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Abstract

We consider a classical auction setting in which an asset/project is sold to buyers
who privately receive signals about expected payoffs, and payoffs are more sensitive
to the signal of the bidder who controls the asset. We show that a seller can increase
revenues by sometimes allocating cash-flow rights and control to different bidders, e.g.,
with the highest bidder receiving cash flows and the second-highest receiving control.
Separation reduces a bidder’s information rent, which depends on the importance of
his private information for the value of his awarded cash flows. As project payoffs are
most sensitive to the information of the bidder who controls the project, allocating
cash flow to another bidder lowers bidders’ informational advantage. As a result, when
signals are close, the seller can increase revenues by splitting rights between the top
two bidders.
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1 Introduction

The starting point for our paper is a classical auction setting in which a seller seeks to sell

a single asset/project to risk-neutral bidders who privately receive signals about the asset’s

expected future cash flows. When a bidder wins control, the asset’s payoffs depend on both

his signal and those of rival bidders. In this setting, the literature has focused on mechanisms

in which only the bidder who controls the project receives cash flows, possibly splitting them

with the seller, but no other bidder receives cash flows.

Our paper shows that a seller can do better by sometimes allocating control to one bidder

and (some or all) cash flows to other bidders. We establish that as long as expected cash

flows are more sensitive to the signal of the bidder who controls the project than to those of

other bidders, expected seller revenues are strictly higher when the seller sometimes allocates

control and cash-flow rights to different bidders, and that the bidder who should be assigned

control may not be the one that would generate the highest project payoffs. Our paper is the

first to propose a “separation” mechanism of this form, to establish its revenue advantages,

and to identify the sources of those advantages.

To highlight how outcomes in our separation framework differ from those in the “no-

separation” frameworks of existing studies, we focus on settings with ex-ante identical bid-

ders. In the classical no-separation framework, under standard regularity conditions, the

seller optimally awards both control and cash-flow rights to the highest bidder. This result

reflects that (i) allocating control to the bidder with the highest signal maximizes social

welfare, and (ii) allocating cash flows to the highest bidder reduces rents earned by bidders

with lower signals, thereby minimizing bidders’ total rents (reflecting the envelope theorem

logic that rents earned by lower types cumulate to carry over to higher types). Our paper

derives the surprising result that violating either (i) or (ii) can increase seller revenue. Our

insight is that separating control and cash-flow rights between different bidders facilitates

rent extraction. We show that one can always design a separation mechanism so that the

benefit of separation strictly outweighs its costs.

To illustrate how separation mechanisms increase seller revenues, consider a simple ex-
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ample where two bidders receive independently-distributed signals t1 and t2. The asset

generates cash flows of vi =
1

1+ρ
(ti + ρt−i) if i ∈ {1, 2} has control, where ρ ∈ (0, 1) means

that cash flows are more sensitive to the controlling agent’s signal than the rival bidder’s

signal. First consider standard English auctions where cash-flow and control rights are not

separated. The equilibrium bidding strategy is βi(ti) = ti, and the bidder with the higher

signal th > ts wins. The seller’s revenue is ts and the winning bidder’s payoff is th−ts
1+ρ

.

Now consider the following two-stage separation mechanism. The first stage is an “always-

separating” English auction in which the highest bidder pays the exit price of the second-

highest bidder and receives cash-flow rights, but, unlike in a standard no-separation auction,

the second-highest bidder receives control. In the second stage, the seller offers the first-stage

winner an option to override the first-stage outcome: the winner can pay the seller a small

fixed extra payment of pextra to acquire control, while still retaining all cash flows.

One can show that bidding βi(ti) = ti still constitutes an equilibrium to the first stage of

our separation mechanism. Thus, considering the first stage outcome alone, seller revenue

is the same as in the no-separation auction, but the winning bidder’s payoff is reduced by a

factor of ρ to ρ th−ts
1+ρ

: only bidders bear the efficiency loss from assigning control to the lower-

valuation bidder. The second stage recovers some of this efficiency loss, leading to a Pareto

improvement: as the asset generates more cash flows under the winning bidder’s control, the

winning bidder will pay to acquire control whenever the efficiency gain (1− ρ) th−ts
1+ρ

exceeds

the price pextra. Both the seller and the winning bidder benefit, implying that expected seller

revenue strictly exceeds that in the standard English auction.

These insights extend, holding for any number of bidders, general signal structures and

valuation functions where cash flows strictly increase in the controller’s signal and are more

sensitive to the controller’s signal than those of the other bidders. We allow pextra to depend

on the exit prices of losing bidders and derive the form that maximizes seller revenues. We

also show that the bidding equilibrium is ex-post incentive compatible. That is, our sepa-

ration mechanism has the virtue that it is an ex-post equilibrium (Bergemann and Morris

(2008))—ex post, no bidder has any regrets—and it always generates (weakly and sometimes

strictly) higher revenue than the no-separation mechanism, event by event.
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The source for the benefits of separation is that the project’s payoff is most sensitive to the

information of the bidder who controls the project. As we know from standard auction theory,

a bidder’s information rent depends on the importance of his private information for project

payoffs. Allocating both control and cash flow rights to the same bidder maximizes the bid-

der’s informational advantage. Allocating cash flows, instead, to a bidder who does not con-

trol the project, reduces the sensitivity of project payoffs to this bidder’s private information,

lowering his informational advantage. When the two highest signals are sufficiently close, the

inefficiency cost from allocating control to a lower signal bidder and the cost of increased bid-

der rents due to allocating cash flows to a lower signal bidder become arbitrarily small, leaving

only the benefit from the reduced sensitivity of a bidder’s payoff to his signal. Thus, when

the difference in the two highest signals is small enough, separation dominates no-separation.

We then consider the possibility that the controller must receive a minimum share q of

cash flows, for example to satisfy corporate regulations that mandate minimum equity stakes

for control, or to assuage moral hazard concerns. We observe that one can split rights in

two ways: instead of (1) always giving cash flow rights to the highest bidder and sometimes

giving control to the second-highest bidder, one could (2) always give control to the highest

bidder and sometimes give the second-highest bidder some cash flows. In each of these two

separation mechanism designs, the highest bidder only receives all rights when his signal

sufficiently exceeds the second highest. We show that for any q < 1, at least one of these

two types of separation mechanisms can be designed to (i) be ex-post incentive compatible,

and (ii) generate strictly higher expected revenues than no-separation English auctions.

Other researchers have examined settings where a single bidder splits cash flows with the

seller. Ekmekci, Kos and Vohra (2016) consider the problem of selling a firm to a buyer

who is privately informed about post-sale cash flows and the benefits of control. The seller

can offer a menu of cash-equity mixtures, and the buyer must obtain a minimum equity

claim to cash flows (with the seller retaining any residual cash flows) to gain control rights.

They provide sufficient conditions for the optimal mechanism to take the form of a take-it-

or-leave-it offer for either the minimum stake or for all shares. In contrast, we examine a

multi-bidder setting in which the seller can allocate control and cash-flow rights to different
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bidders, showing that such separation among bidders increases seller revenues.

Mezzetti (2003; 2004) also studies two-stage mechanisms with interdependent valuations

where first allocations are determined and then agents observe their outcome-decision payoffs,

and transfers are determined depending on the information revealed in both stages. Mezzetti

largely focuses on efficiency, showing that one can implement the ex-ante efficient allocation

in an ex-post incentive compatible way using contingent transfers. He also shows that one

can extract full rents if bidders’ signals at the first-stage perfectly determine their realized

outcome-decision payoffs at the second-stage. This determinability allows for a punishment

mechanism that asks bidders to report their types at the first stage and their realized payoffs

at the second stage; if a bidder misreports at the first stage, no one is subsequently fooled, so a

designer can cross-check against bidders’ reports to detect and punish lying at the first stage.

The bankruptcy resolution or private equity/venture capital settings that motivate our

analysis do not feature deterministic relationships between signals and realized cash flows.

Instead, our mechanism exploits the feature that when expected cash flows depend more

strongly on the information of the bidder who controls the asset, any cash flows a bidder

receives are less sensitive to his signal if he does not have control. The design exploits this

lowered sensitivity to reduce a bidder’s informational advantage by splitting control and cash

flows, awarding control or cash flows to the second-highest bidder when signals are close,

thereby raising expected seller revenues.

The literature has examined designs of no-separation auctions with common valuations

in many settings. McAfee, McMillan, and Reny (1989) derive conditions under which, with

common values, the optimal no-separation selling procedure is implemented by a simple

mechanism in which a seller solicits reports from one bidder and offers the asset to another.

Bergemann, Brooks, and Morris (2016) and Brooks and Du (2018) identify robust auctions

in pure common value settings that yield maximum revenue guarantees. Lauermann and

Speit (2023) study bidding in common-value auctions with an unknown number of bidders.

Other researchers have examined the consequences of separating ownership and control

in the market for corporate control in the context of agency issues, free riding problems and

information aggregation (see, e.g., Bagnoli and Lipman 1988, Ekmekci and Kos 2016, Voss
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and Kulms 2022). Our paper contributes to this literature by identifying an advantage of

the separation of ownership and control from the perspective of optimal auction design.

Existing mechanism design approaches take the underlying property rights regime as

fixed. One can interpret our analysis as treating the property rights regime as a design

choice that is selected by the mechanism (in essence, an endogenously-determined property

right). For instance, agents may have payoff-relevant private information, and their reported

information affects the ownership and control structure. More narrowly, our separation mech-

anism extends existing frameworks by incorporating the assignments of cash flows and control

to the mechanism design for a single asset.1 In practice, a designer needs extensive leverage

to be able to enforce the assignment of rights. One setting where this is so is that of a VC who

seeks to exit an investment in a start-up. The VC has considerable leverage vis à vis the initial

founders in determining whether or not the founders retain control.2 The VC has two viable

exit alternatives—(1) selling the firm back to its initial founders, in which case the founders

receive both cash flows and control, or (2) selling the firm to an outside company, in which

case the founders receive significant cash flows but not control (either continuing to work as

employees, or leaving the firm). In essence, the VC holds an auction between the founders and

outside firms, and separation sometimes occurs.3 Corporate bankruptcy, where a judge has

extensive leverage in determining bankruptcy allocations, is potentially another such setting.

2 The Model

There are n > 1 ex-ante identical bidders who bid for an asset/project. The project can be

controlled (run) by only one bidder who generates a stream of future cash flows. The bidders

and the seller are risk-neutral. Bidders do not discount future cash flows, whereas the seller

values only current cash payments from the auction, discounting future cash flows to zero.

1For analyses of the ownership and control structure for multiple assets, see, e.g., the classical work of
Grossman and Hart (1986) or Hart and Moore (1990).

2We thank Dima Leshchinskii for bringing this example to our attention.
3There are also settings where separation sometimes occurs, but the seller does not dictate terms. For

example, an entrepreneur may “sell” a project idea to a syndicated VC group, where the lead VC is directly
involved in the project management, while the other VCs only contribute funding in return for claims to future
cash flows. Private equity clubs (e.g., club deals) and limited partner frameworks feature a similar separation,
where the limited partners provide capital and other inputs, while the general partner runs the business.
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Each bidder i receives a private signal ti that is informative about the project’s future cash

flows. We also refer to ti as bidder i’s type. We use t ≡ (t1, t2, ..., tn) to denote the vector of all

bidder types and t−i ≡ (t1, ..., ti−1, ti+1, ..., tn) to denote the vector of bidder types other than

i. We assume that signals are weakly affiliated, nesting independently-distributed signals as

a special case. We use f(t) to denote the joint density of t. We assume that f(t) is symmetric

in its arguments, and uniformly continuous and strictly positive over its support [t, t̄]n.

Valuations are interdependent: expected future cash flows from the project under bidder

i’s control, vi (t1, ..., tn), depend on the signals of all bidders. We assume vi is nondecreasing

in its arguments, twice continuously differentiable, and strictly increasing in ti. Valuations

are also symmetric:

vi(t1, ..., tn) = u(ti; t−i), for all i, (1)

where the function u is the same for each bidder and symmetric in its last n−1 components.

Valuations satisfy a single-crossing condition: given any signal vector t,

∂vi
∂ti

(t) ≥ ∂vj
∂ti

(t), for all i and all j ̸= i. (2)

The single-crossing condition implies that a bidder’s signal has a greater influence on cash

flows if he runs the project than if another bidder runs the project. Given the symmetry

condition in (1), the single-crossing condition reduces to requiring that

u1 (t1; t2, ..., tn) ≥ u2 (t2; t1, ..., tn) , (3)

where ui is the derivative of u with respect to the ith argument.

