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Abstract

We study a class of two-way fixed effects index function models with a
nonparametric link function and individual- (or time-) specific slopes. Our
model alleviates potential misspecification errors due to the common prac-
tice of specifying a known link function such as Gaussian and its tail be-
havior. It also enables to incorporate richer unobserved heterogeneity in
the marginal effects of covariates via heterogeneous slopes across individ-
uals. We show the identification of the link function as well as the slopes
and fixed effects parameters when both individual and time dimensions are
large. We propose a nonparametric consistency result for the fixed effects
sieve maximum likelihood estimators. Finally, we apply our method to the
study of establishing exportation and illustrate the consequences of impos-
ing Gaussian link function and homogeneity on the slope of distance.
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1 Introduction

Nonlinear two-way fixed effects panel models gain popularity in economic re-
search. These models typically feature individual and time dimensions, enabling
researchers to incorporate rich heterogeneity in empirical research, e.g., industrial
organization (Dubois et al., 2020), international trade (Helpman et al., 2008), la-
bor (Abowd et al., 1999), innovation (Aghion et al., 2013) and network (Jochmans,
2018). By allowing both dimensions to increase to infinity, one can reduce the in-
cidental parameter problem in panel data models (Lancaster, 2000; Neyman and
Scott, 1948) to a post-estimation bias correction (Fernández-Val and Weidner,
2016).

In applied and related econometric works in this literature, researchers often
adopt two restrictions: parametrically specified link function (e.g., probit) and
slope homogeneity across individuals and time (e.g., homogeneous price coefficient
in demand). These restrictions may not be innocuous. For instance, in the setting
of demand, if the true link function has a relatively thick left tail, assuming a thin-
tail link function (e.g., Gaussian) may understate the negative effect of price and
introduce an upward bias in the estimated price coefficient. Imposing the same
price coefficient across individuals may overlook unobserved heterogeneity in price
sensitivity and lead to biased estimates of average marginal effects of price. The
extent to which these restrictions can be relaxed is, however, still underexplored
in the literature.

In this paper, we study the nonparametric identification and estimation of a
class of two-way fixed effects index function models that relax the aforementioned
two restrictions. In this class of models, individual i’s probability of choosing y
from a discrete set Y at time t is given by:

Pr (Yit = y|(Xis)s≤t,F) = g(y;X ′itβi + αi + ξt), (1)

where Xit are individual i’s observed characteristics at time t, βi are individual-
specific slopes, (αi, ξt) are individual-fixed and time-fixed effects, g is a link func-
tion, and F is the smallest σ−field generated by latent shocks common to all
individuals (e.g., {ξt}t) and those common to all time series (e.g., {αi}i). This
model encompasses settings with a single index, such as binary outcome, ordered
outcome and count outcome, as well as those with multinomial outcomes. Con-
trasting the common practice of specifying a known link function, model (1) allows
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g to be nonparametric and estimated from the data. Besides, we allow slope pa-
rameters βi to be individual-specific rather than homogeneous across individuals
(i.e., βi = β).1 This feature enables researchers to incorporate richer (unob-
served) individual heterogeneity in the marginal effects of covariates of interest,
e.g., household’s price sensitivity and trade cost.

First, we lay out the asymptotic framework within which the identification of
(βi, αi)i, (ξt)t, and g(·; ·) in (1) is meaningful when both the numbers of individuals
(N) and time periods (T ) are large. This framework is characterized by a well-
defined infinite population (Assumption 1) and sequences of increasing consistent
samples (Assumption 2). It allows to construct individual-specific limiting objects,
e.g., the individual-specific probability of observing outcome yit = y given a vector
of covariate values, from the individual-specific time series. Similarly, one can also
construct time-specific limiting objects from the cross-sectional observations in
each time period. Our identification arguments will rely on these limiting objects.
Such constructions do not require the knowledge of the true parameters. Moreover,
we do not impose stationary distribution over the time dimension and allow for
lagged outcomes as explanatory covariates.

Second, we propose two identification results (Theorems 1 and 2) for (αi, βi)i,
(ξt)t, and function g when both N and T are infinity. In Theorem 1, we adopt the
technique of compensating variable to establish the identification of (αi, βi) relative
to some individual j’s (αj, βj). Loosely speaking, we require the existence of a
variable in Xjt, say its first component X(1)

jt , that can compensate the difference
in i’s and j’s indexes due to (αi, βi)–(αj, βj). This compensating variable can be
a continuous one (e.g., the distance in trade) and does not need to have a large
support. Under some monotonicity assumptions on the link function with respect
to the index, one can back out the amount of the compensation by comparing
identified i’s and j’s limiting objects, giving rise to restrictions on (αi, βi) and
identifying their values relative to (αj, βj). More generally, this pairwise argument
induces a compensating network in which two individuals are connected if and only
if one can compensate the other. The ability of relatively identifying individual-
specific parameters is then translated to the connectedness of the network. Within
its connecting component, one can achieve the identification of (αi, βi) relative to
the parameters of a reference individual in this component. The compensating
network may have more than one disjoint connecting components. In this case, the

1In Appendix E, we also consider the case of time-specific slopes.
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corresponding reference individuals’ parameters are not identified without further
conditions.

In Theorem 2, we assume the connectedness of the compensating network
and propose conditions to further identify time-specific parameters (ξt)t and the
link function g. In a similar vein to Theorem 1 and given the identification of
individual-specific parameters, we apply the argument of compensating variable
to achieve the identification of (ξt)t relative to a reference time period. We then
identify the normalized index for each cell (i, t) (relative to the reference individual
and time period) and g(y; v) by the probability of observing outcome y given index
value v.

Third, we build on the identification results and propose a nonparametric
consistency result for the fixed effects sieve maximum likelihood estimators of
(αi, βi)i, (ξt)t, and link function g (Theorem 3). The consistency requires N and T
to increase to infinity and does not depend on their relative rate. Our result implies
the uniform convergences of the maximum likelihood estimators of normalized
(αi, βi)i, (ξt)t, and the sieve estimator of g. Consequently, we obtain consistent
plug-in estimators for individual-level marginal effects of covariates when both N
and T tend to infinity.

Finally, we revisit the study of establishing between-country exportation in
Helpman et al. (2008) to illustrate the consequences of imposing a known link
function and slope homogeneity. The original paper uses a two-way fixed effects
probit model with a constant coefficient on the log-distance between countries.
Differently, we allow the link function to be unknown and the distance coefficient
to be exporting-country-specific. The estimated link function has a thicker left tail
than Gaussian distribution. As a result, imposing the probit specification leads
to a upward bias in the estimates of distance coefficients. Besides, we find non-
trivial variation in the country-specific marginal effect of distance when allowing
for country-specific distance slope. Whether or not we treat the link function as
parameters to be estimated, the slope heterogeneity explains more than 90% of
this variance. In contrast, the homogeneous probit model substantially underes-
timates the variation of country-specific marginal effect of distance by a factor of
20 compared to models with country-specific distance slope.

Related literature. Our paper belongs to the strand of research on panel data
methods in the large-N and large-T asymptotic framework. In a parametric set-

4



ting with only individual fixed effects, existing works establish that one can reduce
the Neyman and Scott (1948)’s incidental parameters problem to a post-estimation
bias correction by allowing T to increase to infinity (Dhaene and Jochmans, 2015;
Fernández-Val, 2009; Fernández-Val and Lee, 2013; Hahn and Kuersteiner, 2002;
Hahn and Newey, 2004). Recent works extend this result to two-way fixed effects
models with known link function (Fernández-Val and Weidner, 2016, 2018), inter-
active fixed effects (Bai, 2009; Boneva and Linton, 2017; Chen, 2016; Chen et al.,
2021; Gao et al., 2023), and the dyadic network formation (e.g., Graham (2017),
Jochmans (2018), Zeleneev (2020). See de Paula (2020) for a review).

