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Abstract

Consider a continuum of independent and identically distributed random
variables corresponding to the points of the unit interval [0, 1]. Known tech-
nical difficulties are complemented by showing directly that the random
sample path is almost surely not a Lebesgue measurable function. This re-
futes the common claim that, because of some version of the “law of large
numbers”, the integral of each sample path equals the common mean of
each random variable. To obtain a valid and useful result, we apply to the
continuum of random variables the Monte Carlo method of numerical in-
tegration based on limits as the sample size tends to infinity of empirical
finite sample averages of the realized random values. The resulting “Monte
Carlo integral” is almost surely a degenerate random variable concentrated
on the mean. A suitably modified version works when the different indexed
random variables are merely independent with cumulative distribution func-
tions that are measurable w.r.t. the index. Further generalizations to Monte
Carlo integrals of conditionally independent random variables result, under
conditions discussed in Hammond and Sun (2008, 2021), in non-degenerate
random integrals that are measurable w.r.t. the conditioning σ-algebra.



1 Introduction

1.1 Motivation

The paper by Judd (1985) opens with this sentence:

In many models we find the following assertion: “Suppose that
there is a continuum of agents each making a draw from a distri-
bution F , such draws being independent; then the distribution of
realized draws equals F .” This appears to be a law of large num-
bers, but is there such a law of large numbers for a continuum
of random variables?

The assertion that Judd questioned is close to one that appears in Lucas
(1980, p. 206), and relates to the earlier claim by Lucas and Prescott (1974).

Similarly, here are the first two sentences of the closely related paper by
Feldman and Gilles (1985):

The analysis of equilibria in which individual agents bear some
risk would often be easier if it were possible to assume that the
risks are independent and disappear in the aggregate. Some
authors have attempted to achieve this simplification by postu-
lating a continuum of independent and identically distributed
random variables, and informally invoked the strong law of large
numbers in order to assert that the sample average will equal
the mean of the random variables with probability one.

These two pioneering papers have prompted a few successors to consider
whether there could be some version of a law of large numbers which might
hold with a continuum of random variables. Yet, following the example of
Lucas and of Lucas and Prescott, many other papers have simply assumed,
without further discussion or elaboration, that some relevant version of the
law of large numbers is valid. The issue is particularly pertinent for “macro”
games of incomplete information with a continuum of players, as considered
in widely cited work such as Diamond and Dybvig (1983), as well as Morris
and Shin (1998, 2000, 2003).1

The present paper contributes to this literature by showing that:

1After a conversation with Stephen Morris, during his subsequent seminar presentation
that I attended, he kindly acknowledged the integrability issue, as well as how it could
potentially be resolved using the Monte Carlo integral.
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• the sample path generated by a continuum of independent and identi-
cally distributed (IID) random variables is almost surely not Lebesgue
measurable, so the kind of “law of large numbers” that is generally
postulated, which involves an integral over the continuum of agents,
is actually almost surely ill defined;

• nevertheless, under a weak measurability condition, one can define a
“Monte Carlo” integral of the random variables that determine the
sample path;

• also, in case the random variables are stochastically independent, Kol-
mogorov’s strong law of large numbers implies that this Monte Carlo
integral almost surely exists and equals a degenerate random variable
whose value almost certainly matches what would be predicted if the
generally postulated law of large numbers were to hold;

• furthermore, the empirical distribution of the random means of points
on the random sample path almost surely converges weakly to the
distribution that would be predicted if the generally postulated law of
large numbers were to hold.

1.2 Further Background

Early work on pooling idiosyncratic risk such as the papers by Arrow and
Lind (1970), Malinvaud (1972, 1973), and Arrow and Radner (1979) con-
sidered a countably infinite set of economic agents, as the limit of finite
sets. That allowed them to apply Kolmogorov’s classical strong law of large
numbers.

Following the fundamental contributions of Aumann (1964, 1966) and
Hildenbrand (1974), however, it became standard practice to model an econ-
omy with many agents or a game with many players using the unit interval
[0, 1] equipped with Lebesgue measure. When there is individual risk in a
large economy, or when players in a large game choose mixed strategies,
it seems to have become an article of faith among many macroeconomists
and game theorists that, because of some version of a law of large numbers
which is never explicitly stated, the average realized value of a continuum of
independent random variables equals the integral of their expected values.
As Lucas (1980, p. 206) wrote: “ . . . with a continuum of agents, there is no
aggregative uncertainty . . . ”. Earlier, when considering a large number of
risky markets, Lucas and Prescott (1974, p. 192, footnote 8) had written as
follows:
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By large, we mean either a continuum of markets or a countable
infinity. Economically, then, the assumption of independent de-
mand shifts means that aggregate demand is taken to be constant
through time.

Later Prescott and Townsend (1984a, b) used a similar idea in their model
of an economy with a continuum of incompletely informed agents who trade
lotteries over consumption vectors while satisfying incentive constraints.

1.3 The Problem

For the continuum of independent random variables that is formally de-
scribed in Section 2, there is by definition a random process which generates,
for each random state of the world, a sample path in the form of a function
which is defined on the measurable space of agents’ labels. Many of the dif-
ficulties concerning the measurability of each such sample path had already
been discussed by Doob (1937). Economists had neglected these difficulties,
however, until Judd (1985) and Feldman and Gilles (1985) appeared.