These assumptions on the signal distribution and valuations are standard in studies of

auctions with interdependent values (see, e.g., Krishna (2010) or Vohra (2011)). We add a

mild assumption that there exist signals t2 ≥ t3 ≥ ... ≥ tn with t̄ > t2 and tn > t, such that

(3) holds as a strict inequality at t1 = t2:

u1 (t2; t2, t3, ..., tn) > u2 (t2; t2, t3, ..., tn) . (4)

We sometimes specialize to bidder valuations that are linear in the signals, as in Bergemann

and Morris (2007), Bergemann, Shi and Valimaki (2009), or Gorbenko and Malenko (2022):

u (ti, t−i) = An

(
ti + ρ

∑
j ̸=i

tj
)
, (5)
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where An ≡ 1
1+(n−1)ρ

is a normalizing parameter that sets u(t, t, ..., t) = t, and ρ < 1 implies

that expected project payoffs are more sensitive to the controller’s signal than to the signals

of other bidders. We can rewrite this as u = An

(
ρ
∑

j tj+(1−ρ)ti

)
, i.e., a bidder’s valuation

is the sum of common value and private value components, where ρ measures the degree of

common valuations: the higher is ρ, the less the assignment of control matters for cash flows.

Our key departure from the literature is to consider settings in which a seller can allocate

control and cash-flow rights to different bidders. That is, a bidder who does not control

the project may nonetheless receive some or all of the cash flows generated. Formally, we

consider direct-revelation mechanisms that allow for such separation. Let Rj(t) ∈ [0, 1] be

the probability bidder j is assigned control when bidders report t. Let Qji(t) ∈ [0, 1] be the

share of total cash flows that i gets when bidders report t and control is assigned to j.4 Let

Mi(t) be i’s expected cash payment to the seller when bidders report t.

We require that ∑
j

Rj(t) ≤ 1, for all t, (6)

and ∑
i

Qji(t) = 1, for all j and all t.5 (7)

We term our mechanism a “separation mechanism” to contrast with the standard “no-

separation” mechanisms, which corresponds to a special case of our separation mechanism

with Qjj(t) = 1 for all j and Qji(t) = 0 for all i ̸= j, for all t.

We also impose a minimum control stake requirement for the bidder who is given control:

Qjj(t) ≥ q for all j and t, (8)

where q ∈ [0, 1). The advantages of separation hold regardless of whether q = 0 or q > 0.

We allow for q > 0 to capture settings in which the bidder who receives control may need to

retain a claim to cash flows, e.g., due to regulatory requirements, or to address moral hazard

concerns (Ekmekci, Kos, and Vohra (2016)).

4If given report t, j is never assigned control, then the value of Qji(t) is irrelevant.
5The scenario

∑
j Rj(t) < 1 corresponds to the seller retaining the project with some probability, which

is suboptimal if the expected cash flows when all bidders receive the lowest signal t are sufficiently high.
One can also weaken (7):

∑
i Qji(t) < 1 would be outcome equivalent to

∑
i Qji(t) = 1 but reducing Rj(t).
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Let Ui(ti, t
′
i; t−i) be bidder i’s expected profit when he is type ti and reports t′i, and all

other bidders truthfully report t−i:

Ui(ti, t
′
i; t−i) ≡

∑
j

Rj(t
′
i; t−i)Qji(t

′
i; t−i)vj(t)−Mi(t

′
i; t−i). (9)

Here,
∑

j RjQjivj is the expected value of the cash flows awarded to bidder i, where the

summation over j reflects that bidders other than i may run the project when i receives cash

flows. The second term is the expected value of the payments that i makes to the seller.

Integrating (9) over t−i yields bidder i’s expected profit when he has type ti but reports

t′i and all other bidders report truthfully:

Ūi(ti, t
′
i) =

∫
Ωn−1

∑
j

Rj(t
′
i; t−i)Qji(t

′
i; t−i)vj(ti; t−i)f−i(t−i|ti)dt−i

−
∫
Ωn−1

Mi(t
′
i; t−i)f−i(t−i|ti)dt−i, (10)

where f−i (t−i|ti) is the conditional marginal density of t−i given ti. Bidder i’s expected

profit is the expected value of cash flows received when he reports t′i (the first line) net of

his expected cash payment when he reports t′i (the second line).

The equilibrium expected profit for bidder i of type ti is Ūi(ti, ti). Equilibrium requires

that both the (interim) incentive compatibility condition,

Ūi(ti, ti) = max
t′i

Ūi (ti, t
′
i) , (11)

and the (interim) individual rationality condition,

Ūi(ti, ti) ≥ 0, (12)

hold for all i and ti. We later characterize equilibria that satisfy the stronger requirements

of ex-post incentive compatibility and ex-post individual rationality.

The seller’s expected revenue is the sum of the expected payments of all bidders:

πs =
n∑

i=1

∫
Mi(t)f(t)dt. (13)

We show that separation mechanisms that satisfy the feasibility conditions (6) and (7), the

incentive compatibility and individual rationality conditions and the minimum control stake
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requirement can always be designed so as to generate higher expected seller revenue than

their no-separation counterparts. Our characterizations hold regardless of whether bidder

signals are correlated or independently distributed. With correlated signals, we know from

Cremer and McLean (1988) that a seller can design a mechanism that exploits the correlation

to achieve full extraction. However, such mechanisms require large side bets that may lead

to large regrets, rendering an assumption of risk-neutral bidders problematic. This leads us

to focus on separation mechanisms that either take an English-auction format or are direct-

revelation mechanisms that are ex-post incentive compatible. We show they can always be

designed to generate strictly higher expected revenues than English no-separation auctions.6

2.1 Discussion

The intuition for the advantages of separation can be understood by applying the envelope

theorem to (10) and (11), which yields

dŪi(ti, ti)

dti
=

∫
Ωn−1

∑
j

Rj(t)Qji(t)
∂vj(ti; t−i)

∂ti
f−i(t−i|ti)dt−i

+

∫
Ωn−1

[∑
j

Rj(t)Qji(t)vj(ti; t−i)−Mi(t)
]df−i(t−i|ti)

dti
dt−i, (14)

where Ωn−1 ≡ [t, t̄]n−1 is the space of integration over the signals of bidders other than i.

The first term is the contribution to a bidder’s rents from his private information regarding

the value of the cash flows, while the second term is the contribution to bidder rents from

correlation in bidder signals. The first term is the key for understanding the advantage of

separation: as in the standard no-separation setting, allocating cash flows to a bidder i with

signal ti enables him to earn differential rents relative to when i has a lower signal, as reflected

by the term Rj(t)Qji(t); but, unlike in the no-separation setting, the differential rents are

scaled by
∂vj(ti;t−i)

∂ti
. That is, bidder i’s differential rents are weighted by the sensitivity of the

value of his awarded cash flows to his signal when the project is run by bidder j. Because a

bidder’s signal has a greater influence on cash flows when he runs the project than if another

6Lopomo (2000) and Chung and Ely (2007) give general conditions under which the English no-separation
auction yields the highest seller revenue among all ex-post incentive compatible no-separation mechanisms.
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bidder does, awarding bidder i cash flows when the project is run by a different bidder reduces

i’s overall rents vis à vis awarding bidder i cash flows when i also runs the project himself.

Our model considers an impatient seller who does not value retention of cash flows. This

assumption is standard in the security design literature (see, e.g., Biais and Mariotti 2005)

where a seller owns an asset that generates future cash flows, but has a higher discount rate

than buyers, creating gains to trade. Our insights on the advantages of separation extend

if a seller is as patient as bidders, but has to raise cash to cover an upfront investment or

other liquidity need. Existing studies have examined such settings when cash-flow rights and

control are split between the seller and one bidder, with the seller giving both control and

a share of cash-flows to the highest bidder in exchange for the cash needed for investment.

Our insights apply here, too: a seller can do better by sometimes splitting a share of cash

flows among multiple bidders—while retaining the remaining cash flows for herself, or by

awarding control to a bidder who is not the highest bidder.

Our framework assumes that cash flows are contractible and are split in the form of eq-

uities. This assumption captures settings such as bankruptcy resolution, takeover auctions,

private equity or venture capital where equity is commonly used. Our mechanism can be

implemented by having bidders take equity shares or dual class shares where only one class of

shares has control rights, as occurs in practice. In the market for corporate control, the use of

equity is especially natural as regulations mandate a minimum equity share to gain control.

2.2 Two-stage separation mechanism when q = 0

In a standard no-separation English auction, the auctioneer continuously increases price

and the auction stops when second highest bidder exits, with the winner pays that exit price.

As is well known (see equation 6.5 in Krishna 2010), bidding strategies in the symmetric equi-

librium take the following form: if bidders k+1, k+2, ..., N have dropped out, with their exit

prices revealing their signals tk+1,tk+2, ..., tN (strategies are monotone) to the remaining k ac-

tive bidders, then the strategy of a remaining bidder i with signal ti is to drop out at the price

βk (ti, tk+1, ..., tN) = u (ti; ti, ..., ti, tk+1, ..., tN) , (15)
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which is the expected value of the cash flows generated by bidder i when all k active bidders

have signal ti, while those bidders who exited have signals as revealed by their exit prices.

Next we describe our two-stage separation auction:

Definition 1 (two-stage auction) The first stage is a standard English auction, i.e., the auc-

tioneer continuously increases price and the auction stops when the next-to-last bidder exits.

In the second stage, the seller offers the first-stage winner a choice of whether to receive

cash-flow rights but give control rights to the highest losing bidder or to pay an additional

fee to obtain both rights. If the winner only chooses cash flows then he pays the seller the

exit price of the highest losing bidder and control is assigned to the highest losing bidder. If,

instead, the winner chooses to obtain both rights then he pays the exit price of the highest

losing bidder plus an extra payment of pextra(·) ≥ 0, where pextra(·) can be any symmetric

function of the exit prices of the losing bidders, but does not depend on the winner’s bid.

The auction rules, including pextra(·), are public information before the first stage. The

first stage is an always-separating English mechanism in which the second-highest bidder

(who, in equilibrium, has the second-highest valuation) receives control and the highest bid-

der receives cash-flow rights. In the second stage, the seller offers the winner the option to

override the first stage outcome by paying the seller an additional pextra(·) to acquire control.

Define ∆(t1, t2; t3, ..., tn) to be the difference in expected cash flows from giving control

to bidder 1 rather than bidder 2, when the other signals are t3, ..., tn:

∆ (t1, t2; t3, ..., tn) ≡ u (t1; t2, t3, ..., tn)− u (t2; t1, t3, ..., tn) .

∆(t1, t2; t3, ..., tn) is the efficiency gain from allocating control to the higher bidder 1 rather

than bidder 2 when t1 > t2. This gain weakly increases in t1 and is nonnegative if t1 ≥ t2.

Proposition 1 Part A: In the symmetric equilibrium of the two-stage auction:

(i) In the first-stage, bidding strategies are given by (15), as in a no-separation English

auction, regardless of the functional form of pextra(·).

(ii) In the second stage, without loss of generality let t1 be the first-stage winner’s type

and let t2 be the highest losing bidder’s type as inferred from the exit prices. The first-stage
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winner acquires control if and only if ∆(t1, t2; t3, ..., tn) ≥ pextra.

Part B: Given any pextra(·), this equilibrium is ex-post incentive compatible.

Proof: Consider an arbitrary bidder i with signal ti when all other bidders follow their

posited equilibrium strategies. Denote the highest of the other n − 1 signals by th and let

t−i−h denote the vector of the other n− 2 bidder types. We show bidder i is weakly better

off following his equilibrium strategy for any realization of his rivals’ signals.

In stage 2 only the winner’s strategy is relevant, so assume without loss of generality that

bidder i won the first stage (but he need not have followed his equilibrium strategy in the

first stage). The difference in bidder i’s profit from receiving both rights versus just receiving

cash flow rights is ∆(ti, th; t−i−h)− pextra. This difference in profits is positive if and only if

∆(ti, th; t−i−h) ≥ pextra. This establishes the optimality of the bidding strategy in stage 2.

In stage 1, we decompose analysis according to whether or not bidder i is the highest type.

Case 1: ti ≥ th. Then bidder i will win the first stage if he follows his equilibrium strategy. If

i deviates and still wins the first stage, the deviation does not affect his profits because neither

the winning price nor pextra depend on his bid. If he deviates and loses the first stage, then his

profit is zero, so deviation again is not profitable (since his equilibrium profit is nonnegative).

Case 2: ti < th. Bidder i will lose the first stage if he follows his equilibrium strategy. If he

deviates and still loses the first stage, then his profit is unaffected. If he deviates and wins

the first stage, then his profit is negative if he does not pay pextra in stage 2 (so bidder h

retains control and the value of the cash flows under bidder h’s control is less than bidder

i’s payment), and his profit is even more negative if he pays pextra to obtain control (since

bidder i generates even lower cash flows than bidder h and pextra ≥ 0).

