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Abstract

This paper studies the impact of relative assessment on performance using a quasi-
experiment: club-level swimming competitions in the US. By exploiting the age-
group structure, where swimmers are assessed against peers within their age group
and experience a significant shift in relative standing upon aging up, we identify
the causal effects of being assessed against better-performing peers. Using a regres-
sion discontinuity design, we find that swimmers, on average, swim significantly
slower after aging up. This effect is similar across genders and is most pronounced
among swimmers in the middle and top of the ability distribution, while those in
the bottom third show no significant change. Our findings highlight the impor-
tance of considering the psychological impacts of relative assessment in competitive
environments.
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1 Introduction

How do people respond to being assessed relative to better peers? Do they rise to the

occasion and improve performance? Or do they get discouraged and perform worse? Such

situations are common in many settings, including sport, education, and the workplace.

For example, students admitted to selective high schools or top universities are assessed

relative to other high-performing peers who are graded on a curve (Abdulkadiroğlu et al.,

2014, Barrow et al., 2020). These concerns also drive the “redshirting” decisions of par-

ents who choose when to enroll children in elementary school (Lubotsky and Kaestner,

2016) or whether to track students by ability (Matthewes, 2021, Figlio and Ozek, 2024).

Although such situations are widespread, we lack a good understanding of the effects of

relative assessments on performance and how those effects hinge on the individual.

Identifying these effects outside of the laboratory is difficult for many reasons. First,

individuals who self-select into more competitive environments likely have different in-

dividual attributes and preferences (e.g., Niederle and Vesterlund, 2007, Leuven et al.,

2011). Second, even if we overcame this challenge by randomly assigning individuals to

more or less competitive environments, they would not only exposed to different levels

of competition but also to different qualities of interactions with peers. For example, a

student at a top school is assessed relative to higher performing peers, but may also ben-

efit from interacting directly with them (Sacerdote et al., 2011, Zárate, 2023). Moreover,

both the learning environment and the curriculum can reflect the ability composition of

students (Burgess et al., 2023). A more general problem is that the cost or benefit can

hinge on an individual’s ability. Conceivably, a particularly strong student may gain from

the challenge of being assessed relative to older and smarter peers, while a student who is

just“good enough”may suffer (Abdulkadiroğlu et al., 2014). These issues make it difficult

to disentangle the effects of relative assessment per se from peer effects in most settings.

In this paper, we exploit a quasi-experiment to identify the effect of being assessed

against better peers on performance, and how those effects vary with an individual’s

ability. We study the age-group structure of club-level swimming competitions in the

United States. This age-group structure allows us to identify the causal effect of changes
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in the quality of the assessment group against which swimmers are rated. Specifically,

we use the institutional features that (i) age groups span two years, and swimmers are

assessed/rated only within their age group, with prizes in the forms of trophies, medals

and ribbons given to better-ranked performers; and (ii) heats for an event (e.g., 100

yard freestyle, short course, for boys aged 11-12) are organized by seed time so that all

swimmers in the same heat have similar times, both before and after aging up.

Crucially, unlike in team sports, swimmer age in the United States is measured rel-

ative to birthday, not calendar year. The moment a swimmer has a birthday and ages

up to a new age-group, they are ranked relative to this new group, regardless of their

ability or the timing within the season. Thus, we first see a swimmer who is old relative

to their assessment group, and then the swimmer becomes young relative to their assess-

ment group. The most salient aspect of these age group changes is that the assessment

group is much faster after aging up. For example, on average, boys aged 11-12 are about

15% faster than boys aged 10 and under—this is true both for swimmers in a given meet

and for the performance time standards set by state swimming organizations for cham-

pionship qualifications and performance standards by USA swimming. Thus, this setting

lets us observe an individual both when they are the big fish and the small fish within a

short time span, and to study their behavior.

We find that, on average, swimmers are discouraged due to being assessed against

older and hence faster peers, swimming more slowly; but this discouragement only shows

up for swimmers in the middle and top end of the ability distribution. This evidence is

consistent with individuals slowing due to psychological discouragement rather than the

outcome of a “rational” effort-cost-benefit calculation.

We use data from the universe of club swimming competition times in the United

States to follow individual swimmers over time and obtain their exact date of birth. We

focus on a sample of swimmers who compete within a window of days both before and after

a birthday when they would change age group, (“aging up”). We evaluate the immediate

effect of aging up on performance using a regression discontinuity design, where we include

swimmer-event fixed effects to control for event-specific ability. We focus on swimmers
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ages 10 to 14, the prime ages of club swimming, where the shock of aging up is the largest.1

This context has several features that let us address the shortcomings of studying

the effects of relative assessment outside the laboratory. First, there is a large discrete

change in the quality of the assessment groups after aging up. Swimmers cannot sort

into easier or harder categories. Swimming events are standardized, and we can compare

performance between swimmers and events. Second, there are very small differences in

what can be thought of as the effects of direct interactions with peers. This is by design

due to how meets are arranged: swimmers in an event are sorted into heats by seed

time. As a result, within a heat, swimmers are usually of very similar ability. Thus, a

swimmer who ages up is shifted down in the overall distribution—there are just typically

more swimmers who are faster, i.e., more of the other heats have faster swimmers. Third,

relatedly, from the perspective of other swimmers in the new (older) age group, adding

one more (younger) swimmer to a heat also does not affect them. Fourth, because we

see a swimmer’s times history and have a large sample size, we can construct measures

of ex-ante ability to study heterogeneous responses according to ability.

We first document that there are indeed large changes in the quality of competition

after aging up. On average, peers are 15% faster (over a standard deviation faster) when

turning age 11 and 7.5% faster when turning 13. These changes represent a shift in the

overall distribution rather than just a movement in one of the tails: competition is sig-

nificantly faster in both the upper and lower tails. Next, we examine the effects of being

assessed against better peers on performance, measured by their recorded times at meets.

Figure 1 conveys the essence of our findings, showing that swimmers slow down sharply

after aging up. On average, they swim around 0.3 to 0.4 percent slower (about 14% of

a within swimmer-event standard deviation). The figure reveals that these effects are

long-lived within the month window examined, represented by an upward, roughly par-

allel, shift after aging up. Similar patterns hold over 90 day windows. We find similar

discouragement effects for boys and girls, consistent with laboratory experiments suggest-

ing that men and women respond similarly to competition restricted to the same gender

1Also, after age 14 many swimmers leave club swimming for high school swimming—not included in
our data.
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Figure 1. Swim time relative to birthday

(a) Age 11 (b) Age 13
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Notes: Sample of swimmers competing in meets within 31 days (before and after) of their 11th and 13th birthdays. First

day of meet used as reference time. Dots are point estimates of running variable dummies (-1 is the omitted category)

from an OLS regression that includes swimmer-event fixed effects. Dependent variable is the logarithm of swim time (in

seconds) times 100. Controls for: day of week dummies, number of heats swum that day, total distance swum, number

of long distance swims, and number of days since the last meet. Ticks indicate 95% confidence intervals, standard errors

are clustered at swimmer level.

(e.g., Niederle and Vesterlund, 2007).

We rule out the possibility that the results are driven by other unobserved factors

related to a birthday rather than by changes in competition. We replicate our analysis

using non-group-change birthday cutoffs (e.g., 10, 12 and 14), meaning that assessment

groups are held constant during these birthdays. We find precisely estimated zeros, rul-

ing out the possibility that our results are spuriously driven by unobservable changes in

behavior at a birthday.

Two main mechanisms can lead swimmers to slow down when assessed against better

peers. First, it could be a rational response from trading off the marginal benefits against

the marginal costs of exerting effort. For instance, classical tournament theory would

predict such a response if the likelihood of winning became small (Connelly et al., 2014).

We find evidence that is inconsistent with this mechanism. First, swimmers slow down by

roughly the same amounts in their best strokes—where their placement chances are most

affected—as in their other strokes. Second, high-ability swimmers—whose placements

chances are most affected by aging up—slow down by the same amounts as middle-

ability swimmers. That is, differences in the changes in stakes do not affect the degree

to which swimmers slow down. Only swimmers in the bottom third or so of the ability
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distribution are not affected by aging up.