Different from most aforementioned papers, we consider a two-way fixed effects
panel model with a nonparametric link function. We provide conditions for the
identification of link function as well as slopes and fixed effects when both N

and T are large. Our identification arguments (compensating variable) differ from
those in dyadic network formation that rely on specific network features such as
undirectedness, i.e., the “time” and individual dimensions coincide (Candelaria,
2020; Gao, 2020; Toth, 2017; Zeleneev, 2020). Building on the identification, we
further propose a consistency result for the sieve maximum likelihood estimator.
Both results are novel in this literature to the best of our knowledge; they provide a
foundation for the parametric large-N -and-large-T inference methods that usually
rely on specific properties of the link function such as logit (Charbonneau, 2017;
Jochmans, 2018) and log-concavity (e.g., Assumption 4.1 in Fernández-Val and
Weidner (2016)).

Besides, unlike most existing two-way fixed effects panel models, ours allow for
unobserved heterogeneity in slopes.2 In this regard, our paper speaks to the liter-
ature of random coefficients panel models that aim to incorporate flexible partial
effects of covariates across units. This literature usually studies the identification
and estimation of distributional features of the random coefficients in parametric
one-way fixed effect models mostly in a fixed-T setting (Arellano and Bonhomme,
2011; Chamberlain, 1982; Hsiao and Pesaran, 2004), with few exceptions also con-
sidering a large-T asymptotics (Fernández-Val and Lee, 2013; Swamy, 1970). Our
paper differs from these works by considering a nonparametric two-way fixed effects
model and prove the point identification of heterogeneous slopes when both N and
T are large. This result allows to identify and consistently estimate unit-specific

2Boneva and Linton (2017) and Gao et al. (2023) also consider such heterogeneity but assume
a known link function.
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partial effects of covariates, contrasting existing results in the fixed-T setting that
only the distributional features of the partial effects are identified (Graham and
Powell, 2012). However, we do not tackle the inference about the partial effects
in the presence of nonparametric link function and heterogeneous slopes.

Our identification strategy of compensating variable relates to several works
beyond panel models. Examples include the identification of the average effects
of endogenous dummy covariates (Vytlacil and Yildiz, 2007), testing the exclusion
restriction in the control function approach (D’Haultfoeuille et al., 2021), and de-
mand identification in the presence of railway dynamic pricing (D’Haultfœuille
et al., 2022). Analogously to these works, our strategy relies on the existence of
an exogenous covariate with sufficient variation to compensate changes in other
covariates or in fixed effects. It does not require this covariate to have a large
support. Besides, the compensating variable resembles conceptually a special re-
gressor (Lewbel, 2014; Williams, 2020). Due to the unobserved heterogeneity in
slopes, the slope of the compensating variable may, however, differ across individ-
uals and cannot be normalized to one as in the method of special regressor. Using
the cross-sectional variation in the compensating variable, we also compensate
the difference in its slopes across individuals, a new aspect the special regressor
method (and previously mentioned works) does not have.

2 Model and Sampling Process

Consider a countably infinite population {(i, t) : (i, t) ∈ {1, 2, . . .}2}. Each cell
(i, t) is equipped with an observed vector (Yit, X ′it) ∈ Y × X that is typically
random. We assume that there exist σ-fields F cs and F ts generated by latent
shocks common to all cross-sectional units (the i’s) and all time series (the t’s)
respectively. Let F be the smallest σ-field containing F cs ∪ F ts.

Assumption 1 (Model).

(a) Single index and two-way fixed effects: for all (i, t),

Pr (Yit = y|(Xis)s≤t,F) = g(y;X ′itβi + αi + ξt), (2)

with, almost surely, supi ‖βi‖ ≤ Cβ <∞. Moreover, g is unknown.

(b) Monotonicity and smoothness: there exists ȳ ∈ Y such that the function
v 7→ g(ȳ; v) is strictly increasing and L-Lipschitz.
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(c) Cross-section independence and weak serial dependence:

1. Conditional on F , {(Yit, X ′it) : t = 1, 2, . . .} is independent across i.

2. Let µ > 1. Conditional on F , for each i, {(Yit, X ′it) : t = 1, 2, . . .} is
α-mixing with mixing coefficient satisfying supi ai(m) = O(m−µ) as
m→∞, where

ai(m) ≡ sup
t

sup
A∈Ait,B∈Bit+m

|Pr(A ∩B)− Pr(A) Pr(B)| ,

Ait is the σ-field generated by ((Yit, X ′it), (Yit−1, X
′
it−1), . . .), and B1

t is
the σ-field generated by ((Yit, X ′it), (Yit+1, X

′
it+1), . . .).

(d) Conditional on F , Xit has density pit with respect to the Lebesgue measure
on RK that satisfies pit(x) ≤ pmax <∞ for all (i, t) and x ∈ RK.

(e) Let K denote a bounded kernel function. For all strictly monotonic functions
f : R → (0, 1) and x = (x(1), x(2)) ∈ X , almost surely, there exists a constant
cf,x(2) nontrivially depending on f such that, for all i,

1
hTT

∑T
t=1K

(
Xit−x
hT

)
f(ξt)

1
hTT

∑T
t=1K

(
Xit−x
hT

) → cf,x(2) as T →∞.

Assumptions 1(a) and 1(b) define the class of two-way fixed effects models we
focus on. In Assumption 1(a), the distribution of outcome Yit depends on the
observed characteristics Xit and fixed effects (αi, βi, ξt) via a single index and an
unknown link function g. Individual-specific slopes βi capture heterogeneous effect
of Xit and are potentially unobserved to the researcher.3 In Assumption 1(b), we
impose monotonicity and smoothness conditions on the dependence of g on the
single index v at some known ȳ ∈ Y .4 Most link functions, e.g., logit, probit, and
Poisson, satisfy these conditions.

Assumptions 1(c)1 and 1(c)2 impose dependence restrictions across individual
and time dimensions of the panel; both are standard in the panel data literature

3One can use an it-specific βit and specify βit = γrit to capture observed heterogeneity in
slopes, where rit is a vector of observed characteristics of individual i at time t. This is equivalent
to adding xitrit in (2) with common slopes γ across individuals and time periods.

4If v 7→ g(ȳ; v) is strictly decreasing, one can transform ((αi, βi, ξt)i,t, g(·; ·)) to
((−αi,−βi,−ξt)i,t, g(·;−·)) that delivers the same model (2) and v 7→ g(ȳ;−v) is strictly in-
creasing in v.
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(e.g., Assumption 4.1 in Fernández-Val and Weidner (2016)). Assumption 1(c)1
requires cross-sectional independence across individuals conditional on common
shocks. Assumption 1(c)2 requires α−mixing properties across time periods condi-
tional on common shocks. It does not impose identical nor stationary distribution
over the time dimension. The model allows for lagged outcomes as explanatory
covariates, though Assumption 1(c)2 may rule out some forms of dynamics.5

Assumption 1(e) requires the observed individual time series to have a
Birkhoff’s almost-sure ergodic property. It is sufficient for constructing the lim-
iting objects from the individual time series so that their true values are known
to the econometrician in the setting of identification discussion (i.e., when T and
N are infinity). When, for all i, the corresponding time series {(ξt, Xit)}t=2,3,...

are strictly stationary with strong mixing conditions (see Hansen (2008)), this
assumption holds as long as the distribution of ξt|Xit = x does not depend on
x

(1)
it , an exogeneity condition that can be qualified in an applied setting. It al-

lows for ξt and ξt′ to be correlated as long as the correlation vanishes as the time
periods are distant enough. It also accommodates some non-stationary (ξt)t such
as deterministic time trends. For instance, if ξt = t − 1, then {f(ξt)}t=1,2,... is a
bounded strictly monotonic sequence of real numbers with limit in {0, 1} so that
cf,x(2) ∈ {0, 1}. Another example is periodic time trend: there exists T0 such that
ξt+T0 = ξt non-random. Then, cf,x(2) ≡ cf .