Since a bidder’s profit is zero if he exits at the lowest price of u (t; t, ..., t),7 the ex-post

incentive compatibility of our mechanism also implies it is ex-post individually rational.

Proposition 1 implies that seller revenue is always weakly higher than in the standard En-

glish no-separation auction. In the first stage, the bidding strategy, and hence seller revenues,

is the same as in the English auction where the outcome is efficient with the best bidder type

7In the measure zero event that all bidders exit at the lowest price and a bidder is (randomly) selected
as the winner, his profit is nonnegative if he follows his equilibrium strategy in the second stage.
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receiving both control and cash flow rights. The efficiency loss in our mechanism from as-

signing control to the second-most productive bidder is borne entirely by the winning bidder.

In the second stage, the seller offers the winner an opportunity to Pareto-improve on the

first-stage outcomes, which benefits both the seller and the winner. The seller extracts ad-

ditional rents from a winner whose type exceeds the second-highest type by enough that the

winner would make an extra payment to obtain an efficient assignment of control. Thus, seller

revenue is the same as in the no-separation auction if the winning bidder chooses not to pay

pextra to obtain control; and revenue is higher by pextra if the winner pays to obtain control.

Via a simple choice of pextra, our mechanism can always generate strictly greater expected

seller revenues than the standard English auction in a robust, detail-free, way:

Result 1: Let pextra be a constant. There exists a p∗ > 0 such that for all pextra ∈ (0, p∗),

the two-stage separation auction design generates strictly higher expected revenues than the

no-separation English auction.

Proof: See the appendix. □

The intuition for Result 1 is simple: when the price offer is sufficiently small, it will

be accepted with a strictly positive probability, leading to strictly higher expected revenue.

We now derive the pextra(·) that maximizes expected revenue in the two-stage mechanism.

We solve for the optimal pextra(t2, ..., tn), where the types t2, ..., tn of the losing bidders are

inferred from their exit prices by inverting (15) and t2 is the type of the highest loser.

Result 2: The seller’s optimal choice of pextra(t2, ..., tn) is the monopoly price conditional

on the highest signal t1 being at least t2:

poptimal
extra (t2, ..., tn) = ∆

(
topt, t2; t3, ..., tn

)
,

where

topt ≡ argmax
t

∆(t, t2; t3, ..., tn)

∫ t̄

t

f1 (x|t−1) dx

and f1 (·|t−1) is the conditional marginal density of t1 given the losing signals t−1,

f1(x|t−1) ≡
f(x; t−1)∫ t̄

t2
f(s; t−1)ds

. (16)
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For example, consider two bidders with i.i.d. uniform signals on [1, 2]. Let the project

value if run by bidder i with signal ti when the rival has signal t−i be vi (ti, t−i) =
2
3
ti+

1
3
t−i.

In the first stage, bidder i truthfully exits at a price of ti. Denote the loser’s exit price (and

type) by ts. Conditional on ts, the winner’s type is uniformly distributed over [ts, 2]. The

monopoly price, and hence the optimal price for control rights, leaves the winner with type

E[t|t ≥ ts] =
ts+2
2

indifferent between accepting and declining. Hence,

poptimal
extra = ∆

(
ts + 2

2
, ts

)
=

2− ts
6

.

The winner accepts this price offer with probability 0.5. Taking the unconditional expected

value of this price offer yields that expected revenue in our two-stage auction exceeds that in

no-separation English auction by 1
18
.8 This expected revenue gain is realized despite a social

welfare loss of 1
36

due to the inefficient control assignment. Thus, bidder rents are reduced

by 1
18

+ 1
36

= 1
12
, or 38% of the no-separation mechanism rents of 2

3
E [th − ts] =

2
9
.9

3 Separation mechanisms with minimum stake q > 0

We next analyze mechanisms in settings where the agent controlling the project must at

least receive share q ∈ (0, 1) of cash flows.10 This requirement captures the realistic features

of Ekmekci, Kos, and Vohra (2016) that a bidder may need to retain a claim to cash flows

in order to gain control, for example, due to regulatory requirements or to address moral

hazard concerns. We assume that as long as the minimum stake is met, giving the controller

a higher stake does not lead to higher cash flows. This is consistent with the empirical find-

ings of Edmans, Gosling, and Jenter (2023) from their surveys on CEO compensation that

the primary drivers of CEO effort are “intrinsic motivation” and “personal reputation.”

8One can show that our two-stage auction with the optimal price offer maximizes expected revenue
among all (interim) incentive compatible separation mechanisms in this example.

9To see the expected revenue increase, note that the offer is accepted with probability 0.5. As
ts = min (t1, t2), the expected revenue difference between our two-stage auction and the no-separation

English auction is 0.5 (2−E[min(t1,t2)])
6 = 1

18 . Given ts, control is assigned inefficiently if th ∈ [ts,
2+ts
2 ],

with an expected social welfare loss of
(
2
3 − 1

3

)
2−ts
4 = 2−ts

12 ; since th ∈ [ts,
2+ts
2 ] with probability 0.5, the

unconditional expected social welfare loss is E
[
2−ts
24

]
= 1

36 .
10While this section focuses on q > 0, our characterizations of separation mechanisms also apply to q = 0.
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Technically, q > 0 reduces tractability of analyses of the extended two-stage auctions

that generalize Definition 1 by bundling control with share q of cash flows. There are two

complications. First, because the losing bidder receives allocations and his payment depends

on his bid, truthful bidding is no longer an equilibrium. Second, whether the losing bidder

keeps his allocation depends on whether the winning bidder accepts the price offer, which,

in turn, depends on the winner’s belief about the loser’s type, and those beliefs will depend

on the loser’s bid. This introduces signaling considerations to the bidding.

These complications lead us to consider direct-revelation separation mechanisms in which

the payments are adjusted so that truthful bidding is an equilibrium. We extend the direct-

revelation mechanism of the standard no-separation English auction to accommodate the

separation of control and cash allocations, while preserving ex-post incentive compatibility.

This leads to two classes of mechanisms, A and B, which reflect two ways to divide control and

cash flow rights. In Mechanism A, when the two highest reported types are sufficiently close,

the second-highest bidder receives control and share q of cash flows, and the highest bidder

receives share 1− q of cash flows. Thus, assignment of control is inefficient. Mechanism A

generalizes the two-stage mechanism detailed in Proposition 1, reducing to it in the limit as q

goes to zero. Mechanism B has the opposite design: when the reported types are sufficiently

close, the highest bidder receives control and a share q of cash flows, and the second-highest

bidder receiving share 1− q of cash flows. Thus, assignment of control is efficient.

3.1 Separation functions and their inverses

In both Mechanisms A and B, a “separation function” S determines how close the two high-

est types must be for separation to occur. A bidder i receives control and all cash flows if and

only if his reported type satisfies t′i ≥ S(t′−i), where S(t
′
−i) weakly exceeds the highest com-

ponent in t′−i; that is, S(t
′
−i) weakly exceeds the highest reported type of bidders other than

i. It is useful to work with the inverse of the separation function, S−1: a bidder i receives

neither control nor cash flows if and only if his reported type satisfies t′i ≤ S−1(t′−i). If, in-

stead, t′i is in an intermediate range so that t′i ∈
[
S−1

(
t′−i

)
, S

(
t′−i

)]
, bidder i receives partial

allocations: either control plus a share of cash flows, or a share of cash flows but no control.
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Formally we define separation functions and their inverses below, where we use si rather

than ti to denote a generic signal that is in [t, t̄] but is not necessarily the signal of bidder i:

Definition 2 (Separation function) For any n−1 signals s1, ..., sn−1, denote the highest sig-

nal by sh and the second-highest by ss. A “separation function” S (s1, ..., sn−1) is a symmetric

function of s1, ..., sn−1 with S(s1, ..., sn−1) ∈ [sh, t̄] that weakly increases in sh.

(Inverse of separation function) For n = 2, the “inverse” function S−1(s1) is given by the

smallest s ∈ [t, s1] such that S(s) ≥ s1. For n > 2, S−1(s1, ..., sn−1) is given by the smallest

s ∈ [ss, th] such that S (s1, .., sh−1, s, sh+1, .., sn−1) ≥ sh, where (s1, .., sh−1, s, sh+1, .., sn−1) is

the vector of n− 1 signals formed by replacing sh with s in (s1, ..., sn−1).

For example, for n > 2, a linear separation function is S(s1, ..., sn−1) = sh+w (t̄− sh) for

w ∈ [0, 1). Its inverse is S−1(s1, ..., sn−1) = max
{
sh − w

1−w
(t̄− sh) , ss

}
. The max operator

in S−1 reflects that if bidder i’s signal is not the highest then to receive an allocation i’s signal

must (i) not be too far below the highest, and (ii) exceed those of the other n− 2 bidders.

In the analysis that follows we first use the separation functions to construct mecha-

nisms A and B. We then derive the conditions under which each class of mechanism is ex

post incentive compatible. Finally, we show that given the conditions for ex-post incentive

compatibility, Mechanisms A and B can be designed to generate strictly higher expected

revenues than no-separation English auctions.

3.2 Separation Mechanism with Inefficient Splitting

To begin, we define Mechanism A and determine when it is ex-post incentive compatible.

Definition 3 (Mechanism A: inefficient splitting of rights) Let the reported types be t′1 ≥

t′2 ≥ t′3 ≥ ... ≥ t′n.

If t′1 > S(t′−1), bidder 1 receives control and all cash flows and pays

M1 = u(S(t′−1); t
′
2, ..., t

′
n)− (1− q)u(t′2;S(t

′
−1), ..., t

′
n) + (1− 2q)u(t′2; t

′
2, ..., t

′
n)

+ qu(S−1(t′−1); t
′
2, ..., t

′
n). (17)

If t′1 ≤ S(t′−1), bidder 2 receives control and a fraction q of cash flows, and bidder 1
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receives fraction 1− q of cash flows.

Bidder 1 pays: M1 = (1− 2q)u (t′2; t
′
2, ..., t

′
n) + qu

(
S−1(t′−1); t

′
2, ..., t

′
n

)
(18)

Bidder 2 pays: M2 = qu
(
S−1(t′−2); t

′
1, t

′
3, ..., t

′
n

)
. (19)

All other bidders receive nothing and pay nothing.

When q = 0, Mechanism A reduces to the direct-revelation mechanism of our two-stage

auction in Definition (1), which is ex-post incentive compatible as established earlier. To

determine the conditions for ex-post incentive compatibility for general q, define

ρmin ≡ min
t

∂v2(t)

∂t1
/
∂v1(t)

∂t1
.

∂v2(t)
∂t1

/∂v1(t)
∂t1

is the ratio of the influence of a bidder’s signal on cash flows if another bid-

der runs the project relative to when he runs the project. With linear valuations, i.e., with

vi (t1, ..., tn) = An

(
ti+ρ

∑
j ̸=i tj

)
, we have ρmin = ρ. For general valuations, ρmin is a measure

of the minimum sensitivity of cash flows to the signals of bidders who do not run the project.

Proposition 2 Suppose ρmin is large enough and q is small enough that ρmin ≥ q
1−q

. Then

for Mechanism A truthful reporting is an ex post equilibrium given any separation function S.

Proof: See the appendix. □

The logic for ex-post incentive compatibility extends that for English no-separation auc-

tions to settings where control and cash flow rights can be assigned to different bidders and

multiple bidders may receive allocations. In the direct-revelation mechanism of the English

no-separation auction, given other bidders’ reports, a bidder’s allocation and payment vary

discretely (not continuously): they only depend on which of two “report-regions” a bidder’s

reported type is in, and a bidder receives allocations only when his report is the highest.

Mechanism A retains the feature that given other bidders’ reports, bidder i’s allocations

and payments vary discretely—they do not change within a report-region—but it has four

report-regions, reflecting the additional ways to separate control and cash flow allocations.

In region 4, bidder i’s report exceeds the second-highest report by enough that t′i > S(t′−i),

so bidder i receives control and all cash flows; in region 3, i’s report is highest, but now
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t 3
t

t 3

t

t 1

t 2

Region 4 (full cash flow
+ control)

Region 2 (q cash flow
+ control)

Region 3 (1-q cash flow)

Region 1 (nothing)

S(t 2, t 3)

S 1(t 2, t 3)

Figure 1: Illustration of the four payoff regions for Mechanism A, showing bidder 1’s allocation given its

report t′1 and those of the other bidders 2 and 3 when t′2 ≥ t′3. The blue solid line plots S (t′2, t
′
3) as a function

of t′2 (given t′3), and the red dotted line plots S−1 (t′2, t
′
3) as a function of t′2. Bidder 1 receives allocations in

regions 2, 3 and 4. The no-separation English mechanism corresponds to the special case where S = sh, so

that S and S−1 coincide on the 45 degree line, and regions 2 and 3 collapse to have zero-measure.

t′i ∈
(
t′h, S(t

′
−i)

)
, where t′h is the highest of the other reports, so bidder i receives share 1− q

of cash flows but not control; in region 2, i’s report is the second-highest but close enough

to the highest, t′i ∈
(
S−1(t′−i), t

′
h

)
, so bidder i receives control and share q of cash flows;

in region 1, t′i is lower yet with t′i < S−1(t′−i), i.e., t
′
i is either below the second-highest or

sufficiently lower than the highest, so bidder i receives nothing. Figure 1 illustrates the four

report-regions and allocations for three bidders and a linear separation function.