When the space of agents’ labels is the Lebesgue unit interval, we prove
in Section 3 that, unless the random sample path is a degenerate random
function, it will almost surely be a function of the agent’s numerical label
that is not measurable, and so not Lebesgue integrable. Then, of course, any
statement regarding the Lebesgue integral of the sample path, and whether
it is equal to the integral of the means, is almost surely devoid of any content.
These observations motivate the new concept of Monte Carlo integral that
is introduced in Section 5. This integral is not calculated path by path as
a pure number, but is instead a random variable defined over the whole
random process that generates the continuum of random variables.

1.4 Outline of Paper

The next Section 2 begins the formal analysis of general random processes
that produce a continuum of random variables, one for each point of the
Lebesgue unit interval.

Thereafter Section 3 sets out a surprisingly simple yet important re-
sult, apparently new. This shows that with a continuum of independent
non-degenerate random variables, almost every sample path will be a non-
measurable function on the Lebesgue unit interval.

Section 4 offers a brief discussion of some previous work by Bewley
(1986), Uhlig (1996), Sun (1998) and others which has set out, with varying
degrees of success, to overcome the non-measurability issue.
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The following Section 5 starts by discussing the well known Monte Carlo
method of calculating numerical approximations to a Lebesgue integral. It
then introduces the concept of a “Monte Carlo simulation” which, as in
Hammond and Sun (2003, 2008), is a sequence of random variables that are
independently and symmetrically selected from the continuum. This leads
next to the concept of a “Monte Carlo integral”, which applies the idea
behind the Monto Carlo method of numerical integration to the random
integrands which arise when considering a continuum of random variables.

The first two parts of Section 6 present the main results for the Monte
Carlo integral of a continuum of: (i) IID random variables; (ii) independent
but asymmetrically distributed random variables. Then the last part of
Section 6 points to related joint work with Yeneng Sun that extends the key
idea of this paper to the case of dependent random variables.

Hundreds of papers in macroeconomics appear to rely on misusing some
implicit version of the law of large numbers in games of incomplete infor-
mation with infinitely many players. The concluding Section 7 points out
that, unlike some of the suggested remedies discussed in Section 4, using
the Monte Carlo integral proposed here allows all this previous work to be
given a new and valid interpretation. Indeed, it is enough to understand
that the integral sign does not indicate a Lebesgue integral which, when
there is a continuum of independent random variables, almost surely does
not exist. Rather, it should be read as indicating a Monte Carlo integral,
which is well-defined much more widely.

2 Modelling a Continuum of Random Variables

2.1 Basic Definitions

The basic definitions in this Section will be used to formalize the notion of
a continuum of random variables.

Definition 1. 1. The Borel unit interval is the particular probability
space ([0, 1],B, `) where:

• B is the Borel σ-algebra of Borel sets generated by the family I
of all open intervals I ⊆ [0, 1];2

• B 3 E 7→ `(E) ∈ [0, 1] is the unique measure on B with the
property that, for each open interval (a, b) ⊂ [0, 1], the measure
`((a, b)) ∈ [0, 1) equals its length b− a.

2As explained in Billingsley (1995), this means that the σ-algebra B is the intersection
of all the σ-algebras that each include the entire family I.

4



2. The set N ⊂ [0, 1] is Lebesgue null just in case there exists a set E ∈ B
such that `(E) = 0 and N ⊆ E. Let N denote the family of Lebesgue
null subsets of [0, 1].

3. The Lebesgue unit interval is the probability space (L,L, λ) where:

• L is the unit interval [0, 1];

• L is the Lebesgue σ-algebra on L = [0, 1] that is generated by
the union B ∪ N of the Borel σ-algebra B with the family N of
Lebesgue null sets;

• L 3 E 7→ λ(E) ∈ [0, 1] is the unique extension to L of the Borel
length measure ` on B which satisfies λ(N) = 0 for each Lebesgue
null set N ∈ N .

Definition 2. Given the Lebesgue unit interval (L,L, λ) together with a
probability space (Ω,F , P ), a random process with a continuum of random
variables is a mapping L × Ω 3 (t, ω) 7→ gt(ω) ∈ R which is defined on
the Cartesian product L × Ω, and has the property that for each Borel set
B ∈ B(R):

1. for each t ∈ L, the set g−1
t (B) := {ω ∈ Ω | gt(ω) ∈ B} is F-measurable

— i.e., ω 7→ gt(ω) is a random variable on (Ω,F , P );

2. the mapping L 3 t 7→ πt(B) ∈ [0, 1] is L-measurable, where the proba-
bility measure πt on the measurable space (R,B(R)) is given by

πt(B) := (P ◦ g−1
t )(B) := P

(
g−1
t (B)

)
(1)

Then, for each ω ∈ Ω, the mapping L 3 t 7→ gt(ω) ∈ R is the sample path
of the process.