Lastly, Assumption 1(d) focuses on continuous covariates and rules out discrete
ones. This choice is mainly to simplify the exposition. In the presence of covariates
whose distributions are mixtures of discrete and continuous distributions with
known dominating measure, one can accordingly modify Assumption 1(e) such
that the conditional expectation at point masses is identified in the limit by an
empirical frequency justified by the law of large numbers, possibly combined with
kernel smoothing.

In Appendix E, we present two extensions of model (2). The first one is a
model with time-specific slopes:

Pr (Yit = y|(Xis)s≤t,F) = g(y;X ′itβt + αi + ξt), (3)

where βt captures potentially heterogeneous effect of Xit across time periods. The
5For instance, Andrews (1984) discussed simple autoregressive models that are not strongly

mixing. The nonlinearity in (2) makes it more difficult to link the regressive coefficient to the
α-mixing coefficient and verify the mixing property.
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second one is with multinomial outcomes:

yit = arg max
j=1,...,J

{
αij + ξtj + x′tjβij − uitj

}
, (4)

where (uit1, . . . , uitJ) are independent of (αij, ξtj, βij, xtj)Jj=1 and distributed ac-
cording to density g∗. Define vitj = αij + ξtj + x′tjβij. Then,

g(y; vit1, . . . , vitJ) =
J∑
j=1

1{y = j}Pr(uitj − uitj′ ≤ vitj − vitj′ , for any j′ 6= j),

where the right-hand side is a function of J indexes vit = (vitj)Jj=1 and J is known.
Given the data generating process described by Assumption 1, the econome-

trician observes a finite sample of size NT from the infinite population. Denote
by MNT

it the indicator of (i, t) belonging to this finite sample, i.e., (i, t) is in this
finite sample if and only if MNT

it = 1. Moreover, ∑∞i=1
∑∞
t=1M

NT
it = NT and

MNT
it ∈ {0, 1} for all i, t. The sequence of infinite binary arrays MNT ≡ (MNT

it )i,t
with NT positive entries governs the sampling process.

Assumption 2 (Sampling).

(a) Independent sampling: MNT ⊥ ((Yit, X ′it)i,t,F).

(b) Single increasing panel: [N ≤ Ñ and T ≤ T̃ ] =⇒ [MNT
it ≤M ÑT̃

it , ∀(i, t)].

(c) Balanced NT -panels: for all N, T, i, t,

∞∑
i=1

∞∑
t=1

MNT
it = NT

and

MNT
it = 1 =⇒

 MNT
is = 1, ∀s : ∃j,MNT

js = 1,
MNT

jt = 1, ∀j : ∃s,MNT
js = 1.

Assumption 2(a) rules out any dependence between the sampling process and the
joint distribution of population outcomes and latent shocks. This is a “Missing-
At-Random” assumption on the infinite population. Assumption 2(b) is analogous
to the assumption of “staggered adoption” in the causal difference-in-differences
(DID) literature: once a cell (i, t) has entered the sample (“treatment” in the
DID literature), it remains in subsequent ones. By Assumption 2(c), we consider
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balanced panels in the subsequent analysis to simplify the exposition. One can
adapt our results and the proofs to allow for unbalanced sampling processes.

Assumptions 1 and 2 provide an asymptotic framework within which the identi-
fication of individual or time-specific parameters (αi, βi, ξt) is meaningful. Usually
speaking, these parameters depend on sample size and their triangular sequence
may not have a meaningful limit.6 Our framework solves this problem by assum-
ing a well-defined infinite population (Assumption 1) and sequences of increasing
consistent samples (Assumption 2). Whether a cross-sectional unit i or time pe-
riod t appears in observed samples only depends on the sampling process MNT

which we assume independent from outcomes and latent shocks.

3 Identification and Estimation

To simplify the exposition, we consider the following rectangular sampling process
that satisfies Assumption 2:

MNT
it =


1 if i ≤ N, t ≤ T

0 otherwise.

and let N, T →∞. We are interested in identifying and estimating (αi, βi)i=1,2,...,
(ξt)t=1,2,..., and function g in model (2).

3.1 Identification

We present the arguments for Xit = (X(1)
it , X

(2)
it ) ∈ X ⊂ R2. We extend the iden-

tification results to the cases of time-specific slopes (3) and multinomial outcomes
(4) in Appendix E.
For any i such that β(1)

i 6= 0, we first define:

zi→i′(x(1);x(2)) ≡ [x(1)β
(1)
i′ + x(2)(β(2)

i′ − β
(2)
i ) + αi′ − αi]/β(1)

i . (5)

Intuitively, zi→i′(x(1);x(2)) is interpreted as a compensating variable, i.e., the
needed value of x(1) for individual i with x(2) to make her and i′’s indexes equal:

6Instead, if some kind of uniform convergence holds, e.g., limN,T→∞ supi≤N,t≤T ‖(α̂i, β̂i, ξ̂t)−
(α0
i , β

0
i , ξ

0
t )‖ p→ 0 where (α̂i, β̂i, ξ̂t) are estimators of the true ones (α0

i , β
0
i , ξ

0
t ) when the sample

size is NT , then one could identify the distributional features of the fixed effects.

10



αi + ξt + β
(1)
i zi→i′(x(1);x(2)) + β

(2)
i x(2) = αi′ + ξt + β

(1)
i′ x

(1) + β
(2)
i′ x

(2). The following
definitions formalize the idea of compensation in the infinite population.

Definition 1 (Compensable). Individual i′ is said to be compensable by individual
i at point (x(1), x(2)) if and only if (zi→i′(x(1);x(2)), x(2)) ∈ Xi.

Note that if β(1)
i = 0, then by definition individual i cannot compensate any other

individuals. In Appendix A, we show that the set of individuals with β
(1)
i = 0,

denoted by I0, is identified under Assumptions 1 and 2. For those in I0 that are
compensable, we can identify their parameters using the same arguments in our
main results. Instead, for those in I0 that are not compensable, our identification
arguments do not apply. In the remaining part of the paper, we will focus on the
subpopulation with non-zero β(1)

i , i.e., N \ I0.

Definition 2 (Compensating network). Let G∞ denote the compensating network
with an edge between i to j with i, j ∈ N \ I0, denoted i ←→ j, if and only if
either individual j is compensable by individual i at least at (x(1)k, x(2)k) ∈ Xj for
k = 1, 2, 3, with 

1 x(1)1 x(2)1

1 x(1)2 x(2)2

1 x(1)3 x(2)3


being nonsingular, or i is compensable by individual j at least at (x(1)k, x(2)k) ∈ Xi
for k = 1, 2, 3, with the same rank condition.

In general, G∞ induces a partition of N \ I0 that contains at most a countably
many disjoint subsets of N \ I0. Within each subset, two individuals i1 and il are
connected via a sequence (i1, i2), . . . , (il−1, il) in which either ik−1 is compensable
by ik or the other way around for any k = 2, . . . , l. It is possible that some
subsets are singletons, i.e., each of them contains only one individual that neither
compensate nor can be compensated by others. The next theorem states a relative
identification result within each subset that contains at least two individuals. The
proof can be found in Appendix A.

