\]

From C2 this expression is negative. As \(V^w_{\theta W, M} \) is decreasing in \(w \), we must have that \(w_\theta W = q - (1 - \theta W)\lambda c \). Therefore, no monitoring occurs at the upper end of the equilibrium wage interval. From Lemma 2 we have that the employer’s monitoring decision is increasing in \(w \); therefore, there is no monitoring in the market with belief \(\theta W \). Given that, \(\theta W = \theta_0 \) is the resulting steady state belief about newly hired workers.

The average wage in the market is therefore

\[
w^\text{avg}_{\theta W} = 0.5w_\theta W + 0.5\bar{w}_\theta W = 0.5w_\theta W + 0.5\frac{\mu}{\mu + 2r} \bar{w}_\theta W = \frac{\mu + r}{\mu + 2r} [q - (1 - \theta W)\lambda c]. \tag{25}
\]

A.5 Proof of Proposition 2

Proof. Consider the wage at which the firm would break even if it does not monitor, \(\bar{w}_\theta B \). It is given by

\[
q - (1 - \theta_B) - \bar{w}_\theta B = 0 \tag{26}
\]

\[
\bar{w}_\theta B = q - (1 - \theta_B)\lambda c. \tag{27}
\]

Assume for contradiction that this is the highest equilibrium wage. As the monitoring decision is increasing in \(w \), it must also not monitor at the lowest equilibrium wage, \(\bar{w}_\theta B \). We have from (18) that such a non-monitoring wage must satisfy

\[
\bar{w}_\theta B \geq q - \lambda c + \frac{rb}{\lambda(1 - \theta)}. \tag{28}
\]
Using (5) and (27), we can rearrange the inequality

\[
\frac{\mu}{\mu + 2r} [q - (1 - \theta_B)\lambda c] \geq q - \lambda c + \frac{rb}{\lambda (1 - \theta)}
\]

(29)

\[
\frac{b}{\lambda} \geq (1 - \theta_B) \frac{\lambda c (\theta_B \mu + 2r) - 2rq}{r(\mu + 2r)}
\]

(30)

\[
\frac{b}{\lambda} \geq (1 - \theta_B) \frac{\lambda c}{r \theta_B} - 2(1 - \theta_B) q - (1 - \theta_B) \lambda c
\]

(31)

so that we have arrived at a contraction to (C3). We conclude that the firm would monitor at a wage of \(\frac{\mu}{\mu + 2r} \bar{w}_{\theta_B}^m\), and therefore at all higher wages as well, including \(\bar{w}_{\theta_B}^n\). Thus, the highest equilibrium wage is the break-even monitoring wage \(\bar{w}_{\theta_B}^m\), and it satisfies \(\bar{w}_{\theta_B}^m > \bar{w}_{\theta_B}^n\). It then follows from the fact that \(\frac{\mu}{\mu + 2r} \bar{w}_{\theta_B}^m\) was a wage at which the firm would monitor and the increasing monitoring decision that the firm would monitor at \(\frac{\mu}{\mu + 2r} \bar{w}_{\theta_B}^m\), as well. Therefore, all workers are monitored and the average new match quality is in steady state at \(\theta_B\).

The average wage in the back labor market is thus

\[
\bar{w}_{\theta_B}^{avg} = \frac{1}{2} \bar{w}_{\theta_B}^n + \frac{1}{2} \bar{w}_{\theta_B}^m = \frac{1}{2} \left[\frac{\mu + r}{\mu + 2r} \bar{w}_{\theta_B}^m \right] = \frac{\mu + r}{\mu + 2r} \left[q - \frac{r(\lambda c (1 - \theta_B) + b)}{\lambda B + r} \right].
\]

(32)

A.6 Unemployment Duration Differential

In Section 4.4, we show that local labor markets with a higher proportion of black workers have slower matching rates. Here, we prove that this results in a longer average unemployment duration for black workers.

Average unemployment duration in market \(i\) is \(1/\mu\), where \(\mu = \mu(\varphi(\rho_i))\) is a strictly increasing function of \(\rho_i\), which is the proportion of workers in market \(i\) who are white. Denoting by \(\xi_i^B\) the number of black workers and by \(\xi_i^W\) the number of white workers in each market \(i\), we wish to show that the average black unemployed worker must wait longer for a match:

\[
\frac{1}{\sum_i \xi_i^B i} \sum_i \xi_i^B \mu \left(\frac{1}{\varphi \left(\frac{\xi_i^W}{\xi_i^B + \xi_i^W} \right)} \right) > \frac{1}{\sum_i \xi_i^W} \sum_i \xi_i^W \mu \left(\frac{1}{\varphi \left(\frac{\xi_i^W}{\xi_i^B + \xi_i^W} \right)} \right).
\]

(33)