2.2 The Case of Independent Random Variables

Definition 3. Given a probability space (Ω,F , P ), the continuum of random
variables Ω 3 ω 7→ gt(ω) ∈ R indexed by t ∈ L = [0, 1] that are generated by
the random process L× Ω 3 (t, ω) 7→ gt(ω) ∈ R are:

1. independent just in case for every set {t1, t2, . . . , tk} of k disjoint ele-
ments of L and every corresponding collection B1, B2, . . . , Bk ∈ B(R)
of Borel sets, one has

P

(⋂k

j=1
g−1
tj

(Bj)

)
=
∏k

j=1
(P ◦ g−1

tj
)(Bj) =

∏k

j=1
πtj (Bj) (2)
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2. IID just in case the family of random variables ω 7→ gt(ω) are inde-
pendent, with a common probability measure π on (R,B(R)) such that
P ◦ g−1

t = πt = π for all t ∈ L.

3 Non-Measurable Sample Paths in the IID Case

3.1 Simple Functions and Their Integrals

The definitions and results of Sections 3.1–3.3 are based on Royden (1988).
Here they are applied to functions defined on the Lebesgue unit interval
(L,L, λ) with L = [0, 1].

Definition 4. 1. Given any measurable set E ∈ L, the indicator func-
tion of E is defined by

L 3 t 7→ 1E(t) :=

{
1 if t ∈ E
0 if t 6∈ E

2. A finite measurable partition of the measurable space (L,L) is a finite
collection {Ek|k ∈ K} of pairwise disjoint measurable sets Ek ∈ L that
satisfy ∪k∈KEk = L.

3. The function f : L 7→ R is simple just in case f(x) =
∑

k∈K ak1Ek
(x)

where:

(a) {Ek|k ∈ K} is a finite measurable partition of L;

(b) {ak|k ∈ K} is a corresponding finite collection of real constants.

4. Given the simple function f(x) =
∑

k∈K ak 1Ek
(x), its integral I(f)

w.r.t. the Lebesgue measure λ on (L,L) is defined so that

I(f) :=

∫
L
f(x)λ(dx) :=

∑
k∈K

ak λ(Ek) (3)

3.2 The Upper and Lower Integrals of a Bounded Function

Let S(L,L) denote the set of all simple functions on the measurable space
(L,L)

Definition 5. 1. The function L 3 t 7→ ϕ(t) ∈ R is bounded just in case
there exist a∗, a

∗ ∈ R such that, for all t ∈ L, one has a∗ ≤ ϕ(t) ≤ a∗.
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2. Given any bounded function L 3 t 7→ ϕ(t) ∈ R, define the following
two sets of simple functions in S(L,L):

S∗(ϕ;L,L) := {f∗ ∈ S(ϕ;L,L) | ∀t ∈ L : f∗(t) ≥ ϕ(t)}
S∗(ϕ;L,L) := {f∗ ∈ S(ϕ;L,L) | ∀t ∈ L : f∗(t) ≤ ϕ(t)}

3. Given any bounded function L 3 t 7→ ϕ(t) ∈ [a∗, a
∗], define its upper

integral I∗(ϕ) and lower integral I∗(ϕ) as, respectively:

I∗(ϕ) := inf {I(f∗) | f∗ ∈ S∗(ϕ;L,L)}

and I∗(ϕ) := sup {I(f∗) | f∗ ∈ S∗(ϕ;L,L)}

Proposition 1. The upper and lower integrals of the simple function L 3
t 7→ ϕ(t) ∈ R defined by ϕ(t) =

∑
k∈K ak 1Ek

(t) satisfy

I∗(ϕ) = I∗(ϕ) =
∑

k∈K
ak λ(Ek)

Proof. The result is a straightforward implication of Definitions 4 and 5.

3.3 Integrating a Bounded Measurable Function

Definition 6. Let L 3 t 7→ ϕ(t) ∈ [a∗, a
∗] be any bounded function. The

function is Lebesgue integrable just in case its upper integral I∗(ϕ) and
lower integral I∗(ϕ) are equal, in which case the Lebesgue integral of ϕ is
defined by their common value, so∫

L
ϕ(t)λ(dt) := I∗(ϕ) = I∗(ϕ)

Proposition 2. The bounded function L 3 t 7→ ϕ(t) ∈ [a∗, a
∗] is Lebesgue

integrable if and only if it is Lebesgue measurable — i.e., for every interval
J ⊆ [a∗, a

∗], one has ϕ−1(J) := {t ∈ L | ϕ(t) ∈ J} ∈ L.

Proof. See Royden (1988, Ch. 4, Prop. 3).

3.4 Almost Surely Non-Measurable Sample Paths

In the IID case we are considering, given the common probability measure
π = P ◦ g−1

t on the Borel subsets of R, as specified in Definition 2, the
corresponding cumulative distribution function R 3 ξ 7→ F (ξ) ∈ [0, 1] has
values defined by

F (ξ) := π ((−∞, ξ]) = P ({ω ∈ Ω | gt(ω) ≤ ξ})
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Then the essential infimum and essential supremum of the probability mea-
sure π will satisfy

π∗ := ess inf π := sup {a ∈ R | F (a) = 0}
π∗ := ess supπ := inf {a ∈ R | F (a) = 1}

(4)

Of course one may have π∗ = −∞ and/or π∗ = +∞. But for simplicity
we assume that both π∗ and π∗ are finite.