When a bidder’s type is at the boundary of any two adjacent regions, the payments leave

him indifferent to reporting any type in those regions. Thus, there is no incentive for local

deviations, and when bidders bid truthfully, the differential rents earned at lower types add

up and carry over to higher types. If a bidder’s cash flow allocation changes across a bound-

ary, his payment adjusts—if he would receive a share x of cash flows at a lower unit price by
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deviating to report a lower type, then when he bids his true type, he pays for the share x at

that lower unit price; he only pays the higher unit price for the remaining cash flows that he

would not receive if he deviated. Similarly, if control changes when a bidder’s reported type

switches from one region to a neighboring region thereby changing the value of cash flows,

then the change in the value of the awarded cash flows is incorporated into the payments.

These payment features make deviations unprofitable if they are within a given report-

region, or if a bidder’s type is at the boundary of two regions and he deviates locally.

However, global IC also requires deviations be unprofitable when a bidder’s type falls in the

interior of one region and he deviates to the interior of another region. Lemma 1 lets us

circumvent having to exhaustively rule out the many possible such deviations:

Lemma 1 Suppose U(t, t′) is a function of t, t′ ∈ [t, t̄] with the following properties:

(a) U is differentiable with respect to t for all t′;

(b) U is differentiable at (t = t′, t′) except possibly for a countable set S∗ of t′.

( c) U (t, t) is continuous in t and ∂
∂t′
U(t, t′)|t=t′ = 0 for all t′ /∈ S∗.

Sufficient condition for local IC to imply global IC: If, for all t, ∂
∂t
U(t, t′) weakly

increases in t′, then t′ = t maximizes U(t, t′) over t′ ∈ [t, t̄] for all t.

Necessary condition for global IC. If t′ = t maximizes U(t, t′) for all t, then ∂
∂t′

∂
∂t
U (t, t′) |t′=t ≥

0 at any t where U is twice differentiable at (t, t′ = t).

Proof: See the appendix. □

Here we interpret U(t, t′) as the payoff of a type t bidder who reports t′, conditional on

the other bidders’ (truthfully-reported) types.11 The standard way to think about incentive

compatibility is to examine what happens if we fix t and vary t′. This yields a necessary con-

dition for incentive compatibility that the second-order condition be negative, ∂2

∂2t′
U(t, t′) =

∂
∂t′

(
∂
∂t′
U(t, t′)

)
≤ 0. We instead fix t′ and vary t. This yields a necessary condition that the

cross-partial be positive, ∂
∂t′

(
∂
∂t
U(t, t′)

)
≥ 0 when this derivative exists. Similarly, a standard

11One can also interpret U(t, t′) as a bidder’s interim expected payoff and use Lemma 1 to derive
conditions for interim IC. This approach is useful in settings where payoff functions are not affine so that
one cannot appeal to the standard argument that the supremum of a family of affine functions is convex.
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sufficient condition for local IC to imply global IC is that ∂
∂t′
U(t, t′) weakly decrease in t′

over t′ ∈ [t, t̄]; Lemma 1 instead requires that ∂
∂t
U(t, t′) weakly increase in t′ over t′ ∈ [t, t̄].

The approach in Lemma 1 of fixing t′ and varying t is useful for two reasons. First, fixing t′

and varying t often eases analysis as ∂
∂t
U (t, t′) typically takes a simpler form than ∂

∂t′
U(t, t′).

This reflects that reported types (t′) affect auction outcomes (winning and allocations) and

hence bidder payoffs, but true types (t) typically do not. Second, payoff functions often

involve discontinuities with respect to t′ (given the types of other bidders) when t′ ̸= t. Such

discontinuities arise even in no-separation mechanisms; and in separation mechanisms there

are four report-regions, leading to three boundary points where discontinuities may arise.

t

U

t12

t23

t34
U(t, region2)

U(t, region1)

U(t, region3)
U(t, region4)

Figure 2: Illustration of how the single-crossing condition ensures global IC. The red stars indicate the

upper contour of report payoffs (the payoff from truthful reporting) as a function of the bidder’s type t.

The sufficient condition that ∂
∂t
U(t, t′) weakly increases in t′ is a single-crossing condition.

Figure 2 illustrates how the condition ensures global ex-post IC for Mechanism A. The figure

plots four curves (in solid black), labeled U(t, region 1) through U(t, region 4), of a bidder’s

payoff as a function of the bidder’s actual signal t when his reported type t′ is in one of the four

report-regions (given the other n − 1 reports). Reflecting the single-crossing condition, the

four curves exhibit increasing steepness. The upper envelope of these curves (in red stars) is:

U(t, region 1) for t < t12, U(t, region 2) for t ∈ (t12, t23), U(t, region 3) for t ∈ (t23, t34), and

U(t, region 4) for t > t34. At t34, the bidder with type t = t34 is indifferent between reporting

region 3 or 4. Bidders are similarly indifferent at t23 and t12. Clearly, when t is in region 4 so
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t > t34, the payoff of U(t, region 4) from truthful reporting exceeds those of the other curves.

Similarly, when t is in any other region, truthful reporting also leads to the highest payoff.

We now verify that Mechanism A satisfies the sufficient single-crossing condition of

Lemma 1 when ρmin ≥ q
1−q

. Because a bidder’s payoff does not vary with his report within a

report-region, the single-crossing condition holds for reported types in the interior of a region,

so we only need to check the three boundaries. Without loss of generality, consider bidder 1

and let bidder 2 have the largest signal of the other n−1 bidders. From (9), given t−1, we have

∂

∂t1
U1(t1, t

′
1; t−1) =

∑
j

Rj(t
′
1; t−1)Qj1(t

′
1; t−1)

∂vj(t)

∂t1
. (20)

Equation (20) shows that the single-crossing condition amounts to requiring a bidder’s ex-

pected allocations weighted by the sensitivity of cash flows (possibly generated under another

bidder’s control) to the bidder’s signal be non-decreasing in his reported type. When crossing

the boundary from report-region 1 to 2, bidder 1’s awarded cash flow share rises from zero to

q, trivially satisfying single crossing. Next, when crossing from report-region 2 to 3, bidder

1’s awarded cash flow share changes from q to 1− q, but bidder 1 loses control to bidder 2,

reducing the cash flow sensitivity to bidder 1’s signal. Thus, single crossing requires

(1− q)
∂v2(t)

∂t1
≥ q

∂v1(t)

∂t1

at all t1, which is satisfied when ρmin ≥ q
1−q

. Third, when crossing from report-region 3 to

4, bidder 1’s cash flow share increases from 1− q to 1, and bidder 1 also gains control from

bidder 2, increasing cash flow sensitivity, trivially satisfying single crossing. Lastly, note that

a bidder can ensure a nonnegative profit by reporting the lowest possible type t. Thus, the

ex-post incentive compatibility of Mechanism A also implies ex-post individual rationality

(the same holds for Mechanism B).

For perspective, in standard no-separation mechanisms, a sufficient condition for local

incentive compatibility to imply global incentive compatibility is that allocations be non-

decreasing. The analogous condition in equation (20) for a separation mechanism is that

allocations weighted by the sensitivity of cash flows to a bidder’s signal be non-decreasing.

As a result, in separation mechanisms, a bidder’s allocation can decrease in his type if it
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is compensated by a gain in control (as in Mechanism B); conversely, increasing cash flow

allocations may fail to ensure global IC if accompanied by a loss of control.

Separation mechanisms provide two ways to incentivize a high type bidder not to deviate

to reporting a lower type: (i) as in a no-separation mechanism, rewarding a high report by

assigning more allocations; (ii) rewarding a high report by assigning a higher probability of

control (conditional on given allocations). The increased control rewards a high type because

high types benefit more from running the project rather than having it run by a bidder with a

lower signal. This latter channel is closed in no-separation mechanisms where the probability

of control conditional on receiving cash flows is always one. With separation mechanisms,

the conditional probability of control can be less than one and vary with a bidder’s reported

type. This gives a seller more leeway in the mechanism design, facilitating rent extraction.

3.3 Separation Mechanism with Efficient Splitting

We now define Mechanism B and characterize when it is ex-post incentive compatible:

Definition 4 (Mechanism B: efficient splitting of rights) Let the reported types be t′1 ≥ t′2 ≥

t′3... ≥ t′n. Then

If t′1 > S(t′−1), bidder 1 receives control and all cash flows, and pays

M1 = (1− q)u(S(t′−1); t
′
2, ..., t

′
n)+ (2q− 1)u(t′2; t

′
2, ..., t

′
n)+ (1− q)u(t′2;S

−1(t′−1), ..., t
′
n). (21)

If t′1 ≤ S(t′−1), bidder 1 receives control and a share q of cash flows, and pays

M1 = (2q − 1)u (t′2; t
′
2, ..., t

′
n) + (1− q)

[
u
(
t′2;S

−1
(
t′−1

)
, ..., t′n

)]
, (22)

while bidder 2 receives fraction 1− q of cash flows and pays

M2 = (1− q)u
(
t′1;S

−1
(
t′−2

)
, t′3, ..., t

′
n

)
. (23)

All other bidders receive nothing and pay nothing.

With Mechanism B, when the highest reported type t′1 does not exceed the second highest

reported type t′2 by enough, i.e., when t′1 < S(t′−1), the bidder 1 who reports t′1 receives con-

trol and share q of cash flows, and the second highest bidder 2 gets share 1−q. When, instead,

the t′1 is sufficiently higher so that t′1 ≥ S(t′−1), bidder 1 receives control and all cash flows.
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The assignment of control is the opposite of Mechanism A, but it shares key features.

In particular, there are four report-regions; and a bidder’s payment and allocations do not

depend on where his reported type is in a given report-region. When a bidder’s type is at the

boundary of adjacent regions, the payments leave him indifferent to reporting any type in

those regions. Thus, there is no incentive for local deviations. Once more, if a bidder would

receive a share x of cash flows at a lower unit price by deviating to report a lower type, then

when he bids his true type, he pays for the share x at that lower unit price; he only pays the

higher unit price for the remaining cash flows that he would not have received if he deviated.12

These features deliver the local ex-post IC of Mechanism B. The extra requirements that

ensure global ex-post IC are the opposite of those for Mechanism A, reflecting the opposite

control assignment and cash flow division upon splitting. We now need a measure of the

maximum sensitivity to the signals of bidders who do not run the project:

ρmax ≡ max
t

∂v2(t)

∂t1
/
∂v1(t)

∂t1
.

Proposition 3 Suppose that ρmax ≤ q
1−q

. Then for Mechanism B, truthful reporting is an

ex-post equilibrium given any separation function S.

We use (20) to show that Mechanism B under ρmax ≤ q
1−q

satisfies single-crossing. As

with Mechanism A, we only need to check the three boundaries. Single crossing trivially

holds when crossing from report-region 1 to 2, or from 3 to 4, as both cash flow and control

weakly increase in these two cases. Thus, the key case left to verify is when crossing from

report-region 2 to 3, where bidder 1’s awarded cash flow share changes from 1− q to q, and

bidder 1 gains control from bidder 2, increasing the cash flow sensitivity to bidder 1’s signal.

For q ≥ 0.5, the cash flow allocation weakly increases across the boundary so single crossing

is trivially satisfied; even if q<0.5 so that cash flow allocation decreases, obtaining control

can compensate for this decrease to satisfy single crossing, as long as

q
∂v1(t)

∂t1
≥ (1− q)

∂v2(t)

∂t1

12If a bidder would receive more cash flows by deviating to reporting a lower type (which could be
incentive compatible in the separation mechanism), the “remaining” cash flows would be negative. In this
case, the bidder effectively “sells” the difference in the two cash flows back to the seller.
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at all t1, which holds when ρmax ≤ q
1−q

. The proof otherwise mirrors that for Mechanism A.

Increasing q makes incentive compatibility easier to satisfy for Mechanism B, but harder

for Mechanism A. Intuitively, a higher q in Mechanism B and a lower q in A ensure that

the highest bidder receives “enough” cash flows (1− q for Mechanism A and q for B), which

incentivizes truth telling. Similarly, in Mechanism B, a smaller ρ expands the range of q

that satisfies ρmax ≤ q
1−q

, whereas in Mechanism A, a larger ρ expands the range of q that

satisfies ρmin ≥ q
1−q

. The contrast reflects that ρ is inversely related to the significance of the

allocation of control. As a result, reducing ρ in Mechanism B increases the cost of deviation

by the bidder with the highest signal of submitting the second-highest bid and hence losing

control, whereas a larger ρ in Mechanism A reduces the deviation gain of a bidder with the

highest signal from reducing his bid to become the second-highest and hence gain control.