Let’s define the proportion of black and white workers in each job as \(\xi_i^B = \frac{\xi_i^B}{\sum_j \xi_j^B}\) and
\(\xi_i^W = \frac{\xi_i^W}{\sum_j \xi_j^W} \) respectively, so that \(\sum \xi_i^B = \sum \xi_i^W = 1 \). Define the function \(\sigma \) via

\[
\sigma(x) = \frac{1}{\mu \left(\varphi \left(\frac{x}{x + \sum_j \xi_j^B/\xi_j^W} \right) \right)}
\]

so that \(\sigma \left(\frac{\xi_i^W}{\xi_i^B} \right) = \frac{1}{\mu \left(\varphi \left(\frac{\xi_i^W}{\xi_i^B} \right) \right)} \). As \(\mu \circ \phi \) is strictly increasing, the function \(\sigma(\cdot) \) is strictly decreasing. We can now rewrite statement (33) as

\[
\sum_i \xi_i^B \sigma \left(\frac{\xi_i^W}{\xi_i^B} \right) > \sum_i \xi_i^W \sigma \left(\frac{\xi_i^W}{\xi_i^B} \right)
\]

or simply

\[
\sum_i (\xi_i^B - \xi_i^W) \sigma \left(\frac{\xi_i^W}{\xi_i^B} \right) > 0.
\]

We can split terms by whether white or black workers are relatively overrepresented:

\[
\sum_{i: \xi_i^B > \xi_i^W} (\xi_i^B - \xi_i^W) \sigma \left(\frac{\xi_i^W}{\xi_i^B} \right) - \sum_{i: \xi_i^B < \xi_i^W} (\xi_i^W - \xi_i^B) \sigma \left(\frac{\xi_i^W}{\xi_i^B} \right) > 0.
\]

Now, notice that as \(\sigma \) is strictly decreasing, the left-hand side is strictly greater than

\[
\sum_{i: \xi_i^B > \xi_i^W} (\xi_i^B - \xi_i^W) \sigma(1) - \sum_{i: \xi_i^B < \xi_i^W} (\xi_i^W - \xi_i^B) \sigma(1).
\]

which is equal to 0 as \(\sum_i \xi_i^W = \sum_i \xi_i^B = 1 \), thus proving that black unemployed workers must wait longer for a match, on average.

B Empirical Appendix

B.1 Supervision

PSID Data We classify occupations into 12 groups of which nine are represented in the regression: professional (PSID occupation codes 10 through 19); not self employed (code 20); self employed (code 31, no one with this code is in the regression sample); clerks (codes 40 and 41); salesmen (code 45); craftsmen including foreman, nec (codes 50 and 51); protective services (codes 52 and 55, no one with these codes is in the regression sample); operatives
(codes 61 and 62); laborers including farmers (codes 70, 71, and 80); service workers (codes 73 and 75); NA, Don’t Know (code 99); and inapplicable (code 0, no one with this code is in the regression sample).

We classify industries into 11 groups, of which nine are represented in the regression: agriculture (PSID industry code 11); mining (code 21); construction (code 51); manufacturing (codes 30 through 49); transportation, communications, public utilities (codes 55 through 57); trade (codes 61 through 69); finance, insurance, real estate (code 71); services (codes 81 through 88); public administration (codes 91 and 92, no one with these codes in the regression sample); NA, Don’t Know (code 99); inapplicable (code 0, no one with this code is in the regression sample).

We classify private employers based on the question regarding whether the respondent works for the federal, state, or local government. We classify those working for private employers as those who respond they do not work for the federal, state, or local government. We additionally code private employer as zero if the individual’s reported industry was the armed services (code 91) or government, other than medical or educational services; NA whether other (code 92).

We classify individuals living in Alaska or Hawaii as living in the West region of the U.S.

B.2 Hazard Analysis Using the NLSY79

B.2.1 Sample Restrictions

We exclude individuals with missing start or end weeks for any full-time spell, and individuals with full-time spells that end before they begin. Due to rounding week numbers, it is possible that the start week of the span is greater than the end week. In cases when the start week is up to two weeks greater than the end week, we replace the start week equal to the end week (National Longitudinal Survey of Youth 2019).

Missing or unclear start and end weeks make it difficult to know whether any of the individual’s spells end in non-full-time employment, and our robustness analysis treats quits into nonemployment similarly to layoffs. In order to keep the samples similar, we exclude all spells for these individuals.