Next, define the two probabilities

p∗ := P ({ω ∈ Ω | gt(ω) < a}) := sup{F (ξ) | ξ ∈ (a∗, a)}
p∗ := P ({ω ∈ Ω | gt(ω) > a}) := 1− F (a)

(5)

Lemma 1. Suppose that a ∈ R satisfies π∗ < a < π∗. Then the three
probabilities F (a), p∗, and p∗ all belong to the open interval (0, 1).

Proof. The definitions (4) imply that:
(i) because π∗ < a, one has F (a) > 0;
(ii) because a < π∗, one has F (a) < 1.

Next, the definitions (5) imply that:
(i) because π∗ <

1
2π∗ + 1

2a < a, one has 0 < F (1
2π∗ + 1

2a) ≤ p∗ ≤ F (a) < 1;
(ii) because a < π∗, one has F (a) > 0 and so 0 < p∗ < 1.

Lemma 2. Given any non-null Borel subset E of [0, 1], one has

1. if P ({ω ∈ Ω | ess inft∈E gt(ω) ≥ a}) = 1, then a ≤ π∗;

2. if P ({ω ∈ Ω | ess supt∈E gt(ω) ≤ a}) = 1, then a ≥ π∗.

Proof. Let tN = 〈tj〉j∈N be any infinite sequence of points in E.

1. Because Lemma 1 implies that 0 < p∗ < 1 and the random variables
ω 7→ gt(ω) are independent:

• for any m ∈ N, one has P ({ω ∈ Ω | minmj=1 gtj (ω) > a}) = (p∗)m;

• as m→∞, one has

P ({ω ∈ Ω | inf∞j=1 gtj (ω) > a}) = limm→∞(p∗)m = 0

Hence, if there is probability 1 that the essential infimum over E of
the sample path ω 7→ gt(ω) is no less than a, then a ≤ π∗.

2. Similarly, because Lemma 1 also implies that 0 < p∗ < 1:
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• for any m ∈ N, one has P ({ω ∈ Ω | maxmj=1 gtj (ω) < a}) = (p∗)
m;

• as m→∞, one has

P ({ω ∈ Ω | sup∞j=1 gtj (ω) < a}) = limm→∞(p∗)
m = 0

Hence, if there is probability 1 that the essential supremum over E of
the sample path ω 7→ gt(ω) is no greater than a, then a ≥ π∗.

Proposition 3. Suppose that the process L × Ω 3 (t, ω) 7→ gt(ω) → R
generates a continuum of IID random variables. Then, for each fixed ω ∈ Ω,
the random upper and lower integrals w.r.t. t ∈ [0, 1] of the sample path
L 3 t 7→ gt(ω)→ R satisfy

I∗(ω) =
P−a.s.

π∗ and I∗(ω) =
P−a.s.

π∗

Proof. Consider any simple function L 3 t 7→ f(t) =
∑

k∈K ck1Ek
(t) ∈

R where, after ignoring subsets Ek of [0, 1] that are λ-null and so do not
contribute to the sum

∑
k∈K ck λ(Ek), we assume without loss of generality

that λ(Ek) > 0 for each k ∈ K. Then, given any k ∈ K, if for P -a.e. ω ∈ Ω
one has f(t) ≤ gt(ω) for λ-a.e. t ∈ Ek, then ck ≤ π∗. Hence, if for P -a.e.
ω ∈ Ω one has f(t) ≤ gt(ω) for λ-a.e. t ∈ [0, 1], then f(t) ≤ π∗. This is
enough to prove that the lower integral I∗(ω) ≤ π∗. Moreover, because π∗ is
the essential infimum defined by (4), one has I∗(ω) = π∗ for P -a.e. ω ∈ Ω.

A similar proof shows that the upper integral I∗(ω) = π∗ for P -a.e.
ω ∈ Ω.

Finally, here is the main result of this section.

Theorem 1. Whenever π∗ and π∗ defined by (4) satisfy π∗ < π∗, then the
sample path L 3 t 7→ gt(ω) ∈ R is P -a.s. not Lebesgue measurable.

Proof. By Proposition 3, there exist two Borel sets E∗ and E∗ with P (E∗) =
P (E∗) = 1 such that: (i) I∗(ω) = π∗ for all ω ∈ E∗; (ii) I∗(ω) = π∗ for all
ω ∈ E∗. But then, for all ω ∈ E∗∩E∗, one has I∗(ω) = π∗ < π∗ = I∗(ω). So,
by Proposition 2, for all ω ∈ E∗ ∩ E∗ the sample path L 3 t 7→ gt(ω) is not
Lebesgue measurable. But P (E∗) = P (E∗) = 1 implies that P (Ω \ E∗) =
P (Ω \ E∗) = 0, and so

P (Ω \ (E∗ ∩ E∗)) = P ((Ω \ E∗) ∪ (Ω \ E∗)) = 0

It follows that P (E∗ ∩ E∗) = 1, which proves the result.
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3.5 An Almost Surely Degenerate Law of Large Numbers

The following result shows that the non-measurability result of Theorem 1
implies that, for P -a.e. ω ∈ Ω, no relevant version of the law of large numbers
can hold for the corresponding sample path L 3 t 7→ gt(ω) ∈ R.

