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Abstract

We develop a model of strategic voting in a spatial setting with multiple candidates when voters

have both expressive and instrumental concerns. The model endogenizes the strategic coordination of

voters, yet is flexible enough to allow the analysis of political platform competition by policy-motivated

candidates. We characterize all strategic voting equilibria in a three-candidate setting. Highlighting the

utility of our approach, we analyze a setting with two mainstream and a spoiler candidate, showing that

the spoiler can gain from entering, even though she has no chance of winning the election and reduces

the winning probability of her preferred mainstream candidate.
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1 Introduction

There is manifest evidence that voters have both expressive and instrumental voting considerations, that is,

they both receive a direct payoff from voting for a particular candidate, and they care about who wins the

election both in real world election data (e.g., Fujiwara (2011); Pons and Tricaud (2018); Spenkuch (2018))

and in laboratory experiments (e.g., Forsythe et al. (1996); Duffy and Tavits (2008); Esponda and Vespa

(2014); Bouton et al. (2015)). In a two-candidate election there is no conflict between these two objectives:

voting for a preferred candidate is equivalent to voting against a disfavored candidate, so there is no reason

to vote tactically. This calculus changes when there are more than two candidates because expressive and

instrumental concerns can now easily be mis-aligned, giving rise to strategic voting.

The contribution of this paper is to develop a tractable model of strategic voting within a canonical spa-

tial environment. That is, the model allows for voters with both expressive and instrumental concerns who

can coordinate strategically in multi-candidate plurality elections. Further, we characterize how the primi-

tives of the political environment affect the possible natures of strategic coalition formations. In particular,

we describe how changes in candidate characteristics and policy platforms affect the incidence of strategic

voting and electoral outcomes. Finally, by allowing for a continuum of citizens, we also analyze political

competition between policy-motivated candidates in the presence of strategic voting.

The standard approach to studying multi-candidate elections in the strategic voting literature (e.g., My-

att (2007); Bouton and Castanheira (2012); Bouton (2013)) is to focus on a finite number of strategic voter

types who individually only care about how their voting decision affects a candidate’s probability of win-

ning. Such pivotal voting models have a long tradition (e.g., Palfrey and Rosenthal (1985); Myerson and

Weber (1993)), but they do not apply to large elections when the strategic voters have any expressive consid-

erations at all; such considerations swamp the tiny probabilities that one’s vote is pivotal. To skirt this issue,

some authors assume that voters’ perceived pivot probabilities are exogenous and large (e.g., Chapter 1,

Aldrich et al. (2018)). While this approach can accommodate voters with both instrumental and expressive

concerns, it cannot provide causal links between policy platforms and pivot probabilities.

To circumvent these issues, we formulate a new model of group coordination of voters and propose a

new solution concept. We borrow concepts from the ethical voting literature (e.g., Feddersen and Sandroni

(2006); Coate and Conlin (2004)), which formalizes the idea that some voters internalize the welfare of

similarly-situated citizens and hence do not want to free-ride on the voting efforts of other “group” mem-

bers. Our construction shares the feature of ethical voting models that there is a benefit of voting for a certain

candidate if others in the group also do so, and that a psychic cost of letting the group down prevents free

riding. However, we need to modify the ethical voting approach to account for one fundamental difference:

Ethical voting models are designed to explain voter participation in large elections when participation is
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costly and pivot probabilities are small, so they suppose group members only differ in their voting costs.

Thus, citizens only need to decide whether or not to vote for their most preferred candidate. In contrast, in

our canonical spatial model, a voter needs to decide whom to vote for by comparing the distances between

her bliss point and the policy platforms of the different candidates weighing her expressive and strategic

concerns. That is, our equilibrium concept must detail how voting coalitions for different candidates form,

i.e., who joins a group of citizens to vote for a less preferred candidate to raise the probability of defeating

an even less preferred candidate.

Our model of group voting is formulated in a plurality election with three candidates. There are two

types of voters, partisans who always vote on party lines, and non-partisans whose votes hinge on candidate

policies and what they think other voters will do. A nonpartisan’s utility is given by the weighted sum of

expressive and instrumental payoffs, i.e., of the expressive payoff from voting for a given candidate and the

instrumental payoff derived from the winning candidate’s policy.

A realized strategic coalition for a candidate includes all citizens who expressively prefer that candidate

plus some citizens who are willing to vote for that particular candidate rather than for their top-rated choice.

Such coalitions must satisfy two properties. First, each coalition member must be better off in expectation

if the coalition forms than if all members voted expressively. Second, a new or larger coalition cannot form

that would make all members better off relative to having no coalition. Analogous to a Nash equilibrium,

each realized coalition calculates its payoff given the actual probability distributions over the formation

of strategic coalitions for rival candidates. We can have “pure” or “mixed” coalitional voting equilibria

according to whether or not there is stochastic coalition formation.

We characterize all equilibria to this strategic voting game in a setting with three candidates who have

arbitrary policy platforms. We first establish ways in which the centrist has an electoral advantage. If the

centrist is top ranked by a plurality of partisan and expressive voters, then there is a unique pure coalitional

voting equilibrium. In this equilibrium, everyone votes expressively and the centrist wins. Intuitively, ex-

pressive centrist supporters get their preferred candidate and hence do not vote strategically, and strategic

voting by expressive non-centrist supporters only makes sense if it can improve electoral outcomes.

This is not true for non-centrist with a leading advantage among expressive and partisan voters. Whether

or not such a candidate wins the election depends on the strategic support that the other two candidates may

get, i.e., it depends on the second choices of voters who do not rank her at the top, and on the balance of

expressive and instrumental weights in voter utilities. First, the leading non-centrist may lose because a cen-

trist candidate who is not too far behind may be able to win by attracting enough tactical support from voters

on the other side of the political spectrum. When this is so, the leading non-centrist cannot draw strategic

votes from expressive supporters of the centrist, and hence cannot defeat the centrist.1 Second, the rival “un-

1Relatedly, Callander (2005a) observes that strategic voters may coalesce around a centrist, albeit in a setting where strategic
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derdog” non-centrist candidate, say on the right, may be able to win by attracting enough strategic support

from center-right voters. However, this strategic support has to be large enough that the underdog’s victory

could not be overturned by strategic voting of center-left citizens—there must be enough more potential

center-right than center-left strategic voters. Thus, if the non-centrist underdog wins in a pure coalitional

voting equilibrium, she must win by a non-trivial margin.

We show there cannot be strategic voting in a pure coalitional voting equilibrium in which the leading

non-centrist wins. When the underdog (on the right) can attract enough strategic support to win absent tacti-

cal voting for the leading candidate (on the left), but not enough if sufficiently many centre-left citizens vote

strategically, then the equilibrium must involve randomization. Either of the two non-centrist candidates can

win the election, and the winner is the candidate who, by chance, attracts the largest voting coalition. For

each non-centrist candidate, the realized coalition forms randomly according to the equilibrium distribution

over coalition formation. The coalition includes partisan and expressive voters, as well as possibly strate-

gic voters who expressively prefer the centrist. For each realized coalition, the most centrist voter called

to vote for a non-centrist is just indifferent between doing so and having the coalition break up, given the

distribution of voting coalitions that form to support the opposing non-centrist candidate.

Stochastic coordination for both non-centrist candidates is required because a citizen will only vote

against her expressive preferences if her coalition has a positive probability of influencing the electoral out-

come. The mixed coalitional voting equilibrium shares similarities with equilibria of all-pay auctions. For

example, we show that with strictly positive probability there is no strategic voting on each side, and both

non-centrists win with strictly positive probability. These equilibria are well-behaved. For example, when

one non-centrist has an initial plurality advantage, the rival “underdog” non-centrist’s maximum potential

strategic support is always greater. Further, a larger lead for a non-centrist due to greater partisan support

raises her chances of winning and reduces the strategic voting on both sides. The equilibrium also behaves

continuously as we approach the boundary cases of purely instrumental or purely expressive voting.

Strategic voting can sharply alter the logic and comparative statics of voting. Consider an election with

two main candidates, symmetrically situated around the median, and a spoiler candidate on the far right who

has no chance of winning. With purely expressive voting, by moving toward the spoiler, the center-right

candidate would always reduce her vote share and increase her center-left rival’s vote share. With strategic

voting this need not be true. In particular, as the center-right candidate moves toward the spoiler, she (i)

better differentiates herself from her center-left rival, raising the benefits of strategic coordination by voters;

and (ii) is politically closer to the spoiler, reducing the costs of strategic coordination. By facilitating strate-

gic voting in this way, the center-right candidate can increase her vote share by more than it increases her

voters only have instrumental concerns. Thus, the free-riding issues and tradeoffs between instrumental and expressive concerns

that are central to our analysis do not arise in Callander (2005a).
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center-left rival’s vote share.

To illustrate the consequences of this finding for electoral competition, we endogenize the positions of

the center-left and center-right candidates as a function of the spoiler’s policy platform. We embed our

model of coalitional voting in a two-stage game. In the first stage, policy-motivated candidates choose their

platforms. In the second stage, citizens decide which strategic voting coalitions (if any) to form. When

candidates choose policies they are uncertain about the level of each candidate’s partisan support. Parti-

san support becomes public information before nonpartisans choose whether and how to vote strategically.

Hence, the electoral game played by candidates is one of probabilistic competition à la Wittman (1983) or

Calvert (1985). When voters place little weight on expressive concerns, the spoiler’s entry has no impact on

equilibrium outcomes, as even extreme expressive supporters vote strategically. However, when weights on

expressive motives are increased further, the spoiler can attract votes, causing both of the main candidates

to move their policy positions towards the spoiler—the spoiler’s preferred candidate does so to differenti-

ate herself, thereby increasing strategic voting, while her mainstream rival has the opposite incentive. This

makes the spoiler strictly better off: While the spoiler’s preferred mainstream candidate is less likely to

win due to the spoiler’s entry (consistent with Pons and Tricaud (2018)), this loss is outweighed from the

spoiler’s perspective by the benefits of the policy shifts of the mainstream candidates’ platforms. Further

increases of the weight on expressive motives eventually harm the spoiler, because the spoiler takes too

many votes away from her preferred mainstream candidate.

Our model can reconcile the entry of a spoiler candidate such as Ralph Nader who has no chance of

winning, even though the spoiler does not receive ego rents. We show that with strategic voting, spoilers

can gain by having mainstream candidates adopt some of their policies. Consistent with this, in an interview

in 2019 in the Washingtonian2, Ralph Nader indicated that he had hoped to “push the Democrats toward a

more progressive agenda,” understanding that his campaign could end up costing Al Gore the presidency.3

Of course, if the preferred mainstream candidate loses due to the spoiler’s entry, then the spoiler has ex post

regret. The entry of Nigel Farage’s UKIP party in the UK illustrates an outcome where the ex-post outcome

benefitted the spoiler. Farage’s entry forced the Conservatives to adopt UKIP-like positions on Brexit (and

induced Labour to moderate its opposition). It also resulted in a Conservative victory and the subsequent

implementation of Brexit. Similarly, the entry of populist parties in Europe has encouraged mainstream

parties to move to the right, with center-right parties moving further.

2see https://www.washingtonian.com/2019/11/03/ralph-nader-is-opening-up-about-his-regrets/, Ralph

Nader Is Opening Up About His Regrets, Rob Brunner, November 3, 2019
3Hillygus (2007) studies the dynamics of Nader support in the United States during the 2000 campaign, and documents

evidence of strategic voting. The Nader supporters likely to switch to vote for Gore were more politically aware, and more

concerned about policy outcomes (such as, paradoxically, the environmental policy) and respondents in competitive states.
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2 Related Literature

Beginning with Duverger (1959), researchers have noted that plurality rule systems generate strong forces

for only two parties to be competitive, as voters who care about electoral outcomes do not want to “waste”

votes on candidates who are sure to lose. Cox (1997) documents consistent patterns of strategic voting

across different electoral systems, and observes that the “reduction of parties” in single member districts

reflects the coordination of voters on parties. Applied to the United Kingdom, supporters of the LDP and

Labour may have incentives to coordinate to defeat the Conservatives (c.f., Aldrich et al. (2018), Figure 2.2).

Similar coordination is found in Canada (Merolla and Stephenson, 2007), and elsewhere (Blais et al., 2019).

Fujiwara (2011) uses a RDD on population thresholds to show that the top two candidates in Brazilian elec-

tions secure more votes under simple plurality than runoff or proportional elections, and Pons and Tricaud

(2018) find the presence of a third candidate reduces vote shares for the two leading candidates in French

elections. Structural estimates based on models where some voters only have instrumental concerns while

the others are purely expressive also suggest that many voters behave strategically. Kawai and Watanabe

(2013) find this in Japan and Fisher and Myatt (2017) do so for Britain. Conversely, Degan and Merlo (2006)

conclude that in U.S. national elections, which are dominated by two parties, the hypothesis that voters vote

sincerely cannot typically be rejected. Ujhelyi et al. (2021) document extensive none-of-the-above voting in

India, indicating that expressive voting considerations dominate for some voters.

