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cal production. This descriptive and causal evidence demonstrates some of the many
research possibilities opened up by our granular measurement of product linkages,
including studies of on-shoring, industrial policy, and other recent shifts in global
trade.

Keywords: Supply-Chain Network Analysis, Large Language Models, On-shoring,
industrial policy, Trade wars, Econometrics-of-LLMs

JEL Classification: F14, F23, L16, F52, O25, N74, C81

*Warwick University & University of Bonn, Departments of Economics. Also affiliated or fel-
lowed at Grantham Research Institute, ECONtribute, CEPR, NIESR, CESifo and STICERD. Email:
t.fetzer@warwick.ac.uk. Fetzer acknowledges support through the Leverhulme Trust Prize in Economics,
the European Research Council Grant (ERC, MEGEO, 101042703), and Deutsche Forschungsgemeinschaft
(EconTribute, DFG, EXC 2126/1-390838866).

†London School of Economics and Political Science (LSE), Department of Economics. Also affili-
ated: Centre for Economic Performance (CEP), Programme on Innovation and Diffusion (POID). Email:
p.j.lambert@lse.ac.uk.

‡London School of Economics and Political Science (LSE), Department of Economics
§Imperial College London, Department of Economics and Public Policy. Also affiliated with IFC. Email:

prashant.garg@imperial.ac.uk

1



1 Introduction

Global economic integration—a defining feature of the late 20th century—faces mount-

ing structural challenges as nations navigate rising protectionism, pandemic-induced

disruptions, proliferating industrial policies, and conflict-related supply chain shocks.

Evidence of these challenges includes growing trade restrictions, the paralysis of WTO

dispute mechanisms, industrial policy announcements, and persistent supply chain dis-

ruptions (see Figure 1). Against this backdrop of fragmentation, technological change

continues to deepen the complexity of production processes, necessitating ever-greater

economic interdependence.

This paper develops and introduces the AI-generated Production Network (AIPNET)

to help unpack these contrasting shifts in trade and production. Our measurement

approach utilizes frontier generative AI to recover granular network structures spanning

more than 5,000 product categories.1 The network maps each product’s position in the

production process by identifying its input-output relationships to other products. This

paper uses these product inter-dependencies to analyze recent shifts in global trade and

production but also contributes this network dataset to facilitate wider interdisciplinary

analysis.2

The construction of this granular production network harnesses recent advances in

generative AI. We propose a two-step ‘build-prune’ methodology to implement gen-

erative AI towards the construction of graphical network data. Both steps employ an

ensemble of prompt-tuned generative AI classifications. The initial ‘build’ step gener-

ates a distribution of edge-predictions, identifying potential connections at the possible

expense of spurious links. The subsequent ‘prune’ step rigorously evaluates these edges,

ensuring fidelity to the underlying latent structures of interest. While we develop this

1Our categories are based on the ‘harmonized system’, a nomenclature of product codes maintained by
the World Customs Organization (WCO) and used universally by national trade authorities. These 5,000+
classifications are highly granular, e.g. ‘Milk And Cream Of A Fat Content, By Weight, Exceeding 10%,
Not Concentrated Nor Containing Added Sugar Or Other Sweetening Matter’ (HS Code 0401.50).

2Researchers can download and utilize AIPNET, available at aipnet.io.
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methodology specifically for production networks, it offers broader applicability in set-

tings where nodes are known but edges require discovery through information embed-

ded in language models.

Our application of this measurement framework to recover production linkages across

products yields important insights into global trade patterns. We find a sizable shift over

the last decade towards global trade of more ‘central’ upstream products, both in terms

of their overall position in the network and based on the number of downstream con-

nections of each good. We also highlight divergent trends across countries, finding that

China has increased the relative import intensity of more upstream products. In contrast,

the US has shifted to a more downstream-intensive import mix. Globally, we see a rise

in more upstream goods which sit atop the value chain, especially in high-tech products

like chips and electronic circuitry, as well as critical minerals for modern technologies

such as lithium.

To more fully leverage our network structure, we examine patterns of import substi-

tution across vertically linked products. Using unit price indices constructed for each

country-product pair, we identify persistent supply shocks that manifest through sus-

tained price increases. These structural breaks in unit prices—ranging from trade dis-

putes and shortages to geopolitical events—emerge as key drivers of changes in import

patterns, particularly in upstream goods linked to affected products.

This systematic analysis of global trade reveals clear evidence of ’onshoring’ or pro-

duction localization. When countries face significant disruptions to downstream prod-

ucts, they respond by increasing imports of vertically connected upstream goods.

To establish clean causal identification of this ‘onshoring’ mechanism, we lastly an-

alyze an unanticipated supply shock which came about during the 2017 blockade of

Qatar. Exploiting the shock’s exogenous timing and substantial variation in product-

specific exposure, we implement a dyadic-difference-in-difference (DyDiD) specification

using each connection in our network as a single unit of observation. This allows for a

granular design to measure substitution patterns from vertically linked upstream capital

3



and intermediaries and away from downstream consumer-facing goods. We find that

products which were sourced wholly from blockading countries prior to this event saw

a 44 percent decrease in imports in the five years post-blockade. More interestingly, for

the same exposed products, the vertically connected upstream products saw imports in-

crease by 18 percent. This evidence suggests the Qatar blockade fundamentally altered

the “make-or-buy” calculus, resulting in shifts up the import-value-chain to facilitate

domestic production.

This work contributes to several strands of literature. First, we advance the mea-

surement of production and trade networks. As Johnson (2018) discusses in a survey of

global value chains measurement, the field has relied on two main approaches: country-

level Input-Output tables and firm-to-firm transaction records. While Input-Output ta-

bles offer comprehensive economic overviews and broad cross-country coverage, they

lack granularity. Transaction-level data provides granular firm-level insights but has

limited availability and coverage. Moreover, firm boundaries may not accurately capture

production steps, and intermediaries in international trade can lead to underestimating

firms’ trade exposure (Dhyne et al., 2020). In contrast to these standard approaches, the

AIPNET product this paper introduces provides a publicly available and highly granular

measure of product-to-product connections, focused on the underlying technologies and

production processes rather than economic transactions.

Several other authors have also sought more novel approaches to bridge the gap

between granular transaction data and IO tables. Karbevska and Hidalgo (2023) and

Andersen et al. (2022), study geographical and product category expansions. Frésard,

Hoberg, and Phillips (2020) measure firm vertical relatedness using Input-Output tables

and product text from SEC filings.

An important contribution to measuring production-network features focus on lo-

cating countries and industries in terms of their ‘upstreamness’ i.e. distance to final

consumption by leveraging variation in input-output tables (Fally, 2012; Antràs et al.,
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2012; Antràs & Chor, 2018).3 These studies complement our more granular and method-

ologically distinct efforts to characterize production networks and measure centrality of

products using AIPNET.

Second, we contribute to the emerging literature on LLM and AI applications in eco-

nomic measurement. For comprehensive introductions to LLMs in economics, see Ash

and Hansen (2023), Dell (2024), Giesecke (2024), and Korinek (2023). Most applications

use LLMs to structure and classify data, such as analyzing remote work in job post-

ings (Hansen et al., 2023), measuring housing regulation (Bartik, Gupta, & Milo, 2023),

extracting information from loan documents (Schindler & Lambert, 2024) or extracting

causal claims from scientific publications (Garg & Fetzer, 2024). Our approach extends

beyond classification to leverage LLMs’ reasoning capabilities for knowledge graph con-

struction.4

Third, we contribute to research on production networks’ responses to shocks. This

literature builds on theoretical work modeling cascade effects, substitutability, and sup-

ply dependencies.5 Related theoretical foundations come from work on export decisions

(Melitz, 2003; Krugman, 1980)6 and sourcing decisions.7 Studies of systemic shocks

document widespread trade flow rewiring.8

Our focus on upstream responses complements work on downstream effects by

Boehm et al. (2019) and Acemoglu et al. (2015). This connects to literature examining

major trade disruptions including COVID-19 (Freeman & Baldwin, 2020; Antràs, 2020),

Brexit,9 and the 2008 financial crisis (Behrens et al., 2013; Bricongne et al., 2012).

3While our measurement is based on AI/text, Feenstra and Jensen (2012) highlights that the propor-
tionality assumption embedded in the construction of IO-tables can drive mechanical correlations between
‘upstreamness’ and ‘downstreamness’ at the county-level.

4For broader discussion of LLMs in knowledge graph construction and applications to supply chains,
see (Peifeng et al., 2024), (Pan et al., 2024), (Jewson et al., 2022), (Buehler, 2024) and (Kosasih et al., 2024).

5For foundational work on production network modeling, see Elliott, Golub, and Leduc (2022), Baqaee
and Farhi (2019), Oberfield (2018), (Carvalho & Gabaix, 2013), and Acemoglu et al. (2012).

6For a comprehensive survey of export theory and evidence, see Bernard et al. (2012).
7Key contributions on sourcing and offshoring include Huang et al. (2024), Grossman, Helpman, and

Redding (2024), Bernard et al. (2018), Antràs, Fort, and Tintelnot (2017), and Garetto (2013).
8For analysis of systematic trade network responses to shocks, see Elliott and Jackson (2024), Baldwin

and Freeman (2022), Caselli et al. (2020), Bachmann et al. (2022), and Baqaee and Farhi (2021).
9For comprehensive analysis of Brexit’s trade impacts, see Freeman et al. (2022), Alabrese, Fetzer, and
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Finally, our Qatar blockade analysis contributes to research on geopolitically moti-

vated trade decoupling. Antràs (2020) discusses recent trade slowdowns as responses to

uncertainty rather than deglobalization. Others document reduced East-West trade and

FDI flows owing to global conflicts (Gopinath et al., 2024; Blanga-Gubbay & Rubı́nová,

2023). A growing literature examines US-China decoupling.10

The remainder of this paper is organized as follows: Section 2 lays out a framework

for measuring graphical network data using generative AI, Section 3 introduces AIP-

NET and discusses our methodology for construction and validation. Section 4 presents

global trends and tests the micro-foundations of onshoring. Section 5 leverages a dyadic

difference-in-difference (DyDiD) econometric design to provide a causal analysis of on-

shoring following the Qatar blockade. Section 6 concludes.

2 Building Graphs with Generative AI

We begin with a high level outline of this papers approach to building network datasets

(i.e., graphical data) using generative AI. This section lays out a framework that can be

applied in cases where the set of nodes is known, but the edges connecting them are

unknown and must be estimated. Those readers who prefer a more applied articulation

of our approach may wish to proceed to the subsequent section 3, where we directly

discuss the construction of AIPNET and outline the practical steps necessary to apply

the framework introduced below.

Wang (2024), Costa, Dhingra, and Machin (2019), P. D. Fajgelbaum et al. (2020), Hassan et al. (2024), Born
et al. (2018), Douch et al. (2018), and Breinlich et al. (2017).

10For recent analysis of US-China trade relations and decoupling, see Handley and Limão (2017) on
policy uncertainty, and Alfaro and Chor (2023), Crosignani et al. (2023), Freund et al. (2023), and Utar,
Torres Ruiz, and Zurita (2023) on nearshoring evidence; Fetzer and Schwarz (2021) explore the high-
dimensional strategic considerations in engaging in trade wars.
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2.1 Estimating Graph Edges

Our goal is to estimate a latent network G = (V, E), where V = {v1, v2, . . . , vn} is the

pre-existing set of n nodes, and E is the set of unobserved edges connecting these nodes.

Each node has at least one observable property, such as a name or label.11 Our approach

to estimating edges E follows two key steps. First, we ‘build’ the network by asking a

generative AI tool node-specific questions.12 Second, we ‘prune’ the network by asking

edge-level questions.13 The remainder of this section lays out this approach more formally.

Step 1 ‘Build’ In this step, we use a Large Language Model (LLM) to answer questions

q about nodes v. The questions are designed such that their answers identify the set of

potential connections. Let fLLM be a function which represents this question- answering

capability:

fLLM : V × Q × Θ → P(V)

where V is the set of all nodes, Q is the set of all possible questions or prompts, Θ is

the set of possible model parameters, and P(V) is the power set of V, representing all

possible subsets of nodes.14

For a given node vi ∈ V, we compute:

Ci = fLLM(vi, q, θ),

where q ∈ Q is a specific question or prompt designed to elicit connected nodes, θ ∈
11To economize on notation, we use vi to refer both to the node it’s self, and also it’s observable proper-

ties.
12An example of a node-specific query is: ‘What kinds of machines do I need to produce Skim Milk?’.
13Examples of an edge-specific question: ‘Do I need Dairy Cows to produce Skim Milk?’
14More formally, Equation 2.1 defines a parameterized family of set-valued functions. For fixed (q, θ) ∈

Q × Θ, each fq,θ : V → P(V) is a set-valued function mapping the vertex set to its power set. This
formulation allows us to characterize the entire space of possible network configurations induced by
varying questions and model parameters, while maintaining the fundamental node-to-subsets mapping
structure.
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Θ represents the current state of the LLM’s parameters15, Ci ⊆ V is the set of nodes

potentially connected to vi.

The function fLLM can be helpfully represented as the maximizer of a probability

conditional on the initial question or ‘prompt’:

fLLM(vi, q, θ) = arg max
C⊆V

P(C | vi, q, θ),

where P(C | vi, q, θ) is the probability distribution over subsets of V, conditioned on the

input node, question, and model parameters.

To incorporate uncertainty and create a probabilistic edge measure, we run the LLM

multiple times:

C(k)
i = fLLM(vi, qk, θk), k = 1, 2, . . . , K,

where K is the number of runs, qk and θk represent potentially varying questions and

model parameters for each run16.

We then define an edge overlap function p : V × V → [0, 1]:

p(vi, vj) =
1
K

K

∑
k=1

1{vj ∈ C(k)
i }

where 1{·} is the indicator function, equal to 1 if, for a specific kth iteration of the LLM

function, the two vertices vi and vj are connected, and zero otherwise. This provides a

measure of the average number of times across K draws two nodes are deemed to be

connected.17.
15We will be more explicit about parameters available in practice in the subsequent section. These

parameters govern the behavior of the LLM, for example one must set a ‘seed’ value to govern the models
behaviour. One must also set a ‘temperature’ value, which defines a penalty applied to more creative
responses.

16In practice, we want to have many more runs than we have possible combination of parameters qk and
questions qk

17This is the simplest way to aggregate over the K responses. One can also consider giving different
draws more/less weight, or combining the results of each draw in other parametric ways, possibly with
fine-tuned parameter values based on some known set of edges. This is discussed more in Section 2.2

8



Finally, we create an initial edge set Ẽ using a cutoff τ ∈ [0, 1]:

Ẽ =
{
(vi, vj) | p(vi, vj) ≥ τ, i ̸= j

}
.

This set Ẽ represents our initial set of discrete edges based on the probabilistic output of

multiple distinct calls to an LLM.

Step 2: Prune In this step, we refine the initial edge set Ẽ by evaluating the relevance

or importance of each edge using another LLM-based function18. Let gLLM represent the

LLM’s edge evaluation capability:

gLLM : V × V × [0, 1]× Q′ × Θ′ → R,

where V × V represents pairs of nodes forming potential edges, [0, 1] is the domain for

the edge probability from the build step, Q′ is the set of all possible questions or prompts

for edge evaluation, Θ′ is the set of possible model parameters for the pruning LLM. For

each edge (vi, vj) ∈ Ẽ, we compute a relevance score:

rij = gLLM(vi, vj, p(vi, vj), q′, θ′),

where p(vi, vj) is the edge probability from the build step, q′ ∈ Q′ is a specific question

or prompt designed to evaluate edge relevance, θ′ ∈ Θ′ represents the current state of

the pruning LLM’s parameters.

To account for potential variability in the LLM’s output, we perform multiple evalu-

ations:

r(l)ij = gLLM(vi, vj, p(vi, vj), q′l, θ′l), l = 1, 2, . . . , L,

where L is the number of evaluation runs, and q′l and θ′l represent potentially varying

18For cases where the set of all possible edges is small, one might jump straight to this step and initialize
the edge set Ẽ by using the complete network
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questions and model parameters for each run.

We then calculate the average relevance score:

r̄ij =
1
L

L

∑
l=1

r(l)ij .

We determine the final edge set E using one of two methods: Threshold-based pruning:

E =
{
(vi, vj) ∈ Ẽ | r̄ij ≥ ϕ

}
,

where ϕ ∈ R is a predefined threshold.

Top-k pruning:

E = Top-k
({(

(vi, vj), r̄ij
)
| (vi, vj) ∈ Ẽ

})
,

where k is the desired number of edges to retain, and Top-k selects the k edges with the

highest relevance scores.

The resulting graph G = (V, E) represents our final constructed network dataset,

with edges pruned based on their evaluated relevance.

2.2 Higher-Dimensional Extensions and Fine-Tuning

The build-prune method described above can be extended to incorporate higher-dimensional

information and fine-tuned for specific applications. By leveraging multiple parameter

types and question variations, we can create a richer representation of potential edges in

the network.

In the build step, instead of using a single question q, we can employ a set of di-

verse questions Q = {q1, q2, . . . , qm}, each designed to probe different aspects of node

relationships. Similarly, we can vary model parameters Θ = {θ1, θ2, . . . , θn} to capture

different model behaviors. The prune step can be similarly extended. This approach

generates a multi-dimensional feature space for each potential edge, and can be tailored
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for many applications including social networks, professional networks, cross-linkages

between economic and other classifications structures, and so on.

The rich data generated from these higher-dimensional build and prune processes

can then be used to fine-tune a final edge classifier function. This has at least two

desirable properties - it ensures edge classification is robust to variation in the way the

LLM is utilized, and also allows recovery of edges to mirror any existing proxies for

node connections, allowing for the incorporation of domain specific knowledge. One

can also extend this process using agentic AI processes, such that the parameters and

questions used to recover linkages can be automatically adjusted based on information

that is generated in prior steps.