Theorem 1 (Relative identification). Suppose that Assumptions 1 and 2 hold.
Denote by {Ir : r = 1, 2, . . .} the partition of N \ I0 induced by G∞. Then,
(αi − αj)/β(1)

j , β(1)
i /β

(1)
j , and (β(2)

i − β
(2)
j )/β(1)

j are identified for any i, j ∈ Ir and
any r with Ir containing at least two individuals.
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Intuitively, for a sequence (i1, i2), . . . , (il−1, il) with ik ∈ Ir for k = 1, . . . , l, if
individual ik−1 is compensable by ik at the three points in Definition 2, one
can then identify zik→ik−1(x(1)1;x(2)1), zik→ik−1(x(1)2;x(2)2), and zik→ik−1(x(1)3;x(2)3)
by comparing ik−1’s and ik’s choices, yik−1t and yikt, over time. The rank
condition in Definition 2 ensures the unique recovery of (αik−1 − αik)/β

(1)
ik

,
β

(1)
ik−1

/β
(1)
ik

, and (β(2)
ik−1
− β

(2)
ik

)/β(1)
ik

from zik→ik−1(x(1)1;x(2)1), zik→ik−1(x(1)2;x(2)2),
and zik→ik−1(x(1)3;x(2)3). In essence, the rank requirement rules out the situation
in which one point, say (x(1)3, x(2)3), lies on the line defined by (x(1)1, x(2)1) and
(x(1)2, x(2)2). When (x(1), x(2)) ∈ Xik−1 are continuous and the set of points at
which ik−1 is compensable by ik has positive Lebesgue measure, the rank condi-
tion automatically holds. One can apply the same reasoning to the case in which
ik is compensable by ik−1 at the three points in Definition 2 and to all the pairs in
the sequence. Consequently, we achieve the relative identification in Theorem 1.

Theorem 1 relates the ability of identifying individual-specific parameters in
model (2) to the connectedness of G∞, an insight that joins some recent liter-
ature using “overlapping graphs” as a key identifying device (see, e.g., Abowd
et al., 1999; Jochmans and Weidner, 2019; Lei and Ross, 2024). To see this
point, suppose that G∞ contains two connected components that contains in-
dividual 1 and 2, respectively. According to Theorem 1, we can identify ((αi −
α1)/β(1)

1 , β
(1)
i /β

(1)
1 , (β(2)

i −β
(2)
1 )/β(1)

1 ) for i ∈ I1 and ((αj−α2)/β(1)
2 , β

(1)
j /β

(1)
2 , (β(2)

j −
β

(2)
2 )/β(1)

2 ) for any j ∈ I2. However, the magnitude of (α1, β
(1)
1 ) relative to

(α2, β
(1)
2 ) is not identified. As a result, the magnitudes of (αi, β(1)

i , β
(2)
i ) relative to

(αj, β(1)
j , β

(2)
j ) for i ∈ I1 and j ∈ I2 are not identified. In contrast, if G∞ has only

one component and is connected, we then identify (αi, β(1)
i , β

(2)
i − β

(2)
1 ) relative to

(α1, β
(1)
1 ) for all i ∈ N \ I0.

What determines the connectedness of G∞ is the support of X(1)
it , X 1

i , for
i ∈ N \ I0. When Xi has a large support, i.e., X 1

i = R, any other individual
is then compensable by i at any point. G∞ is therefore a connected network.
Nevertheless, depending on the supports of other individuals, the large support
condition may be unnecessary for having a connected G∞. For instance, suppose
that Xi is uniformly bounded for i ≥ 2. Because of Assumption 1(a), the required
compensation for i ≥ 2 is also uniformly bounded. As long as X 1

1 is larger than
this uniformly bounded set of compensation, G∞ will be connected. In Appendix
C, we provide two examples along the lines of this reasoning and illustrate how
economic restrictions help alleviate the support requirement.
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In the next assumption, we suppose a star structure in G∞ and propose condi-
tions to identify remaining parameters. Let Pv(z, x(2)) = (z, x(2))v be the operation
of inner product.

Assumption 3 (Identification).

(a) There exists i? ∈ N \ I0 such that for all j ∈ N \ I0, there exists an edge
i? ←→ j in G∞.

(b) Let Z i?it denotes the support of (zi?→i(x(1)
it , x

(2)
it ), x(2)

it ) and Z i?t = ∩i∈N\I0Z i
?

it .
For some (t, r) ∈ N×R,

{
z ∈ Z i?t : P(β(1)

i?
,β

(2)
i?

)(z) = r
}
is not a singleton.

The star structure in Assumption 3(a) implies that G∞ is connected. As discussed
previously, we can then identify (αi, β(1)

i , β
(2)
i −β

(2)
i? ) relative to (αi? , β(1)

i? ) for any i ∈
N\I0. Assumption 3(b) gives the condition under which zi?(x(1);x(2)) compensates
between x(1) and x(2) for i?. It is used to identify β(2)

i? and β(2)
i relative to β(1)

i? for
i ∈ N \ I0.

Theorem 2. Suppose that Assumptions 1–3 hold. Then,

•
(
αi−αi?
β

(1)
i?

,
β

(1)
i

β
(1)
i?

,
β

(2)
i

β
(1)
i?

)
are identified for any i ∈ N \ I0.

• ξt−ξs
β

(1)
i?

is identified for all s, t ∈ N such that

(
∩i∈N\I0P(β(1)

i?
,β

(2)
i?

)(Z
i?

is ) + ξs

)
∩
(
∩i∈N\I0P(β(1)

i?
,β

(2)
i?

)(Z
i?

it ) + ξt

)
6= ∅. (6)

• For t?, let

T ? = {t : ∃ (t?, t1), (t1, t2), . . . , (tl, t) such that (6) holds for each pair in the sequence}.

Then, g(y; β(1)
i? u + αi? + ξt?) is identified for any (y, u) ∈ Y ×

∪t∈T ?
(
∩i∈N\I0P(1,β(2)

i?
/β

(1)
i?

)(Z
i?

it ) + (ξt − ξt?)/β(1)
i?

)
.

In a similar vein to Theorem 1, the second result of Theorem 2 identifies rela-
tively ξt by compensating the difference ξt − ξs with (β(1)

i? , β
(2)
i? )(zs − zt) for some

zs ∈ ∩i∈N\I0Z i
?

is and zt ∈ ∩i∈N\I0Z i
?

it . The overlapping-support condition in (6)
is sufficient for applying this compensation argument. In the third result of
Theorem 2, the set T ? gathers time periods that are connected to t? and the
corresponding time-fixed effects are identified relative to ξt? . Together with the
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identification of
(
αi−αi?
β

(1)
i?

,
β

(1)
i

β
(1)
i?

,
β

(2)
i

β
(1)
i?

)
, this result implies the identification of sin-

gle index u ∈ ∪t∈T ?
(
∩i∈N\I0P(1,β(2)

i?
/β

(1)
i?

)(Z
i?

it ) + (ξt − ξt?)/β(1)
i?

)
. We then identify

g(y; β(1)
i? u+ αi? + ξt?) as a function of any y ∈ Y and u in this support.

Normalization. Suppose that T ? = N in Theorem 2. We then identify ξt−ξt?
β

(1)
i?

for all t ∈ N. Denote β̃i = βi/β
(1)
i? , α̃i = (αi − αi?)/β(1)

i? , ξ̃t = (ξt − ξt?)/β(1)
i? , and

g̃(y;uit) = g(y; β(1)
i? uit + αi? + ξt?) where uit = x′itβi/β

(1)
i? + (αi − αi?)/β(1)

i? + (ξt −
ξt?)/β(1)

i? . Note that ((αi, βi, ξt)i,t, g) and ((α̃i, β̃i, ξ̃t)i,t, g̃) deliver the same model
in (2). When i = i?, we have ui?t = xi?t and identify g̃(ȳ;xi?t) = g(ȳ; β(1)

i? xi?t +
αi? + ξt?) as a function of xi?t where ȳ in defined in Assumption 1(b). Then,
because g(ȳ; v) is strictly increasing in v (Assumption 1(b)), we can identify the
sign of β(1)

i? (and of β(k)
i for any i and k). Consequently, one can normalize αi? = 0,

β
(1)
i? = 1{β(1)

i? > 0}−1{β(1)
i? < 0} (or equivalently β(k)

i = 1{β(k)
i > 0}−1{β(k)

i < 0}
for some i and k), and ξt? = 0 without loss of generality.