Our preferred interpretation is that swimmers get discouraged. The discouragement

effect could be driven by different factors. For instance, self-image concerns can negatively

affect performance. This could be due to changes in perceived self-efficacy (Bandura,

1977) or to lower self-esteem resulting from more negative comparisons with the much

faster competition (Kuhnen and Tymula, 2012). These theories are consistent with our

finding that the slowdown is similar in magnitude throughout the ability distribution, ex-

cept for the unaffected lower tail of swimmers who were not competitive prior to aging up.

Our findings are also consistent with individuals trying to maximize their “ego utility”

and thus changing their effort choices to manage their self-image (Köszegi, 2006, Bén-

abou and Tirole, 2002). As swimmers age up into a new group, their reference points

change making them perceive their performance as worse (i.e., they see themselves as

‘losing’ relative to their new peers) leading them to reduce their efforts to protect their

self-image. Our findings are also consistent with theories of aspirations suggesting that

having too high of aspirations relative to one’s current standard may lead to frustration

and lower investment (Genicot and Ray, 2017).

Our paper relates to a broader literature documenting the importance of positional

externalities on behavior. Both observational and experimental work has documented

the importance of relative concerns on a variety of behaviors and contexts such as labo-

ratory settings (Kuziemko et al., 2014), labor supply and performance (Bandiera et al.,

2005, Kuhnen and Tymula, 2012, Barankay et al., 2012, Rosaz et al., 2016), people’s lo-

cation choices (Bottan and Perez-Truglia, 2022), premium credit card take-up (Bursztyn

et al., 2018), and risk-taking among wartime pilots (Ager et al., 2022). We complement

this work by using field data, highlighting how a large negative shock to ones relative

assessment in competitive settings can lead to discouragement and reduced performance.

Our paper identifies a potential mechanism that shapes educational outcomes at var-

ious stages of schooling. There is extensive research showing that students who are rela-

tively younger than their peers when starting school have worse outcomes and these effects

are long-lasting (e.g., Bedard and Dhuey, 2006, Elder and Lubotsky, 2009, Lubotsky and
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Kaestner, 2016, Matta et al., 2016, Black et al., 2011). Relatedly, work documenting

the “elite illusion” (Abdulkadiroğlu et al., 2014, de Roux and Riehl, 2022, Barrow et al.,

2020, Matta et al., 2016, Ribas et al., 2020) finds that marginally admitted students to

selective institutions receive lower grades, are less likely to attend college, and suffer neg-

ative impacts on socio-emotional traits (Fabregas, 2023, Dasgupta et al., 2022). At the

college level, studies that compare outcomes between students admitted to the same set

of colleges reach a counter-intuitive conclusion: university quality does not matter for

future earnings (Dale and Krueger, 2002, 2014, Mountjoy and Hickman, 2021). These

different contexts share a common thread: the underperforming students are the small

fish in a large pond. Our paper suggests the possibility that large discouragement effects

from relative assessments can account for these findings.2

This paper also contributes to a literature on the psychological and behavioral drivers

of performance in sports. Genakos and Pagliero (2012) document that individuals just

behind in weightlifting championships take more risks and perform better, while interim

leaders perform worse. Berger and Pope (2011) find that teams slightly behind at halftime

in NBA games are actually more likely to win. Brown (2011) shows that golfers perform

worse in the presence of a superstar at the tournament, while Pope and Schweitzer (2011)

documents evidence of loss aversion in putting behavior. There is also evidence on the

importance of reference points in baseball and marathon running (Pope and Simonsohn,

2011, Allen et al., 2017). Researchers also document psychological “choking” under pres-

sure e.g., in tennis on serves (Paserman, 2023), archery (Bucciol and Castagnetti, 2020)

and free throw shooting in basketball (Toma, 2017). Our results add to the growing

evidence on the importance of psychological mechanisms, as we show that relative assess-

ments can generate adverse effects not captured by classical rational models.

2For example, Mountjoy and Hickman (2021) find that students who gain admission to both University
of Texas-Austin and UT-Permian Basin earn the same regardless of the school attended. This selected
sample of students is clearly at the top of the UT-Permian Basin’s cohort but far from the top at
UT-Austin. Our analysis suggests that being assessed relative to better peers at UT-Austin could
discourage those students, causing them to perform less well and learn less, reducing their earnings to
levels similar to what they would have obtained had they attended UT-Permian Basin.
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2 Background: Swimming in the U.S.

2.1 Institutional

Swimming competitions in the United States are governed by USA Swimming. The

organization has a membership of over 400,000 swimmers that includes all levels of com-

petitors, ranging from age-group to Olympic swimmers.3 To compete, a swimmer must

join one of the over 2,800 clubs around the country. Training is organized independently

by clubs and is typically arranged by swimmer ability.

USA Swimming sanctions many types of competitions. By far the most common type

is club Invitational Meets, where a host club invites several other clubs to participate.

Such competitions account for almost 97% of swim times registered with USA Swimming.

Most Invitationals do not have entry time standards, allowing all club members to par-

ticipate. At these meets, swimmers may register times that qualify them for (e.g., state)

championship competitions. At most meets, swimmers participate in multiple events.

Events are defined by the combination of distance, style, gender, age-group and course

type (e.g., 100 Breaststroke, male, 11-12, Short Course Yards). There are two broadly-

defined seasons where different courses are used. During the winter, most competitions

take place indoors in pools with lengths that follow the Short Course Yards standard (a

25 yard length). During the summer, most competitions are over the Olympic length of

50 meters (Long Course Meters). Most invitational meets are three-day events.

2.2 Age-group swimming

Before competing in a meet, coaches submit their teams’ registrations, which contain

each swimmer’s seed times several weeks in advance (the timing varies depending on the

meet and when coaches enter the data). Seed times are designed to approximate how

quickly a swimmer will swim in a race for comparable ranking purposes. A seed time

typically corresponds to a swimmer’s best previous time in an event. Along with the seed

time, coaches submit a swimmer’s age measured at the first day of the meet. Because

3High school team swimming competitions are not part of USA Swimming.
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a swimmer’s date of birth is part of their USA Swimming id number, coaches cannot

misreport ages. Races are organized by event (e.g., 100 Freestyle, boys) and age group.

One needs to distinguish between how races are scored and how heats are organized

because they do not always use the same age cutoffs. Swimmers are almost always scored

by the standard age group cutoffs (10 and under, 11-12, 13-14), but are sometimes grouped

differently in the races themselves, particularly ages 13-16.4 The top swimmers in each

age group/event are usually awarded ribbons or medals.

The race-age structure used in each meet is not recorded in our data. To understand

this, we selected a random sample and manually inspected the information sheets for a

sample of non-championship meets from the 2015-2016 season. In total, we coded 224

meets, taking note of the age groupings used to form heats. Table A2 shows that about

70% of meets group 11-12 year olds, using the standard cutoffs for that age group. In

contrast, only 36% of meets for 13-14 year olds are grouped this way. Instead, most meets

group this age group with older swimmers forming 13 and older heats (almost 45%) and

only 32% of meets use the age 15 cutoff. As a result our analysis focuses on ages 10-14.

Lane assignments are based on the ranking of seed times within a race-age grouping.

For example, with an 8 lane pool and 76 swimmers in a grouping, swimmers ranked 1-8

by time are commonly grouped together in a heat, swimmers 9-16 are grouped, and so on,

with a rump heat of 4 swimmers consisting of those who either do not have a seed time

or who are the slowest.5 Thus, a swimmer ranked 40th would be the slowest in their heat,

while a swimmer ranked 41st would be the fastest in their heat. As a result, a swimmer’s

ranking within a heat is roughly uniformly distributed. Within a heat, lanes are assigned

from the center moving outwards,6 and since ranking within a heat is roughly uniformly

distributed so is lane assignment.

This structure has implications for our research design and interpretations. From a

4Championship meets are organized strictly by standard age groups. In Invitational meets, ages 13-16
are sometimes scored together, in which case the improvement in competition upon turning 13 is even
greater than that associated with comparisons to 13-14 year olds, implying that our measure of the
degree of improvement is conservative.
5With “circle seeding” lane assignment of the fastest heats is slightly different, but qualitatively similar.
6For example, in an 8 lane pool, lane 4 is assigned to the number 1 seed, lane 5 to number 2, then lanes
3, 6, 2, 7, 1, 8.
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ranking perspective, swimmers who turn 11 or 13 immediately face assessment against

older swimmers who have more experience and physical advantages. In sharp contrast,

within a heat, there are typically very small differences in the swim times of different

swimmers, and the randomness in the number of swimmers in an event means that most

swimmers are equally likely to be in a heat with slightly faster swimmers as in a heat

with slightly slower swimmers. Together, this means that swimmers who age up may face

large falls in how they rank within an age group, but aging up has minimal systematic

effects on the extent of competition that a swimmer faces within their heat.