B.2.2 Constructing Individual Covariates

The stratified Cox estimation adjusts for highest grade completed at the time the employment spell begins. If the individual is surveyed in the year the employment spell begins, this is simply the highest grade completed that year. If the individual is not surveyed in that year, we impute the value of this variable as described below.
Table B.1: Likelihood of Employer Monitoring by Race (coefficients on covariates)

<table>
<thead>
<tr>
<th>Y = Level of Supervision</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>0.150</td>
<td>0.212</td>
<td>0.176</td>
<td>0.185</td>
<td>0.126</td>
</tr>
<tr>
<td></td>
<td>(0.099)</td>
<td>(0.104)</td>
<td>(0.110)</td>
<td>(0.110)</td>
<td>(0.184)</td>
</tr>
<tr>
<td>Other Race</td>
<td>-0.248</td>
<td>-0.225</td>
<td>-0.350</td>
<td>-0.334</td>
<td>-0.347</td>
</tr>
<tr>
<td></td>
<td>(0.176)</td>
<td>(0.199)</td>
<td>(0.208)</td>
<td>(0.211)</td>
<td>(0.399)</td>
</tr>
<tr>
<td>Highest Grade Completed</td>
<td></td>
<td></td>
<td>-0.063</td>
<td>-0.065</td>
<td>-0.063</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.025)</td>
<td>(0.025)</td>
<td>(0.025)</td>
</tr>
<tr>
<td>Tenure (hundreds of months)</td>
<td>0.007</td>
<td>-0.012</td>
<td>-0.036</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.155)</td>
<td>(0.158)</td>
<td>(0.177)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tenure (hundreds of months)^2</td>
<td>-0.003</td>
<td>0.001</td>
<td>0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.041)</td>
<td>(0.042)</td>
<td>(0.047)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>0.023</td>
<td>-0.017</td>
<td>-0.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.128)</td>
<td>(0.135)</td>
<td>(0.135)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (tens of years)</td>
<td>-0.264</td>
<td>-0.310</td>
<td>-0.300</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.205)</td>
<td>(0.207)</td>
<td>(0.209)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (tens of years)^2</td>
<td>0.016</td>
<td>0.021</td>
<td>0.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.024)</td>
<td>(0.025)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Union Job</td>
<td>0.037</td>
<td>0.004</td>
<td>0.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.109)</td>
<td>(0.110)</td>
<td>(0.110)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salaried Worker</td>
<td>-0.390</td>
<td>-0.401</td>
<td>-0.399</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.131)</td>
<td>(0.131)</td>
<td>(0.132)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northeast</td>
<td>0.017</td>
<td>0.038</td>
<td>0.042</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.162)</td>
<td>(0.163)</td>
<td>(0.164)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northcentral</td>
<td>-0.176</td>
<td>-0.159</td>
<td>-0.159</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.147)</td>
<td>(0.146)</td>
<td>(0.147)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South</td>
<td>-0.127</td>
<td>-0.094</td>
<td>-0.091</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.150)</td>
<td>(0.154)</td>
<td>(0.155)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporarily Laid Off</td>
<td>-0.072</td>
<td>-0.077</td>
<td>-0.075</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.294)</td>
<td>(0.296)</td>
<td>(0.296)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln(Hourly Wage)</td>
<td>0.151</td>
<td>0.149</td>
<td>(0.158)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black*Tenure</td>
<td>0.017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black*Tenure^2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.327)</td>
</tr>
<tr>
<td>Completed Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 12</td>
<td>≤ 12</td>
<td>≤ 12</td>
<td>≤ 12</td>
<td>≤ 12</td>
</tr>
<tr>
<td>Occupation, Industry FE</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>1,095</td>
<td>1,095</td>
<td>1,089</td>
<td>1,089</td>
<td>1,089</td>
</tr>
</tbody>
</table>

Notes: Robust standard errors in parentheses. Estimates are from an ordered probit using data from the 1977 PSID. Dependent variable: level of employer supervision. A value of six corresponds to employer checking the individual’s work several times per day, five to once a day, four to once a week, three to every few weeks, two to less often, and one corresponds to no supervisor. The sample includes household heads employed or temporarily laid off by private employers, who reported a wage and are not themselves supervisors. Observations are weighted by the family weights of the survey. In column 5, indicators for black and other race worker are interacted with tenure (hundreds of months) and tenure (hundreds of months) squared. Interactions with other race worker are not shown. See text for details.
If the highest grade completed is the same in the previous and subsequent surveys, we impute the value for highest grade completed in the survey of interest. We first impute the values for survey years based on previous and subsequent surveys. After imputing these, we impute the value for nonsurvey years based on previous and subsequent surveys.\(^{58}\)

Highest grade completed at the time the spell began will still be missing for individuals whose spell begins in nonsurvey years, and whose highest grade completed changes between the previous and the subsequent surveys.

If the individual is not surveyed in the year the spell begins, we determine the individual’s geographic region at the beginning of the spell, and whether they live in an urban or rural location, using the value of these variables in surrounding years. We impute only if the value of these variables is the same in the previous and subsequent surveys.

B.2.3 Coding Quits

The respondents’ choices for why they left their job change with the surveys. For most years the reasons why the respondent left their job include several which are explicitly named “quits” for example quit for pregnancy or family reasons or quit to look for another job, and several which are clearly not quit related. In the first survey year, as well as the surveys starting in 2002, there are several additional categories that do not include the word “quit” that we code as quits as they are arguably voluntary separations.