Despite the normalization, Theorem 2 implies the identification of marginal effects
of xit = x for yit = y, ∂g(y;x′βi+αi+ξt)

∂x
, by ∂g̃(y;x′βi+αi+ξt)

∂x
= ∂g̃(y;x′βi+αi+ξt)

∂u
β̃i, and its

average over time for individual i by β̃iEξ̃,x|α̃i,β̃i
[
∂g̃(y;x′β̃i+α̃i+ξ̃)

∂u

]
. Both are typically

the objects of interest in applied research. Different from those in models with
homogeneous slopes, the marginal effects in model (2) can vary across individuals
due to heterogeneous slopes β̃i. Our identification results enable to quantify the
extent to which the slope heterogeneity explains the dispersion in marginal effects,
a point we will investigate in the empirical illustration in Section 5.

3.2 Consistency of Sieve MLE

The identification of (αi0, βi0, ξt0)i∈N,t∈T and the link function g0 (where subscript
0 denotes the true parameter values) in Theorem 2 hints on the potential of con-
sistently estimating these parameters in a large-N -and-large-T asymptotic frame-
work. In this section, we propose a consistency result for the sieve maximum
likelihood estimation (MLE) of (αi0, βi0, ξt0)i∈N,t∈T and g0, a natural nonpara-
metric extension of the fixed effects MLE routinely used in the literature. Its
implementation is similar to the parametric MLE and we discuss some novelties
in Section 3.3, e.g., shape restrictions on the link function.

We assume that G∞ is connected and T ? = N so that we can normalize
(αi?0, β

(1)
i?0) = (0, 1) (or (αi?0, β

(1)
i?0) = (0,−1)) and ξt?0 = 0 for some i? and t?.
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Accordingly, the parameter space defined in the estimation takes into account
these normalizations. Suppose Y is a set of finite outcomes {0, 1, . . . , L}.7 Define
hy(v) := log (g(y; v)/g(0; v)) for any y ∈ Y . In the case of logistic link function,
h1(v) = v. It is theoretically equivalent to use (hy(·))Ly=1 and (gy(·))Ly=0 under the
restrictions gy(·) > 0 for any y = 0, . . . , L and ∑L

y=0 gy(·) = 1. It is more of a
practical matter to consider sieve estimates of (hy(·))Ly=1 because they are free of
the aforementioned restrictions.

Denote by Ωα,β and Ωξ the support of (αi0, βi0) and ξt0, respectively. We
propose the following regularity conditions on the distribution of (αi0, βi0) and ξt0.

Assumption 4 (Fixed effects). (αi0, βi0) and ξt0 are continuous random variables
in compact domains Ωα,β ⊂ R3 and Ωξ ⊂ R, respectively. The density functions of
(αi0, βi0) and ξt0 are uniformly bounded away from zero by some c > 0. (αi0, βi0)
are independent across i. Let µ > 1. {ξt : t = 1, 2, . . .} is α-mixing with mixing
coefficient satisfying a(m) = O(m−µ) as m→∞, where

a(m) ≡ sup
t

sup
A∈Ait,B∈Bit+m

|Pr(A ∩B)− Pr(A) Pr(B)| ,

and Ait is the σ-field generated by (ξt, ξt−1, . . .), and B1
t is the σ-field generated by

(ξt, ξt+1, . . .). Moreover, (Xit, αi0, βi0, ξt0) is identically distributed across i and t.

Assumption 4 requires bounded support on (αi0, βi0) and ξt0, similarly to the
support condition on βi0 in Assumption 1(a). It also implies that the density pit(x)
in Assumption 1(d) is written as pit(x) = f0x(x|αi0, βi0, ξt0) where f0x(x|α, β, ξ) is
the density of Xit conditional on (αi0, βi0, ξt0) = (α, β, ξ). The α−mixing property
on (ξt)t imposes a weak serial dependence on (ξt)t≥1. It is compatible with the
ergodic requirement in Assumption 1(e).
First, denote the log-likelihood function by

LNT (θNT ) := 1
NT

N∑
i=1

T∑
t=1

log g(yit;αi + ξt + x′itβi)

= 1
NT

N∑
i=1

T∑
t=1

log
[

exp{hyit(αi + ξt + x′itβi)}
1 +∑L

y=1 exp{hy(αi + ξt + x′itβi)}

] (7)

where θNT = ((αi, βi)Ni=1, (ξt)Tt=1, h) and h = (hy)y∈Y,y 6=0.
7For the case of infinitely countably many outcomes, one can transform the model to a

truncated one with finitely many outcomes.
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Define the sieve maximum likelihood estimators as:

θ̂NT := (θ̂NT1 , ĥNT1 , . . . , ĥNTL︸ ︷︷ ︸
=:ĥNT

) = arg max
θNT∈ΘNT1 ×ΘNT

h

LNT (θNT ), (8)

where the compact set ΘNT
1 contains the true θNT10 = (αi0, βi0, ξt0)i=1,...,N ;t=1,...,T .

The set ΘNT
h is a subset of Θh = Θh1 × · · · × ΘhL with Θhl containing the true

value hl0 for l = 1, . . . , L. Denote by θNT0 = (θNT10 , h0). We need the following
assumption on the sieve space for the consistency of ĥNT .

Assumption 5 (Sieve space). The closure of Θh, Θ̄h, is compact in the relative
topology generated by some norm ‖ · ‖h. Moreover, ∪T,NΘNT

h is a dense subset of
Θ̄h with respect to ‖ · ‖h, and ΘNT

h ⊂ ΘÑT̃
h if N ≤ Ñ and T ≤ T̃ .

Assumption 5 is standard in the sieve literature. Examples of Θh and ΘNT
h include

Hölder class of functions and linear sieve spaces such as polynomials and splines.
We refer to Gallant and Nychka (1987), Chen (2007) and Freyberger and Masten
(2019) among others for more examples of Θ̄h and ΘNT

h . In Section 3.3, we discuss
some practical issues related to the choice of sieve space in the context of (8).

The challenge in establishing the consistency of θ̂NT1 is its increasing dimension-
ality. The conventional Euclidean distance measure may not be suitable because
of a lack of invariance with respect to the increasing dimension of θ̂NT1 . The max
norm is invariant to the increasing dimensionality, but the limiting spaces (ΩN

α,β

and ΩN
ξ ) are noncompact under this norm.

To circumvent this challenge, we reformulate θ̂NT1 as a collection of mappings
rather than point estimates. In fact, under appropriate regularity conditions (As-
sumption 7 below), θ̂NT is asymptotically close to the maximizer of

L 0
NT (θNT1 , h) := 1

NT

N∑
i=1

T∑
t=1

E0

[
log

(
exp{hyit(αi + ξt + x′itβi)}

1 +∑L
y=1 exp{hy(αi + ξt + x′itβi)}

) ∣∣∣∣xit, αi0, βi0, ξt0
]
,

where E0[·|xit, αi0, βi0, ξt0] refers to the expectation with respect to yit conditional
on (xit, αi0, βi0, ξt0) and given h0. We then can rewrite L 0

NT (θ̂NT1 , ĥ) as:

L 0(ĜNT , ĥNT ;FNT
0 ) : =

∫
E0

log
 exp{ĥNTY (a+ e+ x′b)}

1 +∑L
y=1 exp{ĥNTy (a+ e+ x′b)}

 ∣∣∣∣x, α, β, ξ
 dĜNT

1 (a, b|α, β)dĜNT
2 (e|ξ)dFNT

0 (x, α, β, ξ),

(9)
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where FNT
0 is the empirical distribution of (xit, αi0, βi0, ξt0)1≤i≤N ;1≤t≤T :