2.2.1 Effects of Relative Assessment

Exploiting exogenous variation in the composition of competition is not unfamiliar in ed-

ucation research. Many papers exploit different sources of plausibly exogenous variation

in class composition to examine its effects on test scores (see Sacerdote et al. (2011) for a

survey). A shortfall of this research design is that changes in class composition also pre-

sumably affect direct peer interactions, which, in turn, would affect the estimated effect

of class composition.

Our setting does not face this problem due to how races are organized. Swimming

features two types of direct peer interactions. First, there is the effect of coaches and

swimmers training under a given coach. Interviews with coaches reveal that changing

coaches is largely unrelated to aging up, but rather is related to a swimmer’s perfor-

mance (i.e., swimmers are grouped for training based on ability). The second source of

direct peer interaction is the swimmers assigned to lanes directly adjacent to their own

lane. From the heat and lane assignments, these direct competitors are close in ability

and are unlikely to change significantly or vary systematically upon aging up.

2.3 Time measurement

Almost all times are measured electronically using pressure pads at the ends of the pool

that activate when touched by a swimmer. Timekeepers serve as backups in case of a

faulty read or touch. All times are collected and submitted digitally to USA Swimming
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to be processed and included in the SWIMS time database. USA swimming maintains

and constantly updates the times database. Times are publicly available through their

website, where one can search by swimmer name and view all of their recorded times (e.g.,

one can see the race times for Michael (Fred) Phelps). Even though extensive detailed

information is collected at meets (including lane assignments, heat number, seed time,

prelim or final), most of this information is lost when processed for the SWIMS database.7

We have access to the SWIMS times database, containing all registered swim times

from competitions until June 2015 (over 80 million times). Although the data was

anonymized, swimmers can be followed over time by their unique ids. For each swimmer,

we have data on their gender, date of birth and club (if affiliated). In addition, for each

swim time we know the swim date, Meet (and meet type), Event (e.g., 100 Freestyle, Long

Course Meters), Time (measured with a precision of a hundredth of a second), Standard,

and Hi-Tek Points (a score designed to be comparable across ages, events and gender).

Swimmers start competing at a young age—55% start by age 10—and 58% are girls.

Most times (72%) are recorded between the ages of 10 and 15, and swimmers compete

the most at age 12. On average, swimmers compete in 10 meets a year, although there

is significant heterogeneity: the 25th and 75th percentiles are 6 and 14 meets a year.

On average, a swimmer records 5 times at a meet. The database does not include heat

or disqualified swimmers (e.g., for an early start), or information on whether a time

corresponds to a prelim or final time for meets that use this structure.

3 Identification Strategy

To identify the causal effect of relative assessment on performance, we exploit the discon-

tinuous changes in age group at the relevant birthdays. Because we observe the universe

of swim times, we can focus on a sample of swimmer-events around the time of their birth-

day. In particular, swimmers change age groups just after their 11th and 13th birthdays.8

7Appendix Figure A.1 presents a screen-shot of the online time search results.
8A swimmer who “ages up” mid-way through a multi-day meet remains the same (younger age)
throughout the meet, so age is assigned relative to the first day of a meet, i.e., running time t relative
to a birthday is assigned to be −1 for a swimmer who ages up midway through a meet.

10
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Because we can track swimmers just before and after aging-up, the setting naturally lends

itself to a regression discontinuity design, where the running variable is the first day of a

meet in relation to their birthday.

For a given outcome Yi,e,t (e.g., the logarithm of race time times 100), for individual i

competing in event e on day t (relative to their birthday at t = 0) a näıve model would be:

Yi,e,t = β1(t ≥ 0) + f(t) + 1(t ≥ 0) ∗ f(t) + φ+ εi,e,t, (1)

where f(t) is a function that is free to differ on either side of the birthday and β esti-

mates the local average treatment effect of changing age group. The näıve model would

include event-specific fixed effects (φ) to account for different levels in the outcome for

different events, and the error term, εi,e,t, would be assumed to be uncorrelated with the

variables of interest, which, in this näıve model, would have to be assumed independent

(inappropriate given our panel of swimmer-events).

This näıve model has problems: (1) it ignores the panel structure of the data and

assumes that observations are independent; (2) the estimate of β would likely be biased

if swimmers behave strategically around the threshold (e.g., quit right after aging up);

(3) it implausibly assumes that the evolution of times is the same across different events;

(4) it does not account for other potential changes that may happen due to moving into

a more competitive category (e.g., swim less events).

To address these potential problems, we focus on a sample of swimmers who compete

throughout a window around their birthday, and apply restrictions that minimize sample

selection biases (described in detail in Section 3.1). We estimate the following model:

Yi,e,t = β1(t ≥ 0) + fe(t) + 1(t ≥ 0) ∗ fe(t) +Xi,t + ηi,e + εi,e,t, (2)

where we include swimmer-event level fixed effects (ηi,e) to estimate changes within both

swimmer-events. For example, a swimmer might be better in breaststroke than back-

stroke, or in longer distances than in shorter ones. This lets us fully exploit the panel

structure of the data and address individual-event level selection. We allow the function
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of the time variable to differ not only on each side of the discontinuity, but also by event

(fe(t)). To account for other potential changes that may affect swimmer performance, we

include a vector of swimmer-meet characteristics (Xi,t) that includes the number of heats

and distance swum during the day, and the number of days since the last race. Standard

errors are always clustered at the swimmer level.

3.1 Sample construction

To estimate our baseline model, we first define a 31 day window both before and after a

swimmer’s birthday. This window width ensures that we capture enough swimmer-event

times on each side of the threshold. We obtain similar results using larger window sizes.

We require at least one swimmer-event observation on each side of the threshold (i.e.,

we observe the swimmer in a particular event both before and after their birthday, when

they compete in the next age group). This restriction minimizes selection biases that

could be induced by changes in the composition of swimmers or by changes in the com-

position of events. For example, if the worst swimmers stop competing right after aging

up in order to avoid facing the harder assessment group, then even if the true effect were

zero, the change in composition could bias our estimated coefficient downward. We ad-

dress this by guaranteeing that the same swimmer-events are observed both before and

after a swimmer ages up and by including swimmer-event fixed effects in regressions. This

restriction excludes swimmers who may have dropped out (either permanently or tem-

porarily). To the extent that this sub-sample drops out due to anticipating the potential

negative effects of facing stronger competition, our results represent lower bounds on the

(negative) effects of relative assessments. We also restrict our sample of swimmers to

those who have been competing for at least one year to better measure swimmer ability.

Appendix Table A3 presents descriptive statistics for our age 11 and 13 birthday sam-

ples. By applying tighter restrictions, the sample changes in the expected direction: the

remaining swimmers compete in more meets, swim more often, began swimming at a

younger age, and are better swimmers (e.g., measured by 100 Freestyle time). Of note,

the average club quality (measured by a club’s average Hi-Tek score) does not change sig-
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nificantly. When looking at average swim times across events, one must be careful when

comparing across columns because the composition of events may change (less experienced

swimmers tend to compete in shorter distance events). We drop events that are not swum

consistently over time (mostly very long distance races such as the 1650 yard race).

4 Results

4.1 Quantifying the change in competition after aging up

We first document the extent to which the quality of competition improves upon aging up.

To do this, we calculate the average swim time of swimmers’ competitors in the events

they swim using the standard age group definitions.9 Figure 2 presents graphical evidence

of the evolution of the logarithm of average competitor times (times 100), controlling for

swimmer-event fixed effects and day-of-race varying controls. We see sharp improvements

in the competition—average times of competitors drop by about 15% and 7.5% when turn-

ing 11 and 13, respectively. Moreover, our measure at age 13 represents a lower bound on

the improvement because many meets define the category as 13-16 rather than 13-14.10

Table 1 presents estimates of equation (2) for different (linear, cubic) functional forms

of time, and presence or absence of swimmer-meet controls. The quality of competition

improves substantially upon aging up, reflecting that the older swimmers in the new age

group are more experienced and have sizable physical advantages. When moving into the

11-12 age group, the competition is about 15% (s.e. 0.0916) faster on average. At the age

13 cutoff, the effect is smaller, with the competition being 7.5% faster (s.e. 0.001).