The extent of strategic voting can be substantial: Abramson et al. (2018) finds that the incidence of

strategic voting—voting for a second-choice candidate—was almost 40% in some constituencies for the

2010 British general election, while Daoust (2018) finds that 22.6% of voters selected their second-choice

in the 2015 Canadian general election. Daoust (2018) also illustrates what Cox describes as the challenge

of voter strategic coordination, and “the rapidity with which vote intentions change when coordination

takes off”, with the NDP’s polling share falling from 37% to 20% in the last two months of the campaign,

with two-thirds of the drop occurring in the last month and the Liberals winning a majority due to this

shift. Spenkuch (2018) provides evidence that “voters cannot be neatly categorized into sincere and strate-

gic “types”, and that voters, instead, weigh both expressive and instrumental voting considerations in their

choices of whether or not to vote strategically.4 Consistent with this, Abramson et al. (2018) find that the

extent of strategic voting varies with the perceived ability to sway the outcome: while only 1.4% of voters

with minimal strategic incentives reported an intention to vote for their second-choice party, it was 27.1%

of those with the strongest incentives.

These empirical findings suggest the following key features of voting in multi-candidate elections:

4The observation that voters have both expressive and instrumental voting considerations dates back to at least Riker and

Ordeshook (1968).
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1. Voters sometimes coordinate strategically to try to defeat a less preferred candidate.

2. Voters trade off expressive and instrumental voting considerations, and are more likely to vote strate-

gically if the chance of changing the electoral outcome is higher.

3. Coordination can be difficult and can quickly generate large shifts in candidate support, suggesting

that there can be multiple ways to coordinate, and that small changes in candidate strengths may shift

coordination from one candidate onto another.

4. Duverger’s law says that only two candidates are competitive, but does not imply that only two can-

didates receive meaningful vote shares.

We develop a formal theory of strategic voting that is rich enough to generate these salient features, and

yet is sufficiently tractable to permit the analysis of political competition by policy-motivated candidates

who anticipate how their how platform choices affect strategic voting.

The earliest study of multi-candidate elections with the standard strategic voting approach dates back to

Palfrey (1989), who considers three candidate races and assumes that voters know precisely the fraction of

the electorate who ranks candidates in any given order. He shows that generically all equilibria are Duverg-

erian: only two candidates receive votes.5 Fey (1997) examines how public opinion polls can coordinate

voters on particular Duvergerian equilibria in the case of “divided majority:” more than half of the voters

ranks third the candidate who is ranked first by the largest share of voters. Myatt (2007) also studies a model

of divided majority in which candidates are not perfectly informed of each other preferences. He finds that

the equilibrium is not perfectly Duvergerian: Some voters vote strategically, but others do not. The amount

of strategic voting depends on the intensity of voters’ preferences and how precise their information is about

each other’s preferences. Bouton and Castanheira (2012) introduce interdependent preferences. They find

that when the common motive is sufficiently strong, approval voting ensures the election of the full infor-

mation Condorcet winner, whereas such a result is not guaranteed under plurality and run-off rules.6

The basic idea of expressive voting is formulated by Brennan and Lomasky (1993). Within the context of

multi-candidate election models, Fisher and Myatt (2017) extend the model of Myatt (2007) to incorporate

a fraction of sincere, expressive voters. Further, Osborne and Slivinski (1996) model citizen candidate elec-

tions with sincere voting, whereas Besley and Coate (1997) consider strategic voting in which candidates do

not waste votes on sure losing candidates.

Our formulation of strategic voting builds on the ethical voting framework. An early formalization is

Harsanyi (1977), who postulates that some voters are “rule utilitarians,” receiving utility for choosing a
5Feddersen (1992) finds that all equilibria are Duvergerian when voting is costly, even if voters may potentially vote for any

position in the policy space.
6Bouton (2013) studies 3-candidate elections under the run-off rule in details.
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strategy that maximizes social welfare when a socially inferior candidate receives a fixed number of votes.

Feddersen and Sandroni (2006) remove this assumption, endogenizing support for both candidates by intro-

ducing preference diversity into Harsanyi’s framework while preserving his Kantian calculus of duty. Coate

and Conlin (2004) consider rules that maximize the group’s welfare, if adopted by all ethical voters in the

group. Levine and Mattozzi (2020) model group voting that complements ethical voting by stipulating that

social norms of voting participation must be enforced through costly peer monitoring and punishment. In

contrast to our model, in these settings, groups are ex-ante clearly defined and within-group differences are

only non-ideological (e.g., voting costs).

Our framework does not provide an explicit non-cooperative formulation of the group formation pro-

cess. Uhlaner (1989) propose that foundations for group formation can stem from leaders who mobilize

groups such as unions, churches, or environmental organizations. Morton (1987) and Morton (1991) for-

malize these ideas, while Herrera and Martinelli (2006) provide foundations for group mobilization when

both leaders and groups are endogenous.

To our knowledge, the only model of group voting in multi-candidate elections is by Bouton and Ogden

(2021). Voter groups are defined by the different possible strict preference orders over three candidates.

They characterize pure strategy Nash equilibria in the game in which each group acts as a single decisional

unit. Their focus is on the case of divided majority preference orders. They identify when equilibrium

displays either sincere voting or coordination on two candidates in plurality elections. Our approach is com-

plementary: We consider endogenous group formation in a canonical spatial model. Because our model

features both expressive and strategic group voting, all candidates receive votes in equilibrium, and yet tac-

tical voting may determine the election outcome. The spatial setting allows us to refine predictions with

respect to the case of divided majority preferences, and to determine election outcomes for other preference

profiles. We determine when the divided majority coordinates on a particular candidate.

Our analysis of strategic candidate platform selection finds that a fixed-platform extremist third party

candidate may gain from entering an election between policy-motivated candidates. A related literature has

modeled platform choices by existing “mainstream” office-motivated parties that face the threat of entry by

a third party (e.g., Palfrey (1984); Weber (1992); Callander (2005b)). There are several differences between

these models and ours. First, the mainstream parties separate to induce the entrant to locate at the center

and hence steal votes equally from both parties. Second, voters in these models are not strategic. In partic-

ular, applying our model, as long as voters placed enough weight on instrumental preferences, central entry

would result in a pure coalitional voting equilibrium in which the centrist wins with strategic support from

either the right or the left, an observation first made with purely instrumental voters in Callander (2005a).

Of note, our spoiler does not care about vote shares or winning, but instead benefits by moving mainstream

party policies in her direction.
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3 Model

We first develop a model of strategic voting when candidate positions are fixed, and citizens choose which

candidates to support. This model can be easily embedded into a model of political competition in platforms

à la Wittman (1983). We do this in Section 6. We formulate the model for an arbitrary number of candidates

to illustrate our general formulation of strategic voting. We then focus on the three-candidate case to provide

an exhaustive characterization of coalitional voting equilibria.

There are i = 1, . . . , n parties/candidates and a continuum of citizens. The voting game features two

types of citizen voters—partisans and non-partisans. Non-partisan voters have both expressive and instru-

mental voting motives. The utility of a non-partisan voter with ideology θ ∈ R who votes for a candidate

with policy x when the candidate with policy xw wins is given by

uθ(x, xw) = βvθ(x) + (1 − β)vθ(xw),

where 0 ≤ β < 1 measures the weight placed by non-partisan voters on expressive relative to instrumen-

tal considerations. The ideal policies θ of non-partisans are distributed according to Φ(·), with associated

strictly positive density ϕ on a connected support.

A partisan for candidate i always votes for i regardless of the policy positions taken. Thus, the partisan

support for a candidate i is summarized by the number ρi ≥ 0 of i’s partisan supporters. Partisans have two

roles in our model: First, they provide a simple way to parametrize heterogeneity in a party’s base support,

facilitating comparative static analyses. Second, they provide a source of uncertainty required when we

endogenize candidate policy choices. Before citizens vote, the levels ρi of partisan support for each party i

are realized and observed by all citizens. That is, to highlight how strategic voting can generate endogenous

uncertainty about who wins, we assume away all extrinsic sources of uncertainty at the voting stage.

4 Strategic Voter Coalition Formation

4.1 Motivation

Non-partisan voters with an expressive preference for a candidate i can coordinate their voting behavior and

commit to vote for some candidate j , i if it is beneficial for them to do so. We say that such non-partisan

voters are “strategic voters”. There are three conceptual issues with describing strategic voting in a large

electorate. First, each individual voter has a negligible impact on the electoral outcome, so absent other

considerations, voters would always support their expressively-preferred candidates. Thus, when describ-

ing strategic voting in such an environment one must consider groups or coalitions of strategic voters who

coordinate in some way to increase a candidate’s chance of being elected. Second, given that coalitions
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rather than individuals matter in such an environment, voters may have incentives to convince others to

vote strategically, but then free ride and vote for their expressively-preferred candidates. Third, we must

describe which voter coalitions can reasonably form and would be robust to both defections and solicitation

of additional members.

We build on the idea that voters incur costs for not doing their civic duty formalized in Feddersen

and Sandroni (2006). They recognize that some individuals have higher voting costs than others, and hence

should not incur a utility penalty from not voting, while citizens with low voting costs should participate and

feel an ethical cost from free-riding. Individual voters whose group benefits from strategic voting should feel

guilty if they free ride by voting expressively rather than in the interest of their (endogenously-determined)

fellow coalition members. This is the feature of Feddersen and Sandroni (2006) that we adopt. In contrast

to their model where group identity is exogenous, in our setting voter choose whether or not to join a group,

and ethical concerns only matter after joining. A second distinction is that, instead of incurring exogenous

costs of participating in elections, our strategic voters incur endogenously-determined “costs” from voting

against their expressive preferences.

The remaining issue is to characterize the strategic coalitions that can form in equilibrium. While we

do not explicitly characterize the process, in practice coalition formation occurs via candidates’ get-out-

the-vote efforts, via social media, or leaders coordinating particular voter blocs. An example of the lat-

ter is the ongoing effort of the Strategic Voting Project developed in 2008 by Hisham Abdel-Rhaman, a

software engineer who sought to coordinate progressive voters in Canada in each electoral riding on ei-

ther the NDP or the Liberal candidate with the best chance of defeating the Conservative candidate (see

http://www.strategicvoting.ca). This coordination can also happen from voters evaluating candi-

dates after debates, or their earlier primary performances for US presidential primaries. Our analysis de-

scribes the possible equilibrium outcomes of such coordination processes.

Before providing formal definitions, we note that one should not expect a concept of coordination to al-

ways yield a unique prediction. This feature is well known, as it arises in standard coordination games such

as the battle of the sexes. In some coordination games, equilibrium refinements can be used to reduce the

number of equilibria. However, in our analysis we choose to remain agnostic as to which equilibrium may

arise. Importantly, most equilibria yield the same candidate winning probabilities, in which case candidate

location does not vary with the equilibrium in the voting subgame.

4.2 Coalition Formation and Equilibrium

When analyzing strategic voter behavior it is sufficient to describe the behavior of non-partisans and add the

votes of partisans to determine total candidate votes. In the remainder of the paper any reference to a set

or coalition of voters therefore refers exclusively to non-partisans. Let Ei be the set of (non-partisan) voters
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with an expressive preference for candidate i, i.e.,

Ei =

{
θ
∣∣∣∣ vθ(xi) > vθ(x j), for all j , i

}
. (1)

For simplicity of exposition we assume that all policies differ, i.e., xi , x j for i , j, in which case Ei , ∅.

We discuss the special case where xi = x j for some i , j below.

Unlike in Feddersen and Sandroni (2006), the preference intensities of voters in Ei differ. For example,

voters in Ei close to the boundary with E j have weaker incentives to vote expressively than voters closer to

xi. Our solution concept determines whether or not all members of E j vote for candidate j or whether some

vote strategically for a different candidate. Our coalition formation concept defines sets S j that either in-

clude E j or are empty. If S j strictly contains E j then there is strategic voting in the sense that some members

of S j vote against their expressive interests. The case S j = E j is the degenerate case where all members of

the realized coalition vote according to their expressive interest. This can happen when strategic voting only

occurs with some probability that is strictly between 0 and 1.

The fundamental idea of coalition formation is that citizens who support a particular candidate have the

ability to coordinate their votes. This means that expressive supporters of a candidate i who want to vote

strategically for some candidate j should be able to reach out to expressive j supporters to get them to also

vote for j. Our assumption that S j contains E j captures this. It eliminates coordination failures in which

expressive supporters of candidate i vote for j solely because some j supporters vote for i—neither of these

groups wants to stop this offsetting strategic voting unilaterally to prevent a third candidate from winning.

Once a strategic coalition is formed, all citizens in S i vote according to their common interests, similar

to the ethical voters in Feddersen and Sandroni (2006). However, in their setting the supporters of a candi-

date are pre-determined, and their choice is whether or not to vote. In our case, instrumental voters come

together to form coalitions, and we must allow for randomized coordination of coalition members. This

means that, in equilibrium, a particular coalition S i may have only a probabilistic understanding of rival

coalition formations. We now describe this possibly stochastic coalition formation.

Voting coalitions are determined, possibly stochastically, for some strict subset I of the set of all candi-

dates {1, . . . , n}. In particular, there cannot exist a strategic voter coalition for every candidate, because the

sets S i would have to overlap. Citizens who are not in strategic coalitions vote expressively. For example, if

S 1 and S 4 are the only strategic voter coalitions, then S 1 ∩ S 4 = ∅, because a citizen cannot simultaneously

vote for both candidate 1 and 4. Thus, Ei\(S 1∪S 4) is the set of non-partisans who vote for candidate i , 1, 4.