3 AI-generated Production Networks (AIPNET)

Our main applied objective in this paper is to build, test, and validate an AI-generated

Production Network (AIPNET), which is able to recover connections between products

based on input/output relationships. We follow the build-prune approach laid out in

Section 2 above. This approach uses a number of generative AI tools, which are com-

bined in a style similar to ensemble methods in machine learning.

3.1 Nodes in the Production Network

We begin with the Harmonized System (HS) product codes, which define over 5,000

product nodes.19 This structure provides a system for categorizing goods. Each category

has both a numeric code as well as a free-text label describing the product (see examples

in Appendix Table A.1).

Most people know that you need a printing press to print a newspaper. Far fewer

people can list the enzymes used in synthesizing insulin, but this information is acces-

19The HS is a hierarchical classification for international trade, organized into increasingly specific levels.
It begins with 21 broad sections, then narrows to 99 chapters (2-digit codes), about 1,244 headings (4-digit),
and approximately 5,224 subheadings (6-digit).
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sible in seconds through a simple web search. For most, if not all, of the product nodes

contained within AIPNET, the set of input-output relationships is either quite obvious

or a simple web search away. The challenge in building the network of input-output

linkages across the full universe of HS product codes is not one of information availabil-

ity, but rather one of efficient information synthesis at scale. This challenge is ideally

suited to the latest pre-trained AI language models, whose training over vast corpora of

documents, web pages, books, transcripts, and other sources provides sufficient detail

on just about every production process imaginable.

To fix ideas, consider some examples: Full-fat milk and cream (HS 0401.50) is input to

various dairy consumption products, such as processed cheese (HS 0406.30) and Miscella-

neous Food Preparations (HS 2106.90). Figure 2 provides a visualization of this network

structure.20 On the other hand, Wind generators (HS 8502.31) require a broad array of

capital inputs and intermediary goods, such as Electrical Control Parts (HS 8538.90) and

Hot-rolled Stainless Steel (HS 7219.23). Figure 3 provides a visualization of this network

structure. These examples highlight different types of goods: a consumer-facing non-

durable good (Full-fat milk and cream) and an essential capital input (Wind generators).

(Figure 2)

For additional examples of solar panels and lithium compounds, see Appendix Figure

A.1. For a visualization of the entire AIPNET, see Appendix Figure A.2, where each node

represents a Harmonized System (HS) 6-digit product code, and edges depict vertical

production relationships.

(Figure 3)
20Each figure presents a one-degree network (i.e., direct connections) of a single focal product. Node

size is proportional to network centrality of nodes, as detailed in Section 3.5. Nodes are color-coded by
their BEC5 end-use classification: pink for final-primary goods, green for final-processed goods, blue for
capital goods, yellow for raw materials, and grey for intermediary inputs.
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3.2 Using Generative AI to measure Production Linkages

To construct AIPNET, we utilized a structured pipeline that integrates advanced AI tech-

niques with rigorous data processing. This pipeline is visually summarized in Figure 4

and involves several key steps:

Step 1: Large Language Model (LLM) Setup and Prompting We began by adopting

GPT-4o, a state-of-the-art foundational AI model. Although GPT-4o’s pre-training spans

the requisite information to detail input-output structures, we had to further tailor the

model to our specific data extraction task through careful selection of parameters and

custom prompt-tuning. The model was iteratively queried using each HS code as the

focal point, instructing the model to list and describe all products vertically linked to

the focal product. This process was repeated multiple times (K draws) to account for

the probabilistic nature of the model, capturing a broad range of possible input-output

relationships. To manage expectations, we prompted the LLM to list up to 20 goods,

prioritizing those with higher importance scores and focusing on internationally traded

products.21

Step 2: Generating and Parsing Model Output For each focal HS code, the LLM

produced free-text descriptions of related products, which were then parsed to extract

vertical linkages. These descriptions were aggregated across iterations to form a prelim-

inary network structure, where nodes represent HS product codes and edges denote the

input-output relationships inferred by the model. To ensure robustness and consistency

across iterations, the output from each iteration was weighted and aggregated, preserv-

ing the most consistent connections. This step allowed us to capture a range of possible

relationships while ensuring the network’s stability against potential LLM-induced vari-

ability.

21Note, the importance scores do not have any meaning across individual draws but provide a mere
rank ordering.
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Step 3: Creating Vector Embeddings and Matching HS Codes Given the free-text de-

scriptions generated by the LLM, the next challenge was to accurately map these to the

corresponding HS codes. Directly asking the LLM for HS codes posed several risks, in-

cluding nomenclature inconsistencies and a trade-off between precision and recall.22 To

overcome this, we used text embeddings to match LLM-generated descriptions to official

HS codes. Both the LLM-generated descriptions and the official HS code descriptions at

the 6-digit level were transformed into vector embeddings. A cosine similarity threshold

of 0.75 was applied to balance precision and recall effectively, ensuring that the connec-

tions within AIPNET were both accurate and consistent with official HS nomenclature.

This approach mitigated the risks associated with direct code retrieval and provided

a robust method for extracting and matching the free-text responses to the correct HS

codes.23

Step 4: Pruning the network After building the initial network, we implemented a

pruning stage to improve precision. Additional LLM queries were conducted to assess

whether each proposed input-output pair represented a legitimate production linkage.

For each pair of upstream and downstream HS code descriptions, the AI was prompted

to evaluate if one product could realistically be an input for the other. This step removed

incorrect linkages, enhancing the accuracy of the network by ensuring that only valid

input-output relationships remained. The pruned edge list was used to construct the

final network. This network was bidirectional, representing both upstream and down-

stream relationships. Further details on how we operationalized the latest AI tools to

populate the entire network structure over HS product codes are documented in Ap-

22This was a significant issue as the model would often hallucinate numerical codes and incorrectly
assign products to codes that did not match. The model had clearly learned the basic idea that codes were
numerical and had technical-sounding names, but could not recover specifics.

23We experimented with ‘Retrieval Augmented Generation’ or RAG, which involves producing further
context to the LLM. This has shown promise in other applications (examples), but in our context it failed.
Our experience was such that the RAG-approach was unable to list multiple codes, perhaps as this technol-
ogy is geared towards findings a single accurate response rather than searching across a large text-corpus
for many valid answers. It is likely that future generations of AI models will overcome this, making RAG
a good choice for high-dimensional classification challenges such as this.
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pendix B.

(Figure 4)

3.3 Network Descriptive Statistics

Table 2 presents an overview of AIPNET’s key structural characteristics at both the HS6

and HS4 levels of product aggregation, such as the number of nodes and edges, average

degree, and the size of the largest connected component, across different configura-

tions.24

At the HS6 level, the network consists of 5,633 nodes and 980,018 edges, with an

average degree of approximately 348. Similarly, at the HS4 level, the network com-

prises 1,190 nodes and 48,212 edges, with an average degree of approximately 81. Both

networks are sparsely connected, with a density of 0.03, yet they exhibit moderate clus-

tering, as indicated by global clustering coefficients of 0.37 and 0.32 at the HS6 and HS4

levels, respectively. This suggests the presence of clusters within the production process.

The assortativity is positive at 0.14 for the HS6 network and 0.06 for the HS4 network,

indicating a mild tendency for products with similar connectivity to associate with each

other, potentially forming specialized production clusters. Both networks are contained

within a single connected component, suggestive of cohesive structures.

To gain a better intuitive understanding of the relationship between different nodes

and the number of incoming edges, we leveraged the Broad Economic Categories (BEC)

classification to explore to what extent our network is predictive of the typical classi-

fication of a specific node in terms of input/output labels or its relative position in a

supply chain. For each HS6 good, we label this good as per the BEC classification as

24Network terms used in this section include: (1) Network density—the ratio of actual edges to pos-
sible edges, reflecting how interconnected the network is; (2) Global clustering coefficient—a measure
of the degree to which nodes in a network tend to cluster together; (3) Assortativity—the preference
for nodes to attach to others that are similar in some way, such as having a similar degree; (4) Average
degree—the average number of connections per node, indicating typical connectivity; (5) Connected com-
ponents—distinct sub-networks within the overall network. These terms are commonly used in network
analysis to describe a network’s structural properties.
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either an end use being capital, intermediary, or final consumption. This categorisation

is mutually exclusive and collectively exhaustive.

Figure 6 characterises each node’s classification in terms of the BEC and compares

this with a key parameter of interest: the number of output edges or output uses. Not

surprisingly, intermediary processed, capital goods, and primary intermediary goods,

on average, have many more output uses, suggesting that they are inputs in many other

economic processes before reaching end consumption.

(Figure 6)

Nodes that are classified as (end) consumption, on average, and not surprisingly,

have few other output uses. This implies that, in empirical exercises, where we are con-

trasting end consumption goods with other types, intermediary goods are characterised

by relatively few input edges and many potential output uses. This highlights that, on

average, when we explore variation that arises from the number of input edges, for ex-

ample, such goods would typically be more likely to be capital goods, while goods with

many output edges are unlikely to serve the function of final goods consumption but

are much more likely to be considered intermediary goods.

The distinction between different types of goods is particularly relevant, as interven-

tions such as industrial policy or persistent economic shocks are much more likely to

result in a growth in trade of capital goods to build local capabilities, while temporary

supply disruptions or shocks may more likely yield an increase in imports of intermedi-

ary goods as a mechanism of temporary substitution.

3.4 Network Validation

One commonly used source of information on the structure of production networks is

the Input-Output Tables (IOTs) and Supply-Use Tables (SUTs) published by many na-

tional statistics authorities. The IOTs record transactions across industries, whereas the
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SUTs show the products and services being used and produced across each industry.25

Conceptually, the IOTs/SUTs are based on a domestic economy’s transactions covering

both goods and services. This is vastly different from the way AIPNET was built, which

instead utilizes the vastness of the textual pre-training in recent LLMs to recover rela-

tionships between traded physical products. Nonetheless, we would expect an overlap

in particular among the goods-producing sectors with the input/output structure that

AIPNET implies. We proceed with such an empirical comparison and validation.

For this comparison, we collected data from the IOTs published by the United States’

Bureau of Economic Analysis (BEA) and the Mexican national statistics agency, INEGI.

The BEA periodically produces industry-level Input-Output tables derived from the eco-

nomic census and complementary sources at the Department of Commerce.26 We em-

ployed the 2017 version obtained from Bureau of Economic Analysis, U.S. Department

of Commerce (2022). Similarly, we used the 2023 release of the Mexican Input-Output

tables published by INEGI (INEGI, 2023). These datasets include the Use table and the

Direct Requirements table for both countries.

The Use table is a matrix of approximately 402 commodity-producing and 402 receiv-

ing industries for the U.S. data. The Mexican matrix is a product-by-product matrix with

263 product categories. Thus, a square in the matrix reports the value of commodities

produced by industry i consumed by industry j. The US BEA-industry classification

closely corresponds to the NAICS, while Mexican 4-digit SCIAN is identical to the 4-

digit NAICS.

Requirement tables are derivatives of use tables. The agencies infer the share of inputs

from industry i used to produce a dollar output of industry j. The Direct Requirement

table accounts for immediate inputs. Thus, direct requirement tables are normalized by

25This is often referred to by statistical authorities as ‘balancing the SUTs’. This involves compiling the
unbalanced SUTs from raw data inputs, which span the three different views of total GDP, namely the
production, expenditure, and income view. In theory, these three views of GDP should equate, and so
the balancing procedure seeks to impose this accounting restriction by apportioning data across different
products and industries in the economy.

26Refer to Horowitz and Planting (2006) for detailed accounts of the BEA methodology.
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the industry’s size and report which upstream industries produce inputs, i.e. compo-

nents, required for a downstream industry’s production. It is the empirical measurement

closest to AIPNET.

To bring our network to the BEA and INEGI industry levels, we used correspon-

dence tables for 6-digit HS codes and industry codes as provided by Antràs et al. (2012)

for the U.S. and by Pierce and Schott (2012) for the Mexican concordance. Our 6-digit

code network is generally more granular with more than 5,000 product codes, assign-

ing a binary variable that takes the value 1 for connected dyads. As multiple product

dyads often map into a single industry dyad, we averaged the binary connection val-

ues in our network. We then standardized both the I-O table values and the network

scores. A drawback of aggregating our network using these correspondence tables is

the considerable loss of data granularity. We remained with approximately 205 BEA

industries for the U.S. and 263 for Mexico. These industries broadly correspond to the

goods-producing sectors of the economy.

Our comparison of AIPNET to the US official economic structure is performed using

the below regression model:

Yi,j = βNi,j + Ui + Dj + ϵj,i (1)

where Yi,j denotes the inputs produced in industry i by industry j according to

the BEA Input-Output tables. Ni,j is an aggregated industry-level score and indicates

whether, according to our network, industry i’s output is a required input for industry

j’s production. Ui and Dj are either sector-specific intercepts for the sectors of industries

i and j or industry-specific intercepts for the industries i and j.27

The binscatter plots in Figure 5 illustrate the strong positive relationship between the

empirical networks derived from the Input-Output tables and our network. As antic-

ipated, the Network score shows the strongest explanatory power in the Requirement

27The BEA categorizes industries into 23 sectors.

18



tables, particularly the Direct Requirements table. The slope coefficients from the re-

gression analysis indicate that a one standard deviation increase in the Network score is

associated with an increase of approximately 0.035 standard deviations in the U.S. Use

Value, and 0.208 standard deviations in U.S. Direct Requirements. Similarly, the results

for Mexico show comparable patterns, with the Network score explaining a significant

proportion of the variation in Mexico’s Input-Output relationships. This strong correla-

tion supports the credibility of our network model in capturing production relationships

that are reflected in empirical inter-industry trade data across different national contexts.

Appendix Table A.3 reports the regression outputs of equation 1. We regress the

standardized Input-Output values on the standardized network scores without fixed

effects in columns (1), (4), and (7), with upstream and downstream sector-fixed effects in

columns (2), (5), and (8), as well as with industry-fixed effects in the remaining columns.

The coefficients are highly significant across all models and can be interpreted as the

standard deviation increases in the Input-Output value as our Network score increases

by one standard deviation. The consistency of these results across both U.S. and Mexico

Input-Output tables reinforces the robustness of AIPNET.

(Figure 5)

Validation of AIPNET with Perturbed Networks There may be natural concerns about

the extent to which an AI-retrieved production network may be subject to noise due to

the probabilistic nature of the inference that is carried out by LLM in the information

retrieval step. We evaluate to what extent making the AIPNET stochastically noisier,

dampens the correlation between AIPNET and the SUT/IO tables. We do so by intro-

ducing perturbations on AIPNET, probabilistically rewiring the edges in the network

varying from 1% to 100%. The rewiring was conducted using the Erdos-Renyi random

graph model, a method that introduces controlled randomness while preserving the

network’s structural properties (Erdos, Rényi, et al., 1960). Specifically, edges between

nodes were rewired with a probability proportional to the perturbation intensity, re-
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sulting in a randomized network that maintains the original number of edges but with

varying levels of structure degradation.

We then compared these perturbed networks against the Input-Output (I/O) tables

by calculating the difference in R2 between the original, unperturbed network and each

perturbed version. The findings, presented in Appendix Figure B.7, demonstrate a clear

trend: as the intensity of perturbation increases, the R2 difference also increases mono-

tonically, signifying a decrease in the network’s predictive accuracy as it deviates from

its original structure. This pattern holds consistently across both U.S. and Mexico I/O

Tables—Direct and Use—highlighting that AIPNET’s structure encapsulates meaningful

economic relationships, which are progressively lost as noise is introduced. Through-

out the paper we will document that the positive results are robust to working with

perturbed networks.

3.5 Integrated Global Product Centrality (IGPC) and AIPNET

AIPNET provides linkages between different production pairs. For global trade analysis

it may be desirable to combine binary production links with actual data on the volume of

trade. We propose an Integrated Global Product Centrality (IGPC) measure to assess the

importance of products in global trade. The IGPC measure is formulated as an extension

of the PageRank algorithm, incorporating both the network structure and product- and

country-specific trade data. It is measured as:

X = (1 − d)B + dAWX

where X is the vector of IGPC scores, d is a damping factor, B is a base importance vector,

A is the adjacency matrix derived from AIPNET, and W is a diagonal matrix of weight

adjustments. This formulation allows the importance of a product to be influenced by

both its intrinsic trade characteristics and its position in the global production network.

The base importance B and weight matrix W incorporate two key trade metrics:
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Global Trade Share (GTS) and Trade Concentration (TC). For a product i, these are com-

bined as:

Bi = TCα
i × GTSβ

i

Wii = GTSγ
i

The parameters α, β, and γ allow flexible weighting of trade concentration, global trade

share, and their interaction in the network structure.

The AIPNET structure, encoded in A, determines how importance propagates through

the production network. A product used as input in many other products will have

more non-zero entries in its corresponding row of A, allowing it to accumulate impor-

tance from a wider range of downstream products. This captures that products central

to many production processes are inherently more important to global trade.28

The iterative nature of the IGPC calculation allows importance to flow through multi-

ple levels of the production chain. This feature captures the significance of products that

might not have high direct trade volumes but are crucial inputs in complex production

processes. For instance, a specialized component used in the production of advanced

electronics might have a higher IGPC score than its direct trade volume would suggest

due to its position in the production network.

By integrating the structural information from AIPNET with empirical trade data,

IGPC provides a nuanced measure of product importance. It balances the intrinsic trade

characteristics of products and their roles in global supply chains, offering insights that

go beyond simple trade volume statistics. This makes IGPC a valuable tool for analyzing

global trade patterns, identifying key products in supply chains, and informing trade

policies in an increasingly interconnected global economy.