The changes in average competition represent a shift in the distribution, not just a

change in the tails. We repeat the same analysis, but examining effects at different mo-

ments of the distribution: the 5th and 95th percentile in columns (5) and (6). While both

tails of the distribution shift, the change is larger at the bottom of the distribution (i.e.,

9Specifically, for the 11 cutoff we group 10 and under when swimmers are 10, and 11-12 when they age
up. For the age 13 cutoff, when a swimmer is 12 we calculate the 11-12 average, and when the swimmer
is 13 we calculate the 13-14 average.
10See Appendix Figure A.2 for a figure that uses the 13-16 definition instead. On average, times of
competitors are about 9.5% lower using the 13-16 definition.
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Figure 2. Average competition time relative to birthday

(a) Age 11 (b) Age 13
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Notes: Sample of swimmers competing in meets within 31 days (before and after) of their 11th and 13th birthdays. First

day of meet used as reference time. Dots are point estimates of running variable dummies (-1 is the omitted category) from

an OLS regression that includes swimmer-event fixed effects. Dependent variable is the logarithm of competitor’s times

excluding own time (in seconds) times 100. Controls for: day of week dummies, number of heats swum that day, total

distance swum, number of long distance swims, and number of days since the last meet. Ticks indicate 95% confidence

intervals, standard errors are clustered at swimmer level.

Table 1. Changes in Average Competitor’s time when changing age-group

(1) (2) (3) (4) (5) (6)
Competition Percentile

Dep. Var.: log(Average Competitor’s Time)*100 5th (slow) 95th (fast)

Panel A: Age 11

Treatment -15.27*** -14.76*** -15.18*** -14.48*** -17.94*** -10.58***
(0.107) (0.247) (0.102) (0.229) (0.175) (0.0706)

Obs 441,915 441,915 441,915 441,915 441,915 441,915
Nr Swimmers 39,750 39,750 39,750 39,750 39,750 39,750

Panel B: Age 13

Treatment -7.651*** -7.622*** -7.507*** -7.402*** -9.319*** -5.173***
(0.0829) (0.185) (0.0807) (0.175) (0.146) (0.0564)

Obs 450,291 450,291 450,290 450,290 450,290 450,290
Nr Swimmers 45,439 45,439 45,439 45,439 45,439 45,439

Controls No No Yes Yes Yes Yes
f() Linear Cubic Linear Cubic Linear Linear

Notes: Sample of swimmers competing within 31 days (before and after) of their 11th and 13th birthdays.
Dependent variable is the logarithm of swim time (in seconds) times 100. Each coefficient corresponds to a
separate OLS regression of equation 2 that includes swimmer-event fixed effects. Controls include: day of week
dummies, number of heats swum that day, total distance swum, number of long distance swims, and number
of days since the last meet. Treatment is the treatment indicator, measuring the local average treatment
effect of changing age-group. The functions of the running variable (days with respect to Nth birthday) are
event-specific and interacted with Treatment. Linear indicates that the function used is linear, while Cubic
indicates that a cubic specification is used. Standard errors are clustered at the swimmer level. Bonferroni
adjusted significance: * 10%; ** 5%; *** 1%.
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among the slowest swimmers). For instance, at age 11 the 5th percentile (slowest end of

the distribution) is almost 18% faster, while the 95th percentile (fastest) is 10.6% faster.

4.2 Effects on own performance

We next examine how aging up affects a swimmer’s performance. Figure 1 presented

graphical evidence showing the evolution of the adjusted logarithm of own swim time

(multiplied by 100) around the 11th and 13th birthday. On average, a swimmers’ per-

formance improves roughly linearly over time. However, we observe sharp discontinuous

increases in their times (i.e., they swim slower) exactly on their birthday, when transi-

tioning into an older age group. This increase corresponds to an upward shift in the trend

(and hence a parallel shift in times) rather than a temporary jump followed by a return

to the previous improvement trend.

We quantify the change in performance in Table 2, where we present estimates of equa-

tion (2). At both the 11th and 13th birthdays (panels A and B) a swimmer’s own time

increases after aging up. This effect is highly statistically significant (p-value<0.001),

even after conservatively using a Bonferroni correction.11 The estimates in column (1)

imply that swimmers are 0.340% slower (s.e. 0.0271) when turning 11 and 0.334% slower

(s.e. 0.0223) when turning 13. Estimates are similar in significance and magnitude when

we use alternative functional forms for time (columns (2) and (4)) or add additional

controls (column (3)).

Although the point estimates seem small, the effects are economically/strategically

meaningful: the change represents an increase of almost 14% of a standard deviation

within swimmer-event at age 11 and 13.4% at age 13. To provide an alternative bench-

mark, we consider the 100 yard freestyle event (short course), the most popular event

swum, where swimmers slow down on average by 0.487% (s.e. 0.138) when turning 11,

and by 0.407% (s.e. 0.106) upon turning 13.12 In competitions with at least 20 swimmers,

the average slow down by 11 year olds exceeds the margin between third and fourth 30%

of the time; and the average slow down by 13 year olds exceeds the margin between third

11We adjust by multiplying p-values by six to account for the six different birthdays (10–15) tested.
12See Appendix Table A5 for effects by event.
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Table 2. Effects of age-category change on performance

(1) (2) (3) (4)
Dep. Var.: log(Swim Time)*100

Panel A: Age 11

Treatment 0.340*** 0.427*** 0.356*** 0.465***
(0.0271) (0.0608) (0.0271) (0.0604)

Obs 441,920 441,920 441,920 441,920
Nr Swimmers 39,750 39,750 39,750 39,750

Panel B: Age 13

Treatment 0.334*** 0.332*** 0.329*** 0.326***
(0.0223) (0.0475) (0.0228) (0.0472)

Obs 450,295 450,295 450,294 450,294
Nr Swimmers 45,439 45,439 45,439 45,439

Controls No No Yes Yes
f() Linear Cubic Linear Cubic

Notes: Sample of swimmers competing within 31 days (before and after)
of their 11th and 13th birthdays. Dependent variable is the logarithm
of swim time (in seconds) times 100. Each coefficient corresponds to
a separate OLS regression of equation 2 that includes swimmer-event
fixed effects. Controls include: day of week dummies, number of heats
swum that day, total distance swum, number of long distance swims, and
number of days since the last meet. Treatment is the treatment indicator,
measuring the local average treatment effect of changing age-group. The
functions of the running variable (days with respect to Nth birthday) are
event-specific and interacted with Treatment. Linear indicates that the
function used is linear, while Cubic indicates that a cubic specification
is used. Standard errors are clustered at the swimmer level. Bonferroni
adjusted significance: * 10%; ** 5%; *** 1%.

and fourth 32% of the time, i.e., the difference between medaling and not.13

Table 3 shows that our main finding that swimmers slow down immediately after

changing age group is robust to many checks. Estimates are similar when using wider

windows of 84 or 42 days before and after a birthday. One concern could be that when

aging-up, swimmers change the composition of events swum. Although we avoid this

issue by construction—by focusing on swimmer-events consistently swum on both sides

of a birthday—one could imagine that they start swimming new longer events that could

generate spill-overs to other races. This is implausible for two reasons. First, our main

analysis already controls for meet and day of race controls that include number of races

and distance swum. Second, in column (4) of Table 3 we drop all swimmers who ever

13See Appendix Figure A.3 for the CDFs of third to fourth place gaps in races with more than 20 swimmers.
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compete in a longer distance race (defined as greater than 800 yards or meters) within this

window. The estimated effects remain similar in significance and magnitude, indicating

that this does not drive the increases in times after a birthday.