Proposition 4. Given any fixed ω ∈ Ω, suppose that in the IID case, there
exists a limit c ∈ R such that 1

n

∑n
i=1 gti(ω)→ c for λN-a.e. tN ∈ LN. Then

the associated measure π = P ◦ g−1
t on R specified in Definition 3 equals the

degenerate Dirac measure δc that satisfies δc({c}) = 1.

Proof. Theorem 2.4 in Hoffmann-Jørgensen (1985, p. 310), with a proof
due to Talagrand, implies that for the given fixed ω ∈ Ω, the mapping
L 3 t 7→ gt(ω) ∈ R that describes the sample path must be integrable w.r.t. t,
and so Lebesgue measurable. Then Theorem 1 implies that π∗ = π∗, and so
P -a.s. one has gt(ω) = π∗ = π∗. The result follows from the definitions in
(4) of π∗ and π∗.

Of course, the conclusion of Proposition 4 implies that, in an obvious
sense, the process (t, ω) 7→ gt(ω) is essentially constant.

4 Some Previously Suggested Remedies

4.1 Bewley Aggregation

Bewley (1986) was the first economist who, while citing Judd (1985), ac-
knowledged the measurability issue in a model of a large economy with a
continuum of agents who face independent risks. He circumvented this issue
by defining both aggregate consumption and the aggregate endowment as
the population means of agents’ expected consumption and endowment lev-
els, respectively. His chapter makes no attempt, however, to invoke any law
of large numbers. His definition anticipates relevant results of Hammond
and Sun (2003, 2008, 2021) on “one-way Fubini” processes, though with-
out offering more than an intuitive justification. His work also inspired the
analysis of large games by Acemoglu and Jensen (2010, 2013) and Jensen
(2010), amongst others.

4.2 Uhlig’s Mean Square Convergence

Uhlig (1996) proposes a remedy based on a logically valid law of large num-
bers which, however, has several limitations.
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1. The law applies only when the continuum of IID random variables
that induce the common probability measure π on the Borel σ-algebra
B of R all have not only a common mean m =

∫
Ω xπ(dx), but also

a common variance σ2 =
∫

Ω(x −m)2 π(dx). By contrast, the Monte
Carlo integral proposed in Section 5 applies even when the integral∫

Ω(x−m)2 π(dx) diverges.

2. Unlike Kolmogorov’s strong law of large numbers, Uhlig’s main result
does not show convergence P -a.s. Instead, it demonstrates only mean
square convergence. As Uhlig states, this is like Khinchin’s weak law
of large numbers showing convergence in probability.

3. Although it is relatively easy to generalize Uhlig’s law to asymmetric
independent random variables, it is not obvious how to extend it to
consider dependent random variables, as is discussed later in Section
6.3 of this paper.

Similar limitations apply to the subsequent paper Al-Najjar (1995, 1998)
in its final corrected version.

4.3 Beyond the Lebesgue Unit Interval

Sun (1998) pioneered a new class of results that can be described as “exact”
laws of large numbers. These resolved the measurability issue by using a
much richer space of economic agents than can be accommodated within
the Lebesgue unit interval (L,L, λ). Initially, following the ideas of Loeb
(1975), these results involved non-standard analysis and Loeb measures.

In later work summarized by He, Sun and Sun (2017) in particular, these
Loeb measures were replaced by more general concepts such as nowhere
equivalence and saturated measure spaces. Such concepts, however, by con-
struction involve strict extensions of the Lebesgue unit interval that allow
the random sample path to be integrated almost surely. By contrast, the
Monte Carlo integral defined in Section 5.3 can, like the Bewley aggregates
considered in Section 4.1, be calculated simply by Lebesgue integration of
means — whether unconditional, or conditional where appropriate. In par-
ticular, all the standard results and techniques of the usual integral calculus
remain relevant, including the fundamental theorem due to Leibnitz stating
that, at any point where the integrand L 3 t 7→ gt(ω) ∈ R is continuous, the

definite integral
∫ b
a gt(ω)λ(dω) can be differentiated partially with respect

to its upper limit b, with partial derivative equal to the integrand evaluated
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at that point — that is,

∂

∂b

∫ b

a
gt(ω)λ(dω) = gb(ω) (6)

5 Definition and Basic Properties

5.1 Monte Carlo Integration as a Numerical Method

For each k ∈ N, define the measure space (Rk,Lk, λk) as the k-fold product
of the Lebesgue real line (R,L, λ). Let (RN,LN, λN) be the measure space
that results from taking the product of countably infinitely many copies of
(R,L, λ).

Given any fixed finite k ∈ N, suppose that D ⊂ Rk is a Lk-measurable
domain of the Lk-measurable function

D 3 (x1, . . . , xk) = x 7→ f(x) ∈ R (7)

Consider the Lebesgue integral

I :=

∫
D
f(x)λk(dx) (8)

of the function f with respect to the k-dimensional Lebesgue measure λk,
evaluated over the domain D. For simplicity, we assume that λk(D) < +∞
because there is a bounded k-dimensional rectangle

R :=
∏k

j=1
[aj , bj ] ⊂ Rk with λk(R) =

∏k

j=1
(bj − aj) (9)

such that D ⊂ R. Consider the indicator function Rk 3 x 7→ 1D(x) ∈ {0, 1}
that is defined to satisfy 1D(x) = 1 ⇐⇒ x ∈ D. Because of the hypothesis
that D is an Lk-measurable set, this indicator function is Lk-measurable.
Then the integral (8) can be expressed as the k-fold integral