We next turn to studying these phenomena using global trade data.

28We provide more formal details on the IGPC construction in Appendix E.
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4 Global Trade Patterns

Next, let us showcase the value of using a product-level production network by leverag-

ing AIPNET to document patterns in global trade data. Specifically, we merge AIPNET

with international trade data to measure the Integrated Global Product Centrality (IGPC)

of goods. This allows us to shed light on global trends in trade, focusing on the criticality

and centrality of goods in the global production network.

4.1 Global trends in goods trade centrality

IGPC provides a comprehensive measure of product centrality that reflects both the com-

plex structure of global production networks and the empirical realities of international

trade regarding trade volume and concentration (see section 3.5). We begin by con-

structing import-volume indices at constant prices weighted by a time-invariant IGPC

measure of product centrality.

Aggregated data Figure 7 Panel A compares countries’ import centrality in global pro-

duction networks. China’s index has risen sharply while the US’s has declined, with

the EU remaining stable until a marked shift in 2022. These trends suggest two inter-

pretations: China’s increasing sophistication may indicate growing domestic production

capabilities concentrated around importing critical goods, while declining US import

centrality could reflect reduced global dependence on domestic supply of critical in-

puts29.

Panel B compares trends between a range of products classified by their baseline

IGPC index in terms of their importance across quartiles. On average, we observe that

goods with a higher IGPC importance score have trended upward, suggesting that global

trade of these critical products increased during this period.

(Figure 7)
29A notable driver of the reduction in the centrality of US import bundle over this period is the reduced

reliance on imported hydrocarbon productsdue to the shale booms (Arezki, Fetzer, & Pisch, 2017).
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Figure 7 Panel C and D residualises the raw data using country-by-year and time-

invariant country-by-product fixed effects allowing us to observe the compositional

shifts underlying the raw trends in the aforementioned panels. We find similar pat-

terns that highlight the divergence in both the composition of imports by production

network centrality across China/US (panel C), as well as the shift in global trade away

from lower-importance goods towards higher-importance goods (panel D). These pat-

terns suggest a structural shift in the composition of imports after 2016, when trade

barriers and other geopolitical events became more salient.

4.2 Time-varying Product Importance

Alternatively, we can study the evolution of specific products’ importance over time,

leveraging the time-varying aspect of IGPC. Figure 8 illustrates shifts in the relative

importance of different products within global supply chains between 2010 and 2022,

as measured by the Input Global Product Centrality (IGPC) index. Panel A highlights

trends in the importance of traditional energy products in the production network, show-

ing a decline in the trade network centrality of crude oils and nuclear energy. It also

highlights the significant spike of electrical and natural gas energy in 2022, likely driven

by the dislocations of global energy trade following the Russian invasion of Ukraine.

Panel B shows a selection of products whose importance has decreased notably. This in-

cludes products like CDs/DVDs, photographic film, and typewriter parts. Panel C looks

at a selection of emerging products whose importance has risen dramatically (note the

log scale in this exhibit). These emerging technologies include digital integrated circuits

(e.g. chips) and lithium compounds (e.g. used in battery technology).

(Figure 8)

These structural changes are further reflected in the broader economic categories

(Panel D of Figure 8), where capital goods and industrial supplies have shown sustained

increases in production network importance, rising by approximately 30-50% relative to
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their 2010 levels. In contrast, fuel and lubricants have experienced a notable decline, par-

ticularly after 2014, aligning with the reduced importance of traditional energy products

shown in Panel A. This transformation suggests a fundamental shift in global supply

chains toward high-technology products and away from conventional industrial and

energy inputs, potentially reflecting technological change and evolving environmental

priorities.

4.3 Trends for Climate Action and Defense Products

We next present some summary evidence focused on trade data along value chains for

two classes of goods that are particularly salient in light of geopolitical developments:

goods used for climate action compared to goods for primarily military use.30

(Figure 9)

In Figure 9 we show a simple index of import volume at constant global average

prices, aggregating global imports of both the focal set of products (Panel A) as well

as the set of directly related inputs used to produce these goods according to AIPNET

(Panel B). Panel A shows results for the importation of the focal set of products. We see

a sharp increase in imports of climate action-related goods from 2020 onward.Panel B

turns to products directly upstream of arms and green transition products. For green

transition products, we see a more gradual rise in imports of inputs. We also see a

steady rise in global trade for products used to produce defense-related products. These

patterns may suggest increasing localization or ‘onshoring’ of the production of the end

products.

30We focus on Climate Action Goods, 841861/841581 - Heat Pumps, 850231 - Wind Turbines, 854140 -
Solar Panels, 840110 - Nuclear Reactors, 841011 - Hydroelectric Turbines, 870380 - Electric Vehicles, 850760
- Electric Storage; for the Military goods we consider 930190 - Military weapons, 930200 - Revolvers and
pistols, 1930320 - Shotguns, 930120 - Artillery weapons 930621/930630 - Cartridges, 930690 - Munitions,
871000 - Armored vehicles, 930700 - Swords and bayonets, 880220/880230 - Helicopters, 880240 - Un-
manned aircraft, 880250 - Spacecraft 880220/880230/880212 - Military drones, 880240 - Military aircraft,
880330 - Aircraft parts.
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4.4 Sanctioned goods

Another use case of the study of import patterns in focal goods and their inputs are

sanctions established against Russia in response to the invasion of Ukraine. These are

presented in Panel C and D of figure 9 respectively. In both figures, we consider sanc-

tions on ‘critical’, ‘military’, and other ‘sanctioned’ products.31

Panel C shows the import index (by value) for goods identified as ‘critical’ and other

‘sanctioned’ dual-use products.32 Despite the war and sanctions, import values of these

goods have not declined significantly and display fluctuating but resilient import val-

ues, suggesting widespread evasion of sanctions possibly via third countries. We see

a permanent drop in military imports, as measured by official publicly available trade

data33

Panel D presents the import index for inputs used to produce sanctioned goods.

Remarkably, the import of inputs, especially those related to military goods, has expe-

rienced the strongest contraction since the onset of the conflict. This steeper decline

indicates a tighter restriction on the components that are essential for manufacturing

military-related products, likely reflecting more vigorous enforcement or greater dis-

ruption in supply chains for these input goods. This is perhaps surprising, given the

incentive to evade sanctions through localization of production. The sharp decline is,

however, followed by a rebound and perhaps foreshadows a structural transformation

in years to come. This could also reflect well-designed sanctions that foresaw these

potential localization efforts.

31The list of sanctioned products were taken from EU lists, respectively at https://finance.ec.europa
.eu/publications/list-economically-critical-goods en (‘critical’ goods) and https://finance.ec

.europa.eu/publications/list-common-high-priority-items en (other ‘sanctioned’ products).
32An immediate corollary implication of AIPNET is to leverage it to identify or map out the capability

space of countries.
33The data underlying these indices comes from monthly trade values reported by partner countries

trading with Russia, as available from the UN Comtrade database. Due to limited quantity data, the
analysis relies on trade value trends, which may even understate the actual decline in volume, as wartime
inflationary pressures likely elevate prices. Thus, the observed drop in trade values likely corresponds to
an even greater reduction in the physical volume of imports. This may well be masked. (Egorov, Korovkin,
Makarin, & Nigmatulina, 2024) present even richer patterns using more reliable trade data from Russian
customs authorities and study sanctions and their effectiveness with high precision.
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The capacity to study rich patterns of substitution across the production network

using AIPNET opens up many avenues of further analysis of sanction. Beyond the study

of outright evasion of sanctions, the network can be used to study the role of dual-

use products, which embed a range of productive capabilities and facilitate smoother

structural transformation of the domestic economy.

4.5 Trends in Supply Shocks along Value Chains

We next present evidence of persistent supply shocks, as measured by persistent in-

creases in unit prices. We measure these shocks using reduced-form analysis of time-

series patterns, identifying structural breaks in the log-unit prices in a parsimonious

manner, discussed in Appendix F. In this subsection, we document patterns of these

supply shocks across space, time and along value chains. We will use these price shocks

in our analysis of spill-overs in Section 5, where we consider how such shocks drive

import substitution across the supply chain.

In figure 1, panel D, we documented the large increase in supply shocks since 2016.

In Figure 10, we further break this down to characterize these shocks along input/output

linkages. Specifically, we characterize both the spatial distribution of supply shocks post-

2016 (Panel A), the product composition of changes to supply shocks pre- and post-2016

(Panel B), and the evolution of supply shocks across the production network centrality

distribution (Panel C).

In Panel A, we see that Canada, China, the US, Russia, Saudi Arabia, Argentina and

Switzerland have been most exposed to said shocks. These are broadly aligned with

priors on a host of trade frictions and other global events, including the escalation of

trade frictions, and other relevant events, some of which we alluded to in Figure 1.

Panel B characterizes the distribution of the change in the count of these supply shock

events during the pre- vs post-2016 periods. We see that the level change in the count

of supply shocks is concentrated among intermediary processed goods and (final) con-

sumption goods. This highlights that typically large persistent shifts in the unit price
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of traded goods since 2016 have skewed towards products closest to the bottom of the

production network, i.e. closer to final consumption.

Lastly, figure 1 Panel C documents the level change in supply shocks according to

quartiles of production network centrality, again using our IGPC measure. We observe

that the increase in shocks is most pronounced for goods that have relatively low crit-

icality or importance. This may square well with a narrative of localization suggested

in Panel B and D in Figure 7, where we noted that imports as of goods with relatively

low IGPC importance, in relative terms, saw a decline in imports – possibly owing to

the consequence of these goods experiencing many more price shocks in the post-2016

period relative to those with higher network centrality.

Overall, the analysis of price shocks (as measured by structural breaks in unit prices)

reveals that such shocks are unevenly spread across geography, increased since 2016,

and that this post-2016 increase skews towards more consumer-facing goods with lower

criticality in production networks that may be easier to onshore.

(Figure 10)

The rich connections between granular products and our production network facili-

tate many new ways to look at global trade patterns. We demonstrate this with a handful

of key results but stress that the potential for more focused analysis using this product

extends well beyond these findings. In the next section, we demonstrate a more direct

way to exploit the network representation, wherein we consider how import demand

spills over (i.e., substitutes) along the production network.

5 Onshoring as Evidence of Production Network Spillovers

The previous section highlighted a broad set of use cases and documented some patterns

in trade data that are informed by AIPNET. Some of these patterns may be consistent

with import demand substitution. When demand moved from more downstream to
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more upstream goods, this is evidence of ‘onshoring’ i.e. the localization of production

processes.

To study this kind of onshoring, we return to global trade data and utilise the pro-

duction network linkages to construct product-pairs or dyads. We carry out two sets

of exercises using this structure: First, a cross-country exercise exploiting variation of a

range of ‘supply shocks’ (i.e. structural breaks in the the unit-price of traded goods).

Second, we leverage a natural experiment which imposed a sizable supply shock to spe-

cific products following an economic blockade. This latter exercise allows for a cleaner

causal analysis, whereas the first exercise allows us to compare countries according to

their propensity to substitute across the production network in the face of price shocks.

In both cases we leverage dyadic regression designs.

We first layout a general overview of the structure of the data for the analysis, layout

our production network dyadic empirical design, and lastly present the results of our

analysis.

5.1 Data Structure and Product-Dyads

To study import demand substitution along the production network, one would ideally

have knowledge of the intended use of a given import product. That is, ideally, we

would observe trade data that was use-specific.

Such data is hard to come by for at least three reasons: First, it requires highly gran-

ular information on importer-firm production processes.34 Second, the ex ante stated

uses often belies the ex-post use, especially when goods are multi-purpose and can be

34Data that may capture the intended end-use of an upstream good is available with tax and custom
authorities, in particular considering capital goods or goods that could have dual uses in production. As
such, these goods would be subject to specific forms of export handling protocols that would produce
such a data trace: export control licenses; end-user certificates; trade finance data; international commer-
cial terms or contracts. Each of these would typically state the intended end use. With increasing digital
payments, or through the use of DLT technology, solutions for supply chain transparency could arise
producing anonymized data with similar effect; alternatively, as countries tax systems are better digitally
integrated with customs declaration and invoice-level VAT, the tax system could support a low cost solu-
tion. This is particularly salient when it comes to ESG goals, but may reduce the economic role of a range
of – typically licensed – traditional service sector occupations.
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deployed, resold, or repurposed (a feature especially of capital equipment). Third, there

are often a host of ‘middle men’ who facilitate trade. Such entities may identify in a cer-

tain industry, but very likely resell imports without transformation - making the industry

code of imports a poor proxy for the end use of capital and intermediary inputs.35 These

challenges not withstanding, we recognize that for many goods our network identifies

ex ante possible usages, not actual ex post production.

Being limited to our fixed production network and global trade data at the product,

but not the input/output dyad level poses some challenges. Namely, we have to rec-

oncile that the driver of variation in the observable import demand for a specific good,

Importu,c,t, is influenced by a host of factors. This includes the direct usage of the good

for final consumption, or the usage of the good for a potentially large set of production

applications. If we make a strong assumption of independence, we can express the vari-

ance of the import demand time-series of one good u in country c during time period t

as:36

Var(Importu,c,t) =

Final consumption︷ ︸︸ ︷
Var(Importu, f ,c,t) +

Capital use︷ ︸︸ ︷
Var(Importu,k,c,t) +

Intermediary︷ ︸︸ ︷
κ

∑
j=1

Var(Importu,dj,c,t)︸ ︷︷ ︸
Production Network Linkages

(2)

where Importu,c,t is the observed import demand, Importu, f ,c,t is the latent unobserved

demand for this product for final consumption, and where Importu, f ,c,t and Importu, f ,c,t

represent the latent demand for product u in country c during period t as capital or

various intermediate uses.37

35The case of de-minims trade and direct sale to consumers reduces the middle men involvement,
but threatens to hollow out traditional service sector business models designed around bulk purchase,
storage, distribution and after sale services. The environmental costs associated with direct shipping,
often involving airfreight needs to be considered in cost-benefit analysis (P. Fajgelbaum & Khandelwal,
2024).

36In the econometric specification, we will account for country c by HS2 digit level u′ time fixed effects,
which will absorb variation in demand shifts towards close substitutes that would be typically found
within the same harmonised system nomenclature branch.

37This decomposition has be proposed by (Bems, Johnson, & Yi, 2011) and (di Giovanni, Levchenko,
& Méjean, 2014), who highlighting the amplification effect of intermediate goods trade. This and other
empirical work finds that, in particular, the variation in capital goods trade tends to be sizable, allowing
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It is clear from the above that final consumption may be a confounder, which can

vary due to local preferences, macroeconomic shocks, and the like.38 To address this, we

utilise a highly saturated set of controls in our product-dyad regression design, which–

along with evidence that final demand is far less volatile that capital and intermediary

demand,39 we proceed with some measure of comfort that our analysis is informed by

the relevant variation in product-country-time import demand.

5.2 Cross country evidence

We begin by document trends in global trade within this fully dyadic empirical frame-

work that exploits variation in the topology of the production network graph. That is,

we explore to what extent upstream goods that have many downstream uses – which,

we can characterize as intermediate or capital goods – see, on average, a differential

evolution of imports over time.

We estimate on a fully dyadic panel dataset the following specification:

log(Importu,c,t) =
2022

∑
τ=2012

βτ × 1(t = τ)× ωu,d + αu,d,c + ηuhs2,c,t + ϵu′,d′ (3)

Here, the dependent variable is the import of a 4-digit upstream goods u, into country

c in year t. The ωu,d is our binary linkage indicator that captures whether a specific

upstream good u serves as an input to downstream good d:

ωu,d =


1 if input u is a an AIPNET input used to produce d

0 otherwise

for reasonable assumptions about this latent demand component being a useful source of variation, as our
application will require.

38While final demand is a confounder, there is evidence that consumer tastes and preferences evolve
quite slowly, limiting the variation attributable to this latent component (see e.g. (Bronnenberg, Dube,
& Gentzkow, 2012) ,(Handbury & Weinstein, 2014),(Bar-Gill & Fershtman, 2021),(Griffith, O’Connell, &
Smith, 2019))

39See (Bronnenberg et al., 2012) ,(Handbury & Weinstein, 2014),(Bar-Gill & Fershtman, 2021),(Griffith et
al., 2019)
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That is, with this data structure and empirical framework, we allow each good, poten-

tially, to serve as an input in all other HS4 goods.

The baseline specification adjusts for dyad by country specific fixed effects, αu, f ,c,

which accounts for idiosyncratically higher levels of imports for each potential down-

stream d use of an upstream good u. For example, a country with a relatively low level

of economic development may exhibit a notably higher level of imports of certain up-

stream goods u that are not feeding as an input into the production of marketable goods,

but rather, enter directly final goods consumption that may involve a process of home

production. We also account for country-specific HS2-digit level time fixed effects for

each upstream good. This removes country-specific unobservable idiosyncratic shocks

to import demand within each HS2 good. This accounts for demand changes poten-

tially induced by price shocks that may trigger substitution to close substitutes, which,

typically, would be classified within the same two digit class of goods. Standard errors

in this specification are blocked by upstream HS2 x downstream HS2 two digit pairs,

allowing for arbitrary correlation between countries and within countries error terms at

a rather coarse two digit by two digit block structure.

Note, that this specification is broadly equivalent to estimating

log(Importu,c,t) =
2022

∑
τ=2012

βτ × 1(t = τ)× Cku + αu,c + ηuhs2,c,t + ϵ(i,t)

where

Cκu =
1
J ∑

d∈κ,d ̸=u
ωu,d

measures the number of downstream uses, or outdegree links of a good u.