Coalitions formation is independent across candidates i ∈ I. Formally, let (Ω,A, λ) be a probability

space, where Ω =
∏

i∈I Ωi, and λ =
∏

i∈I λi, reflecting independence. A realized coalition for candidate i ∈ I

is a set of voters S i(ωi). Let S̄ i =
⋃
ωi∈Ωi S i(ωi). The sets S̄ i, i ∈ I must satisfy Assumption 1

Assumption 1 The sets S̄ i, i ∈ I are pairwise disjoint with Φ(S̄ i) > Φ(Ei) and Ei ⊂ S i(ωi) for all ωi ∈ Ωi.
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The sets S̄ i have to be disjoint since there is no coordination across groups. Otherwise, if S̄ i ∩ S̄ j , ∅, for

i , j, then by independence there would exist realized coalitions S i(ωi) and S j(ω j) that intersect, i.e., con-

tain some citizens who would be voting for both candidate i and candidate j. As mentioned above, if there

is strategic voting for candidate i then all expressive i supporters coordinate on candidate i, i.e., Ei ⊂ S i(ωi)

for all ωi ∈ Ωi. This, together with Φ(S̄ i) > Φ(Ei), means that strategic voting occurs.

Consider a realized collection S of strategic voter coalitions S i, i ∈ I. Adding partisan votes, the total

number of votes for a candidate i is

Vi(S ) =


ρi + Φ(S i) if i ∈ I;

ρi + Φ
(
Ei \

⋃
j∈I S j

)
if i < I,

(2)

where, abusing notation, we use Φ to describe both the probability and the cdf of non-partisan voter support

for each candidate. The candidate with the plurality of votes wins. In case of a tie we assume each candidate

wins with strictly positive probability as the exact split does not affect our results. Let Wi(S ) be an indicator

function that assumes the value 1 if and only if party i wins. Candidate i’s winning probability is given by

Pi(λ) =
∫

Wi(S (ω)) dλ(ω). (3)

If the distribution λi places probability one on a single coalition S i, we denote it by δS i . Note that if all

λi take this form then there is no randomization. The expected instrumental payoff for a voter θ who is a

member of a realized coalition S i is obtained by integrating the voter’s instrumental utility over all possible

realization of coalitions for rival candidates:

Uθ(λ−i, S i) =
n∑

k=1

Pk(λ−i, δS i)vθ(xk). (4)

We next introduce our notion of a coalitional voting equilibrium in which groups of citizens coordinate

their votes to make their group better off. Individual members of a strategic coalition do not cheat on other

members by secretly changing their votes without telling other coalition members due to the large nega-

tive psychic payoffs incurred from being “unethical” in this way. However, it would not be unethical for a

member to tell other coalition members that they are not willing to follow the coalition’s recommendation.

In such a case a coalition would not form. Thus, a minimal requirement for a strategic coalition is that no

member should be worse off in expectation if the coalition forms.

Definition 1 (Common Interest) Let S i be a realized coalition of (non-partisan) voters for candidate i,

and let λ−i be the distribution over rival coalitions. S i satisfies common interest if none of its members

is worse off in expectation if the coalition forms: There does not exist j , i and θ ∈ S i ∩ E j such that

βvθ(x j) + (1 − β)Uθ(λ−i, Ei) > βvθ(xi) + (1 − β)Uθ(λ−i, S i).
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Members of each coalition S i take the probabilities that other coalitions forms as given when calculating

expected utilities associated with coalition formation. If there is no randomization, we can replace λ−i by

the collection of known coalitions other than S i.

Equilibrium also demands that coalition S i cannot gain by reaching out to attract new members who

are not currently in a coalition and who would all be strictly better off from joining compared to having the

strategic coalition break-up.

Definition 2 (Inclusivity) Let Ai ⊃ Ei be a set of (non-partisan) voters for candidate i, and let λ−i be the

distribution over rival coalitions. Ai satisfies inclusivity if there does not exist an ϵ > 0 and a set T of citizens

with T ∩ Ai = ∅ and T ∩
⋃

j,i S̄ j = ∅, such that common interest is satisfied for all members of Ai ∪ T and

everyone in T is uniformly strictly better off:

βvθ(xi) + (1 − β)Uθ(λ−i, Ai ∪ T ) ≥ βvθ(x j) + (1 − β)Uθ(λ−i, Ei) + ϵ, for all θ ∈ T, j , i. (5)

Definition 3 (Coalitional Voting Equilibrium) A probability distribution λ =
∏

i∈I λi on Ω =
∏

i∈I Ωi is a

coalitional voting equilibrium if and only if

1. All realized strategic coalitions S j(ω j), ω j ∈ Ω j satisfy common interest and inclusivity.

2. If E j ⊂
⋃

i∈I S̄ c
i then E j satisfies inclusivity.

The role of the second condition is to allow for the possibility of strategic voting for some candidate j

in a case where candidate j has currently no strategic voting support. The condition also ensures that such

strategic voting would include all expressive candidate j supporters.

5 Coalitional Voting Equilibrium

We now characterize all coalitional voting equilibria when there are three candidates and voters have

quadratic preferences, i.e., vθ(x) = −(x − θ)2. We focus on the interesting case where platforms are dis-

tinct, i.e., x1 < x2 < x3.7 Coalitional voting equilibria also exist when some platforms are identical.

Proposition 1 Given any set of candidate platforms and all possible levels of partisan supports ρ1, ρ2, and

ρ3, at least one equilibrium exists.

7If two candidates have exactly the same platform and collectively a majority supports these candidates, then enough

non-partisans will coordinate to ensure that one of these candidates wins.
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We prove this result in a series of propositions below that exhaustively characterize all voting equilibria

that emerge given the different possible parameterizations.

In the following, let θi j = (xi + x j)/2. The sets of expressive supporters for the three candidates are

E1 = (−∞, θ12), E2 = (θ12, θ23), and E3 = (θ23,∞). Let Ni = Φ(Ei) + ρi be the number of votes for party

i if all citizens vote according to their expressive preferences. We call Ni the base support for candidate i;

that is, Ni corresponds to candidate i’s vote total if all citizens vote according to their expressive preferences

(i.e., as if β = 1). Without loss of generality, we can assume that N1 ≥ N3.

In order to characterize coalitional voting equilibria, it is useful to determine the largest set of expressive

candidate i supporters who would be willing to vote for candidate j. This is a set S i j ⊂ Ei that would form

to defeat the least favored candidate k, by strategically voting for j. Formally, the set S i j is an interval, with

one endpoint given by θi j and the other by the voter type yi j who is indifferent between having the coalition

S i j form to make j win and not having the coalition form so that k wins. The only possible such sets are

S 12, S 21, S 23, and S 32. In particular, S 13 and S 31 do not exist, because no citizen would vote strategically

for their least favored candidate. Thus, yi j solves

−β(yi j − xi)2 − (1 − β)(yi j − xk)2 = −(yi j − x j)2, (6)

when such a solution exists, and it is −∞ (for S 12) or ∞ (for S 32), otherwise. Let Mi j = Φ(S i j) be the

associated maximal number of expressive i supporters who may vote strategically for candidate j.

The following is immediate.

Lemma 1 There exist β̄i j such that:

1. Mi j is strictly decreasing in β for β ≥ β̄i j and Mi j = 0 for β = 1.

2. If β ≤ β̄i j then M12 = Φ(E1), M32 = Φ(E3), M21 = Φ([θ12, θ13]) and M23 = Φ([θ13, θ23]).

5.1 The Centrist’s Strategic Advantage

We first show in Proposition 2 that if the centrist candidate 2’s base support is larger than that of the non-

centrists i.e., if N2 > N1, then in the unique equilibrium all citizens vote for their top-ranked candidate and

the centrist wins. This result reflects that (i) no voter views the centrist as their least favorite candidate, (ii)

no voter will ever vote for their least favored candidate, and (iii) expressive centrist (candidate 2) supporters

get their most-preferred candidate if everyone votes for their top-ranked choice. While this result might

seem to suggest that the candidate with the greatest ex-ante support always wins, this is not true in general.

Indeed, Proposition 3 shows that the vote advantage of a leading non-centrist candidate must be sufficiently

large to win in a pure coalitional voting equilibrium.
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Proposition 2 If N2 ≥ N1 ≥ N3, then a pure coalitional voting equilibrium exists in which citizens vote

according to their expressive preferences and the centrist candidate 2 always wins. If N2 > N1, then this

equilibrium is unique.

The result reflects that in this equilibrium, expressive supporters of the centrist candidate 2 always get

their most preferred outcome—they vote for candidate 2 and 2 wins. Thus, they have no incentive to vote

strategically. Further, it does not make sense for expressive supporters of non-centrist candidates 1 and 3 to

vote strategically for the centrist because the centrist already wins. So, too, supporters of say candidate 1

would not vote strategically for candidate 3, because they are better off if the centrist wins.

Proposition 2 also rules out the existence of mixed coalitional equilibria in which a candidate other than

the centrist wins with strictly positive probability. In particular, we rule out coordination-failure equilibria

among candidate 2’s expressive supporters in which candidate 2 loses because some of her supporters vote

for candidate 1 to keep candidate 3 from winning, while others vote for candidate 3 to prevent candidate 1

from winning.

The result of Proposition 2 does not extend to a non-centrist who has the most base support, i.e., when

N1 > N2; this non-centrist must have a large base support advantage to ensure victory:

Proposition 3 There exists a pure coalitional voting equilibrium in which candidate 1 wins if and only if

N1 ≥ max{N2 + M32,N3 + M23}. When this equilibrium exists then all citizens vote expressively.

Recall from Lemma 1 that the maximal strategic vote by expressive 2 and 3 supporters for candidates 3

and 2, respectively, M23 and M32, are strictly decreasing in β unless β is too small, and are strictly positive

for β > 0. Thus, N1 > max{N2,N3} only guarantees candidate 1’s victory if voters place enough weight on

expressive payoffs. If that weight is decreased, then a non-centrist candidate with an expressive plurality

can only be assured of victory if she has a sufficiently large vote advantage.

For candidate 1 to win, two types of strategic voting have to be ruled out. First, more rightist supporters

of candidate 2 cannot have an incentive to vote strategically for candidate 3, i.e., M23 cannot be too large,

where we recall that M23 is decreasing in β. Second, enough candidate 3 supporters must not have an in-

centive to support the centrist candidate that they would overcome candidate 1’s initial advantage. Indeed,

when β ≤ (x3 − x2)/(x3 − x1), all candidate 3 supporters are better off supporting the centrist, and hence

candidate 1 can only win if he has an expressive majority.

It follows that if N1 > N2 but the base support vote gap is not large enough (given β), then any equi-

librium must involve strategic voting in which some citizens vote with positive probability against their ex-

pressive preferences. We next characterize when such coalitional voting equilibria arise and their properties.
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5.2 Pure coalitional voting equilibria

We first show that it is “easy” for the centrist candidate 2 to draw strategic support from candidate 3 support-

ers when non-centrist candidate 1’s base advantage over 2 is small enough. In particular, this pure coalitional

voting equilibrium only requires that at least N1 −N2 moderate expressive supporters of candidate 3 be will-

ing to coordinate on candidate 2 in order to defeat candidate 1, whom they least prefer. Importantly, when

this is so, candidate 1 cannot win any strategic support—since expressive supporters of candidate 2 get their

preferred winner in this equilibrium, they do not want to deviate from voting expressively.

Proposition 4 Suppose that N1 ≥ N3 and N1 > N2. Then:

1. There exists a pure coalitional equilibrium in which candidate 2 wins if and only if N2 + M32 > N1.

2. Candidate 2 wins with probability 1 in all coalitional voting equilibria if and only if N2 + M32 > N1

and N3 + M23 ≤ N1.

The proposition shows that candidate 2 can win even without a plurality of expressive votes. The reason is

that candidate 2 is the second choice for all expressive candidate 3 supporters, and hence some of them are

willing to vote strategically to prevent candidate 1 from winning. This result is a mirror image of Proposi-

tion 3 that the leading non-centrist needs a vote cushion to win.

While all voters who expressively prefer candidate 2 will vote for 2, the set of voters who expressively

prefer candidate 3, but strategically coordinate on candidate 2 can be given by any set of expressive can-

didate 3 voters with measure at least N1 − N2. However, the size of the coalition is indeterminate and not

pinned down by inclusivity. The key feature is that in all such equilibria, the strategic support for candidate 2

is enough to ensure 2’s victory—all equilibria take the same qualitative form, so there is no need to further

refine the set.

When N3 + M23 ≤ N1, the set of expressive candidate 2 supporters willing to vote for candidate 3 is not

large enough for strategic voting to deliver victory for candidate 3. If equality holds, candidate 3 would only

win half the time, and the maximal coalition M23 would not form, as common interest would be violated.