I =

∫
R

1D(x) f(x)λk(dx)

=

∫ b1

a1

· · ·
∫ bk

ak

1D(x) f(x)λ(dx1) · · ·λ(dxk) (10)

Trying to calculate either of the equivalent integrals (8) or (10) can be
onerous when the dimension k is large and/or the domain D is awkward.
Nevertheless, one robust numerical method that can work well even in such
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cases is the well known Monte Carlo method that has been discussed, inter
alia, by Kloek and van Dijk (1978, 1980), van Dijk (1980), Bauwens (1984),
and Geweke (1989, 1996). In its most basic form, the method involves:

1. taking a large sample of n points 〈xr〉nr=1 that are successive IID ran-
dom draws from the uniform distribution over the rectangle R, whose
density measure over the set R is λk/λk(R);

2. computing the Monte Carlo approximation

In (〈xr〉nr=1) := λk(R)
1

n

∑n

r=1
1D(xr) f(xr) (11)

based on the average value of the function x 7→ 1D(x) f(x) for the
sample 〈xr〉nr=1 of n points.

Proposition 5. Suppose that the domain of integration D is an Lk-measur-
able set and that D 3 x 7→ f(x) ∈ R is any Lk-measurable function which
is uniformly bounded over D. Let (λk)N denote the product measure in
the product of infinitely many copies of the k-dimensional measure space(
Rk,B(Rk), λk

)
. Then:

1. the Lebesgue integral I =
∫
D f(x)λk(dx) exists;

2. for (λk)N-a.e. infinite sequence 〈xr〉∞r=1, the Monte Carlo approxima-
tion In (〈xr〉nr=1) given by (11) converges as n → ∞ to the integral
limit I.

Proof. The first part is a standard property of the Lebesgue integral. Then
the second part is a routine application of Kolmogorov’s strong law of large
numbers.

5.2 Monte Carlo Simulations

Let (LN,LN, λN) denote the product probability space of IID randomly drawn
sequences where:

1. LN is the Cartesian product space whose members are infinite se-
quences tN = 〈ti〉i∈N;

2. LN is the σ-algebra generated by the Cartesian products
∏
i∈NEi of

any sequence 〈Ei〉i∈N of measurable sets Ei ∈ L;

3. λN is the product of a countably infinite set of copies of the Lebesgue
measure λ.
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Definition 7. Given any random process L× Ω 3 (t, ω) 7→ gt(ω) ∈ R with
a continuum of random variables, there is a corresponding:

1. superprocess in the form of a mapping

LN × Ω 3 (tN, ω) 7→ G(tN, ω) = 〈gti(ω)〉i∈N ∈ RN (12)

2. Monte Carlo simulation (or MCS) in the form of a superprocess, as
defined in (12), where the sequence tN ∈ LN of labels is randomly
selected from the product probability space (LN,LN, λN).

5.3 Monte Carlo Integration of Random Variables

The main concern of this paper is with the implications of applying the
Monte Carlo numerical method to the case when:

1. the general finite-dimensional measurable domain D ⊂ Rk is replaced
by the one-dimensional unit interval L := [0, 1] ∈ R;

2. the function value f(x) at each point x ∈ D is replaced by the value
gt(ω) at ω ∈ Ω of a random variable Ω 3 ω 7→ gt(ω) ∈ R which, for
each t ∈ L, is defined on a probability space (Ω,A, P ) that is rich
enough to determine, as in Definition 2, the joint distribution of the
entire continuum 〈gt(ω)〉t∈L of random variables.

This leads us to consider, for each infinite sequence tN = 〈ti〉i∈N ∈ LN that
is randomly selected from the product probability space (LN,LN, λN), the
limiting behaviour as n → ∞ of the Monte Carlo sample average random
variable

Ω 3 ω 7→ MCA(tN, ω) :=
1

n

∑n

i=1
gti(ω) (13)

Now, for any fixed ω ∈ Ω, if the sample path L 3 t 7→ gt(ω) ∈ R were
integrable, then the limit of (13) for that value of ω would be the mean
given by the integral

∫ 1
0 gt(ω)λ(dt). By Proposition 3, however, the sample

path is almost surely not measurable, so this integral almost surely does not
exist. Accordingly, in order to derive a valid law of large numbers, instead
of focusing on the sample path L 3 t 7→ gt(ω) ∈ R for any fixed ω ∈ Ω, we
consider the random variable that depends on ω ∈ Ω as well as on tN.