That is, the empirical interpretation of patterns in specification 3 would indicate that

the βτ capture the differential evolution of imports of upstream goods that have rela-

tively more downstream uses in production processes, which is generally the case for

intermediary goods and capital goods (see Figure 6).
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Results The results from this analysis are presented in Figure 11. The plot visually

presents the estimated coefficients βτ with 2016 being the omitted year. We note that,

over time, and relative to 2016, there has been a notable increase in imports of upstream

goods with, on average, more downstream uses as per AIPNET, compared to goods that

have fewer downstream uses.40 Given the characterisation in Figure 6, this suggests that,

globally, there has been a trend towards importing capital and intermediary goods – that

have many downstream uses – and less so, importing goods that are primarily serving

final consumption demand.

(Figure 11)

If anything, the dynamic prior to 2016 suggested a gradual decline, while from 2016

onwards, imports of goods with many downstream uses have increased with 2018 seeing

a sharp increase, potentially related to the starting escalation of trade disputes during

President Trump’s presidency, followed by yet another sharp increase in 2021, and then,

again a further increase in 2022, that marked the start of the war in Ukraine. This may

map into the characterisation of the supply shocks that we detected in Section 4.5, which

suggested an increasing number of supply shocks for finished consumption goods and

processed intermediary goods. The above analysis suggests that countries, on average,

increased imports of intermediary and capital goods, which, on average, have more

outdegree links.

We next explore this pattern country-by-country and study the onshoring hypothesis

following price shocks more explicitly.

40The dependent variable here is the log of imports, capturing the intensive margin. Appendix Figure
A.3 presents the results where the dependent variable is a binary indicator indicating any imports.
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5.3 Cross country evidence on supply shocks and onshoring

We next estimate the above specification split-sample country-by-country, replacing the

flexible time-dummies with a simple before- and after 2016 dummy. That is, we estimate:

log(Importu,c,t) = βc × 1(t > 2016)× ωu,d + αu,d,c + ηuhs2,c,t + ϵu′,d′ (4)

Note that here, βc captures a separate coefficient, one for each country c. This allows us

to explore variation in the extent to which the trend that was detected globally varies

between countries. This reduced form measure, βc, itself has no substantive economic

meaning apart from indicating that countries that exhibit a positive coefficient would

have seen an increase in imports of upstream goods with many downstream uses, which,

we characterized as being, more likely to be considered intermediary or capital goods

based on their BEC classification.

Given the observation in Panel D of Figure 1 and in Figure 10, we can think of the post

2016 dummy as being a crude proxy for the sharp increase in supply shocks that started

hitting intermediary and consumption goods from 2016 onwards. We also estimate a

parametric specification where we replace post 2016 dummy variable with the filtered

price shocks. That is, we estimate:

log(Importu,c,t) = [βd,c × Shockd,c,t + βu,c × Shocku,c,t]× ωu,d + ξ × Shockd,c,t

+ η × Shockd,c,t + αu,d,c + ηuhs2,c,t + ϵu′,d′

(5)

Here, the specification and the parameters of focus are βd,c and βu,c. Specifically, a

positive sign, βd,c > 0 would be indicative of onshoring. That is, imports of upstream

unfinished goods used in the production to make a finished downstream good d, are

increasing following a supply shock that leaves the downstream finished goods persis-

tently more expensive. Naturally, we would only expect such a dynamic to play out

between price shocks hitting downstream goods d, if said upstream good u is an AIP-

NET input, ωu,d = 1, in the production of downstream good d.
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Further, we would, on average, expect that the net direct effect of price shocks to

upstream goods to be negative, βu,c < 0. That is: imports of unfinished upstream goods

contract, if the upstream goods become more expensive, on average.

To understand the relationship between the two specifications, consider that the first

model uses a post-2016 indicator interacted with the upstream-downstream linkage to

capture changes in import patterns after 2016. In this specification, the coefficient βc

measures the average change in imports of upstream good u into country c after 2016,

specifically for goods linked via ωu,d to downstream uses d. Essentially, βc captures the

combined effect of all factors that changed after 2016 and affected imports through these

linkages. We would expect that the emergence of industrial policy and explicit localisa-

tion policies that Panel C of Figure 1 suggested to leave marked direct effect, on average,

irrespective of the role of market signals or supply shocks could play, which would be

picked up by the βd,c in specification 5. That is, we would expect the coefficients βc to

be a catch all term that may pick up industrial policy induced localisation, as well as

price-shock induced localisation. This should be particularly the case for countries that

have been subject to a broad range of supply shocks, such as China, the US, the Middle

Eastern countries (Saudi Arabia, Qatar and the United Arab Emirates) and Canada.

We present the results from estimating specification 4 and 5 visually in Figure 13.

Each dot that is plotted on this canvas represents a pair of point estimates, (β̂c, β̂c,d). The

x-axis plots the non-parametric post 2016 coefficient, which captures, to what extent a

country has seen a differential increase in its imports of upstream goods that have many

AIPNET input-output linkages – typically capital or intermediary goods. The vertical

axis captures the extent to which imports of upstream goods are increasing following

supply shocks to downstream goods.

(Figure 13)

The figure suggests that the two phenomena that we are measuring here are not

statistically independent. Along the y-axis providing the estimate of the price-shock
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induced onshoring coefficient, for 75 out of the 120 countries, we observe a positive

coefficient β̂c,d indicating an onshoring dynamic following a price shock. Considering

the x-axis, for 77 countries out of 120, we notice a marked post 2016 increase of imports of

upstream goods with more AIPNET outdegree links – typically capital and intermediary

goods. The top right quadrant captures the overlap of the two estimated relationships.

That is, a set of countries where we noticed a marked increase in imports after 2016 of

mostly upstream capital or intermediary goods, coincides with the set of countries that

have experienced notable increases in upstream imports following downstream supply

shocks that mostly persistently increased the cost of finished consumption goods and

processed intermediate goods. We can interpret this as capturing the extent to which

economies have sufficiently well developed market-based institutions.

Among the set of countries that appears in the top right, we explicitly want to high-

light Qatar. We will present a natural experiment pertaining to Qatar that highlights the

onshoring effect following a large trade blockade by its neighbouring countries.

Robustness Table 3 presents pooled regression results from the global exercise on the

fully dyadic dataset. Column (1) presents the average post 2016 increase in imports of

goods with, on average, more AIPNET outdegree links that is visually presented in Fig-

ure 11. Column (2) focuses on the price-shock regresson equivalent. The sample here is

slightly smaller owing to the fact that we do not have price measures for all goods. Col-

umn (3) and (4) perform the equivalent exercises just focusing on the extensive margin

of imports. Note that in column (4) the direct own effect is removed as this variable is

perfectly collinear with observing imports as prices are derived from the import data.

The pooled regression highlights that globally, an onshoring dynamic seems to be in

place. Our subsequent exercises break this dynamic down for each country in turn.

Appendix Figure A.4 presents the results for the perturbation exercise whereby we

successively make the network more noisy through rewiring edges (see section B.6).

The top panel of the figure presents the distribution of the country-level coefficients for
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two values of the perturbation parameter: p = 0 and p = 50%. We note that as the

production network becomes more noisy, the country-level estimated coefficients shrink

towards zero along both axis. The bottom panel presents these observations plotting the

average distance of each estimand from the respective origin across different perturbed

AIPNET production networks. We observe that, as the perturbation increases to 100%,

i.e. when the production network becomes full noise, that the length of the average

squared estimated country-level coefficients converge to zero. This highlights that we

detect systematic variation that is bespoke to the production network we are leveraging.

An alternative way to estimate specification 5 would be to focus only on edges that

are part of the prodution network, i.e. we focus the estimating sample on edges where

ωu,d = 1. The estimating equation then becomes

log(Importu,c,t) =ξc,d × Shockd,c,t

+ ηc,u × Shockd,c,t + αu,d,c + ηuhs2,c,t + ϵu′,d′

(6)

We present the results from this specification in Appendix Figure A.5. We contrast

the regression coefficients from the fully dyadic specification with the subsample where

ωu,d = 1. We find qualitatively very similar results. Throughout, it is worth to take

specific note of the case of Qatar which, as becomes evident from the analysis, exhibits a

notable onshoring response in the cross country exercises. We next expand on the Qatar

natural experiment that relaxes a range of identification assumptions or concerns that

one may have with the cross-country exercise presented here.

5.4 Causal Evidence of Onshoring from a Natural Experiment

A natural experiment allows us to employ AIPNET to causally estimate how a surge in

trade barriers prompts an onshoring response. Between 2017 and 2021, Saudi Arabia and

its allies ceased all trade with Qatar.41 In response to the trade shock, Qatar increased

41The countries that participated in the blockade were the immediate neighbours Saudi Arabia and UAE,
Bahrain along with Egypt and some smaller countries such as Mauritania, Djibouti, and the Maldives.
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its previously low industrial and agricultural production capacity by shifting imports

towards capital and intermediary inputs of goods affected most by the blockade.

Figure 14 shows anecdotal evidence of the response in Qatar’s import patterns in

products primarily sourced through Saudi Arabia before the blockade. Panel (a) plots

the import value index of dairy products and the import value index of goods upstream

of these dairy products according to AIPNET. Panel (b) is the corresponding plot for

poultry. With the onset of the blockade, imports of dairy and poultry slumped. Mean-

while, total import values of their upstream goods surged.

In the following, we provide causal evidence of this onshoring response. In most

settings, it is impossible to causally study an onshoring response due to confound-

ing factors muting an onshoring response. For example, we may be concerned about

exchange rate movements, general equilibrium effects and complex interactions with

existing economic capabilities. The case of the Qatar blockade relaxes many of these

concerns. Qatar’s GDP is less than 1% of the global GDP, making it a relatively small

but open economy. The Qatari Riyal is also pegged to the US dollar, eliminating the

effects of the nominal exchange rate.

Blockade Exposure and Data Monthly import data at the HS product level for 2012

until 2023, published by Qatar’s National Planning Council, allows clear identification

of the onset of the blockade and a granular measurement of blockade exposure. We

measure blockade exposure for the 4-digit and 6-digit HS product category j as the

share of imports from blockading countries B before the blockade.

BlockadeExposurej =
∑2016

s=2013 ∑c∈B Importsj,c,t

∑June2016
t=Jan2013 ∑c∈C Importsj,c,t

(7)

where B is the set of the countries participating in the blockade, and C denotes the

universe of trading partners. Importsj,c,t is the value of imports of product category j

from country c in year t. The measurement is bounded by 0 and 1 and varies substan-

tially across product categories as shown in Appendix Table A.2. Figure 15 shows a
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stark association between the blockade exposure of goods and the increase in import

price increase and volume decrease after the blockade’s onset.

Dyadic regression evidence of Onshoring We next turn to studying onshoring in a

dyadic regression setting similar to the cross-country framework. Each observation is

a pair of a single upstream good u and a single downstream good d. Each product is

related in our supply-chain network representation.42 Rather than using a measure of the

price-shock, we use a goods blockade exposure, to proxy for the supply disruptions, to

then document the impact that downstream supply disruptions have on the importation

of upstream goods. We estimate the following specification:

log(importu,d,t) = β × Postt × Blockade Exposureu

+ γ × Postt × Downstream Blockade Exposured

+ αu,d + θt + ϵu′,d′ (8)

where u is an upstream product defined at the 4-digit or 6-digit product level, d is an

downstream product defined at the 4-digit or 6-digit product level, and t represents

each year-quarter. Fixed effects αu,d and θt control for dyad-specific and year-quarter

unobservables. As vertically related goods might be correlated in their blockade ex-

posure, we control for the direct effects of exposure for upstream good d by including

BlockadeExposured. Subsequently, γ recovers the causal onshoring response. A posi-

tive γ means that an upstream good’s imports increase when the downstream good is

strongly affected by the blockade – suggesting onshoring. The specification mirrors the

cross-country specification 6, except that here we replace the price shock measure with

our reduce form blockade exposure measures for both the upstream and the downstream

good. Standard errors are clustered at the 2- by 2- digit HS upstream and downstream

code pairs, ϵu′,d′ . An alternative is to carry out two-way clustering at the upstream and

42See Section 3 for an overview of how we construct this network using our Large Language Model
approach.
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downstream level. The chosen structure allows for arbitrary cross correlation within

blocks of related goods. In addition to this form of clustering, we also carry out the

perturbation exercise which induces noise in the dyadic relationships, which can be con-

sidered as a type of randomisation inference.

Results We present the results from the onshoring regression in the Qatar case study in

table 4. We present the analysis at the quarterly temporal resolution and at the HS4 and

HS6 digit granularity. We use blockade exposure as our primary causal shock variable

but do not differentiate between the blockade exposure of the upstream good (direct

exposure) relative to the blockade exposure of the downstream good in each dyad.

Panel A uses quarterly data at the 4-digit HS product level. Columns (1) through (3)

estimate the extensive margin effect of the blockade on the imports of upstream goods.

The direct impact is negative. In other words, if the upstream good’s import supply

chain becomes disrupted by the blockade, the likelihood of this good being imported to

Qatar will fall. The indirect effect of downstream goods exposure to the blockade shock

is positive. Thus, if the supply of downstream goods is disrupted, the importation of

upstream goods is more likely.

The extensive margin effects are presented in columns (4) to (6) using the log value

of upstream imports as the dependent variable. We note a large and negative direct

effect. The coefficient of 0.56 log points suggests that for the product with the median

exposure of 15% and positive imports after the blockade, imports fell by approximately

8.4 percent. Yet, this effect was notably muted if these goods have many downstream

uses and the downstream goods are also subject to large supply shocks. The indirect,

downstream exposure effect is positive and significant.

Taken together, these provide significant evidence of onshoring, namely that the

downstream exposure predicts an increase in imports of upstream goods. While the

direct effect dominates the average treatment effect of downstream exposure, one addi-

tional percentage of downstream exposure increases imports by approximately 16 per-
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cent. That this is significant and positive is strong evidence of onshoring, especially

given the onerous controls and likely attrition bias present due to sample pooling.

(Table 4)

Panel B carries out this analysis at the HS6 digit level. We find qualitatively very sim-

ilar results. However, the high volatility in trade data and the noisiness of measurement

cause the treatment effects to be subject to be measured less precisely.

Robustness In Figure 16 we present evidence on the timing of the effects. Effectively,

we simply estimate a time-varying coefficient capturing the blockade-exposures time-

varying impact on the imports of upstream goods. We note throughout, that the onset of

the blockade in the second quarter of 2017 is associated with a sharp decline of upstream

imports for which the blockading countries were the dominant suppliers. Conversely,

though, we see a notable increase of the import of upstream goods that are AIPNET

linked as inputs in the production of output downstream goods that is more pronounced

if said downstream goods also exhibited a large exposure to the blockade. This can be

considered as evidence in support of the underlying common trends assumption that is

implicit to this dosage difference-in-differences estimation.

In Appendix Figure A.6 we present the results from the network perturbation exer-

cise whereby we perturb the AIPNET supply chain linkages. The figure plots out the

evolution of the pooled estimated coefficients for both the direct- and the onshoring ef-

fect. We would expect that, as the AIPNET network linkages become more and more

noise infused as the perturbation increases, that the onshoring indirect effect shrinks to

zero. On the other hand, we would expect that the direct effect stays more static. This

is exactly the pattern that is visible. As the AIPNET network becomes more noisy, the

estimated coefficient on the onshoring exercise gradually shrinks towards zero, while

the direct effect remains intact.
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6 Conclusion

The resurgence of industrial policy, trade restrictions, and onshoring is evident world-

wide, driven by recent supply shocks, including the global pandemic and heightened

geopolitical tensions. This paper introduces the AI-generated Production Network (AIP-

NET), mapping input-output relationships across over 5,000 Harmonized System (HS)

product groups using large language models (LLMs). Our analysis with AIPNET reveals

a decrease in global imports of downstream goods relative to upstream inputs, signaling

a shift toward localized production. Persistent supply shocks post-2016 have driven this

trend, with many countries exhibiting an onshoring response to these disruptions. The

2017 blockade of Qatar provides causal evidence, demonstrating a shift toward domestic

sourcing for critical inputs.

AIPNET serves as a valuable tool for analyzing global trade dynamics, aiding efforts

in supply chain transparency, carbon emissions tracking, sanction efficacy, and price

shock propagation. Additionally, a promising direction for future development lies in

the creation of local AIPNET products—country or region-specific production networks

that reflect unique economic structures, resource endowments, and local industrial poli-

cies. By tailoring AIPNET to individual countries or regions, we can capture more pre-

cise, context-specific production dependencies and trade flows. Such localized versions

would be especially beneficial in identifying region-specific vulnerabilities to supply

chain disruptions, the potential for targeted onshoring, and the effectiveness of local

industrial strategies. Local AIPNETs could also reveal distinctive production network

characteristics shaped by national endowments, regulatory environments, or regional

trade agreements, offering tailored insights for policymakers working to strengthen eco-

nomic resilience at local levels.

Future research could also extend AIPNET into other economic domains. Expanding

to occupations could reveal skill dependencies and labor shifts, while mapping scientific

discovery networks using patent data would enhance our understanding of knowledge
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diffusion and innovation. Developing networks of capital flows or investment linkages

could shed light on financial interdependencies and resilience to economic shocks, and

creating consumer demand networks could highlight patterns in consumption, substi-

tution, and price transmission. These extensions underscore the potential of AI-driven

network datasets to advance economic insights and foster interdisciplinary collaboration

in policy studies.