3.4 Revenue dominance of separation mechanisms

We now show that under the sufficient conditions for Mechanisms A and B to be ex-post

incentive compatible, they can be designed to generate strictly higher expected revenues

than no-separation English auctions.

Proposition 4 Suppose ρmin ≥ q
1−q

. Then separation functions S exist for which Mecha-

nism A generates strictly higher expected seller revenues than no-separation English auctions.

Conversely, suppose ρmax ≤ q
1−q

. Then separation functions S exist for which Mechanism

B generates strictly higher expected seller revenues than no-separation English auctions.

Proof: See the appendix. □

The broad intuition mirrors that for Result 1: when the two highest types are close

enough, the seller strictly gains from separating cash-flow rights and control. More specifi-

cally, when the two highest signals are close, the cost of separation (of inefficient assignment

in Mechanism A, and of increased bidder rents due to assigning cash flows to a lower signal

bidder in Mechanism B) approaches zero, but the advantage of separation (from reducing

a bidder’s information advantage by reducing the sensitivity of cash flows to his signal) re-

mains strictly positive. This does not change if q > 0: now when the two highest signals are
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close, the cost of separation still approaches zero, while the advantage of separation is scaled

by a factor of 1− q, hence remaining strictly positive.

On a technical level, q > 0 introduces subtleties to establishing revenue dominance be-

cause, unlike with q = 0, revenue from the separation mechanism does not dominate the

no-separation mechanism profile-by-profile. Nonetheless, expected revenue dominance still

obtains. To illustrate how we establish expected revenue dominance, we prove it here for

Mechanism A in the two-bidder setting where bidders receive uniformly distributed i.i.d. sig-

nals t1 and t2, and have linear valuation functions u (t1; t2) =
1

1+ρ
(t1 + ρt2) with ρ ∈ (0, 1).

Proof: Pick any s∗ ∈ (t̄, t). For any δ ∈ (0, t̄− s∗], define the δ-separation function

Sδ (s) = s∗ + δ if s ∈ [s∗, s∗ + δ] ;

Sδ (s) = s if s /∈ [s∗, s∗ + δ] .

The inverse separation function is

S−1
δ (s) = s∗ if s ∈ [s∗, s∗ + δ];

S−1
δ (s) = s if s /∈ [s∗, s∗ + δ] .

Separation occurs if and only if both t1 and t2 are in [s∗, s∗ + δ]. We show that for δ suffi-

ciently small, the Mechanism A that uses the δ-separation function generates strictly higher

expected seller revenues. Let D(t1, t2) be the difference in seller revenue between the δ-

separation mechanism and the no-separation English auction. Let th ≡ max{t1, t2} and

ts ≡ min{t1, t2} denote the larger and smaller signals.

Since D(t1, t2) = 0 if ts /∈ [s∗, s∗ + δ], we only need to consider signal realizations with

ts ∈ [s∗, s∗ + δ]. There are two cases according to whether or not th ≥ s∗ + δ.

Case 1: th ≥ s∗ + δ. Then in the δ-separation mechanism, the bidder with the high signal

retains both cash flows and control. Hence, seller revenue is his payment in (17):

u (s∗ + δ; ts)− (1− q)u (ts; s
∗ + δ) + (1− 2q)u (ts; ts) + qu (s∗, ts) .

Subtracting no-separation English auction revenues, u (ts; ts), from this yields the difference:

D(t1, t2) = u (s∗ + δ; ts)− (1− q)u (ts; s
∗ + δ)− 2qu (ts; ts) + qu (s∗, ts) . (24)
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On the right-hand side of (24), rewriting u (s∗ + δ; ts) as (1− q)u (s∗ + δ; ts)+ qu (s∗ + δ; ts)

and combining terms with coefficients (1− q) and q separately, (24) decomposes to

D(t1, t2) = D1a(t1, t2) +D1b(t1, t2),

where

D1a ≡ (1− q) [u (s∗ + δ; ts)− u (ts; s
∗ + δ)] = (1− q) (u1 − u2) (s

∗ + δ − ts) (25)

D1b ≡ q [u (s∗ + δ; ts)− 2u (ts; ts) + u (s∗, ts)] = qu1 (2s
∗ + δ − 2ts) , (26)

and u1 = 1
1+ρ

and u2 = ρ
1+ρ

are the derivatives of u with respect to its first and second

arguments.

Case 2: th ∈ [ts, s
∗ + δ). Seller revenue in the δ-separation mechanism is the sum of the

higher bidder’s payment in (18) plus the lower bidder’s payment in (19):

(1− 2q)u(ts; ts) + qu(s∗; ts) + qu(s∗; th).

Subtracting no-separation English auction revenues, u(ts; ts), from this yields the difference:

D = −2qu (ts, ts) + qu (s∗, ts) + qu (s∗, th) ≡ D2.

Since th ≥ ts, u1 > 0 and ts − s∗ ≤ δ, we have

D2 ≥ −2qu (ts, ts) + qu (s∗, ts) + qu (s∗, ts) = −2qu1 (ts − s∗)

≥ −2qu1δ. (27)

Integrate D(t1, t2) over t1 and t2 to obtain the expected revenue difference:

E [D] = 2f ∗
∫ t̄

t

∫ t̄

t2

D(t1, t2)dt1dt2 (28)

= 2f ∗
∫ s∗+δ

s∗

∫ t̄

t2

D(t1, t2)dt1dt2, (29)

where f ∗ ≡ 1/(t̄− t)2 is the uniform density, the factor 2 reflects that t1 and t2 are equally

likely to be the lower signal, and the bounds of integration for t2 in (29) reflect that when
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t2 is the lower signal, D(t1, t2) = 0 if t2 /∈ [s∗, s∗ + δ].13

Decompose the integration over t1 ∈ (t2, t̄) into the sum of integrations over t1 ∈ (s∗+δ, t̄)

(i.e., case 1) and t1 ∈ (t2, s
∗ + δ) (i.e., case 2) to obtain

E [D] = 2 (ED1a + ED1b + ED2) , where

ED1i ≡ f ∗
∫ s∗+δ

s∗

∫ t̄

s∗+δ

D1i (t1, t2) dt1dt2, for i = a, b (30)

ED2 ≡ f ∗
∫ s∗+δ

s∗

∫ s∗+δ

t2

D2 (t1, t2) dt1dt2. (31)

To complete the proof, we show that for δ sufficiently small, (i) ED1a exceeds a term

that is positive and quadratic in δ, (ii) ED1b = 0, and (iii) ED2 exceeds a negative term that

goes to zero faster than δ2. We first bound ED1a from below. Substituting the definition of

D1a in (25) into (30) yields

ED1a = f ∗ (1− q) (u1 − u2)

∫ s∗+δ

s∗

∫ t̄

s∗+δ

(s∗ + δ − t2) dt1dt2

=
1

2
f ∗ (1− q) (u1 − u2) (t̄− s∗ − δ) δ2, (32)

where the last line uses
∫ t̄

s∗+δ
(s∗ + δ − t2) dt1 = (s∗ + δ − t2) (t̄− s∗ − δ) and

∫ s∗+δ

s∗
(s∗ + δ − t2) dt2 =

1
2
δ2. Further, when δ < t̄−s∗

2
, we have (t̄− s∗ − δ) > 1

2
(t̄− s∗), and thus (32) yields

ED1a >
1

4
f ∗ (1− q) (u1 − u2) (t̄− s∗) δ2. (33)

Next we show ED1b = 0. Substituting the definition of D1b in (26) into (30) yields

ED1b = f ∗qu1

∫ s∗+δ

s∗

∫ t̄

s∗+δ

(2s∗ + δ − 2t2) dt1dt2

= f ∗qu1

∫ t̄

s∗+δ

[∫ s∗+δ

s∗
(2s∗ + δ − 2t2) dt2

]
dt1 = 0,

13An alternative way to derive (28) is as follows:

E [D] =

∫ t̄

t

∫ t̄

t

D(t1, t2)f (t1, t2) dt1dt2 = f∗
∫ t̄

t

∫ t̄

t

D(t1, t2) (1t1≥t2 + 1t1<t2) dt1dt2

= 2f∗
∫ t̄

t

∫ t̄

t

D(t1, t2)1t1≥t2dt1dt2 = 2f∗
∫ t̄

t

∫ t̄

t2

D(t1, t2)dt1dt2,

where the indicator function 1t1≥t2 (1t1<t2) is 1 when t2 is the lower (higher) signal, and the factor 2 reflects
that each bidder is equally likely to have the higher (or lower) signal.
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where the second line switches the order of integration, and last line uses
∫ s∗+δ

s∗
(2s∗ + δ − 2t2) dt2 =

0. Lastly, we bound ED2 from below. Substitute the lower bound on D2 in (27) into (31):

ED2 ≥ −2qu1δf
∗
∫ s∗+δ

s∗

∫ s∗+δ

t2

dt1dt2

= −2qu1δf
∗
∫ s∗+δ

s∗
(s∗ + δ − t2) dt2 = −qu1f

∗δ3,

where the last line uses
∫ s∗+δ

s∗
(s∗ + δ − t2)dt2 =

1
2
δ2.

Thus, when δ is small, ED1a exceeds a positive term that approaches zero at a rate of δ2

(see (33) and note that u1 > u2 for all ρ < 1), ED1b = 0 and ED2 exceeds a negative term

that approaches zero at a rate of δ3. Hence, for δ sufficiently small, ED1a+ED1b+ED2 > 0,

i.e., the δ-separation mechanism generates strictly higher expected revenues. □

In the Appendix, we prove Proposition 4 for general settings with an arbitrary number

n ≥ 2 of bidders, general valuation functions and general signal distributions that allow for

signal correlation. We only impose the mild single-crossing condition in (4) that there exists

a signal vector, say t∗2, ..., t
∗
n, with t̄ > t∗2 ≥ t∗3 ≥ ... ≥ t∗n > t for which strict single-crossing

holds, so we consider a δ-separation mechanism that separates locally when signals are in

a small neighborhood of this vector, i.e., separation occurs if and only if the two highest

signals are in [t∗2, t
∗
2 + δ], and the other signals are in the neighborhood of t∗3 through t∗n.

The general proof follows a logic similar to that for the example. When ts ∈ [t∗2, t
∗
2 + δ]

and th sufficiently exceeds ts so that th ∈ [t∗2 + δ, t̄], separation does not occur. In this in-

stance, expected revenue conditional on ts being in [t∗2, t
∗
2 + δ] and a given th, exceeds that

from no separation by an amount that goes to zero linearly with δ.14 As we reduce δ to

zero, the probability that ts ∈ [t∗2, t
∗
2 + δ] goes to zero linearly in δ, and the probability that

th ∈ [t∗2 + δ, t̄] approaches a constant. Thus, the contribution of this expected revenue surplus

to the total expected revenue (2ED1a + 2ED1b in the example) goes to zero at rate δ2.

When, instead, ts ∈ [t∗2, t
∗
2 + δ] and th is close to ts so that th ∈ [ts, t

∗
2 + δ], separation

occurs. For a given ts and th, seller revenue in the separation mechanism can be less than

14The analogue in the two-stage mechanism with q = 0 is where the winning bidder makes an extra pay-
ment to receive control and all cash flows when his signal sufficiently exceeds the second highest. For pextra
(see Proposition 1) sufficiently small, a Taylor series expansion yields that if ∆(t1, t2; t3, ..., tn) = pextra,
then t1 − t2 is proportional to pextra.
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that in the no-separation mechanism. However, as δ goes to zero, the amount by which ex-

pected seller revenue is lower does not exceed a term that is linear in δ (as in (27)). Because

the probabilities that ts ∈ [t∗2, t
∗
2 + δ] and th ∈ [ts, t

∗
2 + δ] both go to zero linearly in δ, the

contribution of this to expected revenue (2ED2 in the example) exceeds a negative term that

goes to zero at the faster rate of δ3 (rather than δ2).

Summing these two contributions to revenues yields that expected revenue difference be-

tween the separation and no-separation mechanisms is strictly positive for δ sufficiently small.

3.5 Discussion

A large q (e.g., q ≥ 0.5) always satisfies the premise that ρmax ≤ q
1−q

for Mechanism B to be

ex-post incentive compatible. In addition, a sufficiently large q would satisfy any minimum

stake requirement—if (8) holds for a given q, then it holds for a lower q. Thus, Mechanism B

can always be designed to satisfy any minimum stake requirement and generate strictly higher

expected seller revenues than no-separation English auctions by choosing q sufficiently high.