In 1979, these include “Pregnancy” and family changed jobs or moved, or family reasons. In years after 2002, these include “went to jail, prison, had legal problems,” “transportation problems,” “no desirable assignments available,” “retirement,” “job assigned through a temp agency or a contract firm became permanent,” and “dissatisfied with job matching service”. There are few instances of spells ending for these reasons.

B.2.4 Occupation and Industry

We use data on occupation from the Employer Roster. Up until 2000, the 1970 Census occupation codes are used in the NLSY to code occupation. For only some jobs, the 1980 Census occupation codes are used starting in 1982. Starting in 2002, the 2000 Census occupation codes are used. These are used through the 2004 survey, with the exception that in the 2004 NLSY survey there is an added zero on each of the occupation codes, which

\(^{58}\)This addresses the problem arising from missing highest grade completed in 1998, but nonmissing in 1996 and 2000. Imputing the nonsurvey years and the survey years together, the value in 1997 would still be missing since the next survey year is 1998. Imputing the survey years first implies that 1998 becomes nonmissing, and so then 1997 becomes nonmissing as well because both 1996 and 1998 are nonmissing.
matches the added zero in the Census ACS codes starting in 2003. Starting in 2006, the ACS 2005-2009 occupation codes are used in the NLSY to code occupation.

In order to obtain consistent occupation codes across surveys, we use the crosswalks from the Minnesota Population Center to convert the occupation codes to 1990 Census Occupation Codes. Specifically, we download the 1970 Census state, metro, and neighborhood samples, with both the contemporaneous Occupation Codes and the 1990 Occupation codes. Keeping one observation per contemporaneous occupation code, we merge on contemporaneous occupation code with the NLSY occupation roster, only to observations in survey years before 2002 since those were based on 1970 codes.

We then download the 2000 Census 1 percent sample with both the contemporaneous occupation codes and the 1990 occupation codes, and implement the same procedure for survey years 2002 and 2004. We download the 2005 ACS with the contemporaneous occupation codes and the 1990 occupation codes, and implement the same procedure for years starting in 2006.

Finally, we download the 1980 census 5 percent state sample, and 1 percent metro, urban, LMA, and metro/non-metro samples. For observations from surveys before 2002 that did not merge with the 1970 census, we then merge with the 1980 census in case any of these nonmerged occupations were 1980 codes rather than 1970 codes.

We then classify occupations into 19 groups, which correspond to the subclassifications of the seven occupation groups suggested by IPUMS. These groups include: executive, administrative, and managerial occupations; management related occupations; professional specialty occupations; technicians and related support occupations; sales occupations; administrative support occupations, including clerical; private household occupations; protective service occupations; service occupations, except protective and household; farm operators and managers; other agricultural and related occupations; mechanics and repairers; construction trades; extractive occupations; precision production occupations; machine operators, assemblers, and inspectors; transportation and material moving occupations; military occupations; unemployed and missing. Due to the small number of individuals in military occupations given our sample restrictions, we group these occupations with unemployed and missing, consistent with IPUMS grouping these together as ”non-occupational responses”. This results in 18 occupation groups.

Individuals with missing occupation include those whose occupational code in the NLSY did not match to a 1990 Census occupation code, those whose NLSY occupation codes match to a 1990 Census occupation code indicating N/A and unknown or unemployed, and those who were not in the occupation roster data. Among those whose occupational code in the NLSY did not match to a 1990 Census occupation code, nearly all of these are because
the occupation code in the NLSY was -4, the code for a valid skip. There were several individuals whose NLSY occupational code was outside of the non-occupational and invalid responses, but did not match a 1990 Census occupation code. For these individuals there was no contemporaneous occupation code matching the NLSY occupation code.

The Minnesota Population Center proposes the following more aggregated set of occupational categories: managerial and professional; technical, sales, and administrative; service; farming, forestry, and fishing; precision production, craft, and repairers; operatives and laborers; and non-occupational responses (Minnesota Population Center 2020).

We follow an analogous procedure for obtaining the industry codes. Up until 2000, the 1970 Census industry codes are used in the NLSY to code industry. For only some jobs, the 1980 Census industry codes are used starting in 1982. Starting in 2002, the 2000 Census industry codes are used. Starting in 2004, the 2002 Census industry codes are used. To obtain the crosswalk between the 1990 Census industry codes and the 2002 Census industry codes, we download the 2003 through the 2007 ACS with both the contemporaneous and 1990 industry codes. These are the samples in which the contemporaneous industry code is the 2002 Census industry code.