FNT
0 (x, α, β, ξ) = 1

NT

N∑
i=1

T∑
t=1

Diracxit(x)Dirac(αi0,βi0)(α, β)Diracξt0(ξ),

and ĜNT = (ĜNT
1 , ĜNT

2 ). Besides, ĜNT
1 is a mapping from (α, β) ∈ Ωα,β to a prob-

ability distribution in Ωα,β, ĜNT
1 (·|α, β) with ĜNT

1 (·|αi0, βi0) = Dirac(α̂NTi ,β̂NTi ) for
1 ≤ i ≤ N , and ĜNT

2 is a mapping from ξ ∈ Ωξ to a probability distribution in Ωξ,
ĜNT

2 (·|ξ) with ĜNT
2 (·|ξt0) = Diracξ̂NTt for 1 ≤ t ≤ T . Intuitively, if (α̂NTi , β̂NTi ) con-

verges to (αi0, βi0) in probability for any i, the mapping ĜNT
1 will then “converge”

to the embedding from (α, β) ∈ Ωα,β to Dirac(α,β), denoted by id1. Conversely, if
ĜNT

1 converges to id1, we then obtain the consistency of (α̂NTi , β̂NTi ). Similarly, to
obtain the consistency of ξ̂NTt to ξt0, it is sufficient to establish the convergence of
ĜNT

2 to the embedding from ξ ∈ Ωξ to Diracξ, denoted by id2.
To formalize this idea, we proceed in three steps. First, we construct the space

ĜNT belongs to. Define P(Ωα,β) and C(Ωα,β,P(Ωα,β)) as the set of probability
distributions on Ωα,β and the set of continuous mappings from Ωα,β to P(Ωα,β),
respectively. We can similarly define P(Ωξ) and C(Ωξ,P(Ωξ)). We define met-
rics on P(Ωα,β), C(Ωα,β,P(Ωα,β)), P(Ωξ), and C(Ωξ,P(Ωξ)). Because Ωα,β is
separable, metrizable, and compact, then P(Ωα,β) is separable, metrizable and
compact in the weak topology (Theorems 15.11 and 15.12 in Charalambos and
Aliprantis (2013)):

Gr1
w∗→ G1 ⇐⇒

∫
Ωα,β

f(α, β)(dGr1 − dG1)→ 0, ∀ f ∈ CB(Ωα,β),

where CB(Ωα,β) is the set of bounded continuous functions on Ωα,β. Using Theorem
11.3.3 of Dudley (2018), the following metric ‖ · ‖P metrizes the w∗−topology:

‖G1 − G̃1‖P := sup
{∣∣∣∣∣
∫

Ωα,β
f(α, β)d(G1 − G̃1)

∣∣∣∣∣ , ‖f‖BL ≤ 1
}
,

where f is bounded and Lipschitz, and ‖f‖BL = ‖f‖L + ‖f‖∞ with

‖f‖L : = sup
(α,β) 6=(α̃,β̃),(α,β),(α̃,β̃)∈Ωα,β

∣∣∣f(α, β)− f(α̃, β̃)
∣∣∣ /‖(α− α̃, β − β̃)‖,

‖f‖∞ : = sup
(α,β)∈Ωα,β

|f(α, β)| ,

where ‖ · ‖ refers to the Euclidean norm. As a result, P(Ωα,β) is compact in the
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metric ‖ · ‖P .
Denote by G1(·|α, β) ∈ C(Ωα,β,P(Ωα,β)) a continuous mapping from Ωα,β to

P(Ωα,β) and define the supremum metric as: for G1, G̃1 ∈ C(Ωα,β,P(Ωα,β)),

‖G1 − G̃1‖1 = sup
(α,β)∈Ωα,β

‖G1(·|α, β)− G̃1(·|α, β)‖P .

Similarly, define G2 ∈ C(Ωξ,P(Ωξ)),

‖G2 − G̃2‖2 = sup
ξ∈Ωξ
‖G2(·|ξ)− G̃2(·|ξ)‖P .

Note that ĜNT
1 and ĜNT

2 in (9) are only defined at (αi0, βi0)Ni=1 and (ξt0)Tt=1, re-
spectively. We now extend them to any point in Ωα,β and Ωξ so that they belong
to C(Ωα,β,P(Ωα,β)) and C(Ωξ,P(Ωξ)), respectively. For any N and T ,

ĜNT
1 (a, b|α, β) :=

∑
i∈SN (α,β)

∏
r 6=i,r∈SN (α,β) ‖(α, β)− (αr0, βr0)‖2∑

i∈SN (α,β)
∏
r 6=i:r∈SN (α,β) ‖(α, β)− (αr0, βr0)‖2Dirac(α̂NTi ,β̂NTi )(a, b),

ĜNT
2 (e|ξ) :=

∑
t∈ST (ξ)

∏
s 6=t:s∈ST (ξ) |ξ − ξs0|2∑

t∈ST (ξ)
∏
s 6=t:s∈ST (ξ) |ξ − ξs0|2

Diracξ̂NTt (e),

(10)
where SN(α, β) =

{
i : ‖(αi0, βi0)− (α, β)‖ ≤ lnN√

N

}
and ST (ξ) = {t : |ξt0 −

ξ| ≤ T−
1
4}. Under Assumption 4, both SN(α, β) and ST (ξ) are asymptotically

nonempty for any (α, β, ξ) ∈ Ωα,β × Ωξ (see Remark 1 in Appendix D). There-
fore, ĜNT = (ĜNT

1 , ĜNT
2 ) is well-defined in Ωα,β × Ωξ when N and T are large

enough. Moreover, for any 1 ≤ i ≤ N and 1 ≤ t ≤ T , ĜNT (a, b, e|αi0, βi0, ξt0) =
(Dirac(α̂NTi ,β̂NTi )(a, b),Diracξ̂NTt (e)).

Second, we rewrite the large-sample equivalence of LNT (θNT ) using (G, h) as
in (9) and state the corresponding identification condition. For any h ∈ Θ̄h,
G = (G1, G2) ∈ C(Ωα,β,P(Ωα,β))× C(Ωξ,P(Ωξ)):

L 0(G, h;F0) =
∫

E0

[
log

(
exp{hY (a+ e+ x′b)}

1 +∑L
y=1 exp{hy(a+ e+ x′b)}

) ∣∣∣∣x, α, β, ξ
]
dG1(a, b;α, β)dG2(e; ξ)dF0(x, α, β, ξ)

=
∫ L∑

y=0

[
log

(
exp{hy(a+ e+ x′b)}

1 +∑L
y=1 exp{hy(a+ e+ x′b)}

)]
exp{hy0(α + ξ + x′β)}

1 +∑L
y=1 exp{hy0(α + ξ + x′β)}

dG1(a, b;α, β)dG2(e; ξ)dF0(x, α, β, ξ),

where F0 is the joint distribution of (Xit, αi0, βi0, ξt0). Note that by Gibbs’ in-
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equality, we obtain: for any (α′, β′, ξ′, (hy)Ly=1),

L∑
y=0

[
log

(
exp{hy(α′ + ξ′ + x′β′)}

1 +∑L
y=1 exp{hy(α′ + ξ′ + x′β′)}

)]
exp{hy0(α + ξ + x′β)}

1 +∑L
y=1 exp{hy0(α + ξ + x′β)}

≤
L∑
y=0

[
log

(
exp{hy0(α + ξ + x′β)}

1 +∑L
y=1 exp{hy0(α + ξ + x′β)}

)]
exp{hy0(α + ξ + x′β)}

1 +∑L
y=1 exp{hy0(α + ξ + x′β)}

.

(id1, id2, (hl0)Ll=1) is then a maximizer of L 0(G, (hl)Ll=1;F0) in C(Ωα,β,P(Ωα,β))×
C(Ωξ,P(Ωξ))× Θ̄h. The next assumption states its uniqueness.