In a working paper, we characterize when either Mechanism A or Mechanism B is op-

timal among all incentive compatible separation mechanisms. We focus on settings where

cash flows are linear functions of i.i.d. signals that satisfy the standard monotone hazard

condition. Reflecting the feature that the cost of inefficient control decreases in ρ, we prove

that when ρ is sufficiently large and q is small, it is optimal to split by assigning control to

the second-highest bidder and cash flow share 1 − q to the highest bidder. When, instead,

ρ is small enough or q is large enough (e.g., q ≥ 0.5 so the controller gets most of the cash

flows), it is optimal to reverse this split of rights.

Our current model assumes that it is costless to run the project. Our mechanisms and

findings extend immediately when running the project has a publicly-known cost. The

working paper shows that our qualitative findings extend to a setting where bidders receive

multi-dimensional signals. In this setting the cash flows generated by a bidder’s control are

the sum of a bidder-specific component and a common component (in essence our current

model assumes the two components are perfectly correlated), and bidders are privately in-
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formed about each component as well as their costs of running the project.15 We identify a

class of separation mechanisms in which the three-dimensional signals can be reduced to a

single dimension, rendering analysis tractable. We show that this mechanism class can gen-

erate both higher revenues and greater social welfare than no-separation mechanisms. This

has implications for bankruptcy resolution where the court’s strong bargaining power gives it

substantial leeway in structuring allocations. Hart (2023) points out that there are different

approaches to bankruptcy resolution reflecting different conflicting possible objectives— wel-

fare maximization versus revenue maximization—and our analysis indicates that separation

mechanisms can lead both to higher revenues and to higher social efficiency.

4 Conclusions

Our paper revisits the classical auction setting in which a seller seeks to sell a single as-

set/project to bidders who privately receive signals about the asset’s future cash flows. The

asset’s payoffs hinge on both the signal of the bidder who controls the asset and those of

rival bidders. The mechanism design literature has focused on optimal mechanisms in which

control and cash flow rights are bundled together so that bidders who do not receive con-

trol receive no cash flows. We extend this framework by incorporating the assignment of

control rights as part of our “separation mechanism”. We show that a seller can increase

expected revenues by sometimes separating the allocation of control and cash flow rights,

i.e., by allocating cash flows to a bidder who does not control the project. Separating control

and cash-flow rights helps rent extraction because a project’s payoff is most sensitive to the

signal of the bidder who runs the project. Allocating cash flows to another bidder reduces

the sensitivity of their value to this bidder’s signal, which redues bidders’ overall information

advantages. As a result, the seller can increase revenues by splitting rights between the top

two bidders when their signals are close.

15A negative cost can capture a private benefit of control as in Ekmekci, Kos and Vohra (2016).

30



5 Bibliography

Bagnoli, M.B. and B. Lipman, 1988, “Successful Takeovers without Exclusion” Review of

Financial Studies, 89-110.

Bergemann, D., B. Brooks, and S. Morris, 2016, “Informationally robust optimal auction

design,” working paper.

Bergemann, D. and S. Morris, 2007, “An ascending auction for interdependent values:

Uniqueness and robustness to strategic uncertainty”, American Economic Review, 125-130.

Bergemann, D. and S. Morris, 2008, “Ex post implementation”, Games and Economic Be-

havior, 527–566.

Bergemann, D., X. Shi and J. Valimaki, 2009, “Information Acquisition in Interdependent

Value Auctions,” Journal of the European Economic Association, 61-89.

Biais, B. and T. Mariotti, 2005, “Strategic Liquidity Supply and Security Design” Review

of Economic Studies 72, 615-649.

Brooks, B. and S. Du, 2021, “Optimal auction design with common values: An informationally-

robust approach,” Econometrica, 1313-1360.

Chung, K. and J. Ely, 2007, “Foundations of Dominant-Strategy Mechanisms,” Review of

Economic Studies, 447-476.

Edmans, Alex, Tom Gosling and Dirk Jenter, 2023, ”CEO compensation: Evidence from the

field”, Journal of Financial Economics, Available online 20 October 2023, 103718.

Ekmekci, M., and N. Kos, 2016, “Information in Tender Offers with a Large Shareholder”,

Econometrica, 87-139.

Ekmekci, M., N. Kos, and R. Vohra, 2016, “Just enough or all: Selling a firm”, American

Economic Journal: Microeconomics, 223-56.

Gorbenko, A. and A. Malenko, 2011, ”Competition among Sellers in Securities Auctions”,

American Economic Review, 101, 1-38.

Grossman, S., and O. Hart, 1986, “The costs and benefits of ownership: A theory of vertical

and lateral integration.” Journal of Political Economy, 691-719.

31



Hart, O., and J. Moore, 1990, “Property Rights and the Nature of the Firm.” Journal of

Political Economy. Volume 98, Number 6.

Krishna, V., 2003, “Auction Theory”, Academic Press.

Lauermann, S. and A. Speit, 2023, “Bidding in Common-Value Auctions with an Unknown

Number of Competitors”, Econometrica, 493-527.

Lopomo, G. 2000, “Optimality and Robustness of the English Auction”, Games and Eco-

nomic Behavior, 36, 219-240.

McAfee, R. P., J. McMillan, and P. Reny, 1989, “Extracting the surplus in the common-value

auction,” Econometrica, 1451-1459.

Mezzetti, C., 2003, “Auction design with interdependent valuations: The generalized revela-

tion principle, efficiency, full surplus extraction and information acquisition,” Working Paper.

Mezzetti, C., 2004, “Mechanism design with interdependent valuations: Efficiency”, Econo-

metrica, 1617-1626.

Myerson, R. 1981, “Optimal auction design,” Mathematics of operations research, 58-73.

Vohra, R., 2011, “Mechanism Design: A Linear Programming Approach,” Vol. 47. Cam-

bridge University Press.

Voss, P. and M. Kulms, 2022, “Separating Ownership and Information”, American Economic

Review 112, 3039-3062.

32



6 Appendix

Proof of Result 1: From the strict single-crossing condition (4) there exists a signal vector

t∗2, ..., t
∗
n, with t̄ > t∗2 ≥ t∗3 ≥ ... ≥ t∗n > t. For any ϵ > 0, define the set

Hϵ ≡
{

(t3, ..., tn) : ∃ (x∗
3, ..., x

∗
n) that is a permutation of (t∗3, ..., t

∗
n) such that

ti ∈ [x∗
i − ϵ, x∗

i ] for all i = 3, ..., n

}
.

Hϵ includes all points (t3, ..., tn) in an ϵ-neighborhood of (t∗3, ..., t
∗
n) and their permutations.

From the continuity of u(t1; ..., tn) and its derivatives, there exists an ω > 0 and an ϵ ∈

(0,min {t̄− t∗2, t
∗
n − t}) such that for all t2 ∈ [t∗2, t

∗
2 + ϵ/2], t1 ∈ [t2, t

∗
2 + ϵ], and t3, ..., tn ∈ Hϵ,

inequality (4) holds with:

u1 (t1; t2, t3, ..., tn)− u2 (t2; t1, t3, ..., tn) ≥ ω. (34)

We now show that a price offer of p∗ ≡ ϵ
2
ω > 0 will be accepted with strictly posi-

tive probability, which establishes the result. To proceed, consider n signals t1, ..., tn, where

(wlog) t1 and t2 are the highest and second-highest signals. Suppose t2 is in the interval[
t∗2, t

∗
2 +

ϵ
2

]
, and t3, t4, ..., tn are in Hϵ. When t1 ∈ [t∗2 + ϵ, t̄], we have

u (t1; t2, ..., tn)− u (t2; t1, ..., tn) =

∫ t1

t2

(u1 (t; t2, ..., tn)− u2 (t2; t, ..., tn)) dt

≥ (t∗2 + ϵ− t2)ω ≥ ϵ

2
ω,

Thus, for all t2 ∈
[
t∗2, t

∗
2 +

ϵ
2

]
and t1 ∈ [t∗2 + ϵ, t̄], a price offer of p∗ ≡ ϵ

2
ω > 0 is accepted. □

Proof of Lemma 1: Define

D (t, t′) ≡ U (t, t)− U (t, t′) . (35)

By construction, D (t, t) = 0 at all t. (35) immediately yields:

Claim 1: t′ = t maximizes U(t, t′) over t′ ∈ [t, t̄] for all given t if and only if

D (t, t′) ≥ 0 for all t and t′.

To economize on language, in the remainder of the proof when we mention t and t′, we

assume that t, t′ ∈ [t, t̄]. Consider the lemma’s premise that for all t′ /∈ S∗, U is differen-

tiable at (t = t′, t′) with ∂
∂t′
U(t, t′)|t=t′ = 0. This premise implies that for all t /∈ S∗, U is

33



differentiable at (t, t′ = t) and ∂
∂t′
U(t, t′)|t′=t = 0. Thus, for any t /∈ S∗ and t′, we have

∂

∂t
D (t, t′) =

d

dt
U (t, t)− ∂

∂t
U(t, t′) =

∂

∂t
U(t, t̂)|t̂=t +

∂

∂t̂
U(t, t̂)|t̂=t −

∂

∂t
U(t, t′)

=
∂

∂t
U(t, t̂)|t̂=t −

∂

∂t
U(t, t′), (36)

where the term ∂
∂t̂
U(t, t̂)|t̂=t in the first line vanishes by the lemma’s premise that U is

differentiable at (t = t′, t′) with ∂
∂t′
U(t, t′)|t=t′ = 0 for all t′ /∈ S∗.

To establish the sufficient condition for global IC, we assume the lemma’s premise that

for all t, ∂
∂t
U(t, t′) weakly increases in t′ over t′ ∈ [t, t̄]). By this premise, if t ≥ t′, then

∂
∂t
U(t, t̂)|t̂=t ≥ ∂

∂t
U(t, t′). Now suppose t /∈ S∗. Then (36) holds, which yields ∂

∂t
D (t, t′) ≥ 0

for t ≥ t′ and t /∈ S∗. Because D (t, t′) is continuous in t and S∗ contains only countably

many points, when we fix t′, we have D (t, t′) ≥ D (t′, t′) = 0 for all t ≥ t′. By the same

logic, if t ≤ t′ and t /∈ S∗, we have ∂
∂t
U(t, t̂)|t̂=t ≤ ∂

∂t
U (t, t′), and (36) yields ∂

∂t
D (t, t′) ≤ 0,

and from this we have D (t, t′) ≥ D (t′, t′) = 0 for all t ≤ t′. Thus, fixing t′ and varying t,

D (t, t′) is minimized at t = t′. Therefore, D (t, t′) ≥ D (t′, t′) = 0 for all t. This, by the “if”

part of Claim 1, establishes sufficiency.

Now we prove necessity. Referring to the lemma’s premise, consider t where U(t, t′)

is twice differentiable at (t, t′ = t). By the lemma’s other premise that t′ = t maximizes

U(t, t′) for all t, the first-order condition with respect to t′ evaluated at t′ = t, yields

∂
∂t′
U(t, t′)|t′=t = 0. Hence (36) holds. Differentiating both sides of (36) with respect to t

(and evaluating at t′ = t) yields:

∂2

∂2t
U(t, t′)|t′=t =

∂2

∂t2
U(t, t′)|t′=t +

∂2

∂t′∂t
U(t, t′)|t′=t −

∂2

∂2t
U(t, t′)|t′=t. (37)

The first and third terms in (37) cancel, so (37) reduces to

∂2

∂2t
D (t, t′) |t′=t =

∂2

∂t′∂t
U(t, t′)|t′=t. (38)

Furthermore, the lemma’s premise that “for all given t, t′ = t maximizes U(t, t′) over

t′ ∈ [t, t̄]” and the “only if” part of Claim 1 imply that for all given t′, t = t′ minimizesD(t, t′).

The second-order condition (with respect to t) for minimization gives ∂2

∂2t
D (t, t′) |t=t′ ≥ 0 for

all t′. This is equivalent to ∂2

∂2t
D (t, t′) |t′=t ≥ 0 for all t, which leads to ∂2

∂t′∂t
U (t, t′) |t′=t ≥ 0

via (38). This establishes necessity. □
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Proof of Proposition 2:

We use Lemma 1 to prove that Mechanism A is ex-post incentive compatible, interpreting

U(t, t′) as Ui(ti, t
′
i; t−i) in (9), and taking t−i as given. Without loss of generality, consider

bidder i = 1 and assume t2 ≥ t3... ≥ tn.