We classify industries into 15 groups, corresponding to those delineated by the Minnesota Population Center. These include: agriculture, forestry, and fisheries; mining; construction; manufacturing; transportation, communication, and other public utilities; wholesale trade; retail trade; finance, insurance, and real estate; business and repair services; personal services; entertainment and recreation services; professional and related services; public administration; military; and missing. Based on our sample restrictions, there are not any individuals reporting the military as their industry. This results in 14 industry groups.

Individuals with missing industry code include those whose industry code in the NLSY did not match to a 1990 Census industry code, those whose industry code in the NLSY matches to a 1990 Census industry code indicating N/A, did not respond, or last worked in 1984 or earlier, and those who were not in the industry roster data.

Among those whose industry code in the NLSY did not match to a 1990 Census industry code, nearly all of these are because the industry code in the NLSY was -4, the code for a valid skip. There were a small number of individuals whose NLSY industry code was outside of the non-industry and invalid responses, but did not match a 1990 Census industry code. For these individuals there was no contemporaneous industry code matching the NLSY industry code.
B.2.5 Standard Errors for Baseline Hazard Estimates

Baseline hazard contributions are functions of the estimated coefficients from a Cox model. As a result, we obtain the variance of the difference in the black and non-black hazards at each failure time based on a nonparametric bootstrap, and 10,000 bootstrap samples. We then use these to construct confidence intervals for the difference between the hazard for black and non-black workers. For each bootstrap sample we estimate the Cox model, and then follow Kalbfleisch and Prentice (2002) to obtain the baseline hazard contributions at each failure time by maximizing the likelihood function

\[
\prod_{i=1}^{k} \left[\prod_{j \in D_i} \left(1 - \alpha_i^{\exp[Z_j(t_i)\hat{\gamma}]} \right) \prod_{l \in R(t_i) \setminus D_i} \alpha_i^{\exp[Z_l(t_i)\hat{\gamma}]} \right]
\]

(38)

where \(1 - \alpha_i\) is the baseline hazard at each failure time \(t_i\), \(i = 1, \ldots, l\), \(D_i\) is the set of individuals who fail at time \(t_i\), and \(R(t_i)\) is the set of individuals at risk of failing just prior to time \(t_i\). Maximizing (38) with respect to \(\alpha_i\) implies the maximum likelihood estimate of \(\alpha_i\) is the solution to

\[
\sum_{j \in D_i} \exp[Z_j(t_i)\hat{\gamma}][1 - \alpha_i^{\exp[Z_j(t_i)\hat{\gamma}]}]^{-1} = \sum_{l \in R(t_i)} \exp[Z_l(t_i)\hat{\gamma}]
\]

(39)

This is solved using an iterative procedure.\(^{59}\) Based on our 10,000 bootstrap samples, for each failure time we use the variance of the difference in these estimated contributions, between black and non-black workers, to form the confidence intervals for the difference in the hazards between these groups. Specifically, our confidence intervals are equal to the difference in black and white hazards based on our principal specification plus or minus 1.645 times the standard error of this difference based on our bootstrap procedure.

B.2.6 Additional Robustness Exercises

In the main specification we treat gaps at the same employer of less than or equal to 26 weeks as continuations of the same job spell at the employer. For robustness, we treat any gap in employment at an employer as ending the spell, and evaluate whether the worker was fired or laid off at that point.\(^{60}\) Appendix Figure B2(e) and (f) show the hazard functions for this robustness specification look quite similar to the principal results.

\(^{59}\)For the iterative procedure to solve (39), we use the initial value suggested by Kalbfleisch and Prentice (2002): \(1 - \alpha_{i0} = d_i\left\{ \sum_{l \in R(t_i)} \exp[Z_l(t_i)\hat{\gamma}] \right\}^{-1}\), where \(d_i\) is the number of failures over the interval.

\(^{60}\)This specification also excludes any spells for which the worker reported a gap within the start and end weeks of the span at the employer. This restriction excludes about 5100 spells.
If an individual reports quitting a job and then directly enters nonemployment, this could be quite similar to a layoff. For robustness, we treat quits into nonemployment similarly to layoffs.61 We treat a job spell as ending in non-full-time employment if there is more than one week between the spell’s end and the start of the next full-time job spell, reported at any other employer in any survey year. We alternatively treat a spell as ending in non-full-time employment only if there are more than four weeks between the spell’s end and the start of the next full-time job spell. Both of these definitions yield similar results (Appendix Figure B2((a), (b), (m) and (n)).

B.2.7 Kernel- and Local-Linear Smoothing to Obtain Hazard Estimates: Methods

The principal results use intervals of weeks to smooth the hazard estimates. For robustness, we use week as a unit of time, the smallest unit of time for which we know employment status. We obtain the steps (hazard contributions) of the Nelson-Aalen cumulative hazard, and smooth them using a kernel smoother.62 We obtain the cumulative hazard separately for black and non-black workers.