While AIPNET currently focuses on trade in physical goods, future iterations could

also incorporate the service sector, especially given the role of AI and capital goods in

economic development. Expanding AIPNET’s scope would provide a more comprehen-

sive framework for analyzing the complexities of modern economies. In an increasingly

interconnected yet fragmented world, AIPNET and its many potential adaptations stand

as foundational assets for academia, industry, and policymakers, offering a robust and

adaptable toolkit for understanding and shaping the future of trade and production.
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7 Main Figures and Tables

Figure 1: Globalization under stress

Panel A: Restrictive trade measures in place Panel B: Growth in non-tariff measures
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Note: Panel A measures the number of active or announced restrictive trade measures recorded with the
WTO in 1000s. Panel B plots the level and change of non-tariff barriers applicable at the HS6 good level
from TRAINS UNCTAD. Focus is on sample of countries for which NTM data is available before or in
2015 and in the most recent year. The vertical axis captures the relative change in the NTM relative to the
baseline by country. Panel C documents the proliferation of industrial policies using the measure from
(Juhász, Lane, & Rodrik, 2023). Panel D presents a measure of the number of country-by-product pairs
that have had semi-persistent import price increases. We describe this measure in more detail in Section
5.
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Figure 2: One-degree Network for High-Fat Milk (HS: 0401.50)

High-fat Milk

Casein Products

Casein Products

Soups and Broths

Infant Food Packs
Ice Cream

Miscellaneous Food Prep

Bulk Cocoa Chocolate

Cocoa Food Prep

Milking Machines

Dairy Machinery

Dairy Machinery Parts

Purebred Breeding Cattle

Live Cattle

Purebred Buffalo

Live Buffalo

Live Goats

Live Camels

Alfalfa Meal

Forage Products

Large Steel Tanks

Yogurt Products

Fermented Milk Products

Whey Products

Natural Milk Products

Dairy Butter
Dairy Spreads

Dairy Fats & Oils

Fresh Cheese

Grated Cheese

Processed Cheese

Blue Cheese

Cheese Varieties

Steel Containers

Textile Packing Bags

Note: This figure presents the one-degree ego network of Full-fat Milk and Cream (HS: 0401.50) in AIPNET, shortened to “High-fat Milk”. Nodes
represent six-digit HS product codes, and the focal node (Milk) has a larger font size. Nodes are color-coded by the BEC5 end-use classification:
green for consumption goods, blue for capital goods, yellow for raw materials (intermediate-primary goods), and grey for intermediate-processed
goods. Edges are colored by the source node. As a consumer-facing non-durable good, Full-fat Milk and Cream serves as an input to various
dairy products, such as processed cheese (HS: 0406.30) and miscellaneous food preparations (HS: 2106.90). For a more extensive view of HS Code
linkages, please refer to our dataset and https://aipnet.io/.
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Figure 3: One-degree Network for Wind-powered Generators (HS: 8502.31)
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Note: This figure presents the one-degree ego network of Wind-powered Generators (HS: 8502.31) in AIPNET. Nodes represent six-digit HS
product codes, with the focal node (Wind Generators) highlighted in larger font. Nodes are colored based on BEC5 end-use classification: green
for consumption goods, blue for capital goods, yellow for raw materials (intermediate-primary goods), and grey for intermediate-processed goods.
Edges are colored by the source node. As an essential capital input, Wind Generators require various intermediary goods, such as electrical control
parts (HS: 8538.90) and hot-rolled stainless steel (HS: 7219.23). For more comprehensive HS Code connections, visit https://aipnet.io/.
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Figure 4: Flowchart of steps to build AIPNET
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Note: This flowchart illustrates the structured pipeline used to construct AIPNET, integrating advanced AI techniques with rigorous data pro-
cessing. The process is divided into three main components, each represented by color-coded sections. The leftmost section, shaded in green,
represents the Large Language Model (LLM) setup and querying process. It begins with a pre-trained model, fine-tuned through parameter
selection and custom prompting to identify input-output relationships for each HS code. The LLM iteratively generates descriptions of vertically
linked products, which are aggregated across multiple draws to account for the model’s probabilistic nature. The middle section, shaded in beige
and blue, represents the build stage, where product embeddings for both HS product codes and their vertically linked free-text descriptions are
created. These embeddings capture detailed representations of each product, which assist in matching relationships accurately. The rightmost
section, shaded with final node shaded in pink, shows the aggregation of vertically linked HS codes, followed by a pruning process. In this stage,
aggregated linkages are refined through additional AI querying to retain only legitimate input-output relationships. This step ensures that AIP-
NET’s connections are robust, with edge overlap used as a hyperparameter to align network sparsity with U.S. Input-Output tables and maximize
predictive accuracy (R²). This approach culminates in a refined AIPNET network that accurately represents real-world production linkages.
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Figure 5: Recasting AIPNET into coarse Input-Output Rela-
tionships across industry-classes is strongly correlated with
Official Data
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(c) Mexico: Use Value
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(d) Mexico: Direct Requirements
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Note: The binscatter plots compare our core network to (a) the Use table, and (b) Direct Requirements.
Each plot shows the relationship between residualized, standardized Input-Output table values and stan-
dardized network scores, both aggregated from the HS6 level to the BEA-industry level using 10 bins
based on the network score. The points represent the mean of binned observations, and the red line
shows the linear fit across these bins. We exclude observations with residuals in the top and bottom 5% to
avoid outliers. The slope coefficient (standard error) from the linear regression for each plot is: (a) 0.035***
(0.005), (b) 0.219*** (0.033), and (c) 0.208*** (0.031), indicating that the network score explains a significant
proportion of the variation in Input-Output relationships, especially in the Requirements tables. *** de-
notes significance at the 0.001 level.
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Figure 6: Relationship Between BEC Classification and Num-
ber of Output Uses for HS6 Goods

Panel A: Output links by end-use type Panel B: Number HS6 goods by end-use type

0

30

60

90

120

In
te

rm
ed

iar
y P

ro
ce

ss
ed

Cap
ita

l

In
te

rm
ed

iar
y P

rim
ar

y

Con
su

m
pt

ion
 P

rim
ar

y

Con
su

m
pt

ion
 P

ro
ce

ss
ed

# 
of

 o
ut

de
gr

ee
 li

nk
ag

es

0

1000

2000

In
te

rm
ed

iar
y P

ro
ce

ss
ed

Cap
ita

l

In
te

rm
ed

iar
y P

rim
ar

y

Con
su

m
pt

ion
 P

rim
ar

y

Con
su

m
pt

ion
 P

ro
ce

ss
ed

# 
of

 H
S

6 
go

od
s

Note: This figure illustrates how HS6 goods classified under different Broad Economic Categories (BEC)
relate to the number of output uses in the AIPNET network. Panel A shows the average number of output
links (i.e., the number of goods each good is used to produce) for each end-use type. Intermediary pro-
cessed goods, capital goods, and primary intermediary goods have, on average, many more output uses,
indicating that they serve as inputs in numerous production processes before reaching final consumption.
Panel B displays the count of HS6 goods by their end-use classification, highlighting the distribution of
goods across different categories. Goods classified for final consumption have notably fewer output uses,
reinforcing their role as end products in the supply chain. Understanding the positioning and connectivity
of goods within the network provides insight into their roles in production processes and supply chains,
which is critical for analyses related to industrial policy and economic shocks.
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Figure 7: Diverging trends in IGPC weighted imports across
countries and product centrality levels
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Note: Figure presents trends in the IGPC weighted import volumes between countries or products. The
top two panels focus on raw country-level or product-level aggregated data. The bottom panel presents
similar evidence within a regression framework working with a disaggregated country-by-product panel
dataset. Panel A shows within-country IGPC index trends for China, the EU, and the US, reflecting
the centrality of each country’s imports in global production networks. Panel B presents trends across
products grouped by IGPC importance quartiles, showing that products with higher baseline centrality
have generally increased in importance over time.
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Figure 8: Changes in Product Importance in Global Supply
Chains (IGPC Measure)

Panel A: Energy Products Panel B: Declining Products
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Note: This figure shows changes in product “importance” in global supply chains using the IGPC (In-
tegrated Global Product Centrality) measure (constructed by combining AIPNET and trade-data, see
Section 3.5), indexed to 2010=100. Panel A shows trends for key energy products including electricity,
natural gas, nuclear power, and crude oil. Panel B displays products that have experienced significant
decline in “importance”, such as CDs/DVDs, photographic film, asbestos-cement, and typewriter parts.
Panel C presents emerging products with increasing importance, including lithium compounds, vaccines,
digital integrated circuits, low-voltage cables, and lasers. Panel D aggregates products by BEC (Broad
Economic Categories) classification, showing trends across major product categories. The IGPC measure
captures a product’s importance as an input in global production networks, weighted by trade volumes.
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Figure 9: Import volume index of broad group of final use
goods as seen through AIPNET linkages

Climate action and arms trade
Panel A: Final use goods Panel B: AIPNET linked inputs
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Note: Figure shows the trend in imports globally (top panel) or into Russia (bottom panel) of a set
of goods and the AIPNET linked inputs. The top row focuses on import volume of goods related to
climate action and contrasts this with arms. A real import volume index is constructed using an imputed
constant average global unit price. We focus on Climate Action Goods, 841861/841581 - Heat Pumps,
850231 - Wind Turbines, 854140 - Solar Panels, 840110 - Nuclear Reactors, 841011 - Hydroelectric Turbines,
870380 - Electric Vehicles, 850760 - Electric Storage; for the Military goods we consider 930190 - Military
weapons, 930200 - Revolvers and pistols, 1930320 - Shotguns, 930120 - Artillery weapons 930621/930630 -
Cartridges, 930690 - Munitions, 871000 - Armored vehicles, 930700 - Swords and bayonets, 880220/880230
- Helicopters, 880240 - Unmanned aircraft, 880250 - Spacecraft 880220/880230/880212 - Military drones,
880240 - Military aircraft, 880330 - Aircraft parts. The bottom panel focuses on imports into Russia by
third countries of goods in nominal terms relative to an import value index prior to the war in Ukraine
starting. We note that critical or sanctioned goods direct import value decrease only modestly. Yet,
imports of inputs for military goods contrasts much more pronouncedly in Panel D.
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Figure 10: Characterisation of the Supply Shock

Panel A: Geographic distribution of post 2016 supply shocks
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Note: Figure characterises the increase in the identified supply shocks that have been presented in Panel
D of Figure 1 since 2016. We count the number of supply shocks at the commodity level by number of
countries before and after 2016 and characterise the product level difference. This is then aggregated up
and presented by the HS code’s BEC classification in Panel A or by the HS codes IGCP quartile in Panel
B.
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Figure 11: Global trend towards increasing imports of goods
with many AIPNET downstream linkages since 2016
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Notes: Figure presents results from a regression analysis documenting a trend across the globe suggesting
that countries, on average, notably increased their imports of goods that have many AIPNET I/O linkages,
ωu,d = 1, compared to goods with fewer or no such linkages. The dataset that is used for the estimation is
a fully dyadic panel with 120 (countries) x 1183 (HS4 goods) x 1183 (HS4 goods) x 11 (years) observations.
The regression includes country-by-dyad and country by HS2 by year fixed effects. We note that from 2016
onwards there has been a notable change in trend suggesting increased imports of goods that have more
I/O linkages. Appendix Figure A.3 presents the same specification but for the extensive margin. Standard
errors are obtained from clustering at the HS2 upstream x HS2 downstream pair across all countries with
95% confidence intervals being indicated.
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Figure 12: Countries exhibiting post 2016 differential increase
in goods with many AIPNET linkages also exhibit notable
onshoring response following downstream supply shocks
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Note: Figure plots a distribution of 120 country-specific regression coefficients that attempt to proxy
for onshoring. The horizontal axis captures the differential increase in imports of upstream goods that
have many downstream uses or applications since 2016. The vertical axis displays the estimated increase
in imports of upstream goods following a shock to import prices of downstream goods. We note that
empirically, the distribution of point estimates has asymmetric support on the x-axis, this is picking up
the global trend that was detected in Figure 11. We note excess mass in the top right quadrant and take
particular note of Qatar. Standard errors are clustered at the upstream HS2 x downstream HS2 digit pair.
Country points are labeled based on their statistical significance.

62



Figure 13: Estimated supply-shock induced onshoring response across countries
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Note: Map displays the t-statistic that corresponds to the point estimates plotted on the vertical axis of Figure 13 capturing the extent to which
a countries imports of upstream goods are increasing following a downstream supply shock, indicative of on onshoring response. Clusters of
onshoring are found in Central Europe, China, the Middle East, East Africa and North America.
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Figure 14: Examples of Onshoring in Qatar Measured
through AIPNET Linkages
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Note: Product-specific patterns of onshoring in response to the blockade for dairy (a) and poultry sector
(a) in raw data studying import volumes of good as well as goods that are supply chain linked. We
index 4-digit products’ annual imports w.r.t. the 2016 import level and plot the weighted average for a
given group of products using the import values in 2016 as weights. We define upstream goods based on
AIPNET.
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Figure 15: Qatar Blockade Caused Sudden Shift in Import
Prices and Volumes

(a) Prices
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(b) Volumes
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Note: Regression evidence of the Qatar blockade on import goods’ prices (a) and import volumes (b).
Using monthly 8-digit product-level imports to Qatar, we obtain the year-specific effect of a one-unit
blockade exposure increase on a good’s logarithmic import price and volume. We control for product-
and year-month-fixed effects. The shaded areas represent the 95% confidence intervals.
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Figure 16: Goods with higher supply shock saw a stronger direct import contraction
and notably stronger onshoring response

Panel A: Extensive margin Panel B: Intensive margin
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Note: Figure presents dynamic version of the estimates of column (3) and (6) from Table 4. The underlying data is the dyadic dataset capturing
imports of goods that have an AIPNET input/output relationship. The underlying data resolution is at the HS4 level and at a quarterly temporal
resolution.
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Table 1: Example of Two Prompts used in the ‘Build’ Stage

Section Prompt A: Measuring Outputs Prompt B: Measuring Inputs

System
Guidance

You are an assistant with expertise in
supply chains and production processes.
When given a product description, iden-
tify all products (narrowly defined phys-
ical products) which this [focal product
is used to produce i.e. list output goods
for which this focal product is the input].
Prioritize outputs for which the focal in-
put good is an essential input. Consider
both [‘capital’, ‘intermediary’, and ‘final’
outputs]. When responding, you will fol-
low the JSON schema provided in the re-
sponse format. For the subfield ‘prod-
uct description’, you should use similar
language to the detailed Harmonized Sys-
tem (HS) of traded goods products. Some
examples of these product descriptions in-
clude:

You are an assistant with expertise in
supply chains and production processes.
When given a product description, iden-
tify all products (narrowly defined physi-
cal products) which this [focal product re-
quires as an input i.e. list input goods
which are used to produce this focal
product]. Prioritize inputs which are es-
sential to producing the focal good. Con-
sider both [‘raw materials’, ‘intermedi-
ary’, and ‘capital’ inputs]. When respond-
ing, you will follow the JSON schema pro-
vided in the response format. For the
subfield ‘product description’, you should
use similar language to the detailed Har-
monized System (HS) of traded goods
products. Some examples of these prod-
uct descriptions include:

Examples
Drawn from
HS Product
Codes

• Portland cement, aluminous cement (ci-
ment fondu), slag cement, supersulphate
cement and similar hydraulic cements,
whether or not coloured or in the form of
clinkers • Fruit, edible; apples, fresh • En-
gines; pneumatic power engines and mo-
tors, other than linear acting (cylinders) •
Milking machines and dairy machinery ...

• Portland cement, aluminous cement (ci-
ment fondu), slag cement, supersulphate
cement and similar hydraulic cements,
whether or not coloured or in the form of
clinkers • Fruit, edible; apples, fresh • En-
gines; pneumatic power engines and mo-
tors, other than linear acting (cylinders) •
Milking machines and dairy machinery ...

Structuring
Output

Only include products that are physical in
nature and traded internationally between
countries. List up to 20 output prod-
ucts, focusing on the goods which [require
the direct contribution of the focal input
product]. You will list your 20 responses
in a JSON format provided in the response
format. This format includes a descrip-
tion of the [output product], an impor-
tance score (between 1 and 10), and a clas-
sification of the output product as either
’intermediary’ or ’capital’.

Only include products that are physical in
nature and traded internationally between
countries. List up to 20 input products, fo-
cusing on the goods which are [directly
required to produce the focal product].
You will list your 20 responses in a JSON
format provided in the response format.
This format includes a description of the
[input product], an importance score (be-
tween 1 and 10), and a classification of the
input product as either ’raw material’, ’in-
termediary’, or ’capital’.