We next consider what happens when this condition is violated so that there are, in principle, enough

strategic voters for candidate 3 to win. We show that there is either a pure coalitional voting equilibrium in

which candidate 3 wins due to strategic voting by expressive supporters of the centrist, or there is a mixed

coalitional voting equilibrium in which leftist supporters of centrist candidate 2 vote strategically for candi-

date 1, and rightist supporters for candidate 3. The (pure or mixed) form of such equilibria depends on the

relative numbers of expressive centrist supporters who are prepared to vote strategically for candidate 3 vs. 1.
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We first determine when a pure strategy equilibrium exists in which enough rightist candidate 2 expres-

sive supporters coordinate on candidate 3 to defeat candidate 1. For this equilibrium to exist, there must not

be a coalition of left-of-center voters that could flip the election back to candidate 1 by voting strategically.

Proposition 5 Suppose that N1 ≥ N3 and N1 > N2. Then a pure coalitional voting equilibrium exists in

which candidate 3 wins with probability 1 if and only if N3+M23 ≥ N1+M21. Further, the margin of victory

over candidate 1 must be at least M21.

The condition N3 + M23 ≥ N1 + M21 means that candidate 3 draws enough strategic support to defeat

candidate 1, and the latter cannot gather sufficient strategic vote to flip back the election. In particular, can-

didate 3 must be able to differentially attract enough more strategic support than candidate 1. This implies

that when ρ1 > ρ3, this condition cannot hold if candidate platforms are symmetrically located, i.e., x2 = 0,

x1 = −x3 and the distribution Φ of non-partisans is symmetric, because then M23 = M21.

The set of voters who expressively prefer candidate 2, but strategically coordinate on candidate 3 is

again not uniquely pinned down. What is pinned down is that (i) they must all prefer to vote for candidate 3

in order to deliver candidate 3’s victory rather than vote expressively and have candidate 1 win, and (ii)

together with the expressive supporters of candidate 3, they must comprise a measure of at least N1 + M21.

A casual observer of this equilibrium outcome might conclude that there is “excessive strategic coordi-

nation” by right-of-center voters on candidate 3 because candidate 3 receives at least M21 more votes than

candidate 1. However, this conclusion is misplaced because if fewer right-of-center voters coordinated on

candidate 3 (and instead voted expressively for candidate 2), then left-of-center voters would have an incen-

tive to coordinate on candidate 1 in sufficient numbers to defeat candidate 3, making those right-of-center

voters worse off and breaking the equilibrium.

5.3 Mixed Coalitional Voting Equilibria

When enough expressive supporters of candidate 2 on both sides are willing to vote strategically to de-

feat the non-centrist candidate whom they like least, the equilibrium must involve randomization, as each

non-centrist must have a chance of winning in order to draw strategic support from expressive candidate 2

supporters. Proposition 6 identifies conditions under which a mixed coalitional voting equilibrium exists.

These conditions comprise a superset of the set of parameter values for which pure strategy equilibria do

not exist. Hence, Proposition 6 ensures existence of equilibria for all parameters.

Proposition 6 Suppose that N1 ≥ max{N2,N3}. Then:

1. There exists a mixed coalitional voting equilibrium if and only if N1 + M21 ≥ N3 + M23 > N1.
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2. If the mixed coalitional voting equilibrium exists then it is unique.

3. In the mixed coalitional voting equilibrium some expressive candidate 2 supporters vote for can-

didate 1 and some vote for candidate 3 with positive probability, and the identity of the winning

candidate depends on the realized coalitions.

The proof in the Appendix provides the explicit construction of the equilibrium with stochastic coalition

formation. To understand the key ingredients, first observe that candidate 3 must gain enough strategic votes

to overcome candidate 1’s base advantage of N1 − N3 to have a chance of victory. Thus, when non-zero,

candidate 3’s strategic support must be at least [θ23 − Z, θ23], where Z is the vote gap, implicitly defined by

N3 − N1 = Φ(θ23) −Φ(θ23 − Z). When non-zero, the sets of strategic voters for candidates 1 and 3 are given

by intervals of the form [θ12, θ12 + z1] with z1 ≥ 0, and [θ23 − Z − z3, θ23] with z3 ≥ 0. Candidate 3 wins if

Φ(θ12 + z1) − Φ(θ12) < Φ(θ23 − Z) − Φ(θ23 − Z − z3), and candidate 1 wins if the inequality is reversed.

The key to the construction of the equilibrium distribution is that when a strategic coalition forms, the

marginal coalition member, say θ12 + z1, must have the same expected payoff when coalition [θ12, θ12 + z1]

forms as when it does not. Were θ12+ z1 to strictly prefer that the coalition form, it would violate inclusivity,

because there would then be a set T of expressive candidate 2 supporters close to θ12 + z1, who are currently

outside the strategic voter coalition, but would all receive a uniformly higher expected payoff (by at least

ϵ > 0 for all of them) by joining versus not having the coalition form. So too, type θ12 + z1 cannot be strictly

worse off if the coalition forms, else it would violate common interest.

These indifference conditions pin down the distributions over strategic coalitions. Equilibrium is de-

scribed by probabilities q1 and q3 that no coalition forms, and distributions F1(z1) and F3(z3) over the

marginal coalition member when a coalition forms. F1 and F3 are continuous without mass points, reflecting

the discontinuity of payoffs at a tie. Further, there must be a tie when the largest equilibrium coalitions form.

To see what pins down q1, observe that when Z > 0, a voter at θ23 − Z incurs an expressive cost from

strategic voting that is bounded away from zero. To make θ23 − Z indifferent, when a coalition forms the

winning probability for candidate 3 must exactly offset the expressive costs. That winning probability is the

probability, q1, that no coalition forms for candidate 1.

To see what pins down q3, first observe that when the largest coalition for candidate 3 forms, candidate 3

is sure to win, but if no strategic coalition forms then candidate 3 loses because Z > 0. Thus, the marginal

voter of the largest coalition for candidate 3 is y23 (defined in (6)). In contrast, the marginal voter z̄1 ≤ y12

because candidate 1 wins with probability q3. In particular, z̄1 is a decreasing function of q3, and q3 is pinned

down by the requirement that there has to be a tie when the largest coalitions are realized on both sides.

Mixed coalitional voting equilibria can take two qualitatively different forms reflecting that there are

two possibly opposing effects at play:

17



1. One non-centrist candidate may have a greater base support, Ni. Without loss of generality we assume

that this is the case for candidate 1.

2. One non-centrist candidate’s platform may be closer to more expressive supporters of the centrist

candidate than her rival’s platform, in which case she can differentially attract strategic support.

As a result, there are two different types of mixed coalitional equilibria, one where the two effects go in

opposite directions, and one where they work in the same direction. The two different cases are shown in

Figures 1 and 2. We now illustrate these cases in more detail, starting with Example 1 where candidate 1 has

more base support, but candidate 3 is better able to attract strategic votes. The example also illustrates the

contents of Propositions 2–6 by numerically solving for the different pure and mixed coalitional equilibria.

Examples 1 and 2 also introduce the comparative statics that we formally analyze in Section 5.4.

Example 1 Suppose that the candidate locations are x1 = −1, x2 = 0, x3 = 0.4. Let ρ1 = 0.2 and

ρ2 = ρ3 = 0. Suppose that Φ is a uniform distribution on [−1, 1]. Then the cutoffs between the parties are

θ12 = −0.5, θ13 = −0.3, and θ23 = 0.2. As a consequence, N1 = 0.45, N2 = 0.35, and N3 = 0.4.

Solving for the maximal sizes of the sets of strategic voters yields:

M21 =
7
10
·

1 − β
7 − 2β

, M23 =
7
4
·

1 − β
7 − 5β

, and M32 =


7
4 ·

1−β
7β−5 if β ≥ 75

91 ;

0.4 otherwise.
(7)

Proposition 3 shows that a pure coalitional equilibrium in which candidate 1 wins exists if N1 ≥ max{N2 +

M32,N3 + M23}. N1 ≥ N2 + M32 if and only if β ≥ 45/49 ≈ 0.9184, and N1 ≥ N3 + M23 if and only if

β ≥ 14/15 ≈ 0.9333. Thus, the condition of Proposition 3 holds if and only if β ≥ 14/15. Next, Proposi-

tion 4 show that candidate 2 wins in a pure coalition equilibrium if and only if N2+M32 > N1. This condition

holds if β < 45/49. The last type of pure strategy equilibrium is characterized by Proposition 5. In particular,

N1 > N2. and thus it remains to verify when N3 + M23 ≥ N1 + M21. This inequality holds if and only if β <

0.7(
√

69−7) ≈ 0.9146, and a pure coalition equilibrium where candidate 3 wins exists for these values of β.

Thus, no pure coalitional equilibrium exists when 0.7(
√

69 − 7) < β < 14/15. Instead, there exists a

mixed coalitional voting equilibrium in which leftist candidate 2 supporters sometimes vote for candidate 1,

and rightist candidate 2 supporters sometimes vote for candidate 3. For 0.7(
√

69−7) ≤ β < 45/49 this mixed

coalitional voting equilibrium co-exists with the pure coalitional voting equilibrium in which candidate 2

wins due to strategic support by expressive candidate 3 supporters. In the mixed coalitional equilibrium

candidate 1’s winning probability increases in β, as base support advantage matters more when β is larger.

The left panel of Figure 1 illustrates the coexistence of equilibria. The right panel of Figure 1 shows

the probabilities with which some coalition forms that includes candidate 2 expressive supporters who vote
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Figure 1: Left: Candidate 1’s winning probabilities in all equilibria as a function of β. Right: Probability expressive

candidate 2 supporters strategically coordinate on candidates 1 and 3 as a function of β.

strategically for extreme candidates 1 and 3. Posed differently, one minus these probabilities yields the

probabilities q1 and q3 that strategic coalitions do not form for the respective extreme candidates.

Example 2 illustrates the nature of the mixed coalitional voting equilibrium when candidate 1 has both

the base and strategic support advantage.

Example 2 Figure 2 presents outcomes when candidate positions are x1 = −0.6, x2 = 0, x3 = 0.64 and,

ρ1 = ρ+0.01, ρ2 = 0, ρ3 = ρ. Now θ12 = −0.3, θ23 = 0.32, and hence N1 = 0.36+ρ, N2 = 0.31, N3 = 0.32+ρ.

Because x2 = 0 is further from x3 than from x1, and zero is also the position of the median voter, candidate 1

has an advantage over candidate 3 in attracting strategic voters, as the figure on the right illustrates.

When ρ is sufficiently large, e.g., ρ ≥ 0.3, then a pure coalitional voting equilibrium does not exist in

which candidate 2 wins, because even if all expressive candidate 3 supporters voted for candidate 2, candi-

date 1 would still win. This means that there is a unique equilibrium. For sufficiently large β, candidate 1

always wins. For lower values there is only the mixed coalitional voting equilibrium.

When, as in this example, the same candidate has both the ex-ante vote advantage and also appeals more

strongly to potential strategic voters that candidate must always win when β is very large or very small. This

delivers the ∪-shaped relationship between β and candidate 1’s probability of winning. In the figure on the

right this is reflected by the fact that candidate 3 has no strategic support both for β = 0 and for β sufficiently

large. For large β there is no strategic voting, but candidate 1’s base vote advantage ensures victory.
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Figure 2: Left: Candidate 1’s winning probabilities in the mixed coalitional voting equilibrium as a function of β.

Right: Probability expressive candidate 2 supporters strategically coordinate on candidates 1 and 3 as a function of β.

5.4 Continuity of Mixed Coalitional Equilibria and Comparative Statics

We now show that the mixed coalitional equilibria are well behaved with natural comparative statics. It

is immediate that as β → 1 mixed coalitional equilibria disappear, converging to the outcome with purely

sincere voting. In fact, unless N1 = N3 the mixed coalitional voting equilibrium disappears before reaching

β = 1 as Figure 2 illustrates. When β → 0 such continuous behavior is less immediate because the mixed

coalitional voting equilibrium does not disappear.

Recall in Example 2 that candidate 1’s winning probability converges to 1 as β→ 0, which corresponds

to the pure coalitional voting equilibrium at β = 0 in which enough center-left voters strategically sup-

port candidate 1 that there are not enough rightist candidate 2 supporters who could swing the election to

candidate 3. We now show that this result is general in nature.

Proposition 7 Let N1 > max{N2,N3} and suppose that the mixed coalitional voting equilibrium exists for

all β > 0 in the neighborhood of β = 0. Then the winning probabilities in the mixed coalitional equilib-

rium converge to those with purely instrumental voting, i.e., when β = 0. That is, candidate 1 wins with

probability approaching 1 if N1 + Φ([θ12, θ13]) > N3 + Φ([θ13, θ23]), and candidate 3 wins with probability

approaching 1 if the opposite strict inequality holds.

Proposition 7 shows that the mixed coalitional voting equilibrium is well-behaved, converging continu-

ously in electoral outcomes to those at β = 0, where the equilibrium is in pure strategies with the non-centrist

candidate who is preferred by the majority of voters winning. We next show that the mixed coalitional vot-

ing equilibrium also has the natural comparative static features that when a non-centrist’s ex ante advantage
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is greater, that candidate is more likely to win and voters are less likely to engage in strategic behavior by

voting against their expressive interests.

Proposition 8 Suppose N1 > max{N2,N3}, and that the mixed coalitional voting equilibrium exists. In the

mixed coalitional voting equilibrium, an increase in ρ1 to ρ′1 that increases candidate 1’s base support:

1. reduces the probability of strategic voting for both candidates 1 and 3, i.e., q′1 > q1 and q′3 > q3.