The cumulative hazard at time \(t_j \) is denoted \(H(t_j) \). Then, the hazard contributions at each time \(t_j \) in which some individual is laid off are defined as:

\[
\Delta \hat{H}(t_j) = \hat{H}(t_j) - \hat{H}(t_{j-1})
\]

We plot the smoothed hazard function separately for black and non-black workers

\[
\hat{h}(t) = b^{-1} \sum_{j=1}^{D} K_t \left(\frac{t - t_j}{b} \right) \Delta \hat{H}(t_j)
\]

The hazard estimate at time \(t \), \(h(t) \), is based on the the hazard contributions \(\hat{H}(t_j) \) at all failure times \(j \), where each contribution is weighted by the kernel function \(K \) and bandwidth \(b \). We use the Epanechnikov kernel, with the bandwidth equal to .5*Silverman’s plug-in estimate.63 This yields a bandwidth of 67 for black workers and 72 for non-black workers.

61See Appendix B.2.3 for details on coding quits.

62The Nelson-Aalen cumulative hazard is \(\hat{H}(t) = \sum_{j\mid t_j \leq t} \frac{d_j}{n_j} \), where \(d_j \) is the number of failures at time \(t_j \) and \(n_j \) is the number at risk of failure at time \(t_j \). The steps of this function are equal to \(\frac{d_j}{n_j} \).

63The version of the Epanechnikov kernel we refer to here is \(K[z] = .75(1 - z^2) \) if \(|z| < 1 \). Silverman’s plug-in estimate is given by \(b^* = 1.3643\delta N^{-1/2}\min(s, iqr/1.349) \) where \(\delta \) depends on the kernel and is 1.7188 for the Epanechnikov kernel, \(N \) is the number of unique failure times, \(s \) is the sample standard deviation of the failure times and \(iqr \) is the interquartile range of the failure times. Cameron and Trivedi (2005) suggest using Silverman’s plug-in estimate, as well as bandwidths half and twice the size. Because Silverman’s plug-in estimate for the bandwidth is quite large, we present estimates using bandwidths half the size as well as the actual Silverman plug-in estimate.
We use a boundary-adjusted Epanechnikov kernel (based on Müller and Wang (1994)) to address bias in the boundary regions ($t_{min} \leq t < b; t_{max} - b < t \leq t_{max}$) from using a symmetric kernel. As a further alternative to using a boundary-adjusted kernel, we show hazard estimates only outside the boundary region. For those results, we smooth the hazard contributions using the version of the Epanechnikov kernel described in Epanechnikov (1969). This yields equivalent results to the version of the Epanechnikov kernel described in the previous paragraph and in Footnote 63 if the bandwidth is divided by $\sqrt{5}$. This implies the boundary region is smaller when using this kernel, which is helpful given we plot only outside the boundary. These plots show a clear gap at the boundary of roughly 30 weeks which closes over time.

We also smooth the hazards using kernel-weighted local linear regression which does not yield biased estimates in the boundary regions (see Nielsen and Tanggaard 2001 and Cameron and Trivedi 2005).

We additionally estimate Cox models stratified by race, and use the same Epanechnikov kernel and bandwidth as in the nonparametric specifications to smooth the baseline hazard contributions from the Cox model. These models include the same covariates as the models using week bins.

$K[z] = .75(1 - \frac{1}{5}z^2)$ if $|z| < \sqrt{5}$
References

Appendix Figure B1: Hazard of Being Fired or Discharged

(a) Nonparametric

Notes: This figure presents robustness results, using both nonparametric methods and stratified Cox regressions. These are the same methods as used in the principal results described in Figures 4 and 5, but analyzing the hazard of being fired or discharged, rather than the hazard of being laid off, fired, or discharged. In (a) bands around estimates are 95% confidence intervals. In (b), missing hazard estimates imply that no individuals were fired or laid off during that interval, and so the Cox model is not estimated. Sample excludes Hispanic workers.
Appendix Figure B2: Robustness Hazard Estimates using Week Bins

(a) Treating Quits into Nonemployment Similarly to Layoffs, Nonparametric

(b) Treating Quits into Nonemployment Similarly to Layoffs, Cox

(c) Enter Spell from Nonemployment, Nonparametric

(d) Enter Spell from Nonemployment, Cox

(e) Any Interruption at Employer as Ending Spell, Nonparametric

(f) Any Interruption at Employer as Ending Spell, Cox
(g) Age ≤ 30 at Spell Start, Nonparametric

(h) Age ≤ 30 at Spell Start, Cox

(i) > 12 Years of Education at Spell Start, Nonparametric

(j) > 12 Years of Education at Spell Start, Cox

(k) Hazard of Job Ending due to Plant Closing, Nonparametric

(l) Hazard of Job Ending due to Plant Closing, Cox
(m) Quits to Nonemployment as Layoffs, End in Nonemployment if > 4 Weeks Until Next Fulltime Spell, Nonparametric