Focal Product [PRODUCT DESCRIPTIONS] [PRODUCT DESCRIPTIONS]
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Table 2: Network Properties for First Iteration at HS6 and
HS4 Levels

(1) (2)

Property HS6 HS4

Number of Nodes 5,633 1,190
Number of Edges 980,018 48,212
Average Degree 347.96 81.03
Network Density 0.03 0.03
Global Clustering Coefficient 0.37 0.32
Assortativity 0.14 0.06
Number of Connected Components 1 1
Size of Largest Component 5,633 1,190

Note: This table presents key structural characteristics of the AI-generated Production Network (AIPNET)
at both the HS6 and HS4 levels of product aggregation. Column (1) displays metrics for the HS6 level
(6-digit codes), and column (2) for the HS4 level (4-digit codes). The properties include the number of
nodes (unique products), edges (potential input-output relationships), average degree (typical connectiv-
ity), network density (interconnectedness), global clustering coefficient (degree of clustering), assortativity
(tendency for similar nodes to connect), and connectivity measures like the number and size of connected
components. The higher number of nodes and edges at the HS6 level reflects a more detailed network
structure. The moderate clustering coefficients and positive assortativity values indicate the presence of
product clusters and a mild preference for nodes to connect with similar nodes. Both networks consist
of a single connected component. These metrics offer insights into how AIPNET models production rela-
tionships at different levels of aggregation.
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Table 3: Impact of persistent supply shocks affecting downstream goods prices on
imports of upstream goods

(1) (2) (3) (4)

Dependent variable log(import) Import > 0

Post 2016 × AIPNET linkage 0.0092∗∗∗ 0.0013∗∗∗

(0.0027) (0.0003)
AIPNET linkage × Indirect upstream price shock (dummy) 0.0014∗∗ 0.0003∗∗∗

(0.0007) (6.32 × 10−5)
AIPNET linkage × Direct own price shock (dummy) -0.0348∗∗∗

(0.0081)

R2 0.94329 0.94421 0.74324 0.74622
No. of dyad FE 171,179,618 167,866,385 174,364,440 171,163,960
No. of time FE 121,433 121,433 121,440 121,440
Observations 1,818,906,530 1,727,632,808 1,916,673,000 1,818,407,660
Regression specification:
Country x Dyad X X X X
Country x HS2 x Time X X X X

Notes: Table presents regression results documenting the impact of persistent price shocks on downstream goods on upstream imports. Standard
errors provided in parentheses are clustered at the HS2 by HS2 pair level with stars indicating *** p <0.01, ** p <0.05, and * p <0.1.
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Table 4: Impact of product-level blockade exposure on imports along AIP-
NET linked supply chains

(1) (2) (3) (4) (5) (6)

Dependent variable upstream good import > 0 log(upstream good import)

Panel A: HS4 x quarterly panel

Blockade × Direct Exposure -0.0685∗∗∗ -0.0755∗∗∗ -0.5595∗∗∗ -0.5809∗∗∗

(0.0120) (0.0142) (0.0718) (0.0718)
Blockade × Downstream Exposure 0.0267∗∗∗ 0.0286∗∗∗ 0.0881∗∗ 0.1616∗∗∗

(0.0084) (0.0075) (0.0409) (0.0430)

R2 0.66689 0.66701 0.66743 0.86734 0.86695 0.86815
Observations 991,150 976,650 976,650 787,950 776,058 776,058

Panel B: HS6 x quarterly panel

Blockade × Direct Exposure -0.0297∗∗ -0.0379∗∗∗ -0.4081∗∗∗ -0.4154∗∗∗

(0.0120) (0.0126) (0.0521) (0.0531)
Blockade × Downstream Exposure 0.0138∗ 0.0082 0.0204 0.0605

(0.0073) (0.0106) (0.0370) (0.0380)

R2 0.56880 0.56778 0.55651 0.78021 0.77878 0.77958
Observations 9,640,300 9,405,825 9,405,825 5,833,222 5,699,916 5,699,916

Dyad FE X X X X X X
Time FE X X X X X X

Notes: This table reports results from running the dyadic regression defined in equation (8). We test for the effect of ‘Blockade
Exposure’ on Import patterns of up-stream HS4 or HS6 products. ‘Direct Exposure’ measures the focal upstream goods proportion
of total value of trade that came from blockading countries in 2016. ‘Down-stream Exposure’ measures the exposure of the down-
stream product. We interact exposure with an indicator variable denoting the start of the blockade. We cluster standard errors to
account for correlation on both sides of the dyadic pairs. Dyadic-clustered standard-errors in parentheses. Significance Codes: ***:
0.01, **: 0.05, *: 0.1.
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A Appendix Figures and Tables

Table A.1: Product Examples in the Harmonized System (HS)
Hierarchy HS Code Product Description

HS2 01 Live Animals
HS4 0101 Horses, asses, mules, and hinnies; live
HS6 0101.21 Horses; live, pure-bred breeding animals

HS2 02 Meat and edible meat offal
HS4 0203 Meat of swine; fresh, chilled, or frozen
HS6 0203.12 Meat; of swine, hams, shoulders, and cuts thereof, with bone in,

fresh or chilled

HS2 03 Fish and crustaceans, molluscs, and other aquatic invertebrates
HS4 0302 Fish; fresh or chilled, excluding fillets
HS6 0302.13 Fish; fresh or chilled, Pacific salmon

HS2 84 Machinery and mechanical appliances; parts thereof
HS4 8402 Steam or other vapor generating boilers
HS6 8402.11 Boilers; steam or other vapor generating, water-tube boilers with

a steam production exceeding 45 tons per hour

Note: This table presents examples of product nodes within the Harmonized System (HS) classification at
HS2, HS4, and HS6 hierarchies. Each entry demonstrates the progression from broad categories (HS2) to
more specific classifications (HS6), highlighting the diversity of goods from simple (e.g., live animals) to
complex (e.g., machinery).
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Table A.2: Top 30 Imports by volume across HS2 sections
affected by the blockade

HS2 Description Imports in 2016 from Ei Import share
All countries blockading countries

73 Iron or steel articles 1,443.43 412.04 28.5% 4.9%
85 Electrical machinery and equipment and p 3,006.73 327.79 10.9% 10.3%
74 Copper and articles thereof 391.26 289.88 74.1% 1.3%
39 Plastics and articles thereof 718.35 261.21 36.4% 2.5%
72 Iron and steel 509.40 258.95 50.8% 1.7%
4 Dairy produce; birds’ eggs; natural hone 393.48 245.25 62.3% 1.3%
84 Nuclear reactors, boilers, machinery and 4,984.55 141.15 2.8% 17.0%
27 Mineral fuels, mineral oils and products 181.39 137.96 76.1% 0.6%
68 Stone, plaster, cement, asbestos, mica o 362.90 124.15 34.2% 1.2%
76 Aluminium and articles thereof 225.93 117.44 52.0% 0.8%
32 Tanning or dyeing extracts; tannins and 172.86 104.11 60.2% 0.6%
7 Vegetables and certain roots and tubers; 268.68 97.61 36.3% 0.9%
71 Natural, cultured pearls; precious, semi 603.02 94.68 15.7% 2.1%
34 Soap, organic surface-active agents; was 165.11 94.06 57.0% 0.6%
94 Furniture; bedding, mattresses, mattress 835.00 93.74 11.2% 2.9%
87 Vehicles; other than railway or tramway 3,690.80 89.24 2.4% 12.6%
22 Beverages, spirits and vinegar 164.63 86.89 52.8% 0.6%
33 Essential oils and resinoids; perfumery, 389.23 85.57 22.0% 1.3%
15 Animal or vegetable fats and oils and th 104.87 76.48 72.9% 0.4%
38 Chemical products n.e.s. 378.74 74.59 19.7% 1.3%
19 Preparations of cereals, flour, starch o 205.14 72.86 35.5% 0.7%
48 Paper and paperboard; articles of paper 178.95 67.70 37.8% 0.6%
25 Salt; sulphur; earths, stone; plastering 107.24 64.42 60.1% 0.4%
2 Meat and edible meat offal 430.22 58.79 13.7% 1.5%
30 Pharmaceutical products 527.57 56.63 10.7% 1.8%
69 Ceramic products 213.33 49.67 23.3% 0.7%
21 Miscellaneous edible preparations 169.32 48.96 28.9% 0.6%
8 Fruit and nuts, edible; peel of citrus f 229.49 44.44 19.4% 0.8%
70 Glass and glassware 166.14 44.38 26.7% 0.6%
1 Animals; live 215.35 43.84 20.4% 0.7%

Notes: Table presents the top 30 imports by volume that have been affected by the blockade of Qatar. Trade volumes ($ million) are
measured in 2016, the year before the blockade was announced. HS2 section descriptions are truncated to 40 characters in length.
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Figure A.1: Illustrative examples: Solar Panels and Lithium
Compounds

(a) Solar Panels (HS: 8541.40)

(b) Lithium Compounds (HS: 2825.20)

Note: Each panel presents a one-degree ego network of the focal product in AIPNET. Each node repre-
sents a single six-digit HS product code. Code descriptions have been abbreviated for brevity. The full set
of HS Code linkages can be found in attached dataset and on our website https://aipnet.io/. Nodes
are colored by their predominant linkage type according to the BEC5 end-use classification: green for
consumption goods, blue for capital goods, yellow for raw materials (intermediate-primary goods), and
grey for intermediate-processed goods. The focal node in each sub-figure has larger font size. Edges are
colored by the source node.
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Figure A.2: AI-generated Production Network (AIPNET) visualization

Note: This figure presents a visualization of the production network, where each node represents a Harmonized System (HS) 6-digit product code,
and edges represent vertical production relationships. The layout, derived using the force-atlas 2 algorithm, organizes nodes into clusters based on
the Broad Economic Categories (BEC) end-use classification. Nodes are color-coded: green represents consumption goods, blue represents capital
goods, yellow represents raw materials (intermediate-primary goods), and grey represents intermediate-processed goods. The network reveals
distinct clusters: raw materials are dispersed across the network, with a clear cluster of final goods (green) on the top and to the right. The central
left cluster is composed of capital goods (blue) and intermediary goods (grey). This clustering highlights the central roles of different sectors
within the global production network, emphasizing the interconnectedness of various product groups.
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Figure A.3: Notable differential increase in imports of goods
with many AIPNET I/O linkages since 2016
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Notes: Figure presents results from a regression analysis documenting a trend across the globe suggesting that countries, on average,
notably increased their imports of goods that have many AIPNET I/O linkages, Wij = 1, compared to goods with fewer or no such
linkages. The dataset that is used for the estimation is a fully dyadic panel with 120 (countries) x 1183 (HS4 goods) x 1183 (HS4
goods) x 12 (years) observations. The regression includes country-by-dyad and country by HS2 by year fixed effects. We note that
from 2016 onwards there has been a notable change in trend suggesting increased imports of goods that have more I/O linkages.
Figure 11 presents the same specification but for the intensive margin.
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Figure A.4: Evolution of cross-country coefficients across per-
turbed production networks

Panel A: Main AIPNET Panel B: Perturbation 50%
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Note: Figure showcases how the post 2016 and the onshoring coefficient distribution across countries is
shrinking towards zero as we increase the amount of noise that is infused into AIPNET through varying
the perturbation parameter. Panel A presents the main network results for reference, Panel B showcases
what the distribution looks like with the perturbation parameter to be set to 50%. Panel C plot the evolu-
tion of the average squared length of the estimated coefficient β̂c as a function of the permutation paramter
with permutations. The dashed line represents the coefficient for the main network. Panel D presents the
evolution of the average squared length of onshoring coefficient as a function of the perturbation parame-
ter. We note the convergence to the origin highlighting that as the production network becomes full noise
we fail to detect an onshoring effect.
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Figure A.5: Estimating of onshoring regression focusing on
ωu,d = 1 network

Panel A: Estimating with ωu,d ∈ {0, 1} Panel B: Estimating on ωu,d = 1

ARE

ARM

AUS

AZE

BEL

BGR

BHR

BLR

BOL

CAN

CHN

CMR

CRI

CYP

CZE

DNK

DOM

EST

FIN

HKG

IRL

ISL

JPN

KHM

KWT

LKALTU

LUX

MDV MEX

MMR

MNE

MNG

NAM

NIC

PAK

POL

PRT

QAT

RWA

SAU SEN

SLV

SVK

SVN

SWE

TGO

THA

TUN

TUR

UGA

ZMB

31.7% 5.8%

6.7%55.8%

−0.03

−0.02

−0.01

0.00

0.01

0.02

−0.10 −0.05 0.00 0.05
Direct effect of price shock on imports

O
ns

ho
rin

g 
ef

fe
ct

 a
fte

r 
pe

rs
is

te
nt

 p
ric

e 
sh

oc
k

significance a a a a20% 10% 5% 1%

ARM

AUS

AUT

AZE

BEN

BIH

BLR

BOL

BRA

BRN

CHN

CMR

COL
CYP

CZE

DEUDNK

ECU

EGY

ETHGEO

GRC

HRV

HUN

ISL

KEN

KOR

KWT

LTU

LVA

MDG

MEX

MKD

MNE

MOZ

MUS
MYS

NAM

NGA

NIC

NOR

NPL

OMN

PAK

POL

PRT
PRY

QAT

RWA

SAU

SEN

SGP

SLV

SRB

SVK

SVN

THA

TZA

UKR

USA

ZAF

ZWE

35.8% 5.8%

20%38.3%

−0.03

−0.02

−0.01

0.00

0.01

0.02

−0.2 −0.1 0.0 0.1
Direct x Price shock (dummy)

In
di

re
ct

 d
ow

ns
tr

ea
m

 x
 P

ric
e 

sh
oc

k 
(d

um
m

y)

significance a a a a20% 10% 5% 1%

Note: Figure showcases how the post 2016 and the onshoring coefficient distribution across countries is
shrinking towards zero as we increase the amount of noise that is infused into AIPNET through varying
the perturbation parameter. Panel A presents the main network results for reference, Panel B showcases
what the distribution looks like with the perturbation parameter to be set to 50%. Panel C plot the evolu-
tion of the average squared length of the estimated coefficient β̂c as a function of the permutation paramter
with permutations. The dashed line represents the coefficient for the main network. Panel D presents the
evolution of the average squared length of onshoring coefficient as a function of the perturbation parame-
ter. We note the convergence to the origin highlighting that as the production network becomes full noise
we fail to detect an onshoring effect.
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Figure A.6: Evolution of Qatar natural experiment estimates
across perturbed production networks

Panel A: HS4 Extensive margin Panel B: HS4 intensive margin
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Note: Figure visually displays estimated coefficients from estimating the Qatar case study with different
AIPNET production networks that become increasingly more noisy. The onshoring coefficient capturing
imports of upstream goods following downstream blockade-induced supply disruptions is plotted in
blue, while the direct effect of upstream price shocks on imports of upstream goods is illustrated in red.
The solid horizontal lines provide the point estimates from the main AIPNET production network that
can be found in Table 4.
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B Detailed Description of AI-generated Production Net-

work (AIPNET)

In this section, we provide full details on the construction of the AI-generated Production

Network (AIPNET). These details offer a blueprint for utilizing AI/LLM tools in the

construction of novel graphical datasets, which can be broadly applied in various fields.

Potential applications include linking occupational classifications, structuring scientific

and patent classes, and connecting financial reports or earnings calls from public firms,

and so on.

Our approach to building graphical data using AI follows four key steps, which

are each documented in a subsection of this appendix. Subsection B.2 provides some

background on LLMs and discusses how we directly interact with our chosen model,

including our prompting strategy. Subsection B.3 covers our approach to recasting the

LLM’s responses into a codified nomenclature to recover a graphical network structure.

Subsection B.5 discusses our bootstrapping methodology to address potential sensitivity

of results to unusual LLM behavior.

B.1 Background on LLMs

LLMs establish linkages beyond traditional Natural Language Processing (NLP) meth-

ods, which typically depend on keyword overlap. Pre-trained on extensive datasets, in-

cluding detailed descriptions of production processes and product characteristics from

sources like Wikipedia, LLMs bring a nuanced understanding of language that enables

them to apply human-level judgment at scale. For instance, the Wikipedia entries for

’Electrical energy’ and ’Dairy’ are just two examples of the rich content informing LLM

training, enhancing their ability to discern vertical relationships between products.43

43One important source for training LLMs is Wikipedia. This source alone provides highly informative
content on the production process of many goods, for example, the entries for ‘Electrical energy’ and
‘Dairy’. Countless sources such as these enter the LLMs training data. The net result is an ability to apply
human-level judgment, at scale, when determining vertical relationships between products.
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Deploying LLMs has become cost-effective and scalable. Their use results in high

accuracy.

B.2 Interacting with the LLM

The process of constructing AIPNET began by interacting with the LLM using specific

zero-shot prompts tailored to extract detailed input-output relationships for each prod-

uct within the Harmonized System (HS) codes. Our approach directly queries the LLM

to generate free-text responses, which are then systematically matched to HS codes based

on the cosine similarity between text embeddings of the free-text descriptions and em-

beddings of HS code descriptions.

This sequence is visually summarized in Figure 4, which provides a flowchart of the

entire process. The remainder of this section will describe this process, along with prop-

erties of the retrieved network and comparisons with existing network-inspired mea-

sures and correlation with input-output tables.

To facilitate the extraction of input-output linkages, we crafted two distinct types of

prompts: one for identifying inputs required to produce a focal product and another for

identifying outputs that the focal product is used to produce. The system instructions

are designed to guide the LLM in generating structured, relevant responses.

The key steps in interacting with the LLM are as follows:

1. Prompt Setup: We prepared two types of prompts—Focal Finished and Focal Un-

finished—to query the LLM. The prompts were designed to extract detailed in-

formation about inputs needed to produce a finished product and outputs that

can be produced using an unfinished product as an input for each HS6 product.

We provided the LLM with examples of similar product descriptions to guide the

responses.

2. Response Generation: For each HS6 product code, the LLM generated a list of

related products along with an importance score (1 to 10), a free-text description,
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and a classification of the linkage type (intermediary, capital, or final). The LLM

was prompted to list up to 20 goods, focusing on those with higher importance

scores and ensuring that only internationally traded products were included.

3. Iteration Process: The entire process was repeated 10 times for each focal good to

create 10 iterations each, capturing a range of possible relationships and ensuring

robustness against potential LLM-induced variability.

B.2.1 Full System Instructions

In the design of the system instructions for the assistant, our primary goal was to ensure

clarity, consistency, and depth in the responses pertaining to various products. Below

are the full system instructions used to guide the LLM in generating the required input-

output relationships:

For Focal Finished Products

You are an assistant with expertise in supply chains and production pro-

cesses.

When given a product description, identify all products (narrowly defined

physical products) which are used to produce this focal product i.e. list input

goods for which this focal product is the output.

Prioritize inputs that are well recognized as essential for the production of

the focal output good.

Consider both ’capital’ and ’intermediary’ inputs. When responding, you will

follow the JSON schema provided in the response format.