Assumption 6 (Identification). L 0(G, (hl)Ll=1;F0) is uniquely maximized at
(id1, id2, h0) in C(Ωα,β,P(Ωα,β))× C(Ωξ,P(Ωξ))× Θ̄h.

In Appendix D.1, we show that Theorem 2 implies Assumption 6.
Lastly, we impose some regularity conditions on the log-likelihood function and
L 0(G, h;F ). Define

(α̃, β̃)
(
(xit, yit)Tt=1; {ξt}Tt=1, h

)
:= arg max

(α,β)∈Ωα,β

1
T

T∑
t=1

log exp{hyit(α + ξt + x′itβ)}
1 +∑L

y=1 exp{hy(α + ξt + x′itβ)}

i.e., the maximizer of the log-likelihood corresponding to individual i given
(yit, xit, ξt)Tt=1, and

ξ̃
(
(xit, yit)Ni=1; {αi, βi}Ni=1, h

)
:= arg max

ξ∈Ωξ

1
N

N∑
i=1

log
[

exp{hyit(αi + ξ + x′itβi)}
1 +∑L

y=1 exp{hy(αi + ξ + x′itβi)}

]

as the maximizer of the log-likelihood corresponding to time period t given
(yit, xit, αi0, βi0)Ni=1.

Assumption 7 (Regularity conditions).

(a) Uniform convergence:

sup
θNT1 ∈ΩN

α,β
×ΩT

ξ
,h∈Θ̄h

∣∣∣LNT (θNT1 , h)−L 0
NT (θNT1 , h)

∣∣∣ p→ 0. (11)

(b) Stochastic equicontinuity: For any ε, η > 0, there exists a random
∆NT (ε, η) > 0, positive constants Tε,η, Nε,η, and δε such that for any
T > Tε,η, N > Nε,η, we have: Pr(∆NT (ε, η) > ε) < η; for any (i, r) with
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‖(αi0, βi0)− (αr0, βr0)‖ < δε,

sup
ξt∈Ωξ,1≤t≤T ;h∈Θ̄h

‖(α̃, β̃)
(
(xit, yit)Tt=1; {ξt}Tt=1, h

)
− (α̃, β̃)

(
(xrt, yrt)Tt=1; {ξt}Tt=1, h

)
‖ < ∆NT (ε, η);

for any (t, s) with |ξt0 − ξs0| < δε,

sup
(αi,βi)∈Ωα,β ,1≤i≤N ;h∈Θ̄h

|ξ̃
(
(xit, yit)Ni=1; {αi, βi}Ni=1, h

)
− ξ̃

(
(xis, yis)Ni=1; {αi, βi}Ni=1, h

)
| < ∆NT (ε, η).

(c)

sup
(G,h)∈C(Ωα,β ,P(Ωα,β))×C(Ωξ,P(Ωξ))×Θ̄h

∣∣∣L 0(G, h;FNT
0 )−L 0(G, h;F0)

∣∣∣ p→ 0.

(12)
where FNT

0 is the empirical distribution of (xit, αi0, βi0, ξt0)1≤i≤N ;1≤t≤T .

Assumptions 7(a) and 7(c) extend the usual uniform convergence condition in
the sieve setting (e.g., Condition 3.5 in Chen (2007)) to ours. Assumption
7(a) requires the uniformity over an increasing number of fixed-effects param-
eters and h; Assumption 7(c) imposes the uniformity over mapping G and h.
The equicontinuity condition in Assumption 7(b) regularizes the large-sample de-
pendence of individual-specific and time-specific maximum likelihood estimators,
(α̃, β̃)

(
(xit, yit)Tt=1; {ξt}Tt=1, h

)
and ξ̃

(
(xit, yit)Ni=1; {αi, βi}Ni=1, h

)
, on (αi0, βi0) and

ξt0, respectively. We will use this condition to construct a compact subset of
C(Ωα,β,P(Ωα,β)) × C(Ωξ,P(Ωξ)) that contains both ĜNT and (id1, id2) so that
we can obtain the consistency in this compact subset. As we show in Appendix
D.2, some restrictions on the link function, e.g., the (local) strong log-concavity,
implies Assumption 7(b). In the same appendix, we show that Assumptions 7(a)
and 7(c) can be achieved by additional regularity conditions on covariates Xit,
(ξt)t≥1, and the likelihood function.
We now state the consistency result. The proof is in Appendix D.

Theorem 3 (Consistency). Suppose that Assumptions 1, 2, 4–7 hold. Then,
‖ĜNT

1 − id1‖1
p→ 0, ‖ĜNT

2 − id2‖2
p→ 0, and ‖ĥ− h0‖h

p→ 0 as N, T →∞.

The convergences ‖ĜNT
1 − id1‖1 → 0 and ‖ĜNT

2 − id2‖2 → 0 in Theorem 3 imply
sup

i=1,...,N

∣∣∣(α̂NTi , β̂NTi )− (αi0, βi0)
∣∣∣ p→ 0 and sup

t=1,...,T

∣∣∣ξ̂NTt − ξt0
∣∣∣ p→ 0. When the func-

tions in Θ̄h are uniformly bounded and ‖·‖h is a stronger norm than the sup norm
on Θ̄h, ‖ĥ−h0‖h → 0 in Theorem 3 implies supl=0,...,L;v |ĝl(v)− gl0(v)| → 0, where
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ĝl = exp{ĥy}/(1 +∑L
l=1 exp{ĥl}) is the plug-in estimator of gl0. Consequently, we

can consistently estimate the marginal effect ∂g0(y;x′βi0+αi0+ξt0)
∂x

and its average over
time for individual i, denoted by

AMEi(y) = Eξ,x|αi0,βi0

[
∂g0(y;x′βi0 + αi0 + ξ)

∂x

]
(13)

by plugging (α̂NTi , β̂NTi )Ni=1, (ξ̂NTt )Tt=1, and (ĝl)Ll=0 in the finite-sample analogue. In
Section 4, we use Monte Carlo simulations to verify these implications.8

3.3 Implementation

Restrictions on the sieve space. Along the lines of Theorems 1 and 2 and
Assumption 6 (identification condition), one may need to impose some restrictions
on h to guarantee the consistency, e.g., the monotonicity in Assumption 1(b). As
a result, the sieve space ΘNT

h used in (8) should correspondingly incorporate such
restrictions. For instance, suppose the model is binary and we use the polynomial
sieve of order d to estimate h1 in (8):

{
d∑
r=0

arv
r : ar ∈ A, r = 0, . . . , d

}
.

where A is a compact subset of R. Denote by D the range of the index. That the
link function g(1; v) (or equivalently h1(v)) is increasing in v amounts to imposing
the following linear inequalities:9 for any v ∈ D,

d∑
r=1

arrv
r−1 > 0.

Another example is log-concavity of g(1; v) = exp{h1(v)}/(1 + exp{h1(v)}). This
concavity condition amounts to imposing the following nonlinear inequalities: for

8As previously discussed, we can only identify (and consistently estimate) (βi0, αi0) and ξt0
up to a shift and scale unless we normalize the (β(k)

i , αi′ , ξt) to their true values for some i, i′, t,
and k. In Appendix G, we report the estimates for (βi0, αi0) and ξt0 under such normalizations
to provide further support for Theorem 3.

9An alternative way to incorporate the monotonicity constraint is to first estimate h without
such constraints and monotonize the estimated link function. See Chernozhukov et al. (2009)
for an example.
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any v ∈ D,

(
d∑
r=2

arr(r − 1)vr−2
)(

1 + exp
{

d∑
r=0

arv
r

})
−
(

d∑
r=1

arrv
r−1
)2

exp
{

d∑
r=0

arv
r

}
< 0.

In practice, one can use a grid of values of v ∈ D to implement these inequalities
as a set of constraints on sieve coefficients (ar)dr=0.