2. reduces the measure of the largest coalition for candidate 1 by ρ′1 − ρ1 and shifts the distribution over

the measure of realized strategic coalitions for candidate 1 to the left by ρ′1 − ρ1.

3. does not affect the measure of the largest coalition for candidate 3, but increases the measure of the

smallest (non-trivial) strategic coalition that forms for candidate 1 by ρ′1 − ρ1.

4. increases the probability that candidate 1 wins.

5.5 Non-monotonicities of Winning Probabilities in Candidate Positions

We next illustrate how candidate 2’s winning probability can be a non-monotone function of its platform x2

as a precursor to our analysis of a spoiler’s entry decision. We first show that with strategic voting, a centrist

candidate may be able to increase its probability of winning by moving further away from the stronger can-

didate even though this increases the stronger candidate’s expressive support, and does not increase its own.
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Figure 3: Candidate 2’s winning probability as a function of x2.

Figure 3 illustrates this in a setting where voters are uniformly distributed on [−1, 1]. The candidate po-

sitions are x1 = −0.1, x3 = 1, and the weight on expressive preferences is β = 0.2 and there are no partisans,
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i.e., all ρi = 0. Now as x2 is shifted to the right, away from candidate 1, N1 rises, N2 stays unchanged, and

N3 falls. However, with strategic voting, this does not imply that candidate 2’s winning probability falls.

With expressive voting, candidate 1 would always win whenever x1 < x2 < x3. Now suppose that

instrumental preferences matter. As candidate 2 shifts x2 to the right, it has three effects. First it increases

N1, increasing the amount of strategic voting needed to defeat candidate 1. Second, x2 increasingly differ-

entiates itself from x1 by locating closer to expressive candidate 3 supporters. This starker contrast with

candidate 1 makes strategic voting more attractive if it can deliver a victory for candidate 2. Third, locating

closer to candidate 3 also facilitates strategic voting by reducing the expressive loss to strategic voters. At

x2 < 0, candidate 2 fails to attract strategic voters, both due to insufficient differentiation from candidate 1

and because the expressive voting cost is too high. For somewhat larger x2, strategic voting occurs, until

x2 = 0.1. For x2 > 0.1, candidate 1’s expressive vote share is large enough to render forming a sufficiently

large strategic coalition infeasible, implying that candidate 1 always wins.

6 Political Competition with an Extreme Spoiler Party

6.1 Overview

In this section, we illustrate how one can endogenize the platform choices of two policy-motivated parties.

We consider an otherwise symmetric setting in which we consider the entry choice by a third, extreme

spoiler “citizen-candidate” party. We contrast the equilibrium platform choices with strategic and purely-

expressive voting. We focus on a setting with two mainstream parties that have symmetrically opposing

ideal policies θ1 = −θ2. The position of party 3 is fixed at its ideal policy x3 = θ3 > θ2. We assume that ρ3 is

sufficiently small relative to ρ1 and ρ2 so that candidate 3 cannot win. We use a symmetric setting to ensure

existence of a local equilibrium.8 For similar reasons we assume that the spoiler is a citizen candidate who

only chooses whether or not to enter, before the other candidates choose their platforms.

We now assume that when candidates 1 and 2 simultaneously choose policy positions x1 and x2 there is

uncertainty about the extent of partisan support ρi for each party i. In a standard two-candidate model with

policy motivation, candidates face a basic tradeoff between moving away from the other candidate’s policy

by locating closer to their own ideal point versus increasing their chance of winning by moving closer to their

rival. This calculus can change when voters are strategic. In particular, consider again the example depicted

in Figure 3. The spoiler now siphons off voters on the far right, disadvantaging candidate 2. By moving

towards the spoiler and away from candidate 1, candidate 2 increases candidate 1’s expressive support, hurt-

ing herself. However, this shift and resulting differentiation from candidate 1 raises candidate 2’s appeal to

8For general non-symmetric settings of Wittman (1983) there are no known existence results.
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the spoiler’s supporters, more than offsetting the first effect. In response, candidate 1 also moves to the right

to reduce differentiation with candidate 2, and hence the likelihood of strategic support for candidate 2.
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Figure 4: The spoiler’s expected utility as a function of β for −θ1 = θ2 = 1, Φ is N(0, 1) distributed, and G is a N(0, 1)

distribution truncated to the interval [−1, 1].

To summarize, the possibility of strategic voting induces candidates 1 and 2 to move toward the spoiler:

Candidate 1 does it to reduce strategic voting, while candidate 2 does it to increase strategic voting. We will

show that in equilibrium candidate 2 moves further to the right than candidate 1, implying that candidate 1

becomes more likely to win. Thus, whether the spoiler benefits from these shifted positions depends on the

relative magnitudes of the rightward shift versus the change in winning probabilities. We show that the first

effect dominates the second whenever voters have both sufficient expressive and strategic concerns.

Figure 4 illustrates the spoiler’s utility as a function of βwhen −θ1 = θ2 = 1, θ3 = x3 = 2, Φ is a standard

normal distribution and G is a standard normal distribution truncated to the interval [−1, 1]. The dotted verti-

cal line indicates the critical value β̄ at which the spoiler begins to draw votes. For β ≤ β̄, non-partisan voters

care so much about who wins the election that do not ever vote for the spoiler—even if their ideal position is

arbitrarily far to the right. Increasing β past β̄, first causes candidates 1 and 2 to move their platforms to the

right in order to alter the incidence of strategic voting for candidate 2. As a result, the spoiler’s utility first

rises as voters care more and more about their expressive component of preferences before falling sharply

as β approaches 1. That is, candidate 3 is best off when voters’ instrumental preferences are intermediate,

neither too low nor too high.

Figure 5 provides intuition. For intermediate values of β the spoiler’s entry induces both mainstream

candidates to move toward the spoiler, and this “closer location” effect more than offsets the reduction in
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Figure 5: Candidate positions and candidate 2’s winning probability as a function of β for −θ1 = θ2 = 1, Φ is N(0, 1)

distributed, and G is a N(0, 1) distribution truncated to the interval [−1, 1].

candidate 2’s winning probability,9 in the spoiler’s expected utility. In contrast, when instrumental motives

are stronger, the mainstream parties ignore the spoiler; and when expressive considerations are very strong,

the spoiler is hurt in multiple ways. First, once β is sufficiently high, further increases in β increasingly disad-

vantage candidate 2, because right wing citizens are more likely to vote for the spoiler and less likely to vote

strategically to defeat candidate 1. In turn, reflecting this difficulty, candidate 2 starts to retreat away from the

spoiler to reduce candidate 1’s base support. Further, candidate 1 also moves away from the spoiler due to

the reduced risk of strategic voting. This also underlies the non-monotonicity of candidate 2’s winning prob-

ability in Figure 5. In particular, once β becomes sufficiently large, reducing strategic voting matters less to

candidate 1, causing her to shift her platform to the left by enough that 2’s winning probability actually rises.

6.2 General Analysis

We next formally describe the model. Because candidate 3 is a spoiler with zero probability of winning,

only the net-stalwart difference ρ = ρ2 − ρ1 matters. First candidates choose policy positions x1 and x2, and

then ρ is realized. Let G be the cdf of ρ.

Assumption 2

1. G is twice continuously differentiable, with a density g that is symmetric around 0.

9Although this example is just illustrative, Pons and Tricaud (2018) use a regression discontinuity design to show that the

presence of a spoiler in French parliamentary and local elections reduces the chances of the ideologically-closest candidate by

about one-fifth. Our model can reconcile why the spoiler may want to enter despite the impact on winning probabilities.

24



2. The distribution of voter types Φ is twice continuously differentiable and symmetric around zero.

3. The fourth moment of Φ is finite.

Recall that y32, defined in (6), is the most extreme voter type that would be prepared to vote for candidate 2

in order to defeat candidate 1. The value of y23 is finite if β ≤ β̄, where β̄ = x2−x1
x3−x1

. In this case

y32 =
1
2

(1 − β)x2
1 + βx

2
3 − x2

2

(1 − β)x1 + βx3 − x2
. (8)

Note that y32 strictly decreases in x1, i.e., M32 decreases: By shifting x1 to the right, candidate 1 can reduce

the ex-ante probability that voters strategically coordinate on candidate 2 to defeat 1. Conversely, increasing

x2 causes y32 and M32 to increase. That is, just as candidate 1 can reduce strategic voting for candidate 2 by

making her policy more attractive to right-wing voters, candidate 2 can increase her strategic support from

right-wing voters by making her policy more attractive to them. Thus, ∂y32/∂x1 < 0 and ∂y32/∂x2 > 0.

The votes for candidates 1 and 2 if there is strategic voting are V1 = Φ((x1 + x2)/2), and V2 = Φ(y32) −

Φ((x1 + x2)/2) + ρ, respectively. Strategic voting will occur if and only if the coalition [(x1 + x2)/2, y32]

suffices to deliver victory to candidate 2. Let ρ̄ be the value of ρ at which V1 = V2, i.e.,

ρ̄ = 2Φ((x1 + x2)/2) − Φ(y32). (9)

Candidate 1’s winning probability is G(ρ̄).

The candidates’ optimization problems are therefore given by

max
x1
−G(ρ̄)(x1 − θ1)2 − (1 −G(ρ̄))(x2 − θ1)2, and (10)

max
x2
−G(ρ̄)(x1 − θ2)2 − (1 −G(ρ̄))(x2 − θ2)2. (11)

Proposition 9 Let θ2 = −θ1, x3 ≥ θ2, and Assumption 2 hold. Then there exists a β̄ such that in equilibrium:

• For β ≤ β̄, instrumental considerations of voters dominate. The outcome is same as when candidate 3

is not present. The equilibrium platforms of candidates 1 and 2 are

x2 = −x1 =
θ2

1 + 4θ2g(0)ϕ(0)
. (12)

• A sufficiently small increase in β above β̄ causes both candidates 1 and 2 to shift x1 and x2 to the right,

with x2 shifting by more than x1, reducing candidate 2’s chance of winning but raising candidate 3’s

expected utility.
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In the proof we show that β̄ = (x2 − x1)/(x3 − x1), where x1 and x2 are given by (12). When β is small

enough—where small enough depends on the spoiler’s location—nonpartisans care so much about who

wins that they all vote for either candidate 1 or 2. As a result, political competition reduces to the classical

two-candidate Wittman (1983) setting, with associated symmetric locations. A slight increase in β above

β̄ now means that the spoiler can steal votes from extreme right-wing voters away from candidate 2. In

the proof, we use the implicit function theorem at β̄ to show that this induces both mainstream candidates

to shift their policies to the right, with candidate 2 moving further because rightward shifts move toward

candidate 2’s ideal policy and away from candidate 1’s. It follows that candidate 1’s probability of winning

rises. However, a second application of the implicit function theorem reveals that the spoiler gains more

from the rightward policy shifts of the two mainstream candidates than the spoiler loses from the increased

probability that the spoiler’s least preferred candidate wins. As a result, even though the spoiler steals votes

away from her preferred mainstream candidate, she still gains from entry.

7 Conclusion

There is extensive evidence that voters care both about which candidate they vote for, and which candidate

wins. In a two candidate setting, this distinction is irrelevant because expressive and instrumental concerns

coincide. However, as recent polling data over potential Republican presidential primary candidates illus-

trates, this distinction matters with more than two candidates—51 percent preferred a candidate with the

best chance of winning versus 44 percent who wanted to agree with the candidate on everything even if the

candidate would have a tougher time winning in November.10

We develop a model of strategic voting in a spatial model with multiple candidates when voters have

both expressive and instrumental concerns. The model endogenizes the strategic coordination of citizens on

a less-preferred candidate in order to raise the chances of defeating an even less-preferred candidate. We

fully characterize all coalitional voting equilibria in a three-candidate setting. We provide several important

insights. First, even though elections may be close, one candidate may be systematically more likely to win,

indicating that close elections may not be a good natural experiment.11 Second, strategic voting does not

only have to occur in close elections. Third, strategic voting can generate endogenous uncertainty about

who wins. To highlight this, we assume away all extrinsic sources of uncertainty at the voting stage. The

presence of endogenous uncertainty, in turn, may add to the difficulty of forecasting electoral outcomes even

with accurate polling data, as voters efforts to coordinate strategically may necessarily be unpredictable.

A virtue of our formulation of strategic voting is that it is simple enough to incorporate into a standard

10See, FiveThirtyEight, “Which Republican Candidate Should Biden Be Most Afraid Of?” https://fivethirtyeight.com/

features/which-republican-candidate-should-biden-be-most-afraid-of/
11See Levine and Martinelli (2022) who also make this point in a setting with campaign spending.
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model of political competition with policy motivated candidates. To illustrate this, we endogenize candidate

policy choices with the two mainstream candidate and a spoiler who understand that voters may coordinate

strategically. We show that the spoiler can gain from entering, even though she has no chance of winning the

election and reduces the winning probability of her preferred mainstream candidate. This occurs because

both mainstream candidates partially incorporate the spoiler’s platform by moving toward the spoiler.
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8 Appendix

Lemma 2 Suppose that N2 > N1,N3. Then there does not exist a mixed coalitional voting equilibrium in

which leftist expressive supporters of candidate 2 vote stochastically for candidate 1, while rightist expres-

sive supporters of candidate 2 vote stochastically for candidate 3.