(n) Quits to Nonemployment as Layoffs, End in Nonemployment if > 4 Weeks Until Next Fulltime Spell, Cox

(o) Men, Nonparametric

(p) Men, Cox

(q) Women, Nonparametric

(r) Women, Cox
Notes: This figure presents robustness results, using both nonparametric methods and stratified Cox regressions. These are the same methods as used in the principal results described in Figures 4 and 5. The plots in (a) and (b) treat quits into nonemployment similarly to layoffs, where nonemployment is defined as more than one week between fulltime spells. The plots in (c) and (d) restrict to employment spells for which the individual entered from nonemployment, which includes an individual’s first fulltime spell. The plots in (e) and (f) treat any gap at the same employer as ending the spell, rather than treating gaps of ≤ 26 weeks at the same employer as the same spell. The plots in (g) and (h) restrict to spells for which the individual was less than or equal to 30 at the start of the spell. The plots in (i) and (j) restrict to individuals who completed more than 12 years of education at the start of the spell. The plots in (k) and (l) present the hazard of a job ending due to a plant closing. The plots in (m) and (n) treat quits into nonemployment similarly to layoffs, where nonemployment is defined as more than four weeks between fulltime spells. For all plots showing confidence intervals, bands around estimates are 95% confidence intervals. Samples exclude Hispanic workers.
Appendix Figure B3: Robustness Kernel-Smoothed Hazard Estimates

(a) Boundary-adjusted, Smaller Bandwidth, Nonparametric

(b) Boundary-adjusted, Smaller Bandwidth, Cox

(c) Boundary-adjusted, Larger Bandwidth, Nonparametric

(d) Boundary-adjusted, Larger Bandwidth, Cox

(e) Exclude Boundary Region, Smaller Bandwidth, Nonparametric

(f) Exclude Boundary Region, Smaller Bandwidth, Cox
Notes: The plot in (a) presents kernel-smoothed hazard contributions from the Nelson-Aalen cumulative hazard, using the boundary-adjusted alternative Epanechnikov kernel, with bandwidth equal to 72 weeks for non-black workers and 67 weeks for black workers, these are one half of the Silverman plug-in for this kernel. The plot in (b) presents kernel-smoothed hazard contributions from a Cox Proportional Hazards model, stratified by race. The kernel and the bandwidth are the same as those in (a). The explanatory variables in the Cox model are the same as those included in Figure 5. The plots in (c) and (d) are analogous to (a) and (b), but use the Silverman plug-in bandwidth (145 and 134 weeks for non-black and black workers respectively) rather than half of the Silverman plug-in bandwidth as in (a) and (b). The plots in (e) and (f) are analogous to (a) and (b), but use the Epanechnikov kernel (1969 version), with bandwidth equal to half the Silverman plug-in for this kernel (bandwidth of 32 weeks for non-black workers and 30 weeks for black workers), and show results only outside the boundary regions. The plot in (g) uses local linear smoothing of the hazard contributions, using the alternative Epanechnikov kernel with bandwidth equal to half the Silverman plug-in estimate. The plot in (h) is the same as in (g), but uses the Silverman plug-in estimate as the bandwidth. For all plots showing confidence intervals, bands around estimates are 95% confidence intervals. Vertical lines show boundary regions for black and non-black workers. Samples exclude Hispanic workers.
Appendix Figure B4: Hazard Ratio for Black Workers Relative to Non-Black Workers Controlling for Covariates in a Cox Model, Allowing the Percentage Gap in Hazards to be a Cubic in Seniority

Notes: This is a plot of the hazard ratio for black relative to non-black workers from a Cox model controlling for the same covariates included in Figure 5. Additionally, we include an indicator for whether the worker is black, and interact this with a cubic in seniority (duration in job spell in weeks). In order to allow the effect of race to vary over time, we include an observation for each job spell at each failure time in the data (as Cox models are only estimated when failures occur in the data). We obtain the linear combination of the coefficients on the indicator for black worker, for values of week from 1 to 793. We then exponentiate these to obtain the hazard ratio. Dashed lines are the 95% confidence intervals based on robust standard errors, which are larger than the nonrobust standard errors. Sample excludes Hispanic workers.
Appendix Table B2: Coefficients from Cox Model Stratified by Race