Table 3. Effects of age-category change robustness

(1) (2) (3) (4) (5) (6) (7) (8)
Dep. Var.: log(Swim Time)*100

Panel A: Age 11

Treatment 0.319*** 0.338*** 0.356*** 0.339*** 0.361*** 0.311*** 0.288*** 0.395***
(0.0160) (0.0183) (0.0271) (0.0281) (0.0281) (0.0406) (0.0366) (0.0318)

Obs 744,119 616,871 441,920 415,170 411,707 330,817 191,686 312,678
Nr Swimmers 39,750 39,750 39,750 38,046 37,712 33,460 20,610 34,489

Panel B: Age 13

Treatment 0.274*** 0.314*** 0.329*** 0.281*** 0.336*** 0.329*** 0.289*** 0.366***
(0.0135) (0.0153) (0.0228) (0.0276) (0.0237) (0.0340) (0.0309) (0.0270)

Obs 749,594 626,216 450,294 315,543 412,521 343,730 197,865 289,320
Nr Swimmers 45,439 45,439 45,439 34,895 42,754 38,502 23,583 37,074

Window Size ± 84 ± 42 ± 31 ± 31 ± 31 ± 31 ± 31 ± 31
Other – – – No long Regular Donut Multi Large

dist. Event meets

Notes: Sample of swimmers competing within given days (both before and after) of their 11th and 13th birthdays. Dependent
variable is the logarithm of swim time (in seconds) times 100. Each coefficient corresponds to a separate OLS regression of
equation 2 that includes swimmer-event fixed effects. All estimates include controls for: day of week dummies, number of heats
swum that day, total distance swum, number of long distance swims, and number of days since the last meet. Treatment is the
treatment indicator, measuring the local average treatment effect of changing age-group. All estimates use a linear function
of the running variable (days with respect to Nth birthday) are event-specific and interacted with Treatment. Window Size
indicates the sample restriction for the number of days before and after a birthday swimmers must compete within. Other
indicates other sample restrictions. In column (4), No long dist drops swimmers who ever participate in events longer than 800
yards or meters. Column (5), Regular drops major championship meets. Column (6), Donut hole drops observations within
4 days before and after cutoff. Column (7) restricts to swimmers participating in more than 2 meet-events before and after
aging up. Column (8) restricts to races with more than 20 participants. Standard errors are clustered at the swimmer level.
Bonferroni adjusted significance: * 10%; ** 5%; *** 1%.

We also address concerns that our results may reflect strategic tapering for a major

meet (e.g., a state championship). Swimmers taper by reducing the intensity of training

prior to major competitions. Thus, a concern is that the club tapers prior to a major com-

petition with time standards that a swimmer only meets prior to aging up (so that a taper

just after a birthday becomes irrelevant). These major competitions right before a birth-

day could conceivably drive the jump we observe around a birthday. If this were so, our

effects should disappear once we drop major competitions from our sample and only focus

on “regular” meets. Column (5) provides evidence against tapering driving our effects—in

fact, the coefficient is slightly larger (0.361% at age 11) and remains highly statistically

17



significant (s.e. 0.0281). Column (6) shows that findings are qualitatively unchanged when

we estimate the model using a 4-day donut hole around the birthday. Column (7) restricts

the sample to swimmers-events that appear more than once on either side of the birthday.

Finally, column (8) restricts the sample to large meets, defined as there being more

than 20 swimmers in a given event. This is important as smaller meets are less com-

petitive and could attenuate the estimates of the effects of changing age group. Indeed,

the estimated coefficients are over 10% larger than the baseline estimates in column (3).

Taken together, this suggests that the effects we find are driven by changes in the ex-

tent of ranking competition rather than other potential factors related to a swimmer’s

birthday or changing age group (e.g., swimming longer events).

An alternative way to evaluate the effect of improvements in competition on perfor-

mance is by directly examining the relationship between average competition and own

performance. Examining this relationship is difficult because better swimmers can and

sometimes do select into better meets. To overcome this identification challenge, we ex-

ploit the variation created by changes in age groups and use it as an instrument for the

average quality of the competition. This way, assuming that all of the effect of aging

up operates through the quality of competition, we can directly quantify the effect of

changing competition on performance. We present results in Table 4, where the depen-

dent variable is the logarithm of a swimmer’s time and the endogenous variable is the

logarithm of the average competition time. Consistent with our reduced form findings,

swimmers swim slower when assessed against faster competition. For example, if the av-

erage time of the competition improves by 1%, a swimmer performs almost 0.04% worse

(s.e. 0.003) at age 13 in Panel B, column (1) (i.e., a behavioral elasticity of 0.04).

It is useful to contrast the magnitude of these average effects with those of other

studies. For example, in the context of peer quality in education, our results align with

lower bound estimates from the literature as in Arcidiacono et al. (2012), Burke and Sass

(2013)) who find that a one standard deviation in peer quality increases math scores by

3% (4%) of a standard deviation. Similarly, Cornelissen et al. (2017) find that a one

standard deviation increase in peer ability in the workplace increases wages by 0.3% on
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average. Our instrumental variable estimates suggest effects of a similar magnitude on

average: making the average competition one standard deviation faster (8.78% at age 13)

worsens a swimmer’s performance by 0.349%. It is important to highlight that, if any-

thing, our estimates should be interpreted as lower bounds as we are only identifying the

immediate effect of relative assessment (and we drop swimmers who are so discouraged

that they do not swim in the month after aging up).

Table 4. 2SLS Estimates of Change in Competitor’s Time on Own Performance

(1) (2) (3) (4) (5) (6)
Dep. Var.: log(Swim Time)*100

Panel A: Age 11

log(Avg. Comp.)*100 -0.0234*** -0.0321***
(0.00181) (0.00426)

log(5th ptile Comp.)*100 -0.0198*** -0.0274***
(0.00155) (0.00368)

log(95th ptile Comp.)*100 -0.0336*** -0.0470***
(0.00259) (0.00622)

Obs 441,915 441,915 441,915 441,915 441,915 441,915
Nr Swimmers 39,750 39,750 39,750 39,750 39,750 39,750

Panel B: Age 13

log(Avg. Comp.)*100 -0.0433*** -0.0461***
(0.00312) (0.00696)

log(5th ptile Comp.)*100 -0.0353*** -0.0379***
(0.00259) (0.00586)

log(95th ptile Comp.)*100 -0.0635*** -0.0679***
(0.00455) (0.0102)

Obs 450,290 450,290 450,290 450,290 450,290 450,290
Nr Swimmers 45,439 45,439 45,439 45,439 45,439 45,439

f() Linear Cubic Linear Cubic Linear Cubic

Notes: Sample of swimmers competing within 31 days (both before and after) of their 11th and 13th birthdays. Dependent
variable is the logarithm of swim time (in seconds) times 100. Each coefficient corresponds to a separate 2SLS regression
where the instrumented endogenous variable, the logarithm of the average competitor’s race time times 100 (or the 5th or
95th percentiles), is instrumented by the treatment indicator for change in age-group. All estimates include swimmer-event
fixed effects and controls for: day of week dummies, number of heats swum that day, total distance swum, number of long
distance swims, and number of days since the last meet. The functions of the running variable (days relative to birthday) are
event-specific and interacted with Treatment. Linear indicates that the function used is linear, while Cubic indicates that a
cubic specification is used. Standard errors are clustered at the swimmer level. Significance: * 10%; ** 5%; *** 1%.

4.3 Gender Heterogeneity

There is extensive evidence that women respond to competition differently than men (see

Niederle, 2016, for a survey). For example, Gneezy et al. (2003) find that women perform
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worse on average in competitive environments, but the effect is significantly larger when

competing against men. Our setting lets us examine the extent to which there are differen-

tial responses by gender to changes in the quality of competition. To study heterogeneity

by gender we add an interaction of the treatment indicator with an indicator for male.

Thus, the interaction coefficient gives us the difference in treatment effects for males.

Table 5 Panel A shows the effects on quality of assessment groups at age 11 in columns

(1) and (2), and at age 13 in columns (3) and (4). On average, the change in the quality

of assessment group at age 11 is statistically significantly larger for girls than for boys,

although the magnitude of the difference is small (about 4% smaller for boys). The op-

posite holds at age 13: boys experience a substantially larger change in the quality of

competition, as on average, assessment groups are about 10% for boys and 6% faster for

girls. These differences between boys and girls reflect the fact that girls tend to mature

before boys.

In Panel B of Table 5 we examine effects on own performance. Consistent with the

economically small differences in changes in assessment group at age 11, we find no sta-

tistically significant differences in the effect on own performance between boys and girls.

The point estimate for the interaction term is close to zero and statistically insignificant.