Observe that Mechanism A satisfies the premises “a” – “c” of Lemma 1. Premise (a)

holds since U(t1, t
′
1; t−1) is differentiable with respect to t1. Premise (b) also holds: S∗

consists of three points, i.e., S∗ = {S−1 (t2, t3, ..., tn) , t2, S (t2, ..., tn)}, and U(t1, t
′
1; t−1) is

differentiable at (t1 = t′1, t
′
1) for all t′1 /∈ S∗. Finally, premise (c) is satisfied. In particular,

∂
∂t′1

U(t1, t
′
1)|t1=t′1

= 0 for all t′1 /∈ S∗ because our mechanism is locally incentive compatible

(see the main text). Further, we show U (t1, t1) is continuous in t1. This trivially holds if

t1 /∈ S∗ so consider t1 ∈ S∗ at the boundary between a report-region k and k + 1. Then

U(t1, t1) = U(t1, t
′
1 in region k)=U(t1, t

′
1 in region k+1). This, combined with U(t1, t

′
1) being

continuous and differentiable in t1 establishes that U(t1, t1) is continuous in t1.

The main text established that Mechanism A satisfies the single-crossing condition.

Hence, by Lemma 1, the proposition follows. □

Proof of Proposition 4: From the strict single-crossing condition (4) there exists a signal

vector t∗2, ..., t
∗
n, with t̄ > t∗2 ≥ t∗3 ≥ ... ≥ t∗n > t. For any ϵ > 0, define the set

Hϵ ≡
{

(t3, ..., tn) : ∃ (x∗
3, ..., x

∗
n) that is a permutation of (t∗3, ..., t

∗
n) such that

ti ∈ [x∗
i − ϵ, x∗

i ] for all i = 3, ..., n

}
.

Hϵ includes all points (t3, ..., tn) in an ϵ-neighborhood of (t∗3, ..., t
∗
n) and their permutations

(inclusion of permutations preserves the symmetry of the set Hϵ).

From the continuity of u(t1; ..., tn) and its derivatives, there exists an ω > 0 and an

ϵ ∈ (0,min {t̄− t∗2, t
∗
n − t}) such that for all t2 ∈ [t∗2, t

∗
2 + ϵ], t1 ∈ [t2, t

∗
2 + ϵ] and t3, ..., tn ∈ Hϵ,

inequality (4) holds with:

u1 (t1; t2, t3, ..., tn)− u2 (t2; t1, t3, ..., tn) > ω. (39)

Fix such an ϵ and ω. For any δ ∈ (0, ϵ] and any n− 1 generic signals s1, ..., sn−1, define the

“δ-separation function” Sδ (s1, ..., sn−1) by:

Sδ (s1, ..., sn−1) = t∗2 + δ if sh ∈ [t∗2, t
∗
2 + δ] and t−h ∈ Hϵ;

Sδ (s1, ..., sn−1) = sh otherwise.
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Here sh denotes the highest signal among s1, ..., sn−1, and t−h is the vector of the n − 2

signals other than sh. The associated inverse δ-separation function is

S−1
δ (s1, ..., sn−1) = t∗2 if sh ∈ [t∗2, t

∗
2 + δ] and t−h ∈ Hϵ;

S−1
δ (s1, ..., sn−1) = sh otherwise.

Given signals (t1, t2, ...tn), let th denote the highest signal and ts the second-highest and let

t−h−s be the vector of the other n− 2 signals. Separation occurs if and only if th and ts are

in [t∗2, t
∗
2 + δ] and t−h−s is in Hϵ. We show that for all δ sufficiently small, the Mechanism

A that uses the δ-separation function generates strictly higher expected seller revenues than

no-separation English auctions. Let D(t1, t2, ...tn) be seller revenue in the δ-separation mech-

anism minus that in the no-separation English auction. In the analysis that follows we only

consider ts ∈ [t∗2, t
∗
2 + δ] and t−h−s ∈ Hϵ, because D(t1, t2, ...tn) = 0 in all other scenarios.

There are two relevant cases according to whether th ≥ t∗2 + δ or not.

Case 1: th ≥ t∗2 + δ. Seller revenue in the δ-separation mechanism is the highest bidder’s

payment (17):

u (t∗2 + δ; ts, t−h−s)− (1− q)u (ts; t
∗
2 + δ, t−h−s) + (1− 2q)u (ts; ts, t−h−s) + qu (t∗2; ts, t−h−s) .

Revenue in a no-separation English auction is u(ts; ts, t−h−s). Algebra yields the difference

(upon rewriting u (t∗2 + δ; ts, t−h−s) as (1− q)u (t∗2 + δ; ts, t−h−s) + qu (t∗2 + δ; ts, t−h−s)):

D (t1, t2, ..., tn) = D1a (t1, t2, ..., tn) +D1b (t1, t2, ..., tn) ,

where

D1a ≡ (1− q) [u (t∗2 + δ; ts, t−h−s)− u (ts; t
∗
2 + δ, t−h−s)] (40)

D1b ≡ q [u (t∗2 + δ; ts, t−h−s)− 2u (ts; ts, t−h−s) + u (t∗2; ts, t−h−s)] . (41)

Case 2: th ∈ [ts, t
∗
2 + δ). Seller revenue in the δ-separation mechanism is the sum of the

highest bidder’s payment in (18) and the second highest bidder’s payment in (19):

(1− 2q)u (ts; ts, t−h−s) + qu (t∗2; ts, t−h−s) + qu (t∗2; th, t−h−s) .
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Seller revenue in the no-separation English auction is u (ts; ts, t−h−s). The difference is

D(t1, t2, ..., tn) = q[u(t∗2; ts, t−h−s)+u(t∗2; th, t−h−s)−2u(ts; ts, t−h−s)] ≡ D2(t1, t2, ..., tn). (42)

IntegratingD(t1, t2, ..., tn) over t1 through tn yields the expected revenue difference, which

we rewrite as:

E [D] = n (n− 1)

∫
Ωn−2

∫ t∗2+δ

t∗2

∫ t̄

t2

D(t1, t2, t3, ..., tn)f(t)1t3,...,tn∈Hϵdt1dt2dt3...dtn, (43)

where Ωn−2 ≡ [t, t̄]n−2 is the space of integration for t3, ..., tn, and 1t3,...,tn∈Hϵ is an indica-

tor function that equals 1 if (t3, ..., tn) ∈ Hϵ, and zero if t3, ..., tn /∈ Hϵ (recall D = 0 if

(t3, ..., tn) /∈ Hϵ). The integration limits in (43) imply that t1 and t2 are the highest and

second-highest of the n signals, and this underlies the factor n (n− 1): the factor n reflects

that any of the n signals, not necessarily t1, can be the highest signal, and the factor n− 1

reflects that any of the remaining n−1 signals, not necessarily t2, can be the second-highest.16

Decomposing the integration over t1 in (43) from t2 to t̄ into the sum of integrations from

t2 to t∗2 + δ and from t∗2 + δ to t̄, yields

E [D] = n (n− 1) (ED1a + ED1b + ED2) , (44)

where

ED1i ≡
∫
Ωn−2

∫ t∗2+δ

t∗2

∫ t̄

t∗2+δ

D1i(t1, t2, t3, ..., tn)f(t)1t3,...,tn∈Hϵdt1dt2dt3...dtn, for i = a, b. (45)

ED2 ≡
∫
Ωn−2

∫ t∗2+δ

t∗2

∫ t∗2+δ

t2

D2 (t1, t2, t3, ..., tn) f(t)1t3,...,tn∈Hϵdt1dt2dt3...dtn. (46)

In line with t1 and t2 denoting the highest and second-highest of the n signals in (43), and

hence in (45) and (46), in the rest of the proof, we set th = t1 and ts = t2 in (40)–(42). Next,

we show that for δ sufficiently small, ED1a exceeds a term that is positive and quadratic in

δ, and ED1b and ED2 each exceed a term that goes to zero at a rate faster than δ2.

Step 1: By (40), (45) yields

ED1a = (1− q)

∫
Ωn−2

∫ t∗2+δ

t∗2

∫ t̄

t∗2+δ

(u(t∗2 + δ; t2, ..., tn)− u(t2; t
∗
2 + δ, ..., tn)) f(t)1t3,...,tn∈Hϵdt1dt2dt3...dtn.

(47)

16The factor n (n− 1) reflects the same logic as the factor 2 in the two-bidder example (see footnote 13).
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In the integrand above, first subtracting and then adding u(t2; t2, ..., tn) yields

u (t∗2 + δ; t2, ..., tn)− u (t2; t
∗
2 + δ, ..., tn)

= [u (t∗2 + δ; t2, ..., tn)− u(t2; t2, ..., tn)]− [u (t2; t
∗
2 + δ, ..., tn)− u(t2; t2, ..., tn)]

=

∫ t∗2+δ

t2

(u1 (t; t2, ..., tn)− u2 (t2; t, ..., tn)) dt > ω (t∗2 + δ − t2) , (48)

where the inequality follows because t2 ∈ [t∗2, t
∗
2 + δ]) and t3, ..., tn ∈ Hϵ, and hence (39)

holds. Plugging (48) into (47) yields

ED1a > (1− q)ω

∫
Ωn−2

∫ t∗2+δ

t∗2

∫ t̄

t∗2+δ

(t∗2 + δ − t2) f(t)1t3,...,tn∈Hϵdt1dt2dt3...dtn

≥ (1− q)ωfmin

∫
Ωn−2

∫ t∗2+δ

t∗2

∫ t̄

t∗2+δ

(t∗2 + δ − t2)1t3,...,tn∈Hϵdt1dt2dt3...dtn

= (1− q)ωfmin (t̄− t∗2 − δ)

∫
Ωn−2

∫ t∗2+δ

t∗2

(t∗2 + δ − t2)1t3,...,tn∈Hϵdt2dt3...dtn

=
1

2
(1− q)ωfmin (t̄− t∗2 − δ) δ2

∫
Ωn−2

1t3,...,tn∈Hϵdt3...dtn,

where fmin ≡ mint1,...,tn f(t) and the last line follows from
∫ t∗2+δ

t∗2
(t∗2 + δ − t2) dt2 =

1
2
δ2. Note

that (t̄− t∗2 − δ) > 1
2
(t̄− t∗2) if δ <

t̄−t∗2
2
. Thus, for δ <

t̄−t∗2
2
,

ED1a >

[
1

4
(1− q)ωfmin (t̄− t∗2)

∫
Ωn−2

1t3,...,tn∈Hϵdt3...dtn

]
δ2. (49)

Step 2: Next we derive a lower bound on ED1b in (45). Define

kmax(t3, t4, ...tn; δ) ≡ max
t1,t2∈[t∗2,t∗2+δ]

u1(t1; t2, ...tn) and kmin(t3, t4, ...tn; δ) ≡ min
t1,t2∈[t∗2,t∗2+δ]

u1(t1; t2, ...tn)

(50)

where u1 is the derivative of u with respect to its first argument. For the first and second

terms in the expression for D1b in (41), since t2 ∈ [t∗2, t
∗
2 + δ], Taylor series expansions yield

u (t∗2 + δ, t2, ..., tn) ≥ u (t∗2, t2, ..., tn)+kminδ and u (t2, t2, ..., tn) ≤ u (t∗2, t2, ..., tn)+kmax (t2 − t∗2) .

Combining these two inequalities yields

u (t∗2 + δ, t2, ..., tn)− 2u (t2, t2, ..., tn) + u (t∗2, t2, ..., tn) ≥ q (kminδ − 2kmax (t2 − t∗2)) . (51)
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Substituting this bound into D1b in (41), then (45) yields a bound for ED1b:

ED1b ≥ q

∫
Ωn−2

∫ t∗2+δ

t∗2

∫ t̄

t∗2+δ

(kminδ − 2kmax (t2 − t∗2)) f(t)1t3,...,tn∈Hϵdt1dt2dt3...dtn

= q

∫
Ωn−2

∫ t̄

t∗2+δ

∫ t∗2+δ

t∗2

(kminδ − 2kmax(t2 − t∗2))f(t)1t3,...,tn∈Hϵdt2dt1dt3...dtn, (52)

where the second line switches the order of integration between t1 and t2. Define

f̂min (t1, t3, t4, ...tn; δ) ≡ min
t2∈[t∗2,t∗2+δ]

f(t1, t2, ...tn) and f̂max(t1, t3, t4, ...tn; δ) ≡ max
t2∈[t∗2,t∗2+δ]

f(t1, t2, ...tn).