<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest Grade Completed at Spell Start</td>
<td>-0.0668</td>
<td>(0.0102)</td>
</tr>
<tr>
<td>Male</td>
<td>0.182</td>
<td>(0.0292)</td>
</tr>
<tr>
<td>AFQT (Percentile)</td>
<td>-0.00208</td>
<td>(0.000587)</td>
</tr>
<tr>
<td>AFQT (Percentile) Missing</td>
<td>-0.215</td>
<td>(0.0700)</td>
</tr>
<tr>
<td>Region at spell start: Northeast</td>
<td>-0.233</td>
<td>(0.0424)</td>
</tr>
<tr>
<td>Region at spell start: North Central</td>
<td>-0.143</td>
<td>(0.0380)</td>
</tr>
<tr>
<td>Region at spell start: South</td>
<td>-0.297</td>
<td>(0.0373)</td>
</tr>
<tr>
<td>Region at spell start: Missing</td>
<td>-0.180</td>
<td>(0.133)</td>
</tr>
<tr>
<td>Urban Location at Spell Start</td>
<td>0.0125</td>
<td>(0.0295)</td>
</tr>
<tr>
<td>Urban Location at Spell Start Missing</td>
<td>-0.0213</td>
<td>(0.0734)</td>
</tr>
<tr>
<td>Age at Spell Start</td>
<td>-0.0151</td>
<td>(0.00580)</td>
</tr>
<tr>
<td>Observations</td>
<td>33,814</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Conventional standard errors in parentheses; these are larger than the robust standard errors which account for observations appearing multiple times in risk pools. Coefficients are from a Cox Proportional Hazards model stratified by race, using week bin as a unit of time. Each observation is a job spell. We model the layoff hazard, and the failure variable is an indicator for whether the spell ended because the individual was fired or laid off. The regression additionally includes fixed effects for year, occupation (18 groups), and industry (14 groups) all measured at the start of the spell. Sample excludes Hispanic workers. See text for details.
Appendix Table B3: Differential Effect of AFQT on the Layoff Hazard, by Race

<table>
<thead>
<tr>
<th></th>
<th>Non-Black</th>
<th>Black</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFQT (Percentile)</td>
<td>-0.0014**</td>
<td>-0.0049***</td>
<td>-0.0012*</td>
</tr>
<tr>
<td></td>
<td>(0.0007)</td>
<td>(0.0012)</td>
<td>(0.0007)</td>
</tr>
<tr>
<td>AFQT*Black</td>
<td>-0.0040***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0013)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>-0.1880</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.2217)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highest Grade Completed at Spell Start</td>
<td>-0.0741***</td>
<td>-0.0510***</td>
<td>-0.0818***</td>
</tr>
<tr>
<td></td>
<td>(0.0141)</td>
<td>(0.0165)</td>
<td>(0.0136)</td>
</tr>
<tr>
<td>Highest Grade Completed at Spell Start*Black</td>
<td></td>
<td></td>
<td>0.0428**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.0203)</td>
</tr>
<tr>
<td>Male</td>
<td>0.2402***</td>
<td>0.1062**</td>
<td>0.1819***</td>
</tr>
<tr>
<td></td>
<td>(0.0393)</td>
<td>(0.0453)</td>
<td>(0.0296)</td>
</tr>
<tr>
<td>Region at spell start: Northeast</td>
<td>-0.2271***</td>
<td>-0.1082</td>
<td>-0.2331***</td>
</tr>
<tr>
<td></td>
<td>(0.0514)</td>
<td>(0.0882)</td>
<td>(0.0432)</td>
</tr>
<tr>
<td>Region at spell start: North Central</td>
<td>-0.1632***</td>
<td>0.0035</td>
<td>-0.1484***</td>
</tr>
<tr>
<td></td>
<td>(0.0436)</td>
<td>(0.0878)</td>
<td>(0.0387)</td>
</tr>
<tr>
<td>Region at spell start: South</td>
<td>-0.3856***</td>
<td>-0.1033</td>
<td>-0.3060***</td>
</tr>
<tr>
<td></td>
<td>(0.0464)</td>
<td>(0.0788)</td>
<td>(0.0380)</td>
</tr>
<tr>
<td>Urban Location at Spell Start</td>
<td>0.0309</td>
<td>0.0063</td>
<td>0.0165</td>
</tr>
<tr>
<td></td>
<td>(0.0374)</td>
<td>(0.0507)</td>
<td>(0.0300)</td>
</tr>
<tr>
<td>Age at Spell Start</td>
<td>-0.0239***</td>
<td>-0.0047</td>
<td>-0.0166***</td>
</tr>
<tr>
<td></td>
<td>(0.0079)</td>
<td>(0.0090)</td>
<td>(0.0059)</td>
</tr>
<tr>
<td>Observations</td>
<td>19,293</td>
<td>13,334</td>
<td>32,627</td>
</tr>
</tbody>
</table>

Notes: Conventional standard errors in parentheses. Coefficients are from a Cox Proportional Hazards model, using week bin as a unit of time. Each observation is a job spell. We model the layoff hazard, and the failure variable is an indicator for whether the job spell ends because the individual was fired or laid off. The regression additionally includes fixed effects for year, occupation (18 groups), and industry (14 groups) all measured at the start of the spell, as well as indicators for region and urban location are missing. All columns exclude individuals with missing AFQT. Samples exclude Hispanic workers. See text for details.