Proof of Lemma 2. We proceed by way of contradiction, assuming that there exists a mixed coalitional

equilibrium. First note that all realized coalitions S i(ωi) must be intervals: Suppose by way of contradiction

that S i(ωi) is not an interval. Then there exist θ1 < θ2 < θ3 with θ1, θ3 ∈ S i(ωi) and θ2 < S i(ωi). By common

interest both θ1 and θ3 are at least as well off if the coalition is formed. Next, either θ1 or θ3 must be further

away from x2 than θ2. Thus, citizen θ2 is strictly better off if the coalition forms, violating inclusivity.

Note that S 1(ω1) ⊃ E1 and hence must be unbounded from below. Let S 1(ω1) = (−∞, y1(ω1)) be an

open interval. By common interest the net benefit of y1(ω1) from having a coalition must be non-negative.

If the net-benefit is strictly positive, then inclusivity would be violated. Therefore the net-benefit of y1(ω1)

from having a coalition is zero. The same argument applies if S 1(ω1) is a closed interval, and the argument is

analogous for S 3(ω3). Further, because the distribution of voter types is continuous, we can restrict attention

to closed intervals without loss of generality.

Let z1(ω1) be defined by S 1(ω1) = (−∞, z1(ω1)]. Let Ω̄1 be the support of λ1. Define z1 = infω1∈Ω̄1
z1(ω1)

s.t. z1(ω1) > θ12. We show that z1 > θ12. We proceed by way of contradiction, i.e., we assume that z1 = θ12.

We consider different cases for the realized coalition for candidate 3 Φ(S 3(ω3)), and show that condi-

tional on each case occurring either inclusivity or common interest is violated.

Case 1: Φ(S 3(ω3)) < N3 + 0.5(N2 − N3). We show that in this case any coalition S 1 = (−∞, z1] either does

not affect the outcome or flips the election away from candidate 2. This implies that conditional on case 1

occurring, all voters in (θ12, z1] are strictly worse off: Their instrumental payoff cannot increase and their

expressive payoff is strictly decreased, violating common interest.

To see this, let ∆ = Φ(S 3(ω3)) − N3 be the number of expressive candidate 2 supporters who vote for

candidate 3. Absent strategic voting for candidate 1, candidate 2 would receive more votes than candidate 3

if N2 − ∆ > N3 + ∆, or equivalently if Φ(S 3(ω3)) < N3 + 0.5(N2 − N3). Thus, if a non-trivial coalition S 1

forms, then the outcome can only flip away from candidate 2.

Case 2: Φ(S 3(ω3)) ≥ N3 + 0.5(N2 − N3) and N3 + 0.5(N2 − N3) < N1. I If N3 + 0.5(N2 − N3) < N1, then

absent strategic voting candidate 1 wins. Thus, voting strategically for candidate 1 only incurs expressive

costs without changing the outcome. Thus, common interest is violated for any coalition S 1 = (−∞, z1]

conditional on case 2 occurring.
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Case 3: Φ(S 3(ω3)) ≥ N3 + 0.5(N2 − N3) and N3 + 0.5(N2 − N3) = N1. Because z1 = θ12 there exist ω1

in the support of λ1 where z1(ω1) is marginally larger than θ12. Then voter z1(ω1) is strictly better off if

the coalition forms because the winning probability of candidate 3 is decreased by a discrete amount at an

arbitrarily small expressive cost. This violates common interest and inclusivity, because z1(ω1) must be

indifferent between the coalition forming and not forming, a contradiction.

Case 4: Φ(S 3(ω3)) ≥ N3 + 0.5(N2 − N3) and N3 + 0.5(N2 − N3) > N1. Let 0 < ε < N3 + 0.5(N2 − N3) − N1.

Because z1 = θ12 by assumption, there exist ω1 in the support of λ1 with θ12 < z1(ω1) < θ12 + ε. Then

regardless of whether or not coalition S 1(ω1) forms, candidate 3 wins: In expectation strategic voters for

candidate 1 are worse off, violating common interest.

Similarly, let z3 = supω3∈Ω3
z3(ω3) s.t. z3(ω3) < θ23. Then an analogous argument yields that z3 < θ23.

Because the sets S 1(ω1) and S 3(ω3) are closed, it follows that zi, i = 1, 3 are the minimum and maximum

respectively, i.e., there exist smallest strategic coalitions that are not equal to E1 and E3, respectively.

Next, we show that λi({ωi|zi(ωi) = zi}) > 0 cannot hold for both i = 1, 3. If both choose the smallest

coalition (with bounds zi), there must be a tie between candidates 1 and 3. But then by marginally increasing

the size of the coalition the winning probability can be increased by a discrete amount, violating inclusivity.

Now, suppose that λ3({ω3|z3(ω3) = z3}) = 0. Because there must be a tie between candidates 1 and 3

when the smallest strategic coalitions form (else we get an immediate contradiction), candidate 1 loses with

probability 1 when coalition S 1 = (−∞, z1] forms. But then common interest is violated for all voters in

[z1, θ23). A similar contradiction obtains when λ1({ω1|z1(ω1) = z1}) = 0.

Proof of Proposition 2. An equilibrium with only expressive voting exists if and only if it is not optimal for

any group of citizens to vote strategically and make themselves better off in the process. If N2 ≥ N1, then

if candidate 2 supporters vote expressively so would all expressive supporters of other parties—common

interest would be violated if expressive supporters of the other parties voted strategically for another party,

as either candidate 2 still wins or they vote in sufficient numbers for their least favored party, that it wins.

Now suppose N2 > N1 and another pure coalitional voting equilibrium exists. In such a pure coalitional

equilibrium there would have to be exactly two coalitions S 1 and S 3, and there has to be a tie between

them—else it is immediate that common interest is violated. However, a marginal increase of say coalition

S 1 would result in candidate 1 winning with probability 1, making the marginal voter strictly better off, thus

violating inclusivity.

Proof of Proposition 3. Suppose that N1 ≥ max{N2+M32,N3+M23}. Then it is immediate that candidate 1

wins: Even if the largest coalitions form for either candidates 2 or 3, then this coalitions are at most large

33



enough to generate a tie. However, if only a tie can be achieved then common interest is violated because

the marginal voters y23 or y32 are only indifferent when strategic voting results in a win with probability 1.

Conversely, suppose that we have an equilibrium in which candidate 1 always wins, but the condition is

violated. First suppose that N2 + M32 > N1. Then there exists δ > 0 such that coalition S 2 = [θ12, y32 − δ]

still wins. All members of S 2 are strictly better off by at least some ϵ > 0 if the coalitions is formed, which

violates inclusivity, a contradiction. The argument for N3 + M23 > N1 is analogous.

Finally, when the condition holds then any strategic voting would violate common interest, because the

electoral outcome would not change. Hence, everyone votes expressively.

Proof of Proposition 4. Proof of statement 1: Let N2 + M32 > N1. Because N2 < N1 candidate 2 loses

unless there is strategic voting. Using the same argument as in the proof of Proposition 3, it follows that

a strategic coalition would form for candidate 2 to win by inclusivity. Similarly, candidate 2 cannot win

with just the votes of expressive candidate 3 supporters unless N2 + M32 > N1. Next, note that by common

interest, candidate 1 supporters will not strategically vote for candidate 2 in a pure coalitional equilibrium,

because candidate 1 already wins without strategic voting. Conversely, suppose that N2 + M32 ≤ N1. Then

as in the proof of Proposition 3 we can conclude that candidate 2 cannot win.

Proof of statement 2: If N2 + M32 > N1 holds then statement 1 shows that an equilibrium exists in

which candidate 2 always wins. If N3 +M23 ≤ N1 then there are not enough potential strategic voters to flip

the election to candidate 3 in either a pure or mixed coalitional equilibrium.

Now suppose that either N2 + M32 ≤ N1 or N3 + M23 > N1. The proof of statement 1 already shows

that candidate 2 cannot win if N2 + M32 ≤ N1. Thus, suppose that N3 + M23 > N1. Then we show in

Propositions 5 and 6 that either an equilibrium exists in which candidate 3 always wins, or there exists a

mixed coalitional equilibrium in which both candidates 1 and 3 win with strictly positive probability.

Proof of Proposition 5. First, note that M21 > 0 because Φ has a strictly positive density, and β < 1,

i.e., some citizens marginally to the right of θ12 would be willing to vote strategically for candidate 1, if

candidate 1 wins as a result. Thus, N3 + M23 > N1. This implies that there exists a sufficiently number of

strategic voters such that candidate 3 could win. This would be a coalitional equilibrium unless it is the case

that strategic voting by leftist candidate 2 supporters would flip the election back to candidate 1. However,

such a strategic coalition would only form if and only if M21 + N1 > N3 + M23.

Proof of Proposition 6. We first establish necessary conditions that must hold in any mixed coali-

tional voting equilibrium. The proof of Lemma 2 shows that coalitions are closed intervals, i.e., S 1(ω1) =

34



(−∞, θ12, θ12 + y1(ω1)] and S 3(ω3) = [θ23 − y3(ω3),∞). We can thus describe coalitions by the distributions

of yi(ωi). Let qi = P({yi(ωi) = 0}). Thus, qi is the probability that nobody votes strategically for candidate i.

Claim 1: In any mixed coalitional voting equilibrium, the supports of the distributions Fi of yi(ωi) condi-

tional on yi(ωi) > 0 are intervals.

Proof: Suppose by way of contradiction that the support Di of one of the distributions, say Fi over yi > 0,

does not have an interval support. Suppose that i = 1. Then there exists an open interval V = (y1,L, y1,H) ∩

D1 = ∅ with y1,L, y1,H ∈ D1, and 0 < F1(y1,L) = F1(y1,H) < 1. Let y3,L and y3,H be defined such that the vote

ends in a tie when the endpoints of the intervals are y1,L, y3,H , respectively. There cannot be mass points at

y1,L and y1,H , else a marginal increase of the opposing coalitions via increases of y3,L or y3,H would make all

coalition members strictly better off as the winning probability would be strictly increased. This implies that

the winning probabilities of coalitions S 1,L = (−∞, y1,L] and S 1,H = (−∞, y1,H] are equal. Following the

argument in Lemma 2 common interest and inclusivity imply that a voter at y1,L must be indifferent between

being in the coalition or having no coalition form. But then voter y1,H must be strictly worse off if coalition

S 1,H forms, because the winning probability is the same, but y1,H has a strictly larger cost of voting against

expressive preferences. Thus, common interest is violated for S 1,H , a contradiction. □

Claim 2: The vote shares must be equal if the largest coalitions are chosen.

Proof: Because all realized coalitions are intervals, the largest realized coalitions are S̄ 1 and S̄ 3 defined in

Section 4.2. Suppose by way of contradiction that candidate 1 wins with a strict majority of votes if these

coalitions form. Let ȳ1 be the upper end point of the interval S̄ 1. Recall that indifference must hold at all

y1(ω1) for all ω1. However, in a neighborhood of ȳ1 the winning probability of candidate 1 remains 1. Let

y1 be marginally smaller than ȳ1. If coalitions (−∞, y1] forms then y1 must be indifferent between having

the coalition form or not. However, because the winning probability remains 1 if y1 is increased to ȳ1, and

ȳ1 has a higher expressive cost of voting strategically for candidate 1, this implies that coalition S̄ 1 violates

common interest. □

Claim 3: There is no point mass at the upper end of the distributions.

Proof: Suppose without loss of generality there is a point mass at ȳ1. Claim 2 established that there must

be a tie when the coalitions are maximal. But then coalition S̄ 3 could be marginally increased, resulting in

a discrete increase in candidate 3’s winning probability, violating inclusivity for coalition S̄ 3. □

Recall that θi j = 0.5(xi + x j). Let Z be the minimum amount of strategic voting for candidate 3 to have

a chance of winning, i.e., Z solves

N1 = N3 + Φ(θ23) − Φ(θ23 − Z). (13)

If y1 and y3 are the cutoffs for strategic voters, then define z1 = y1−θ12 and z3 = θ23−y3−Z. Then z1, z3 ≥ 0

for all coalitions that involve strategic voting, i.e., where y1 > θ12 and y3 < θ23. Define the total (expressive
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plus strategic) vote shares for candidates 1 and 3 by

H1(z1) ≡ N1 + Φ(θ12 + z1) − Φ(θ12) and H3(z3) ≡ N3 + Φ(θ23) − Φ(θ23 − Z − z3). (14)

Then candidate 1 wins if H1(z1) > H3(z3). Because Φ is strictly increasing, this is equivalent to z1 >

H−1
1 (H3(z3)). Candidate 3 wins if the inequality is reversed.

Let Fi(zi) be the cdf that describes the distribution of the zi. Recall that qi as defined at the beginning of

the proof is the probability that candidate i only receives expressive support.