Note that f̂max ≥ f̂min > 0. Because f̂min, f̂max, kmin, kmax do not depend on t2, the inside

integration over t2 in (52) yields:∫ t∗2+δ

t∗2

(kminδ − 2kmax (t2 − t∗2)) f(t)dt2 ≥
∫ t∗2+δ

t∗2

(
kminδf̂min

)
dt2 −

∫ t∗2+δ

t∗2

2kmax (t2 − t∗2) f̂maxdt2

=
(
f̂minkmin − f̂maxkmax

)
δ2, (53)

where we use
∫ t∗2+δ

t∗2
(t2 − t∗2) dt2 =

1
2
δ2. Plugging (53) into (52) yields

ED1b ≥ −qδ2
∫
Ωn−2

∫ t̄

t∗2+δ

(
f̂maxkmax − f̂minkmin

)
1t3,...,tn∈Hϵdt1dt3...dtn. (54)

Next we show as δ goes to zero, f̂minkmin − f̂maxkmax (which depends on δ, t1, t3, t4, ...tn but

not t2) approaches zero in a uniform sense:

Claim 1: For any constant κ > 0, there exists a δ̂(κ) > 0 such that f̂maxkmax− f̂minkmin < κ

for all δ < δ̂(κ) and all t1, t3, ..., tn.

Proof of Claim 1: Define c1 ≡ maxt1,...,tn | d
dt1

u1 (t) | and c2 ≡ maxt1,...,tn | d
dt2

u1(t)|. Since

u is twice continuously differentiable, c1 and c2 are well defined and bounded. From the

definitions of kmax and kmin in (50) and the Taylor series expansion, we have kmax − kmin ≤
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(c1 + c2) δ.
17 Thus,

f̂maxkmax − f̂minkmin =
(
f̂max − f̂min

)
kmax + f̂min(kmax − kmin)

≤ (f̂max − f̂min)kmax + f̂min(c1 + c2)δ. (55)

Note that f̂min in the second term on the right-hand side of (55) is bounded because

f̂min ≤ fmax ≡ max
t1,...,tn

f(t). (56)

Next we examine the first term on the right-hand side of (55). kmax ≤ maxt1,...,tn u1(t1; t2, ..., tn)

so kmax is bounded. Further, the model’s premise that f is uniformly continuous yields for

any constant κ > 0, there exists a δ∗(κ) > 0 such that f̂max − f̂min < κ for all δ < δ∗(κ) and

all t1, t3, ..., tn. By the above arguments and (55), Claim 1 follows.

By Claim 1 and (54), for any κ > 0, there exists a δ̂(κ) > 0 such that for all δ < δ̂(κ) :

ED1b ≥ −qκδ2
∫
Ωn−2

∫ t̄

t∗2+δ

1t3,...,tn∈Hϵdt1dt3...dtn

= −qκ (t̄− t∗2 − δ) δ2
∫
Ωn−2

1t3,...,tn∈Hϵdt3...dtn, (57)

where the second line comes from integrating over t1. Setting κ = 1−q
8q

ωfmin
t̄−t∗2

t̄−t∗2−δ
, (57) yields

ED1b > −1

8
(1− q)ωfmin (t̄− t∗2) δ

2

∫
Ωn−2

1t3,...,tn∈Hϵdt3...dtn,

which, combining with the lower bound on ED1a in (49), yields for all δ sufficiently small:

ED1a + ED1b >
[1
8
(1− q)ωfmin (t̄− t∗2)

∫
Ωn−2

1t3,...,tn∈Hϵdt3...dtn

]
δ2. (58)

Step 3: The definition of D2 in (42) yields

D2 = q[u(t∗2, t2, t3, ..., tn) + u(t∗2, t1, t3, ..., tn)− 2u(t2, t2, t3, ..., tn)]

≥ 2q[u(t∗2, t2, t3, ..., tn)− u(t2, t2, t3, ..., tn)]

= −2q [u(t2, t2, t3, ..., tn)− u(t∗2, t2, t3, ..., tn)] ≥ −2qk∗δ, (59)

17To see this, assume that kδmax is obtained at (t1, t2) = (t∗∗∗1 , t∗∗∗2 ) so that kδmax ≡ u1 (t
∗∗∗
1 ; t∗∗∗2 , t3, ..., tn),

and that kδmin is obtained at (t1, t2) = (t∗∗1 , t∗∗2 ) so that kδmin ≡ u1 (t
∗∗
1 ; t∗∗2 , t3, ..., tn). Then

kδmax − kδmin = u1 (t
∗∗∗
1 ; t∗∗∗2 , t3, ..., tn)− u1 (t

∗∗
1 ; t∗∗2 , t3, ..., tn)

= (u1 (t
∗∗∗
1 ; t∗∗∗2 , t3, ...)− u1 (t

∗∗
1 ; t∗∗∗2 , t3, ...)) + (u1 (t

∗∗
1 ; t∗∗∗2 , t3, ...)− u1 (t

∗∗
1 ; t∗∗2 , t3, ...))

≤ c1|t∗∗∗1 − t∗∗1 |+ c2|t∗∗∗2 − t∗∗2 |.
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where k∗ ≡ maxt1,t3,...,tn u1 (t1, t1, t3, ..., tn), the first inequality follows from t1 ≥ t2, and the

second inequality follows from t2 − t∗2 ≤ δ. Plugging (59) into (46) yields

ED2 ≥ −2qk∗δ

∫
Ωn−2

∫ t∗2+δ

t∗2

∫ t∗2+δ

t2

f (t)1t3,...,tn∈Hϵdt1dt2dt3...dtn

≥ −
(
2qk∗fmax

∫
Ωn−2

1t3,...,tn∈Hϵdt3...dtn

)
δ3, (60)

where fmax is given in (56) and we use
∫ t∗2+δ

t∗2

∫ t∗2+δ

t2
f(t)dt1dt2 ≤ fmaxδ

2.

Step 4: (58) and (60) show that when δ is small, ED1a+ED1b exceeds a positive term that

approaches zero at the rate δ2, and ED2 exceeds a negative term that approaches zero at

the rate δ3. Thus, for δ sufficiently small, ED1a+ED1b+ED2 > 0: Mechanism A generates

strictly higher expected revenues. □

Proof for Mechanism B: The argument for Mechanism B mirrors that for A. As with

Mechanism A, we only consider ts ∈ [t∗2, t
∗
2 + δ] and t−h−s ∈ Hϵ (because D = 0 otherwise),

and again there are two cases according to whether th ≥ t∗2 + δ or not.

Case 1: th ≥ t∗2 + δ. Revenue in the δ-separation mechanism B is the highest bidder’s

payment (21):

(1− q)u (t∗2 + δ; ts, t−h−s) + (2q − 1)u (ts; ts, t−h−s) + (1− q)u (ts; t
∗
2, t−h−s) .

Revenue in a no-separation English auction is: u(ts; ts, t−h−s). The revenue difference is

D (t1, t2, ..., tn) = (1− q) [u (t∗2 + δ; ts, t−h−s)− 2u (ts; ts, t−h−s) + u (ts; t
∗
2, t−h−s)] .

Subtracting and then adding a term (1− q)u (t∗2; ts, t−h−s), we rewrite the above as

D (t1, t2, ..., tn) = DB
1a (t1, t2, ..., tn) +DB

1b (t1, t2, ..., tn) ,

where

DB
1a ≡ (1− q) [u (ts; t

∗
2, t−h−s)− u (t∗2; ts, t−h−s)] (61)

DB
1b ≡ (1− q) [u (t∗2 + δ; ts, t−h−s)− 2u (ts; ts, t−h−s) + u (t∗2; ts, t−h−s)] . (62)

Case 2: th ∈ [ts, t
∗
2 + δ). Seller revenue in the δ-separation mechanism B is the sum of the

highest bidder’s payment in (22) and the second highest bidder’s payment in (23):

(2q − 1)u (ts; ts, t−h−s) + (1− q) [u (ts; t
∗
2, t−h−s)] + (1− q)u (th; t

∗
2, t−h−s)
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Revenue in the no-separation English auction is u (ts, ts, t−h−s). The revenue difference is

D(t1, ..., tn) = (1− q) (u(ts; t
∗
2, t−h−s) + u(th; t

∗
2, t−h−s)− 2u(ts; ts, t−h−s)) ≡ DB

2 (t1, ..., tn)(63)

≥ 2 (1− q) (u (ts; t
∗
2, t−h−s)− u (ts; ts, t−h−s)) , (64)

where the inequality follows since th ≥ ts and u increases in its arguments.

Analogously with Mechanism A, the equations for the expected revenue differences (45)–

(46) hold, where on the left-hand sides we replace ED1a, ED1b, and ED2 with their Mecha-

nism B counterparts EDB
1a, EDB

1b, and EDB
2 , and on the right-hand side we replace D1a with

DB
1a, D1b with DB

1b, and D2 with DB
2 . Similarly, (43) and (44) hold, with EDB

1a,EDB
1b, EDB

2

replacing ED1a, ED1b, ED2 on the right-hand side of (44). Again, since t1 and t2 denote the

highest and second-highest of the n signals in (43), we interpret th and ts in (61)–(64) as t1

and t2.

We now show that for δ sufficiently small, EDB
1a exceeds a term that is positive and

quadratic in δ, and EDB
1b and EDB

2 each exceed terms that go to zero at a rate faster than δ2.

Step 1: Substituting the definition of DB
1a in (61) into (45) yields

EDB
1a ≡ (1− q)

∫
Ωn−2

∫ t∗2+δ

t∗2

∫ t̄

t∗2+δ

[u (t2; t
∗
2, ..., tn)− u (t∗2; t2, ..., tn)] f(t)1t3,...,tn∈Hϵdt1dt2dt3...dtn.

(65)

In the integrand above, since t2 ∈ [t∗2, t
∗
2 + δ]) and t3, ..., tn ∈ Hϵ, we have:

u (t2; t
∗
2, ..., tn)− u (t∗2; t2, ..., tn) =

∫ t2

t∗2

(u1 (t; t2, ..., tn)− u2 (t2; t, ..., tn)) dt > ω (t2 − t∗2) ,

where the inequality follows from (39). Then (65) yields

EDB
1a > (1− q)ωfmin

∫
Ωn−2

∫ t∗2+δ

t∗2

∫ t̄

t∗2+δ

(t2 − t∗2)1t3,...,tn∈Hϵdt1dt2dt3...dtn

= (1− q)ωfmin (t̄− t∗2 − δ)

∫
Ωn−2

∫ t∗2+δ

t∗2

(t2 − t∗2)1t3,...,tn∈Hϵdt2dt3...dtn

=
1

2
(1− q)ωfmin (t̄− t∗2 − δ) δ2

∫
Ωn−2

1t3,...,tn∈Hϵdt3...dtn,

where fmin ≡ mint1,...,tn f(t), and we use
∫ t∗2+δ

t∗2
(t2 − t∗2) dt2 = 1

2
δ2. Since (t̄− t∗2 − δ) >
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1
2
(t̄− t∗2) if δ <

t̄−t∗2
2
, inequality (49) holds for δ <

t̄−t∗2
2
:

EDB
1a >

[
1

4
(1− q)ωfmin (t̄− t∗2)

∫
Ωn−2

1t3,...,tn∈Hϵdt3...dtn

]
δ2.

Thus, we get the same lower bound on EDB
1a for Mechanism B as for Mechanism A.

Step 2: Comparing (62) with (41) shows that DB
1b for Mechanism B (which is (62)) equals

D1b for Mechanism A (which is (41)) multiplied by a factor 1−q
q
. Thus, by the same logic as

in Step 2 in the proof for Mechanism A, as δ goes to zero, DB
1b exceeds a negative term that

approaches zero faster than δ2. Thus, for sufficiently small δ, (58) holds for Mechanism B:

EDB
1a + EDB

1b >
[1
8
(1− q)ωfmin (t̄− t∗2)

∫
Ωn−2

1t3,...,tn∈Hϵdt3...dtn

]
δ2. (66)

Step 3: From the lower bound on DB
2 in (64), we have:

DB
2 ≥ −2 (1− q) (u (t2; t2, t3, ..., tn)− u (t2; t

∗
2, t3, ..., tn)) ≥ −2 (1− q) k∗∗δ, (67)

where k∗∗ ≡ maxt1,t2,t3,...,tn u2 (t1, t2, t3, ..., tn), and the inequality follows from t2 − t∗2 ≤ δ.

Plugging (67) into (46) yields

EDB
2 ≥ −2 (1− q) k∗∗δ

∫
Ωn−2

∫ t∗2+δ

t∗2

∫ t∗2+δ

t2

f (t)1t3,...,tn∈Hϵdt1dt2dt3...dtn

≥ −2 (1− q) k∗∗fmax

(∫
Ωn−2

1t3,...,tn∈Hϵdt3...dtn

)
δ3, (68)

where fmax is given in (56) and we use
∫ t∗2+δ

t∗2

∫ t∗2+δ

t2
f(t)dt1dt2 ≤ fmaxδ

2.

Step 4: (66) and (68) show that when δ is small, EDB
1a+EDB

1b exceeds a positive term that

approaches zero at the rate δ2, and EDB
2 exceeds a negative term that approaches zero at

the rate δ3. Thus, for δ sufficiently small, EDB
1a + EDB

1b + EDB
2 > 0. □
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