For the subfield ’product description’, you should use similar language to the

detailed Harmonized System (HS) of traded goods products.

Some examples of these product descriptions include: insert example goods
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Only include products that are physical in nature and traded internationally

between countries.

List up to 20 input products, focusing on the goods which most directly con-

tribute to the production of the focal output product.

You will list your 20 responses in a JSON format provided in the response

format, which includes a description of the input product, an importance

score (between 1 and 10), and a classification of the input product as either

’intermediary’ or ’capital’.

For Focal Unfinished Products

You are an assistant with expertise in supply chains and production pro-

cesses.

When given a product description, identify all products (narrowly defined

physical products) which this focal product is used to produce i.e. list output

goods for which this focal product is the input.

Prioritize outputs for which the focal input good is an essential input.

Consider both ’capital’, ’intermediary’, and ’final’ outputs. When responding,

you will follow the JSON schema provided in the response format.

For the subfield ’product description’, you should use similar language to the

detailed Harmonized System (HS) of traded goods products.

Some examples of these product descriptions include: insert example goods

Only include products that are physical in nature and traded internationally

between countries.

List up to 20 output products, focusing on the goods which require the direct

contribution of the focal input product.
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You will list your 20 responses in a JSON format provided in the response

format.

This format includes a description of the output product, an importance score

(between 1 and 10), and a classification of the output product as either ’inter-

mediary’ or ’capital’.

We give the following examples, as a JSON list, in the area marked as ”insert example

goods”:

• Pencils and crayons; with leads encased in rigid sheath

• Photographic plates and film; for colour photography (polychrome), in

the flat, sensitised, unexposed, with no side exceeding 255mm, of any

material other than paper, paperboard or textiles

• Oil-cake and other solid residues; whether or not ground or in the form

of pellets, resulting from the extraction of linseed oils

• Portland cement, aluminous cement (ciment fondu), slag cement, super-

sulphate cement and similar hydraulic cements, whether or not coloured

or in the form of clinkers

• Fruit, edible; apples, fresh

• Engines; pneumatic power engines and motors, other than linear acting

(cylinders)

• Milking machines and dairy machinery

• Glass; cast glass and rolled glass, non-wired sheets, coloured through the

mass (body tinted), opacified, flashed or having an absorbent, reflecting

or non-reflecting layer

• Sanitary towels (pads) and tampons, napkins and napkin liners for ba-

bies and similar articles, of any material

• Mathematical equipment; micrometers, calipers and gauges
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• Styrene polymers; waste, parings and scrap

• Machines; for additive manufacturing, with digital input

• Lathes; for removing metal, horizontal, numerically controlled

• Industrial robots; for multiple uses, capable of carrying a weight exceed-

ing 10 kg

Here are some reasons why we included these specific directives in the system instruc-

tions:

• ”Identify all products (narrowly defined physical products)...”: This clarifies the

scope of the task, ensuring the LLM focuses on specific, identifiable products rather

than broad categories.

• ”Prioritize inputs/outputs that are well recognized as essential...”: This encour-

ages the LLM to focus on the most crucial linkages, improving the relevance and

accuracy of the response.

• ”Consider all types of linkages: capital goods, intermediary goods, and final

goods...”: This ensures that the LLM considers the full spectrum of potential con-

nections, capturing the complexity of production processes.

• ”Your response should be in JSON format...”: This requirement instructs model to

comply with a structured response format, making it easier to parse and integrate

into the subsequent steps of network construction.

• ”Assign an importance score from 1 to 10...”: The importance score encourages

the LLM to think critically about the significance of each product, which helps in

prioritizing the most relevant linkages.

• ”List up to 20 goods...”: This sets a clear limit to avoid overwhelming the process

with too many products while focusing on the most relevant ones.
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• ”Only include products that are traded internationally...”: This ensures the rel-

evance of the output to global trade, which aligns with the overall objective of

constructing a network of internationally traded goods.

• ”example goods”: We included a diverse range of example product descriptions to

guide the LLM in understanding different types of goods to ensure that the LLM

can handle various product categories effectively, improving the robustness and

flexibility of the output.

B.3 Matching LLM Output to HS Product Codes

After the LLM generated free-text descriptions of related products, the next critical step

was to accurately map these descriptions to the corresponding HS codes. Given the

potential for inconsistencies in nomenclature and the challenge of directly asking the

LLM for HS codes, we employed a text embedding approach to ensure precise matching.

Allowing the LLM to generate free-text responses enables it to establish semantic

connections between products within the predefined product space. This approach pre-

vents the model from being constrained by predefined categories, which might miss out

on less obvious but still relevant linkages. By focusing on free-text, we retain control

over the final structure of the network through post-processing techniques like embed-

ding similarity thresholds and edge overlap parameters, rather than relying solely on

the model’s output. This method ensures that we can fine-tune the network’s precision

and recall based on the specific needs of the analysis, as described in the OpenAI post

on structured outputs.44

Embeddings Overview Embeddings are vector representations of text that capture the

semantic meaning of the text in a numerical form. OpenAI’s text embeddings, such as

those generated by the ”text-embedding-3-large” model, are commonly used to measure

the relatedness of text strings. Each text string is transformed into a high-dimensional

44https://openai.com/index/introducing-structured-outputs-in-the-api/
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vector (in our case dimensions are 3072), where each dimension captures a different

aspect of the text’s meaning. The similarity between two pieces of text can then be mea-

sured by the distance between their respective vectors, with smaller distances indicating

higher similarity.

For example, the sentences ’Copper ore is smelted into copper’ and ’Copper is ex-

tracted from copper ore’ would have very similar embeddings because they describe the

same production process. The cosine similarity metric is used to measure this related-

ness, focusing on the direction in the vector space, which captures the essence of the

process, rather than the exact wording. This is similar to how the abbreviation ’YMCA’

would have a high similarity with ’Young Men’s Christian Association’ even though they

share little in terms of characters, because embeddings capture the underlying semantic

meaning

These embeddings are particularly useful for tasks such as identifying similarities

between products in production networks, where similar processes or inputs can be

grouped together; semantic search, where relevant processes or materials are ranked

based on their similarity to a query; and classification, where products are categorized

based on their most similar examples in the network.

Use Cases in Literature Embeddings have been widely used in various research and

applied contexts. For instance, in the field of natural language processing, they have

been employed for semantic search, where documents are ranked based on their rel-

evance to a query (Mikolov, 2013; Rong, 2014; Goldberg & Levy, 2014). In addition,

embeddings have been used in recommendation systems, where products or content are

recommended based on the similarity of their embeddings to a user’s preferences. This

method has been employed by companies like Netflix and Amazon to personalize con-

tent delivery (Covington, Adams, & Sargin, 2016). Garg and Fetzer (2024) use them to

match economics concepts to JEL codes for tractability.
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Implementation Details We used the ”text-embedding-3-large” model from OpenAI

to create embeddings for both the LLM-generated descriptions and the official HS code

descriptions. Each response line (i.e., vertical linkage free-text response) was converted

into an embedding, and we did the same for each HS6 code description. The matching

process involved calculating the cosine similarity between the embeddings of the LLM

responses and the HS code descriptions. A cosine similarity threshold of 0.75 was used

to determine a match. This threshold is a common standard in text similarity tasks, as

it balances precision and recall effectively, ensuring that the matches are both relevant

and accurate without being overly strict. This allows us to link the LLM output with the

correct HS codes, maintaining a robust yet flexible network structure.

B.4 Pruning the Network

After constructing the initial network using the methods described in previous sections,

we recognized a need to improve its precision by removing false positive connections.

The Large Language Model (LLM) generated a range of potential input-output relation-

ships, but some did not reflect true production linkages. These inaccuracies mainly arose

from the inherent challenges of matching LLM output to HS product codes using vector

embedding similarity. While this approach maximized recall, it came at the expense

of precision. To address this, we introduced a pruning stage to filter out incorrect or

unrealistic edges, thereby enhancing the accuracy of the network after optimizing for

recall.

The pruning process involved a systematic assessment of each proposed input-output

pair in the preliminary network. We employed an additional LLM-powered verification

step, where the model evaluated whether a given upstream product could reasonably be

used as an input in the production of a downstream product. This approach leveraged

the LLM’s understanding of supply chains and production processes to validate each

linkage. To facilitate this verification, we designed a specific prompt to query the LLM

for each potential edge. The prompt was crafted to elicit a definitive response from the
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model, ensuring clarity and consistency. The prompt used was as follows:

Potential input: ’{HS description input}’. Potential output: ’{HS description output}’?You

are an assistant with expertise in supply chains and production processes. You will be

given pairs of products represented by their Harmonized System (HS) code descrip-

tions. Each description refers to a product category describing types of traded goods.

Your task is to assess whether a product within the first category (the potential input)

is an important input into the production of a product within the second category

(the potential output). You must return a response of 1 if the input product could

reasonably be used in the production of the output product, and 0 if it could not.

Return only the numerical response in a strict JSON format with no other output.

Be careful to avoid cases where the potential input product is a substitute, but not an

input, for the potential output product. If you are unsure, then you should return 0.

Potential input: ’{HS description input}’. Potential output: ’{HS description output}’?

In this prompt, {HS description input} and {HS description output} are place-

holders for the HS code descriptions of the potential input and output products, re-

spectively.

Implementation Details For the pruning stage, we used the GPT-4o-mini model, an

efficient variant within the GPT-4o family designed to handle large-scale implementa-

tions. In this stage, the model processed each edge of the initial network, where each

edge represents a potential upstream-downstream relationship. Unlike the build stage,

where inputs were at the node level, inputs here were at the edge level. The model’s

response was restricted to a simple numerical value: 1 to indicate a valid input-output

relationship or 0 to indicate that the input is not reasonably used in the production of

the output. Responses were formatted in JSON to facilitate automated parsing.
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By enforcing a strict response format and providing clear instructions, we minimized

ambiguity and ensured that the model’s outputs could be directly interpreted to accept

or reject each edge in the network. Several considerations underpinned our approach:

• Avoiding False Positives: The initial network aimed for high recall, which risked

including spurious linkages. The pruning stage focused on enhancing precision by

filtering out unlikely or incorrect connections.

• Handling Ambiguity: We instructed the model to default to a response of 0 in

cases of uncertainty. This conservative approach prioritized the reliability of ac-

cepted edges over completeness, acknowledging that some legitimate relationships

might be excluded to avoid false positives.

• Distinguishing Substitutes from Inputs: The prompt explicitly cautioned the

model to avoid confusing products that are substitutes for one another with those

that have a direct input-output relationship, as substitutes are not part of the pro-

duction process for the output product.

• Consistency Across Evaluations: Using the same model and prompt for all edge

evaluations ensured consistency in the pruning process. The GPT-4o model’s ex-

tensive training on supply chain information made it well-suited for this task.

Results of Pruning The pruning process resulted in a refined network with improved

accuracy of the input-output relationships. Edges that did not represent valid produc-

tion linkages were removed, enhancing the network’s utility for subsequent analyses.

The final AIPNET retained its cohesive structure, with each connection more reliably

reflecting actual production dependencies among internationally traded goods. This

pruning stage was essential to ensure that the AIPNET accurately models the true pro-

duction relationships, thereby increasing the validity of any downstream applications or

analyses utilizing this network.
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B.5 Bootstrapping Approach to Building Graphical Data using LLMs

To enhance the robustness of AIPNET and to account for variability in LLM outputs,

we employed a bootstrapping approach that involved generating 10 iterations of the

network. Each iteration represented a separate draw of the network based on the LLM’s

responses to our prompts. By using multiple iterations, we were able to capture a range

of possible relationships and reduce the impact of any unusual or outlier responses from

the LLM.

The key aspects of this bootstrapping approach are:

• Multiple Iterations: We repeated the LLM querying process 10 times for each

focal product, creating 10 versions of the network. This allowed us to observe the

stability and variability of the relationships identified by the LLM.

• Edge Overlap as a Hyperparameter: The edge overlap, defined as the number of

iterations in which a given edge appears, was used as a hyperparameter to refine

the network. By adjusting this parameter, we aimed to align the network’s sparsity

with that observed in the US Input-Output (IO) tables, ensuring that our network

structure was both parsimonious and empirically grounded.

• Optimal Network Structure: We found that the optimal network structure was the

core network where a given edge appeared in all 10 iterations. This consensus-

based voting approach provided the most reliable representation of the production

network, balancing predictive accuracy with an appropriate level of sparsity.

This bootstrapping approach, akin to statistical resampling methods, provided a

more robust and reliable network by ensuring that the final structure was not overly

reliant on any single set of LLM outputs.
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B.6 Validation of AIPNET with Perturbed Networks

Bartolucci, Caccioli, Caravelli, and Vivo (2024) find that the upstreamness and down-

streamness measures as e.g. developed in Fally (2012) and Antràs et al. (2012), can

exhibit a puzzling correlation that arises naturally due to structural constraints in input-

output tables, even when the underlying production network is just constituted of noise.

This raises concerns about whether our validation exercise leveraging input/output ta-

bles may suffer from a similar fate given that the IOT/SUT are much coarser compared

to the granularity of AIPNET and as our validation implicitly involves aggregation of

AIPNET to match to the coarser resolution of IOT/SUTs.

To allay that the correlation is spurious we further validated the robustness of AIP-

NET through a network perturbation approach that we also adopt as a robustness check

to the substantive analysis. To do so, we systematically introduced varying degrees of

edge rewiring of our AIPNET graph G = (W, N, L). That is, we make G(p) with p

capturing the fraction of edges that are being rewired from 1% to 100%, incremented

by 1% at each step. The rewiring was conducted using the Erdos-Renyi random graph

model, a method that introduces controlled randomness while preserving the network’s

structural properties (Erdos et al., 1960). Specifically, edges between nodes were rewired

with a probability proportional to the perturbation intensity, resulting in a randomized

network that maintains the original number of edges but with varying levels of structure

degradation.

We then compared these perturbed networks against the Input-Output (I/O) tables

by calculating the difference in R² between the original, unperturbed network (edge over-

lap = 10) and each perturbed version. The findings, presented in Figure B.7, demonstrate

a clear trend: as the intensity of perturbation increases, the R² difference also increases

monotonically, signifying a decrease in the network’s predictive accuracy as it deviates

from its original structure. This pattern holds consistently across both U.S. and Mexico

I/O Tables—Direct and Use—highlighting that AIPNET’s structure encapsulates mean-

ingful economic relationships, which are progressively lost as noise is introduced.
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Figure B.7: Validation of AIPNET: Impact of Network Pertur-
bations

Panel A: Perturbation Intensity
(a) U.S. I/O Table
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(b) Mexico I/O Table
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Note: This figure validates AIPNET’s robustness against network perturbations and temperature variabil-
ity, using U.S. and Mexico I/O Tables. Panel A examines perturbation intensity, with subfigures (a) and
(b) showing the R² difference relative to the original, unperturbed network (edge overlap = 10) for the U.S.
and Mexico I/O Tables. The R² difference increases monotonically with perturbation intensity, confirming
AIPNET’s sensitivity to meaningful economic relationships. Panel B explores temperature variability, with
subfigures (c) and (d) illustrating the R² difference across a low (0.2) and high (0.1) temperature settings
relative to a medium (0.6) temperature. The results show minimal impact to R² from temperature changes,
indicating AIPNET’s robustness to temperature-induced variability. The analysis uses the union of edges
across iterations to fully capture the effect of temperature. Consistent results across I/O Tables from both
countries highlight AIPNET’s robustness in different economic contexts.

C Additional Results and Exercises for the Qatar exercise

C.1 Qatar Trade Data

Our study uses foreign trade data published by the Planning and Statistics Authority of

Qatar.45 For each month between January 2012 through June 2023 the data report value

and volume (weight) of imports aggregated at the product category and country of ori-

gin level. The product categories follow the 8-digit Harmonised System (HS), embedded

in the international 6-digit HS published in 2012 by the World Customs Organisation

(WCO). We construct a balanced panel covering 102,715 combinations of product cat-

45The data is available at https://www.psa.gov.qa/en/statistics1/ft/pages/default.aspx.
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egory and country of origin, giving 12.9 million observations across 10 years and 6

months. For exports, we similarly create a balanced panel covering 9,258 combinations

of product category and target country, giving 1.3 million observations across 12 years

and 6 months.46

C.2 Direct Effect of Blockade Exposure on Trade Patterns

We first show the results from a product-level difference-in-difference estimation ap-

proach outlined in Equation 9. Here, we use data for each 8-digit product in each month,

collapsed across all countries. Our treatment is the blockade exposure of each good, de-

fined as the share of import value sourced from blockading countries in 2016. Table

C.4 reports results across two different levels of fixed-effect saturation. Panel C.4a in-

cludes 8-digit HS product level fixed effects, along with month dummies to account for

seasonality, whereas C.4b additionally uses year-month fixed effects, interacted with 6-

digit product codes. We find that the blockade is consistent with a large supply shock.

Column (1) shows that for each additional percentage of exposure, post-blockade prices

increased by around 0.35%. Columns (2) and (3) show that a one percent increase in ex-

posure drove down import values and volumes by between 1.5-2.7%. Column (4) shows

the probability of a non-zero trading month also fell by between 0.11 and 0.19 percent

for each additional unit of exposure. Finally, above pre-blockade levels of monthly trade

were also reduced by blockade exposure, as shown in Column (5).

(Table C.4)

We visualize the difference-in-difference setting for these direct effects of blockade

exposure in Figure 15. We show that there is an abrupt and persistent increase in prices,

and decrease in trade expenditures for goods which are more exposure to the blockade.