The indifference condition for each realized marginal type y1 is

− β(y1 − x2)2 − (1 − β)
(
q3(y1 − x1)2 + (1 − q3)(y1 − x3)2

)
= −β(y1 − x1)2 − (1 − β)

((
q3 + (1 − q3)F3(H−1

3 (H1(z1)))
)

(y1 − x1)2

+
(
1 − q3 − (1 − q3)F3(H−1

3 (H1(z1)))
)

(y1 − x3)2
)
.

(15)

The left-hand side is the expected payoff if all members of the realized coalition S 1 = {θ : θ ≤ y1} who

expressively prefer candidate 2 vote for 2, which leads to 1 winning if and only if y3 = θ23, which happens

with probability q3, because VE
1 > VE

3 . The right-hand side is the expected payoff if all members of the

realized coalition S 1 vote for candidate 1. Now, candidate 1 wins either when y3 ≤ θ23 − Z, which happens

with probability 1 − q3; or when the positive measure of the realized coalition S 3 is less than S 1, which

happens when z3 ≤ H−1
3 (H1(z1)). Thus, candidate 1 wins with probability F3(H−1

3 (H1(z1))).

The analogous indifference condition to (15) for each realized marginal type y3 is

− β(y3 − x2)2 − (1 − β)(y3 − x1)2

= −β(y3 − x3)2 − (1 − β)
((

q1 + (1 − q1)F1(H−1
1 (H3(z3)))

)
(y3 − x3)2

+
(
1 − q1 − (1 − q1)F1(H−1

1 (H3(z3)))
)

(y3 − x1)2
)
.

(16)

A citizen at θ13 = 0.5(x1 + x3) is indifferent between either extreme candidate winning. Thus, θ13 must be

strictly outside any strategic voter coalition as long as voters place weight β > 0 on expressive preferences.

Note that

x2 − x1 = 2(θ23 − θ13), x3 − x1 = 2(θ23 − θ12), and x3 − x2 = 2(θ13 − θ12). (17)

Solving equation (15) for F3 using y1 = θ12 + z1 and (17) yields

F3(H−1
3 (H1(z1))) =

β

1 − β
1

1 − q3

(θ23 − θ13) z1

(θ23 − θ12) (θ13 − θ12 − z1)
. (18)

Similarly, solving (16) for F1, using y3 = θ23 − Z − z3 and (17) yields

F1(H−1
1 (H3(z3))) =

β

1 − β
1

1 − q1

(θ13 − θ12) (Z + z3)
(θ23 − θ12) (θ23 − θ13 − (Z + z3))

−
q1

1 − q1
. (19)
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Thus,

F1(z) =
β

1 − β
1

1 − q1

(θ13 − θ12)
(
Z + H−1

3 (H1(z))
)

(θ23 − θ12)
(
θ23 − θ13 − (Z + H−1

3 (H1(z)))
) − q1

1 − q1
; (20)

F3(z) =
β

1 − β
1

1 − q3

(θ23 − θ13) H−1
1 (H3(z))

(θ23 − θ12)
(
θ13 − θ12 − H−1

1 (H3(z))
) . (21)

Note that H−1
3 (H1(z)) and H−1

1 (H3(z)) are strictly monotone in z and therefore F1 and F3 are strictly increas-

ing on their supports. Further, (13) implies H−1
3 (H1(0)) = 0 and H−1

1 (H3(0)) = 0. Hence, F3(0) = 0.

From the definition of q1, F1(0) = 0. Substituting F1(0) = 0 and H−1
3 (H1(0)) = 0 in (20) we solve for:

q1 =
β

1 − β
(θ13 − θ12)Z

(θ23 − θ12)(θ23 − θ13 − Z)
. (22)

Note that q1 ≥ 0 because the interval of strategic voting [θ23−Z−z3, θ23] of candidate 2 supporters who vote

for candidate 3 must be strictly to the right of the voter θ13 who is indifferent between candidates 1 and 3. If

the solution has q1 ≥ 1 then there is no mixed coalitional voting equilibrium. Either candidate 1’s base sup-

port advantage is sufficiently large to win (Proposition 3), or we get the pure coalitional voting equilibrium in

which enough expressive candidate 3 supporters vote strategically for candidate 2 that 2 wins (Proposition 5).

Next, let [0, z̄i] be the support of Fi. Then claim 3 implies H1(z̄1) = H3(z̄3). Further, claim 4 implies

that there cannot be a mass point at the upper end of either distribution. Thus, in this equilibrium we set

H1(z̄1) = H3(z̄3), which pins down q3.

Setting the right-hand sides of (20) to 1 and solving for z̄i, i = 1, 3 yields

H−1
3 (H1(z̄1)) =

(1 − β)(θ23 − θ12)(θ23 − θ13) − (θ23 − θ12 − β(θ23 − θ13))Z
θ23 − θ12 − β(θ23 − θ13)

. (23)

Similarly we get

H−1
1 (H3(z̄3)) =

(1 − β)(1 − q3)(θ13 − θ12)(θ23 − θ12)
(1 − β)(1 − q3)(θ23 − θ12) + β(θ23 − θ13)

. (24)

Assuming that H1(z̄1) = H3(z̄3) we get

H3

(
(1 − β)(θ23 − θ12)(θ23 − θ13) − (θ23 − θ12 − β(θ23 − θ13))Z

θ23 − θ12 − β(θ23 − θ13)

)
= H1

(
(1 − β)(1 − q3)(θ13 − θ12)(θ23 − θ12)

(1 − β)(1 − q3)(θ23 − θ12) + β(θ23 − θ13)

)
.

Thus, we can solve:

q3 =
(θ13 − θ12)((1 − β)(θ23 − θ12) + βC) − (θ23 − θ12)C

(1 − β)(θ23 − θ12)(θ13 − θ12 −C)
, (25)

where

C = H−1
1

(
H3

(
(1 − β)(θ23 − θ12)(θ23 − θ13) − (θ23 − θ12 − β(θ23 − θ13))Z

θ23 − θ12 − β(θ23 − θ13)

))
. (26)
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It remains to prove that 0 ≤ q3 ≤ 1. If the largest coalition S̄ 1 = (−∞, ȳ1] forms, then candidate 1 must

win with probability 1 by claims 2 and 3. Substituting F3(·) = 1 into (15) implies

−β(ȳ1 − x2)2 − (1 − β)
(
q3(ȳ1 − x1)2 + (1 − q3)(ȳ1 − x3)2

)
= −(ȳ1 − x1)2 (27)

This equation implicitly defines ȳ1 as a function of q3: It is immediate that ȳ1(q3) is continuous and that

ȳ1(0) = y21, and ȳ1(1) = θ12 (where yi j is defined in (6)). Further, ȳ1(q3) is strictly decreasing. If both

maximal coalitions form, then by claim 2, the election must end in a tie, i.e.,

Φ((−∞, ȳ1(q3)] + ρ1 = Φ([y23,∞)] + ρ3. (28)

The right-hand side of (28) is M23 + N3, where Mi j defined in Section 5 is the maximum number of expres-

sive i supporters who would be willing to vote for j, if j wins with probability 1 as a result. The left-hand

side of (28) is M21 + N1 when q3 = 0, and it is N1 when q3 = 1. In order for a solution to (28) exist for

0 ≤ q3 < 1 it must be the case that the left-hand side is greater than or equal to M23 + N3 for q3 = 0 and

it must be less than M23 + N3 for q3 = 1. Thus, M21 + N1 ≥ M23 + N3 and N1 < M23 + N3, which are the

necessary and sufficient conditions given in the Proposition.

We have already shown that q1 ≥ 0. It remains to prove that q1 < 1. Let F̃1(z1) = q1 + (1 − q1)F1(z1).

Then (20) immediately implies that F̃1(z1) is strictly increasing, and F̃1(z̄1) = F1(z̄) = 1. Thus, F̃1 is a well

defined cdf, which describes the distribution of z1 including z1 = 0. Hence q1 = F̃1(0) < F̃1(z̄1) = 1.

Proof of Proposition 7. Suppose that N1 + Φ([θ12, θ13]) > N3 + Φ([θ13, θ23]). Suppose the probability of

victory for candidate 1 is bounded from above by q < 1 for arbitrarily small β. But then, for such small

β, a type marginally to the left of θ13 would be willing to vote strategically for candidate 1 to increase the

probability that candidate 1 wins from q to 1. Further all individuals to the left of this marginal type would

similarly be strictly better off. By assumption, if these voters join an existing voting coalition they would all

be uniformly strictly better off. This violates inclusivity, a contradiction. The argument when the inequality

is reversed is analogous.

Proof of Proposition 8. In the mixed coalitional voting equilibrium, the marginal realized coalition mem-

ber is indifferent (by common interest and inclusivity) between having all members vote expressively or all

voting strategically. Further, regardless of the level of candidate 1’s base support advantage, if members of a

realized coalition for candidate 3 vote expressively, candidate 1 is sure to win. It follows that the indifference

condition for each possible marginal realized coalition member θ = y3(ω3) who votes for candidate 3 but

expressively prefers candidate 2 given ρ′1 takes the form:

−β(θ − x2)2 − (1 − β)(θ − x1)2 = −β(θ − x3)2 − (1 − β)(Pr(1 wins)(θ − x1)2 + Pr(3 wins)(θ − x3)2). (29)
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The left-hand side of (29) does not depend on the level of candidate 1’s ex ante base support advantage and

is therefore not affected by changing ρ1 to ρ′1. It follows that the probability that candidate 3 wins when all

voters to the right of θ vote for candidate 3 given ρ′1 is the same as that given ρ1. Since this holds for each

such θ, it follows that the distribution over the sizes of strategic coalitions supporting candidate 1 is shifted

to the left by ρ′1 − ρ1. Further, setting Pr(3 wins) to one in (29) implies that the size of the maximal possible

coalition supporting candidate 3 is independent of ρ1.

Next, observe that the smallest non-trivial coalition for candidate 3 increases due to candidate 1’s in-

creased base support advantage. Because the marginal member of this coalition has the same probability of

winning given ρ′1 as ρ1, it follows that q′1 > q1.

Further, the requirement that there be a tie in vote share when both coalitions are maximal together with

the size of the maximal coalition supporting candidate 3 being unchanged, it follows that the size of the

maximal coalition supporting candidate 1 is reduced by ρ′1 − ρ1. The indifference condition for the marginal

maximal coalition member takes the form:

−β(θ − x2)2 − (1 − β)(q′3(θ − x1)2 + (1 − q′3)(θ − x3)2 = −β(θ − x1)2 − (1 − β)(θ − x1)2,

since candidate 1 wins with probability 1 when the maximal coalition forms. Because the increase to ρ′1
shifts θ to the left, the right-hand side of this indifference condition increases. To preserve equality, the left-

hand side must increase, i.e., q′3 > q3. For smaller coalitions, the marginal coalition member’s indifference

condition takes the form

−β(θ−x2)2−(1−β)(q′3(θ−x1)2+(1−q′3)(θ−x3)2 = −β(θ−x1)2−(1−β)(Pr(1 wins)(θ−x1)2+Pr(3 wins)(θ−x3)2).

Because q′3 > q3, the left-hand side is larger given ρ′1 than ρ1, implying that the right-hand side must also be

larger, i.e., it must be that candidate 1 is more likely to win.

39



9 Online Appendix

Proof of Proposition 9. The first-order conditions for the candidates’ optimization problems are given by:

g(ρ̄)
(
ϕ
( x1 + x2

2

)
− ϕ(y32)

∂y32

∂x1

) ( x1 + x2

2
− θ1

)
(x2 − x1) − (x1 − θ1)G(ρ̄) = 0 (30)

and

−g(ρ̄)
(
ϕ
( x1 + x2

2

)
− ϕ(y32)

∂y32

∂x2

) (
θ2 −

x1 + x2

2

)
(x2 − x1) + (θ2 − x2)(1 −G(ρ̄)) = 0. (31)

If β ≤ β̄, then y32 = ∞, so ρ̄ = 2Φ((x1 + x2)/2) − 1. Hence, the terms ϕ(y32)∂y32
∂x1

in the first-order conditions

(30) and (31) disappear, which yields

g(ρ̄)
(
ϕ
( x1 + x2

2

)) ( x1 + x2

2
− θ1

)
(x2 − x1) − (x1 − θ1)G(ρ̄) = 0

and

−g(ρ̄)
(
ϕ
( x1 + x2

2

)) (
θ2 −

x1 + x2

2

)
(x2 − x1) + (θ2 − x2)(1 −G(ρ̄)) = 0.

Substitute θ1 = −θ2 and impose symmetry to solve the first-order conditions for the equilibrium platforms:

x2 = −x1 =
θ2

1 + 4θ2g(0)ϕ(0)
, (32)

which also implies ρ̄ = 0.

We now show that we have enough structure to apply the implicit function theorem to characterize the

equilibrium candidate location responses to slight increases in β above β̄. Define

f (β) = ϕ(y32)
∂y32

∂x1
.

Clearly, f is continuously differentiable for β , β̄. We next show that f is also continuously differentiable

at β̄. Because the left-derivative of f at β̄ is trivially zero, it is sufficient to show that limβ↓β̄ f ′(β) = 0.