Definition 8. The process L × Ω 3 (t, ω) 7→ gt(ω) ∈ R, together with the
associated superprocess LN×Ω 3 (tN, ω) 7→ G(tN, ω) ∈ RN, are Monte Carlo
integrable just in case, for λN-a.e. tN ∈ LN, the Monte Carlo sample average
given by (13) exists P -a.s. as a limit as n→∞. In this case the Monte Carlo
integral of the process is the random variable Ω 3 ω 7→ MC

∫ 1
0 gt(ω)λ(dt)→ R

whose value is P -a.s. equal to that limit.
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6 Three Different Cases

6.1 The Case of IID Random Variables

The first important special case occurs when all the random variables ω 7→
gt(ω) for different labels t ∈ L are IID, as specified by Definition (3) in
Section 2.2, with a common probability measure on (R,B(R)) for all t ∈ L
given by

B(R) 3 B 7→ π(B) = (P ◦ g−1
t )(B) ∈ [0, 1] (14)

Equivalently, there should be a common cumulative distribution function
R 3 x 7→ F (x) ∈ [0, 1], where

F (x) := π ((−∞, x]) = P ({ω ∈ Ω | gt(ω) ≤ x}) (15)

Suppose that for each t ∈ L there exists a common mean, which must be
independent of t, given by

m :=

∫
Ω
gt(ω)P (dω) =

∫
R
xπ(dx) =

∫
R
xF (dx) (16)

Let δm denote the degenerate probability measure on R that satisfies

δm({m}) = 1 (17)

Next, consider the set

U := {tN = 〈ti〉i∈N ∈ LN | h 6= i =⇒ th 6= ti} (18)

of unequal sequences in the Cartesian product LN of a countable infinity of
copies of L. These unequal sequences are those that can result from a process
of sampling without replacement from the Lebesgue unit interval (L,L, λ).
But in the case of the probability space (LN,LN, λN) that is the product of
countably many copies of (L,L, λ), it is evident that λN(U) = 1, so there is
essentially no difference between sampling with or without replacement.

Theorem 2. For every fixed sequence tN ∈ U , the random variable Ω 3
ω 7→ MCA(tN, ω) ∈ R that is defined as the limit as n → ∞ of the Monte
Carlo average defined by (13):

1. exists P -a.s., and P -a.s. equals the common mean m given by (16);

2. has a distribution that converges to the degenerate probability measure
δm defined by (17).
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Proof. Given any fixed sequence tN ∈ U of disjoint points in [0, 1], each
corresponding set 〈gti〉ni=1 of n random variables ω 7→ gti(ω) ∈ R are IID,
with common mean m. Once again, therefore, a routine application of Kol-
mogorov’s strong law of large numbers establishes that as n → ∞, so the
sample average 1

n

∑n
i=1 gti(ω) converges P -a.s. to m. This evidently implies

that the distribution of this sample average converges P -a.s. to δm.

6.2 Asymmetric Independent Random Variables

In a second special case, the continuum of random variables ω 7→ gt(ω) are
still independent for different t ∈ L. Unlike in the first special case, however,
the following both depend on t:

1. the probability measure on (R,B(R)) defined by

B 7→ πt(B) = (P ◦ g−1
t )(B) := P ({ω ∈ Ω | gt(ω) ∈ B}) ∈ [0, 1] (19)

2. the associated cumulative distribution function

R 3 ξ 7→ Ft(ξ) := P ({ω ∈ Ω | gt(ω) ≤ ξ}) ∈ [0, 1] (20)

Now we introduce the new assumption that, instead of (16), for each
t ∈ L the mean

mt :=

∫
Ω
gt(ω)P (dω) =

∫
R
xπt(dx) =

∫
R
ξFt(dξ) (21)

exists, and that the mapping L 3 t 7→ mt ∈ R is also integrable w.r.t. t.
This assumption implies existence of an average mean defined by

m̄ :=

∫
L
mtλ(dt) =

∫ 1

0

[∫
Ω
gt(ω)P (dω)

]
λ(dt) (22)

=

∫ 1

0

[∫
R
ξFt(dξ)

]
λ(dt) =

∫
R
ξ F̄ (dξ)

This is the case when the random process of Definition 2 is a “one-way
Fubini process”, as defined in Hammond and Sun (2003, 2006, 2008, 2021).
The name is chosen because, unlike the usual Fubini property, reversing
the order of integration in the double integral

∫ 1
0

[∫
Ω gt(ω)P (dω)

]
λ(dt) that

determines m̄ in (22) is not possible. This is because Theorem 1 implies that,
for each state ω ∈ Ω, the mapping [0, 1] 3 t 7→ gt(ω) ∈ R that describes the
sample path when the random state is ω is P -a.s. not measurable.
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In this case of a one-way Fubini process, when t is randomly drawn
from the uniform distribution on the Lebesgue unit interval, and then xt is
randomly drawn from the probability space (R,B(R), πt), the resulting pair
(t, xt) is randomly drawn from a common bivariate probability measure Q
on the product measurable space ([0, 1]× Ω,L ⊗ F) whose joint c.d.f. is

[0, 1]× R 3 (τ, ξ) 7→ G(τ, ξ) := Q ({(t, x) | t ≤ τ, x ≤ ξ})

=

∫ τ

0
Ft(ξ)λ(dt) (23)

The marginal of this distribution on R is evidently found by integrating the
relevant bounded measurable function of t in order to find:

1. the mean probability measure B(R) 3 B 7→ π̄(B) ∈ [0, 1] defined for
each B ∈ B(R) by

π̄(B) :=

∫ 1

0
πt(B)λ(dt) (24)