(Figure 15)
46As our treatment variable is defined at the product category level of imported goods, we restricted

the export data to product categories that saw imports in 2016.
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C.3 Descriptive Evidence

We document the blockade’s impact on Qatar, highlighting two key facts: the blockade

drove a large shift in trade patterns from blockading countries to the rest of the world

and acted as a supply shock, leading to a 25 basis-point price increase and a 30 basis-

point fall in trade volumes.

Appendix figure C.9 shows the rapid shift in import trade patterns that occurred

after the blockade was unexpectedly introduced. Subfigure C.9a shows the total import

trade value for all goods which are ‘blockade-exposed’, which we define as any HS 8-

digit product code where the majority of import value in 2016 came from blockading

countries. We see that the flow of trade abruptly falls after the introduction of the block-

ade, and a similar sized increase in trade value sourced from non-blocking countries.

Subfigure C.9b shows the same analysis for all products, revealing a similar shift and

highlighting how total trade volumes remained fairly stable.

Figure C.8 shows how prices and trade volumes (i.e. weight-volume) were affected

after the blockade. Both figures depict an index constructed using 2016 as the base

year. In both subfigures, we consider only those goods which are blockade-exposed.

Each index is calculated by first calculating the HS 8-digit product level index. In each

half-yearly period, we then aggregate across products using a weighted mean, weighted

using the total value of trade for each product in 2016. Panel A depicts the abrupt 25

basis point increase in blockade-exposed products and that this price increase was also

accompanied by a 30 basis-point fall in trade volumes. While these patterns are striking

in and of themselves, we next outline an econometric design to test for the effects of

blockade exposure–the share of 2016 imports sourced from blockading countries—on

trade prices, expenditures, and volumes. The heterogeneous effects of the blockade

are espoused in Panel B, which break both price and volume changes across broad HS

section categories.

(Figure C.8)
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C.4 Estimating direct effect of the blockade

In this section, we describe how we estimate the effect of the blockade on own-product

import prices, trade values, and trade volumes. We further consider the impact on the

importation of vertically related products, which are necessary in the domestic produc-

tion of each good. Across all these outcomes, our treatment measure is the product-level

BlockadeExposure.47

Direct Effect of Blockade Exposure Consider our baseline specification:

log(Yj,t) = β PostJune2017t × BlockadeExposurej + αj + θt + ϵj,t (9)

where j is a product, defined at the HS 8-digit level, t represents each time period,

PostJune2017t is a dummy variable which equals 1 for all year-months after June of

2017, BlockadeExposurej is a product’s fraction of 2016 trade value that arrived from

blockading countries, and αj and θt are product and time fixed effects.48

The coefficient of interest is β, which represents the elasticity of our outcome measure

with respect to the product-specific exposure to the blockade. A 1% increase in exposure

leads to a β% increase in Yj,t. The above specification can be further decomposed in

order to measure the coefficient of interest, β, over time:

log(Yj,t) =
T

∑
t
(βt × θt × BlockadeExposurej) + αj + θt + ϵi,t (10)

where again j is a product, defined at the HS 8-digit level, t represents each year-

month, the sequences of {βt}T
t=1 contain the elasticity of product-specific exposure to

the blockade on Yit for each time period, including prior to and after the end of the

blockade.
47Recall our BlockadeExposure measure is the fraction of each focal product’s total trade value which

was sourced from blockading countries in 2016
48We also introduce alternative controls and fixed effects outlined in section ??, but we omit them from

the formula for brevity.
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Lastly, we can decompose the specification across countries in order to recover het-

erogeneous changes in trade patterns across trading partners:

log(Yj,c,t) = β × PostJune2017t × BlockadeExposurej × Blockadingc

+ γ × PostJune2017t × BlockadeExposurej × NonBlockadingc

+ αj,c + θt,c + ϵj,c,t

(11)

where again j is a product, defined at the HS 8-digit level, c represents the trading

partner (country), t indexes month and year, β contains the elasticity of product-specific

exposure to the blockade on Yjct for trade with countries that participated in the blockade

and γ contains the same elasticity for trade with other countries.
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Table A.3: Our Network Predicts High Values in I/O Tables
for the U.S. and Mexico

Panel A: United States

Dependent Variables: Use Value Direct Requirements
Model: (1) (2) (3) (4) (5) (6)

Variables
Network Score 0.0300∗∗∗ 0.0315∗∗∗ 0.0324∗∗∗ 0.1911∗∗∗ 0.1933∗∗∗ 0.1937∗∗∗

(0.0053) (0.0055) (0.0054) (0.0328) (0.0338) (0.0312)

Fixed-effects
Upstream Sector Yes Yes
Downstream Sector Yes Yes
Upstream Industry Yes Yes
Downstream Industry Yes Yes

Fit statistics
Observations 41,209 41,209 41,209 41,209 41,209 41,209
R2 0.04735 0.06054 0.10522 0.07678 0.08997 0.14393
Within R2 0.04980 0.04697 0.07553 0.06879

Panel B: Mexico

Dependent Variables: Use Value Direct Requirements
Model: (1) (2) (3) (4) (5) (6)

Variables
Network Score 0.1560∗∗∗ 0.1551∗∗∗ 0.1590∗∗∗ 0.2658∗∗∗ 0.2734∗∗∗ 0.2867∗∗∗

(0.0376) (0.0367) (0.0362) (0.0543) (0.0538) (0.0551)

Fixed-effects
Upstream Sector Yes Yes
Downstream Sector Yes Yes
Upstream Industry Yes Yes
Downstream Industry Yes Yes

Fit statistics
Observations 13,806 13,806 13,806 13,806 13,806 13,806
R2 0.08778 0.09147 0.16077 0.10284 0.12014 0.16941
Within R2 0.08464 0.08475 0.10702 0.10946

Note: This table reports the regression results according to equation 1. We regress the standardized Input-
Output table values on our standardized network scores resulting from aggregating the HS 6-digit level
network to the BEA-industry level for the U.S. and the corresponding industry level for Mexico. Columns
(1) and (4) use no fixed effects, columns (2) and (5) employ upstream and downstream sector-fixed effects,
and columns (3) and (6) employ industry-fixed effects. Both dependent and independent variables are
winsorized at the bottom 0.5 percentile and top 99.5 percentile. The table shows that the Network Score is
highly significant across all models, with coefficients ranging from 0.0334 to 0.2081 for the U.S. and from
0.1183 to 0.2735 for Mexico, depending on the specification. The R-squared values indicate the proportion
of variance explained by the models, with the highest values observed when industry-fixed effects are
included. Standard errors are clustered by both upstream and downstream industries. Significance Codes:
***: 0.001, **: 0.01, *: 0.05.
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Table C.4: Effects of Product-level Blockade Exposure on Im-
ports

(a) Controls for HS8 Product and Seasonality

(1) (2) (3) (4) (5)

Dependent
Variables:

Import
Price
(Log)

Import
Value
(Log)

Import
Volume

(Log)

Nonzero
Trade

(Binary)

High
Trade

(Binary)

Variables
Blockade Exposure 0.35∗∗∗ -1.6∗∗∗ -1.5∗∗∗ -0.11∗∗∗ -0.07∗∗∗

(0.04) (0.22) (0.20) (0.01) (0.01)

Fit statistics
Observations 661,664 941,472 941,472 941,472 941,472
R2 0.759 0.586 0.601 0.532 0.589

(b) Controls for HS8 Product and HS6 Product×Year-Month

(1) (2) (3) (4) (5)

Dependent
Variables:

Import
Price
(Log)

Import
Value
(Log)

Import
Volume

(Log)

Nonzero
Trade

(Binary)

High
Trade

(Binary)

Variables
Blockade Exposure 0.35∗∗∗ -2.7∗∗∗ -2.4∗∗∗ -0.19∗∗∗ -0.08∗∗∗

(0.05) (0.26) (0.23) (0.02) (0.01)

Fit statistics
Observations 661,664 941,472 941,472 941,472 941,472
R2 0.818 0.659 0.672 0.614 0.665

Note: This table reports results from running the regression defined in Section C.4 Equation (9). We test
for the effect of ‘Blockade Exposure’, measured for each HS8 product as the proportion of the total value of
trade that came from blockading countries in 2016. This is interacted with an indicator variable denoting
the start of the blockade. The data used is at the monthly frequency of imports for each HS8 product.
Columns (2) and (3) use the inverse-hyperbolic-sine transform to approximate log. Column (4) and (5)
use as outcomes binary indicators for non-zero trade and high-trade respectively, where the latter equals
1 if trade volumes for that product in that year-month exceeded the 2016 average. Panel (a) contains fixed
effects for HS8 product codes and dummy variables for each month to control for seasonality. Panel (a)
adds an additional fixed effect for time (year-month dummies), which are interacted with HS6 Product
Codes. Standard errors (clustered by HS4 product code) in parentheses. Significance Codes: ***: 0.01, **:
0.05, *: 0.1.
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Figure C.8: Qatar Blockade Caused a Supply Shock for Trade-Exposed Products

Panel A: Aggregate patterns
(i) Prices Increased sharply after the Blockade (ii) Volumes Contracted for All Product Sections
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Panel B: Heterogeneity across goods
(i) Most Goods with sharp Increase in Prices after the Blockade (ii) Volumes Contracted after the Blockade
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Note: This figure shows the impact of the blockade on ’blockade exposed’ goods and the heterogeneity across product sections. Panel A (a)
displays a composite price index and (b) a composite volume index, both weighted by 2016 trade values. Vertical black dashed lines mark the start
and end of the blockade. Panel B (c) shows percentage changes in average prices and (d) in total trade volumes between 2015-2016 and 2018-2019,
with gradients indicating import value shares from blockading countries. ”Works of art, collectors’ pieces and antiques” is excluded for clarity.
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Figure C.9: The Blockade substantially altered Trading Pat-
terns

(a) Trade Value for Blockade-
exposed Goods
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(b) Trade Value for All Goods
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Note: This figure shows the monthly value of all goods imports, broken down by country-of-origin into
two groups: Blockading Countries’ includes Saudi Arabia, UAE, Bahrain, Egypt, Mauritania, Djibouti,
and Maldives, and Rest of World’, all remaining countries. Series are smoothed using a 3-month moving
average, except during May-July 2017. Vertical black dashed lines mark the start and end of the blockade.
Panel (a) includes only ‘Blockade Exposed’ 8-digit HS products, defined as goods where the majority of
total import value was sourced from blockading countries in 2016. Panel (b) covers all goods.
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D Relevant Network Statistics

This section describes a variety of relevant network statistics which are common in the

literature, which we utilise to document shifts in the composition of trade flows. We

leave our prefered and novel network measure, the Integrated Global Product Centrality

(IGPC) to the next section proceeding this.

The most important of these is a measure of ‘upstreamness’, which was first intro-

duced by Fally (2012) and Antràs et al. (2012). We extend this definition for the case of

our highly granular product-level production network with discrete edges.

We also calculate degree-centrality and a page-rank centrality measure. These mea-

sures are implemented in R. For iterative measures like upstreamness, the computation

stops when the change in scores falls below a threshold of 10−8. Our implementation of

these measures is publicly available.

Notation Let G = (V, E) be a directed graph where V is the set of all HS6 products

and E represents the binary input-output relationships between products. For each edge

(i, j) ∈ E, product i is an input for product j. We define the adjacency matrix W as:

Wij =


1 if product i is an input for product j 0

otherwise
(12)

Upstreamness Higher scores indicate products that are, on average, used as inputs

in several stages of production before reaching final consumption. We define our un-

weighted upstreamness measure as follows:

u = 1 +
∞

∑
k=1

k · αk(Pk · 1) (13)
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where P is the row-normalized version of W:

Pij =
Wij

∑k Wik
(14)

and α is a decay factor (set to 0.5 in our implementation) to ensure convergence of the

power series and to modulate the influence of distant connections in the production

network.

Upstreamness (Weighted) We extend the upstreamness measure by incorporating global

trade volumes. Let v be a vector of global trade values for each product. We define the

weighted upstreamness as:

uw = 1 +
∞

∑
k=1

k · αk(Pk
w · 1) (15)

where Pw is a weighted transition matrix:

Pw,ij =
Wij · vj

∑k Wik · vk
(16)

Degree Centrality Out-degree represents the number of products that use the given

product as an input, while in-degree represents the number of products used as inputs

for the given product. For a node i, we define:

Out-degree centrality: dout(i) = ∑
j

Wij In-degree centrality: din(i) = ∑
j

Wji (17)

PageRank PageRank is a variant of Eigenvector Centrality that measures importance

based on the quantity and quality of links to a node. Higher scores suggest products

that are important inputs to other important products, considering both the quantity
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and quality of connections in the network. It is defined recursively as:

PR(A) = (1 − d) + d
n

∑
i=1

PR(Ti)

C(Ti)
(18)

where d is a damping factor (typically set to 0.85), Ti are the nodes linking to A, and

C(Ti) is the number of outbound links from Ti.

These measures provide complementary views of a product’s position and impor-

tance in the global production network, allowing for a comprehensive analysis of trade

flow composition and structure.

E Integrated Global Product Centrality (IGPC) and AIP-

NET

The Integrated Global Product Centrality (IGPC) measure is fundamentally built upon

the AI-generated Production Network (AIPNET). This section details how AIPNET is

incorporated into the IGPC calculation and its significance in determining product cen-

trality.

AIPNET is represented as a directed graph G = (V, E), where V is the set of nodes,

each representing a product in the Harmonized System (HS) classification, and E is the

set of directed edges, representing input-output relationships between products. Each

edge eij ∈ E indicates that product i is an input in the production of product j. This net-

work structure captures the complex interdependencies in global production processes.

The IGPC measure is defined by the equation

X = (1 − d)B + dAWX (19)

where X represents the vector of IGPC scores, with Xi representing the IGPC score of

product i. The parameter d ∈ (0, 1) is a damping factor (typically set to 0.85), B is the
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base importance vector, A is the adjacency matrix derived from AIPNET, and W is a

diagonal matrix of weight adjustments.

The AIPNET structure is integrated into the IGPC formulation through the adjacency

matrix A. The elements of A are defined as follows:

Aij =


1 if eji ∈ E (i.e., product j uses product i as input)

0 otherwise
(20)

This encoding in A ensures that the IGPC measure reflects the actual production rela-

tionships between products.

The integration of AIPNET into IGPC has several implications. The term AWX in

the IGPC equation represents how importance flows from downstream products to their

inputs, allowing product j to contribute to the importance of all its input products i

where Aij = 1. Products with high out-degree in AIPNET, serving as inputs to many

other products, thus accumulate importance from a wider range of downstream prod-

ucts. The iterative nature of the IGPC calculation captures the significance of products

that might not have high direct trade volumes but are critical in complex production

chains. Additionally, the weight matrix W modifies the importance flow defined by A,

incorporating trade volumes (through Global Trade Share, GTS) so that high-volume

trade relationships exert a stronger influence on importance propagation.

To further elucidate the role of AIPNET, the IGPC update equation for a single prod-

uct i can be expressed as:

X(t+1)
i = (1 − d)Bi + d ∑

j∈Nout(i)

WjjX
(t)
j

∑k∈Nin(j) Wkk
(21)

where Nout(i) is the set of products that use i as an input (outgoing edges in AIPNET),

and Nin(j) is the set of products used as inputs for j (incoming edges in AIPNET). Here,
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Bi is the base importance of product i, defined as:

Bi =

(
TCi − min(TC)

max(TC)− min(TC)

)α

×
(

GTSi − min(GTS)
max(GTS)− min(GTS)

)β

(22)

where TCi is the Trade Concentration and GTSi is the Global Trade Share of product i.

The diagonal element Wii in W corresponding to product i is given by

Wii =

(
GTSi − min(GTS)

max(GTS)− min(GTS)

)γ

(23)

showing how the IGPC score of a product depends on its position in the AIPNET struc-

ture, specifically its relationship to downstream products.

The IGPC measure balances the structural information provided by AIPNET with

empirical trade data. While AIPNET supplies the structure of product relationships

and potential paths for importance propagation, GTS and TC provide product-specific

weights that adjust this structure based on observed trade patterns. The damping factor

d adjusts the relative importance of network structure versus intrinsic product impor-

tance (as measured by GTS and TC), and parameters α, β, and γ control the influence

of TC, GTS, and their interaction in the network structure. Through this integration

of AIPNET with trade volume and concentration data, IGPC provides a comprehensive

measure of product centrality, reflecting both the complex structure of global production

networks and the empirical realities of international trade.

F Estimating Structural Breaks in Unit Prices

Measuring persistent price shocks to finished goods To identify structural breaks in

the unit price index for each country-product pair, we first residualise each each series

absorbing out time invariant country and product-specific shifts. Specifically, we use

the log of the unit prices as the outcome variable and run the following econometric
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specification:

log(pd,c,t) = νd,c + ηdhs2,t (24)

The specification removes idiosyncratic good and country-specific level differences in

prices, (νd,c). Further, we remove HS2 good and country specific time fixed effects,

ηdhs2,t, which may capture general supply- or demand-imbalances within similar class of

goods.49

We then obtain the residuals from this regression, denoted as ε̂dhs4,c,t, and code a

country-by-good-by-year specific observation as an outlier if a specific good dhs4 has

both, an above-median residual that also is positive. That is, we create a binary indicator:

Iε̂,t = I
(
ε̂d,c,t > median(ε̂d,c,t) ∩ ε̂d,c,t > 0

)
(25)

We focus on above median positive supply shocks that are persistent. That is, for a shock

to classify as a shock, we require prices to be elevated for at least three consecutive

periods:

Shockd,c,t =


1 if Iε̂,t = 1, Iε̂,t−1 = 1, Iε̂,t−2 = 1

0 otherwise
(26)

49This measure is rather ownerous, as it permits only shifts in idiosyncratic and granular product unit
prices. As such, it may under-report larger global shocks.

106