At age 13, we find that girls slow down by 0.288% and boys further slow down an ad-

ditional 0.111%. However, the interaction term is imprecisely estimated when using a

cubic function of time in column (4) although similar in magnitude. These small gender

differences in performance likely reflect different magnitudes of changes in the assessment

groups, rather than reflecting different gender responses to competition.

Panel C presents estimates for the 2SLS regression like in Table 4 but including the

interactions with the male indicator. These results suggest that there are no significant

differences in gender responses to better assessment groups. Indeed, the point estimates

for the interaction terms are close to zero and statistically insignificant. This reinforces

that boys and girls respond similar to changes in assessment groups. This is consistent

with laboratory evidence showing that there are no gender differences when subjects com-

pete against participants of the same gender (Niederle and Vesterlund, 2007). It is also
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Table 5. Effects of Aging-up by Gender

(1) (2) (3) (4)
Age 11 Age 13

Panel A, Dep. Var.: Log(Average Competitor’s time)*100
Treatment -15.44*** -14.81*** -6.183*** -5.725***

(0.128) (0.285) (0.0966) (0.212)
Treatment*Male 0.689*** 0.860* -3.880*** -3.666***

(0.212) (0.479) (0.170) (0.369)

Panel B, Dep. Var.: Log(Swim Time)*100
Treatment 0.332*** 0.476*** 0.288*** 0.273***

(0.0337) (0.0733) (0.0284) (0.0587)
Treatment*Male 0.0650 -0.0314 0.111** 0.145

(0.0565) (0.127) (0.0476) (0.0987)

Panel C: 2SLS, Dep. Var.: Log(Swim Time)*100
log(Avg. Competition)*100 -0.0216*** -0.0323*** -0.0468*** -0.0478***

(0.0022) (0.0050) (0.0047) (0.0105)
log(Avg. Competition)*100*Male -0.0049 0.0005 0.0075 0.0037

(0.0038) (0.0089) (0.0058) (0.0133)

Obs 441,920 441,920 450,294 450,294
Nr Swimmers 39,750 39,750 45,439 45,439

Controls Yes Yes Yes Yes
f() Linear Cubic Linear Cubic

Notes: Sample of swimmers competing within 31 days (both before and after) of their 11th and 13th

birthdays. Each coefficient in Panels A and B corresponds to a separate OLS regression of equation 2
that includes swimmer-event fixed effects. Coefficients in each column of Panel C correspond to separate
2SLS regression where the instrumented endogenous variable and its interaction with male (the logarithm
of the average competitor’s race time times 100), are instrumented by the treatment indicator for change
in age-group and its interaction with male. Dependent variable in Panel A is the logarithm of the average
competitor’s times (in seconds) times 100, in Panel B and C it is the logarithm of own swim time (in
seconds) times 100. Controls (including their interactions with an indicator for male) include: day of week
dummies, number of heats swum that day, total distance swum, number of long distance swims, and number
of days since the last meet. Treatment in Panels A and B are the treatment indicator, measuring the local
average treatment effect of changing age-group. Male indicates whether swimmer is male. The functions of
the running variable (days with respect to Nth birthday) are event-specific and interacted with Treatment.
Linear indicates that the function used is linear, while Cubic indicates that a cubic specification is used.
Standard errors are clustered at the swimmer level. Significance: * 10%; ** 5%; *** 1%.

important to highlight that more girls than boys choose to compete in club swimming

competitions. Also, our sample presumably has a stronger preference for competition than

the general population. The fact that girls are affected similarly to boys suggests that the

findings in the literature could be driven by heterogeneous preferences for competition

rather than a gender-specific trait.
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4.4 Ability Heterogeneity

A notable advantage of our setting is that we observe each swimmer’s prior performance.

This lets us construct measures of ex-ante ability to study whether swimmers respond dif-

ferently across the ability distribution to changes in the quality of the assessment group.

This helps us distinguish whether discouragement or rational strategic decisions drive our

findings because the likelihood of placing prior to aging up varies significantly across the

ability distribution. For example, a median-ability swimmer finished in the top 3 in only

3.5% (2.9%) of races before turning 11 (13) years old. In contrast, the top ability decile

finished top 3 in 67% (53.8%) of races before aging up to 11 (or 13). Because median abil-

ity swimmers had minimal chances of placing prior to aging up, and high ability swimmers

had far larger chances, canonical tournament theory models (e.g., Connelly et al., 2014)

would predict that the largest slowdowns would occur at the top of the ability distribution.

We construct a measure of swimmer’s ex-ante ability by using their prior swim history.

We identify a swimmer’s ability decile by averaging all of the swimmer’s Hy-Tek scores

(a measure designed to standardize comparisons of times between events and ages) in

a six month period before their corresponding birthday. We then estimate equation (2)

separately for each decile of ability. The lowest two deciles are aggregated for power.14

Figure 3 presents the effects on own performance by ability decile. The figure plots

treatment effects coefficients along with the corresponding 95% confidence interval. At

the bottom of the distribution (slowest swimmers) we do not find statistically significant

effects of changing assessment group. However, after the 40th percentile of the ability

distribution we observe positive and statistically significant effects that remain similar in

magnitude as we move up the ability distribution, up to the very top. The patterns are

similar at the age 11 and 13 cutoffs.

That the magnitude of the slowdown in times upon aging up is unaffected by the

large changes in the probability of winning (and hence the marginal impact of effort on

winning probabilities) indicates that the slowdown is not driven by the standard predic-

tions of tournament theory that effort should be increasing in the probability of winning.

14Each decile is similar in terms of number of swimmers but not in terms of number of races swum.
Swimmers in the lower tail of the distribution swim significantly fewer races, thus the smaller sample.
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Figure 3. Treatment Effect on Own Time by Swimmer Ability Decile
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Notes: Sample of swimmers competing within 31 days (before and after) of their 11th and 13th birthdays. Dependent

variable is the logarithm of swim time (in seconds) times 100. Each dot corresponds to the treatment indicator of separate

OLS regression of equation 2 by ability decile, that includes swimmer-event fixed effects. Controls include: day of week

dummies, number of heats swum that day, total distance swum, number of long distance swims, and number of days since

the last meet. To calculate a swimmer’s ability decile, we first average their Hy-Tek scores across all events and for all

times recorded in a window of 2 to 6 months before their Nth birthday. Then we calculate their corresponding decile

within the sample of swimmers used for analysis. The lowest two deciles (slowest swimmers) were aggregated. Ticks

represent 95% confidence intervals, standard errors are clustered at swimmer level.

To further investigate, we can proxy for the probability of winning by the probability of

being seeded in the top-3 for that race. We redo the analysis in Figure 4 instead using

the probability of being seeded in the top-3 as the main outcome. As we move up the

ability distribution, there is a dramatic drop in the probability of still being seeded in

the top-3 after aging up. The probability a top swimmer is seeded in the top-3 drops by

60 percentage points at age 11. Therefore, if the slowdown were driven by the decreased

(marginal) probability of placement, the effects of changing age-group should be increas-

ing in the ability distribution—mirroring the distribution of effects in seeding. However,

the pattern of treatment effects on own performance by ability in Figure 3 is clearly in-

consistent with the stark changes in the probability of placing. This indicates that the

slowdown in performance is not driven by swimmers being rational agents who reduce

effort in response to a reduced probability of winning.

While overall ability can be informative, we can shed further light by exploiting signif-

icant heterogeneity within a swimmer. In practice, swimmers compete in different strokes

and can be strong in one and weak in another. Overall swimmer ability averages across
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Figure 4. Treatment effect on Seeding in the Top-3 by Swimmer Ability Decile

(a) Age 11 (b) Age 13
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Notes: Sample of swimmers competing within 31 days (before and after) of their 11th and 13th birthdays. Dependent

variable is an indicator that equals one if swimmer was seeded in the top-3 for that event within corresponding age group.

Each dot corresponds to the treatment indicator of separate OLS regression of equation 2 by ability decile, that includes

swimmer-event fixed effects. Controls include: day of week dummies, number of heats swum that day, total distance

swum, number of long distance swims, and number of days since the last meet. To calculate a swimmer’s ability decile,

we first average their Hy-Tek scores across all events and for all times recorded in a window of 2 to 6 months before their

Nth birthday. Then we calculate their corresponding decile within the sample of swimmers used for analysis. The lowest

two deciles (slowest swimmers) were aggregated. Ticks represent 95% confidence intervals, standard errors are clustered

at swimmer level.

strong and weak strokes, but the largest changes to the probability of placing at the top

matters more for a swimmer’s best stroke, so we might be averaging between zero effects

and large slow down effects for events in their best stroke. We rule this out by further

exploiting differential effects by ability and best stroke.