2. the associated mean c.d.f R 3 ξ 7→ F̄ (ξ) ∈ [0, 1] defined for each ξ ∈ R
by

F̄ (ξ) := G(1, ξ) =

∫ 1

0
Ft(ξ)λ(dt) (25)

In this case, instead of the Monte Carlo average defined by (13), for each
n ∈ N we consider the new Monte Carlo average defined for each (random)
sequence xN ∈ RN by

RN 3 xN 7→Mn(xN) :=
1

n

∑n

i=1
xi (26)

Theorem 3. Suppose that: (i) for each t ∈ L, the mean mt defined by (21)
exists; (ii) the average mean m̄ given by (22) exists. Suppose too that each
random variable xi in the infinite sequence xN ∈ RN of IID random variables
is randomly drawn from the common probability space (R,B(R), π̄), where π̄
is the mean probability measure defined by (24). Then:

1. the random variable RN 3 xN 7→ M(xN) ∈ R that is defined for each
random xN as the limit as n→∞ of the Monte Carlo average Mn(xN)
defined by (26) exists π̄N-a.s., and π̄N-a.s. equals the average mean m̄
given by (22);

2. the limiting distribution as n→∞ of the Monte Carlo average Mn(xN)
defined by (26) is the degenerate probability measure δm̄ that attaches
probability 1 to the average mean m̄ given by (22).

17



Proof. The result follows from a routine application of Kolmogorov’s strong
law of large numbers to the sequence xN ∈ RN of IID random variables.

6.3 Dependent Random Variables

This paper has focused on the important special case of a random process
with the property that, for different values of t in the Lebesgue unit in-
terval (L,L, λ), the associated random variables Ω 3 ω 7→ gt(ω) ∈ R are
stochastically independent. Nevertheless, even outside this case, suppose
that there exists a conditioning σ-algebra C on the measurable space (Ω,F)
that underlies the basic probability space (Ω,F , P ) with the property that
any pair of different random variables are conditionally independent given C.
Suppose too that, following Billingsley (1995), the σ-algebra C is countably
generated in the sense that there is a countable subfamily G of F with the
property that C is the smallest σ-algebra containing G. Under these as-
sumptions, the results of Hammond and Sun (2008, 2021) imply that the
Monte Carlo average defined by (26) will still converge almost surely, but to
a non-degenerate random variable on the basic probability space (Ω,F , P )
which is C-measurable.

Furthermore, for this result the definition of “almost surely” has to be
weakened somewhat. Specifically, the excluded sets E ∈ LN on which the
Monte Carlo average defined by (26) does not converge are no longer re-
stricted to null sets whose product measure in the infinite product proba-
bility space (LN,LN, λN) satisfies λN(E) = 0. Instead, the excluded sets E
can be merely “iteratively null” sets that, by definition, satisfy λ̄N(E) = 0
relative to a new product measure λ̄N which extends the original product
measure λN to a new domain L̄N which is a new σ-algebra that slightly ex-
tends the original product σ-algebra LN in order to admit such iteratively
null sets.

For more precise details, see Hammond and Sun (2008, 2021).

7 Concluding Remarks

The early economic models with a continuum of agents which appear in,
inter alia, the work of Hotelling (1929), Vickrey (1945), Aumann (1964,
1966), Mirrlees (1971) and Hildenbrand (1974), involved no randomness.
This allowed variables like consumers’ endowments and consumption to be
measurable functions that were Lebesgue integrable, so that their means
are well-defined. However, the later work on random economies and games
with incomplete information that was discussed in Section 1.2 did involve
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continua of random variables. For these, it was often claimed without jus-
tification that some version of the law of large numbers would remove all
aggregate uncertainty from, if not every, then at least almost every sample
path. Section 3, however, showed that almost every sample path is actually
non-measurable. So representing aggregate uncertainty requires, at least,
some non-standard definition.

Section 4 discussed some possible remedies to this non-measurability is-
sue. One of these due to Uhlig (1996) applies only to square-integrable ran-
dom variables, and instead of the almost sure convergence of Kolmogorov’s
strong law of large numbers, gives only the weak convergence in probability
of Khinchin’s weak law.

Another remedy that has received a great deal of recent attention, start-
ing with Sun (1998), is to allow an index space of agents’ labels that sig-
nificantly enriches the Lebesgue unit interval. Such enrichments, however,
may invalidate some of the claims that macroeconomists make for aggrega-
tive games of incomplete information where the index set of players is the
Lebesgue unit interval. This troublesome possibility can be avoided provided
that, for each random ω in the state space Ω, the integral

∫ 1
0 ft(ω)λ(dt) of

each non-measurable sample path [0, 1] 3 t 7→ ft(ω) ∈ R is interpreted,
not as a Lebesgue integral

∫ 1
0 gt(ω)λ(dt) which almost surely fails to exist,

but as the corresponding Monte Carlo integral MC

∫ 1
0 gt(ω)λ(dt) of random

variables specified in Definition 8.
As an ideal that might help avoid any future misunderstanding, perhaps

we should use some new notation like MC

∫ 1
0 ft(ω)λ(dt) to indicate this new

kind of integral. Note that it really is a generalization of the Lebesgue
integral because it essentially reduces to that integral in any degenerate case
when, for the particular random state ω ∈ Ω being considered, the sample
path [0, 1] 3 t 7→ ft(ω) ∈ R just happens to be a measurable function, and
so integrable provided it is bounded.
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