For β > β̄
∂y32

∂β
= −

1
2

(x2 − x1)(x3 − x1)(x3 − x2)
((1 − β)x1 + βx3 − x2)2 . (33)

and
∂2y32

∂β∂x1
=

1
2

(x3 − x2)2 (x2 + βx3 − (1 + β)x1)
((1 − β)x1 + βx3 − x2)3 . (34)

Because ∂y32
∂β and ∂y32

∂x1
both go to infinity at rate 1

(β−β̄)2 as β ↓ β̄, for β > β̄ there exists K1, K2 > 0 such that

∣∣∣ f ′(β)∣∣∣ = ∣∣∣∣∣∣ϕ′(y32)
∂y32

∂β

∂y32

∂x1
+ ϕ(y32)

∂2y32

∂β∂x1

∣∣∣∣∣∣ ≤ ∣∣∣ϕ′(y32)
∣∣∣ K1

(β − β̄)4
+ ϕ(y32)

K2

(β − β̄)3
. (35)
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Further, y32 goes to infinity at the rate 1/(β− β̄) as β ↓ β̄. Because the fourth moment of Φ is finite, it follows

that limx→∞ x4ϕ(x) = 0. Integration by parts yields that
∫ ∞

0 x4ϕ′(x) dx = x4ϕ(x)|∞0 − 4
∫ ∞

0 x3ϕ(x) dx. Hence,∫ ∞
0 x4ϕ′(x) dx is finite, which implies that limx→∞ x4ϕ′(x) = 0. This and (35) yield limβ↓β̄ f ′(β) = 0.

To show differentiability at β̄, it is sufficient to prove that

lim
β↓β̄

f (β) − f (β̄)
β − β̄

= 0. (36)

The argument is similar to above. Note that f (β) < K̂/(β − β̄)2 for β marginally larger than β̄ and some

K̂ > 0. Further, we have shown that ϕ(y32) < ε(β − β̄)4, for β near β̄ because limx→∞ x4ϕ(x) = 0. Thus, the

limit in (36) exists and is zero. Hence, f (β) is continuously differentiable, and f ′(β̄) = 0.

An analogous argument shows that ϕ(y32)∂y32
∂x2

is continuously differentiable, and that the first derivative

with respect to β at β̄ is zero.

Next differentiate candidate 1’s first-order condition (30) with respect to β to obtain:

∂FOC1

∂β
=ϕ(y32)

∂y32

∂β

(
−g′(ρ̄)

(
ϕ
( x1 + x2

2

)
− ϕ(y32)

∂y32

∂x1

) ( x1 + x2

2
− θ1

)
(x2 − x1)

)

− ϕ(y32)
∂y32

∂β
g(ρ̄)


ϕ′(y32)
ϕ(y32)

∂y32

∂x1
+

∂2y32
∂x1∂β

∂y32
∂β

 ( x1 + x2

2
− θ1

)
(x2 − x1) + (x1 − θ1)

 .
(37)

Similarly, differentiating candidate 2’s first-order condition (31) with respect to β yields

∂FOC2

∂β
=ϕ(y32)

∂y32

∂β

(
g′(ρ̄)

(
ϕ
( x1 + x2

2

)
− ϕ(y32)

∂y32

∂x2

) (
θ2 −

x1 + x2

2

)
(x2 − x1)

)

+ ϕ(y32)
∂y32

∂β
g(ρ̄)


ϕ′(y32)
ϕ(y32)

∂y32

∂x2
+

∂2y32
∂x2∂β

∂y32
∂β

 (θ2 − x1 + x2

2

)
(x2 − x1) + (θ2 − x2)

 .
(38)

Note that the term in the large parentheses on the first lines of (37) and (38) are zero, respectively at β = β̄.

In contrast, the terms inside the large parentheses on the second lines of (37) and (38) go to infinity. Thus,

lim
β↓β̄

∂FOC1
∂β

∂FOC2
∂β

= − lim
β↓β̄

ϕ′(y32)
ϕ(y32)

∂y32
∂x1
+

∂2y32
∂x1∂β
∂y32
∂β

ϕ′(y32)
ϕ(y32)

∂y32
∂x2
+

∂2y32
∂x2∂β
∂y32
∂β

=
x3 − x2

x3 − x1
. (39)

Next, differentiate the first-order conditions with respect to x1 and x2 at β = β̄. Note that ρ̄ = 0 at β̄, and

hence g′(ρ̄) = 0. Similarly, because x1 = −x2 in equilibrium at β̄, ϕ′((x1+x2)/2) = 0. Further, ϕ(y32)∂y32
∂x1
= 0

and ∂G(ρ̄)
∂xi
= g(0)ϕ(0). Therefore,

∂FOC1

∂x1

∣∣∣∣∣∣
β=β̄

= −2g(0)ϕ(0)(x1 − θ1) −
1
2
< 0,

∂FOC1

∂x2

∣∣∣∣∣∣
β=β̄

= g(0)ϕ(0)(x2 − x1) > 0, (40)
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and
∂FOC2

∂x1

∣∣∣∣∣∣
β=β̄

= g(0)ϕ(0)(x2 − x1) > 0,
∂FOC2

∂x2

∣∣∣∣∣∣
β=β̄

= −2g(0)ϕ(0)(θ2 − x2) −
1
2
< 0. (41)

Let x1(β) and x2(β) be the optimal policy of candidates 1 and 2 given β. Further, let x̃1(β, x2) be the solution

to the first-order conditions (30) with respect to x1. Similarly, let x̃2(βx1) be the solution to (31) with respect

to x2. Then x1(β) = x̃1(β, x2(β)) and x2(β) = x̃2(β, x1(β)). Differentiating with respect to β yields

x′1(β) =
∂x̃1(β, x2)
∂β

+
∂x̃1(β, x2)
∂x2

x′2(β); (42)

x′2(β) =
∂x̃2(β, x1)
∂β

+
∂x̃2(β, x1)
∂x1

x′1(β). (43)

Solving these equations for x′1(β) and x′2(β) yields

x′1(β) =
∂x̃1(β,x2)
∂x2

∂x̃2(β,x1)
∂β +

∂x̃1(β,x2)
∂β

1 − ∂x̃1(β,x2)
∂x2

∂x̃2(β,x1)
∂x1

; (44)

x′2(β) =
∂x̃2(β,x1)
∂x1

∂x̃1(β,x2)
∂β +

∂x̃2(β,x1)
∂β

1 − ∂x̃1(β,x2)
∂x2

∂x̃2(β,x1)
∂x1

. (45)

The implicit function theorem implies that for i , j,

∂x̃i(β, x j)
∂β

= −

∂FOCi
∂β

∂FOCi
∂xi

, and
∂x̃i(β, x j)
∂x j

= −

∂FOCi
∂x j

∂FOCi
∂xi

(46)

Let D be the denominator term in equations (44) and (45). Substituting (40), (41), and (46) into D yields.

lim
β→β̄

D = 1 −
∂FOC1
∂x2

∂FOC1
∂x1

∂FOC2
∂x1

∂FOC2
∂x2

= 1 −
4g(0)2ϕ(0)2(x2 − x1)2

(1 + 4g(0)ϕ(0)(θ2 − x2)) (1 + 4g(0)ϕ(0)(x1 − θ1))
. (47)

Using symmetry, i.e., θ2 = −θ1 and x1 and x2 from the symmetric solution (32) implies

lim
β→β̄

D =
(1 + 4g(0)ϕ(0)θ2)2

(
1 + 16g(0)2ϕ(0)2θ22

)
(
1 + 4g(0)ϕ(0)θ2 + 16g(0)2ϕ(0)2θ22

)2 > 0. (48)

Equations (44) and (46) imply

D
∂x1(β)
∂β

=

∂FOC1
∂x2

∂FOC1
∂x1

∂FOC2
∂β

∂FOC2
∂x2

−

∂FOC1
∂β

∂FOC1
∂x1

=

∂FOC2
∂β

∂FOC1
∂x1

 ∂FOC1
∂x2

∂FOC2
∂x2

−

∂FOC1
∂β

∂FOC2
∂β

 (49)

D
∂x2(β)
∂β

=

∂FOC2
∂x1

∂FOC2
∂x2

∂FOC1
∂β

∂FOC1
∂x1

−

∂FOC2
∂β

∂FOC2
∂x2

=

∂FOC2
∂β

∂FOC2
∂x2

 ∂FOC2
∂x1

∂FOC1
∂x1

∂FOC1
∂β

∂FOC2
∂β

− 1

 (50)

Substituting the above derivatives we get

lim
β↓β̄

D
∂x1(β)
∂β

∂FOC2
∂β

=
2(x3 − x2) + 8g(0)ϕ(0)(θ2(x3 − x2) + 2x2

2)

(x2 + x3) (1 + 4g(0)ϕ(0)(θ2 − x2))2 . (51)
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Thus, ∂x1(β)
∂β > 0 for β that are marginally larger than β̄, because D > 0. Similarly,

lim
β↓β̄

D
∂x2(β)
∂β

∂FOC2
∂β

=
2(x2 + x3) + 8g(0)ϕ(0)(θ2(x2 + x3) − 2x2

2)

(x2 + x3) (1 + 4g(0)ϕ(0)(θ2 − x2))2 , (52)

which implies ∂x2(β)
∂β > 0 for β marginally larger than β̄, because θ2, x3 > x2.

Next, we prove that candidate 2 moves her policy by more to the right than candidate 1 moves her policy:

lim
β↓β̄

D
∂x2(β)
∂β −

∂x1(β)
∂β

∂FOC2
∂β

=
4x2 (1 + 4g(0)ϕ(0)θ2 − 8g(0)ϕ(0)x2)

(x2 + x3) (1 + 4g(0)ϕ(0)(θ2 − x2))2 , (53)

which is strictly positive because (12) implies

1 + 4g(0)ϕ(0)θ2 − 8g(0)ϕ(0)x2 =
1 + 16g(0)2ϕ(0)2θ22

1 + 4g(0)ϕ(0)θ2
> 0. (54)

Finally, we prove that the spoiler is better off for β marginally larger than β̄. The spoiler’s utility is

U3(β) = −G(ρ̄)(x1(β) − x3)2 − (1 −G(ρ̄))(x2(β) − x3)2. (55)

Differentiating with respect to β yields

U′3(β) = − g(ρ̄)
(
ϕ

(
x1(β) + x2(β)

2

)
x′1(β) + x′2(β)

2
− ϕ(y32)

(
∂y32

∂β
+
∂y32

∂x1
x′1(β) +

∂y32

∂x2
x′2(β)

))
·
(
(x1(β) − x3)2 − (x2(β) − x3)2

)
+ 2G(ρ̄)(x3 − x1(β))x′1(β) + 2(1 −G(ρ̄))(x3 − x2(β))x′2(β).

(56)

Note that

lim
β↓β̄

∣∣∣∣∣∣∣∣
∂y32
∂β ϕ(y32)
∂FOC2
∂β

∣∣∣∣∣∣∣∣ = lim
β↓β̄

∣∣∣∣∣∣∣∣ ϕ(y32)

ϕ′(y32)g(ρ̄)∂y32
∂β θ2(x2 − x1)

∣∣∣∣∣∣∣∣ ≤ lim
β↓β̄

C(β − β̄)2−b = 0, (57)

where C > 0 is some constant. The last inequality follows because |ϕ′(x)/ϕ(x)| > ε/xb for 0 < b < 1 and
∂y32
∂β goes to infinity at the rate 1/(β − β̄)2. Further,

lim
β↓β̄

∂y32
∂xi

x′i(β)
∂FOC2
∂β

= 0. (58)

because ∂y32
∂xi

goes to zero as β ↓ β̄. Thus,

lim
β↓β̄

U′3(β)
∂FOC2
∂β

= lim
β↓β̄
−2g(0)ϕ(0)


∂x1(β)
∂β

∂FOC2
∂β

+

∂x2(β)
∂β

∂FOC2
∂β

 x2(β̄)x3 + (x3 + x2(β̄))
∂x1(β)
∂β

∂FOC2
∂β

+ (x3 − x2(β̄))
∂x2(β)
∂β

∂FOC2
∂β

. (59)
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Substituting (51) and (52) and writing x2 for x2(β̄) yields

lim
β↓β̄

D
U′3(β)
∂FOC2
∂β

=
4 (1 + 4g(0)ϕ(0)θ2) (x2

3 − x2
2) + 8g(0)ϕ(0)x2

(
4x2

2 − x2
3 (1 + 4g(0)ϕ(0)θ2)

)
(x2 + x3)(1 + 4g(0)ϕ(0)(θ2 − x2))2 . (60)

The denominator of (60) is strictly positive.

To verify that the numerator is strictly positive for x3 ≥ θ2 substitute the solutions for x1 and x2 from

(32) into the numerator and evaluate at x3 = θ2 to get

8θ32ϕ(0)g(0)
80θ22ϕ(0)2g(0)2 + 64θ32ϕ(0)3g(0)3 + 28θ2ϕ(0)g(0) + 7

(4θ2ϕ(0)g(0) + 1)3 > 0. (61)

Differentiating the numerator of (60) with respect to x3 and again using (32) yields

−8x3 (4θ2ϕ(0)g(0) + 1) (2ϕ0g(0)x2 − 1) = 8x3 (2θ2ϕ(0)g(0) + 1) > 0. (62)

Thus, (60) is strictly positive for x3 ≥ θ3. Hence, candidate 3’s utility from entry is increasing in β for β

slightly larger than β̄.
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