Figure 5 presents these results, where the grey squares and lines indicate coefficients

and 95% confidence intervals for a swimmer’s best stroke, and the black coefficients cor-

respond to all other strokes. We do not find robust evidence of differences in responses

by best stroke compared to other strokes. Indeed, we fail to reject the equality of effects

between best stroke and others. These results further reinforce that the slowdown is not

driven by swimmers optimizing their effort as a function of the probability of winning

since we would expect to see the strongest effects for their best strokes.
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Figure 5. Treatment Effect on Own Time by Swimmer Ability Decile and Best Stroke

(a) Age 11 (b) Age 13
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Notes: Sample of swimmers competing within 31 days (before and after) of their 11th and 13th birthdays. Grey squares

and lines correspond to races in a swimmer’s best stroke, the black dot and line correspond to races in all other strokes.

Dependent variable is the logarithm of swim time (in seconds) times 100. Each dot corresponds to the treatment indicator

of separate OLS regression of equation 2 by ability decile, that includes swimmer-event fixed effects. Controls include:

day of week dummies, number of heats swum that day, total distance swum, number of long distance swims, and number

of days since the last meet. To calculate a swimmer’s ability decile, we first average their Hy-Tek scores across all events

and for all times recorded in a window of 2 to 6 months before their Nth birthday. Then we calculate their corresponding

decile within the sample of swimmers used for analysis. The lowest two deciles (slowest swimmers) were aggregated. Ticks

represent 95% confidence intervals, standard errors are clustered at swimmer level.

4.5 Falsification test: Non age-group related factors

We rely on changing age groups as our source of identification. One concern is that our

estimates could be spurious and the product of other events related to a birthday (e.g.,

celebrations, changes in diet, excitement, distractions, etc.). If these factors are causing

swimmers to swim slower then we would expect to find similar effects when examining

birthdays where swimmers do not age up.

We replicate our main analysis for placebo birthdays at ages 10, 12 and 14. Figure 6

presents reduced form effects of birthdays on own performance. In stark contrast to Figure

1, there are no visible changes or jumps in own performance upon a birthday with no age

group change. Table 6 summarizes the main findings for both competitor’s average times

and own performance. Panel A shows very small, statistically significant, improvements in

the quality of competition (measured as the log of their average time) after a placebo birth-

day.15 This largely reflects that as swimmers improve with age they sometimes gain access

15See Appendix Figures A.4 for the graphical representation of these estimates.
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to competitions with entry time restrictions that, by construction, feature faster cohorts.

Figure 6. Adjusted log(Swim time)*100 relative to placebo birthday

(a) Age 10 (b) Age 12
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(c) Age 14
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Notes: Sample of swimmers competing in meets within 31 days (before and after) of their 10th, 12th and 14th birthdays.

First day of meet used as reference time. Dots are point estimates of running variable dummies (-1 is the omitted category),

from an OLS regression that include swimmer-event fixed effects and controls for: day of week dummies, number of heats

swum that day, total distance swum, number of long distance swims, and number of days since the last meet. Ticks

represent 95% confidence intervals, standard errors are clustered at swimmer level.

Panel B of Table 6 presents the effects of non-age-group change birthdays on the log-

arithm of a swimmer’s time (times 100). As Figure 6 suggests, the estimates are close to

zero and not statistically significant in most cases. The coefficient for the age 12 placebo

is significant at the 5% level, but its magnitude is economically very small—less than

one-fifth of the effects we found. Furthermore, these results remain robustly small and

statistically insignificant when we use different data windows and sample restrictions (see

Appendix Table A4). These results suggest that other events related to a swimmer’s

birthday do not play a material role in explaining our results for swimmers who age up.
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Table 6. Placebo effects on non-age-group change birthdays

(1) (2) (3) (4) (5) (6)
Age 10 Age 12 Age 14

Panel A: log(Average Competitor’s time) ∗ 100
Treatment -0.671*** -0.963*** -0.581*** -0.625*** -0.244*** 0.0261

(0.101) (0.225) (0.0725) (0.160) (0.0626) (0.136)

Panel B: log(Swim Time) ∗ 100
Treatment 0.0401* 0.111 0.0565** 0.0510 -0.0285 -0.0206

(0.0343) (0.0758) (0.0227) (0.0499) (0.0205) (0.0440)

Obs 449,749 449,749 615,613 615,613 584,547 584,547
Nr Swimmers 40,534 40,534 54,223 54,223 51,036 51,036
Controls Yes Yes Yes Yes Yes Yes
f() Linear Cubic Linear Cubic Linear Cubic

Notes: Sample of swimmers competing within 62 days (both before and after) of their 10th, 12th and 14th

birthdays. In Panel A, the dependent variable is the logarithm of the average time for all other swimmers in
age-group (i.e. 10 and under, 11-12, 13-14) excluding their own time for that event-meet times 100. In Panel
B, the dependent variable is the logarithm of own swim time times 100. Each coefficient corresponds to a
separate OLS regression of equation 2 that includes swimmer-event fixed effects. Controls include: day of week
dummies, number of heats swum that day, total distance swum, number of long distance swims, and number
of days since the last meet. Treatment is the treatment indicator, measuring the local average treatment effect
of a birthday (i.e., not changing age group). The functions of the running variable (days with respect to Nth
birthday) are event-specific and interacted with Treatment. Linear indicates that the function used is linear,
while Cubic indicates that a cubic specification is used. Standard errors are clustered at the swimmer level.
Bonferroni adjusted significance: * 10%; ** 5%; *** 1%.

5 Conclusion

In this paper we provide evidence that individuals performance worsens on average when

assessed relative to better peers. We exploit a natural experiment: sharp age group

changes when a swimmer turns 11 or 13 in swimming competitions that strongly im-

prove the set of swimmers against whom the swimmer is being assessed. This setting

allows us to circumvent several identification challenges. The effects we find manifests

itself in swimmers slowing down significantly upon aging up. Comparable slow-downs are

found for both middle- and high-ability swimmers, and for the same swimmer in both

their best strokes and others, indicating that swimmers slow down due to psychological

discouragement rather than a rational cost-benefit calculation.

There are several psychological theories of motivation and self-assessment that could

underlie the discouragement effects we find. For instance, the large changes in the quality

of assessment groups upon aging up reduces a swimmer’s relative standing—regardless

of where they stand in the ability distribution. Lowering self-esteem and self-efficacy has

been predicted and shown to lead to discouragement (Bandura, 1977, Vancouver et al.,
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2002). Feeling competent is also crucial for intrinsic motivation (Deci and Ryan, 1985).

When swimmers age up and their relative performance drops, their perceived competence

may decrease, leading to reduced intrinsic motivation and increased discouragement.

Our results suggest a discouragement mechanism that may underlie several findings

in the education literature where relative assessments are widespread. For instance, stu-

dents admitted to both more and less selective universities earning similar amounts on

average, and the under-performance of both marginally-admitted students attending elite

schools and children who start kindergarten younger than their cohort. Our findings may

also have implications for the design of incentive schemes. For example, firms using tour-

naments in contexts with large productivity differences among employees could lead to

reduced output relative to less-competitive rewards schemes.
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A Appendix Figures and Tables

Figure A.1. Screen-shot of USA Swimming Time Search Website
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Figure A.2. Adjusted log(Average Competitor time)*100 relative to birthday at age 13
- alternative definition

(a) Alternate (13-16) (b) Original (13-14)
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Notes: Sample of swimmers competing within 31 days (before and after) of their 13th birthday, using 13-16 definition for

competition after aging up. Dots are point estimates of running variable dummies (-1 is the omitted category) from an

OLS regression that include swimmer-event fixed effects and controls for: day of week dummies, number of heats swum

that day, total distance swum, number of long distance swims, and number of days since the last meet. Ticks represent

95% confidence intervals, standard errors are clustered at swimmer level.

Appendix – 2



Figure A.3. CDF Percentage Swim Time Gap Between 3rd and 4th Place

(a) 11-12 Age Group (b) 13-14 Age Group

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1
C

D
F

0 .487 2 4 6 8
Percentage Gap Placed 3rd vs 4th

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1
C

D
F

0 .407 2 4 6 8
Percentage Gap Placed 3rd vs 4th

Notes: CDF of percentage time gaps between 3rd and 4th positions in sample of 100 Freestyle Short Course Yard meets
with more than 20 participants. Dashed line corresponds to local average treatment effect for aging up to 11 and 13 in
panels (a) and (b), respectively, estimated in columns (3) of Appendix Table A5.
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Figure A.4. Adjusted log(Average Competitor time)*100 relative to placebo birthday

(a) Age 10 (b) Age 12
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(c) Age 14
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Notes: Sample of swimmers competing within 31 days (before and after) of their 10th, 12th and 14th birthdays. Dots are
point estimates of running variable dummies (-1 is the omitted category) from an OLS regression that include swimmer-
event fixed effects and controls for: day of week dummies, number of heats swum that day, total distance swum, number
of long distance swims, and number of days since the last meet. Ticks represent 95% confidence intervals, standard errors
are clustered at swimmer level.
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Table A2. Age grouping of heats for random sample of meets

Percentage of meets grouping:

Ages 10 and under 41.96%
Ages 9-10 26.79%
Other/Mixed 25.89%

Ages 11-12 70.27%
Ages 11 and over 1.34%
Other/Mixed 23.03%

Ages 13-14 36.61%
Ages 13 and over 44.64%
Other/Mixed 13.39%

Nr Meets 224
Nr LSCs 5

Notes: Sample of invitational meets
for the 2015-2016 season for a random
sample of Local Swimming Committees
(LSCs). Using each meet’s information
sheet, the authors noted the age cutoffs
used for seeding heats for common
events (e.g. 100 freestyle). The table
shows the percentage of meet that
seeded the indicated age group.
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Table A3. Sample construction

(1) (2) (3) (4) (5) (6) (7) (8)

Age 11 threshold Age 13 threshold
Swims

year before
birthday

Swimmer-
events

on both sides

Drop
swimmers
< 3 meets

Sample in 31
day window

Swims
year before
birthday

Swimmer-
events

on both sides

Drop
swimmers
< 3 meets

Sample in 31
day window

Swimmer Characteristics
Male 0.38 0.378 0.378 0.378 0.388 0.377 0.369 0.369

(0.485) (0.485) (0.485) (0.485) (0.487) (0.485) (0.482) (0.482)
Age Start 8.633 8.493 7.895 7.895 9.727 9.525 9.029 9.029

(1.288) (1.314) (1.078) (1.078) (1.758) (1.767) (1.513) (1.513)
Days since last meet 40.121 43.633 43.04 41.171 39.179 42.262 41.248 39.893

(62.365) (65.538) (62.544) (59.834) (69.062) (70.818) (65.998) (65.144)
Nr meets 40.538 43.684 42.929 41.883 36.398 37.708 37.761 36.843

(30.236) (31.816) (31.546) (31.142) (26.726) (28.071) (28.309) (28.126)
Nr heats 5.425 5.79 6.087 6.025 6.025 6.408 6.565 6.472

(2.791) (2.651) (2.668) (2.692) (3.181) (2.929) (2.957) (3.021)

Swim time (in seconds)
All events 84.693 74.686 75.548 78.246 93.291 99.293 100.454 103.854

(64.332) (52.988) (54.952) (58.205) (76.967) (73.041) (73.986) (75.559)
100 Freestyle SCY 78.128 76.742 74.235 74.321 65.973 65.442 64.24 64.277

(12.325) (11.796) (9.620) (9.787) (8.523) (8.157) (6.832) (7.031)

Nr swimmers 147,795 55,815 39,750 39,750 144,737 54,703 45,439 45,439
Nr observations 4,097,352 945,098 744,119 441,920 4,432,834 845,278 749,595 450,295

Notes: Standard deviation in parenthesis, within-swimmer standard deviation in brackets.
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Table A4. Robustness for placebo effects on non-age-group change birthdays

(1) (2) (3) (4) (5) (6)

Dep. Var.: log(Swim Time)*100
Panel A: Age 10

Treatment 0.0764*** 0.0291 0.0298 -0.000788 0.0194 0.0330
(0.0171) (0.0244) (0.0315) (0.0469) (0.0435) (0.0326)

Obs 1,220,965 672,614 445,803 337,811 198,369 420,046
Nr Swimmers 62,112 50,701 40,284 34,015 20,823 38,572

Panel B: Age 12

Treatment 0.0633*** 0.0155 0.0452 0.0575 -0.00549 0.0616**
(0.0117) (0.0167) (0.0238) (0.0320) (0.0297) (0.0226)

Obs 1,665,336 925,208 531,246 469,976 269,226 569,643
Nr Swimmers 81,442 67,387 48,441 46,142 28,194 51,297

Panel C: Age 14

Cat Change -0.00574 -0.0221 -0.0305 -0.0962 -0.0506*** -0.0395
(0.0111) (0.0154) (0.0253) (0.0261) (0.0296) (0.0207)

Obs 1,534,441 870,829 359,881 278,720 449,098 532,304
Nr Swimmers 74,752 62,782 34,825 27,924 43,897 47,755

Window 84 42 31 31 31 31
Other - - No long dist. Donut Multi. Event Regular

Notes: Sample of swimmers competing within given days (both before and after) of their 10th, 12th and
14th birthdays. Dependent variable is the logarithm of swim time (in seconds) times 100. Each coefficient
corresponds to a separate OLS regression of equation 2 that includes swimmer-event fixed effects. All estimates
include controls for: day of week dummies, number of heats swum that day, total distance swum, number of
long distance swims, and number of days since the last meet. Treatment is the treatment indicator, measuring
the local average treatment effect of changing age-group. All estimates use a linear function of the running
variable (days with respect to Nth birthday) are event-specific and interacted with Treatment. Window Size
indicates the sample restriction for the number of days before and after a birthday swimmers must compete
within. Other indicates other sample restrictions. In column (3), No long dist drops swimmers who ever
participate in events longer than 800 yards or meters. Column (4), Donut hole drops observations within 4
days before and after cutoff. Column (5) restricts to swimmers participating in more than 2 meet-events before
and after aging up. Column (6), Regular drops major championship meets. Standard errors are clustered at
the swimmer level. Bonferroni adjusted significance: * 10%; ** 5%; *** 1%.
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Table A5. Effects of age-category change by event

(1) (2) (3) (4) (5) (6) (7) (8)
50 FR SCY 50 FR LCM 100 FR SCY 100 BK SCY 100 BR SCY 100 FL SCY 100 FR LCM 100 BK LCM

Panel A: Age 11

Treatment 0.260* 0.999*** 0.487*** 0.233 0.544*** 0.776*** 0.212 0.347
(0.147) (0.362) (0.138) (0.176) (0.158) (0.281) (0.209) (0.236)

Obs 51,927 15,211 39,424 25,823 23,589 14,593 14,226 10,779
Nr Swimmers 18,651 5,751 15,503 10,245 9,433 5,701 5,470 4,159

Panel B: Age 13

Treatment 0.264** 0.697*** 0.407*** 0.291** 0.261** 0.375** 0.635*** 0.576***
(0.117) (0.177) (0.106) (0.126) (0.127) (0.160) (0.143) (0.176)

Obs 52,494 18,875 49,339 37,322 32,232 25,897 20,125 15,995
Nr Swimmers 18,661 6,896 18,508 13,805 12,176 9,668 7,362 5,733

Notes: Sample of swimmers competing within 31 days (before and after) of their 11th and 13th birthdays. Dependent variable is the logarithm of swim time (in
seconds) times 100. Each coefficient corresponds to a separate OLS regression of equation 2 by event that includes swimmer-event fixed effects. FR: Freestyle, BK:
Backstroke, BR: Breaststroke, FL: Fly. SCY: Short Course Yards, LCM: Long Course Meters. Controls include: day of week dummies, number of heats swum
that day, total distance swum, number of long distance swims, and number of days since the last meet. Treatment is the treatment indicator, measuring the local
average treatment effect of changing age-group. The functions of the running variable (days with respect to Nth birthday) are event-specific and interacted with
Treatment. Linear indicates that the function used is linear, while Cubic indicates that a cubic specification is used. Standard errors are clustered at the swimmer
level. Bonferroni adjusted significance: * 10%; ** 5%; *** 1%.
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