Normalization of β(1)
i? . As discussed below Theorem 2, we can identify the sign

of β(1)
i? and accordingly normalize it to 1 or −1 in estimation. In some settings,

the researcher can derive the sign from economic theory or past research (e.g.,
negative price slope due to the law of demand). Without any prior on the sign
of β(1)

i? , one can practically implement the sieve MLE with the two normalizations
and choose the estimates that generate a higher likelihood.

4 Monte Carlo Simulations

In this section, we first use Monte Carlo simulations to illustrate the consequences
of ignoring slope heterogeneity. Second, we investigate the finite-sample perfor-
mance of the sieve maximum likelihood estimator (8) and verify our consistency
results. For both tasks, we consider a static binary choice model that mimics the
establishment of exportation/importation in trade: for 1 ≤ i < j ≤ N ,

Pr(yij = 1|wij, βi, α(1)
i , α

(2)
j ) = g0(w(1)

ij β
(1) + w

(2)
ij β

(2)
i + α

(1)
i + α

(2)
j ),

where α
(1)
i

i.i.d.∼ U [−1, 1], α(2)
j

i.i.d.∼ U [−1, 1]. Individual-specific slopes β(2)
i

i.i.d.∼
U [0.2, 1.2]. Moreover, w(1)

ij = 0.5α(1)
i + 0.2α(2)

j + µ
(1)
ij with µ

(1)
ij

i.i.d.∼ U [−1, 1] and
w

(2)
ij

i.i.d.∼ U [−1, 0]. We set β(1) = 1. (α(1)
i )Ni=1, (α(2)

i )Ni=1, (µij)i,j, and (w(2)
ij )i,j are

independent. This data generating process and the sampling procedure satisfy
Assumptions 1 and 2. In Appendix G, we report the Monte Carlo results using
another data generating process that violates Assumption 1.

Consequence of ignoring slope heterogeneity. Suppose that g0 is a logit
(probit) link function. For each sample size N ∈ {50, 100, 200}, we generate
R = 200 sets of outcomes (yij)1≤i<j≤N . For each replication, we estimate a logit
(probit) model that restricts β(2)

i = β(2) and one without such restrictions. The
former logit (probit) MLE ignores the heterogeneity in the true β(2)

i ; the latter one
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Table 1: Consequence of ignoring slope heterogeneity: Logit and probit cases

Scenario g0(δ) exp{δ}
1+exp{δ} Φ(δ)

AME(1)
i AME(2)

i AME(1)
i AME(2)

i

N = 50, MLE with β(1)
i = β(1) 0.2395 0.1928 0.1643 0.1517

MLE with β(1)
i 0.0334 0.2018 0.0401 0.1949

N = 100, MLE with β(1)
i = β(1) 0.2702 0.1895 0.2154 0.1675

MLE with β(1)
i 0.0177 0.1552 0.0221 0.1417

N = 200, MLE with β(1)
i = β(1) 0.2191 0.1664 0.1536 0.1299

MLE with β(1)
i 0.0115 0.1072 0.0152 0.0937

Notes: We estimate the logit and probit models by normalizing α
(1)
1 to its

true value α(1)
10 . Each cell corresponds to the average distance metrics between

the estimated object and its true value over 200 repetitions for a given sam-
ple size N , scenario of true link function g0, and the model used in the MLE
(logit, probit). For AME(k)

i with k = 1, 2, the distance metrics is defined as√∑N
i=1(ÂME

(k)
i −AME(k)

i0 )2/N where 0 refers to the true values.

is a special case of Theorem 3 in which the link function is known. For each model,
we compare the distributions of estimated average marginal effects of w(1)

ij and of
w

(2)
ij across i = 1, . . . , N (referred to as AME(1)

i and AME(2)
i in (13), respectively)

to the true ones by using distance metrics defined as
√∑N

i=1(ÂPE
(k)
i −APE

(k)
i0 )2

N
for

k = 1, 2 where 0 refers to the true values. For each object of interest, we report
the average distance over 200 repetitions.

Table 1 summarizes our results. First, note that the distance metrics for AMEs
based on the MLE without the restrictions β(2)

i = β(2) (second row in each panel)
decreases as the sample size increase, which aligns with the consistency result in
Theorem 3. Compared to the MLE that restricts β(2)

i = β(2) (the first row in
each panel), the AMEs of w(2)

ij predicted by the MLE without the homogeneity
restrictions are more precise when N = 100 and 200. Besides, even though only
imposed on the slope of w(2)

ij , the homogeneity restrictions β(2)
i = β(2) also deterio-

rate the precision of the predicted AME(1)
i . In Section 5, we will further investigate

the extent to which the slope homogeneity restrictions may bias the analysis of
predicted AMEs using real data.

Finite-sample performance of the sieve MLE. We consider three sce-
narios of link functions: g0(δ) = exp{δ}

1+exp{δ} (logit), g0(δ) = Φ(δ) (probit), and
g0(δ) = exp{2 exp{δ}}

1+exp{2 exp{δ}} . For each sample size N ∈ {50, 100, 200} and each sce-
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Table 2: Finite-sample performances: Polynomial sieves

Scenario g0(δ) = exp{δ}
1+exp{δ} Φ(δ) exp{2 exp{δ}}

1+exp{2 exp{δ}}

AME(1)
i AME(2)

i g AME(1)
i AME(2)

i g AME(1)
i AME(2)

i g
N = 50, Logit 0.0334 0.2018 × 0.0403 0.1707 × 0.0565 0.1696 ×

Probit 0.0327 0.2178 × 0.0401 0.1949 × 0.0578 0.1905 ×
Poly. sieve, d = 1 0.0315 0.2071 0.0677 0.0412 0.1957 0.0571 0.0665 0.1825 0.1821

d = 2 0.0375 0.2073 0.0743 0.0419 0.1961 0.0603 0.0497 0.1480 0.1207
d = 3 0.0479 0.2261 0.0997 0.0509 0.2188 0.0802 0.0481 0.1508 0.1167
d = 4 0.0553 0.2282 0.1199 0.0571 0.2253 0.0926 0.0515 0.1519 0.1157

N = 100, Logit 0.0177 0.1552 × 0.0234 0.1352 × 0.0473 0.1197 ×
Probit 0.0169 0.1573 × 0.0221 0.1417 × 0.0469 0.1252 ×

Poly. sieve, d = 1 0.0171 0.1554 0.0646 0.0239 0.1420 0.0620 0.0520 0.1241 0.1483
d = 2 0.0184 0.1555 0.0663 0.0242 0.1420 0.0615 0.0299 0.1072 0.1247
d = 3 0.0207 0.1559 0.0665 0.0227 0.1421 0.0614 0.0245 0.1101 0.0890
d = 4 0.0285 0.1598 0.0892 0.0234 0.1423 0.0627 0.0247 0.1101 0.0865

N = 200, Logit 0.0115 0.1072 × 0.0166 0.0925 × 0.0483 0.0953 ×
Probit 0.0112 0.1074 × 0.0152 0.0937 × 0.0462 0.0957 ×

Poly. sieve, d = 1 0.0115 0.1072 0.0359 0.0167 0.0940 0.0299 0.0495 0.0962 0.1359
d = 2 0.0118 0.1072 0.0362 0.0161 0.0939 0.0303 0.0284 0.0806 0.1417
d = 3 0.0121 0.1072 0.0374 0.0153 0.0938 0.0287 0.0145 0.0845 0.0616
d = 4 0.0122 0.1074 0.0400 0.0153 0.0938 0.0285 0.0146 0.0845 0.0589

Notes: Each cell corresponds to the average distance metrics between the estimated object and its true value over
200 repetitions for a given sample size N , scenario of true link function g0, and the model used in the MLE (logit,
probit, or polynomial sieves of degree d = 1, . . . , 4). For AME(k)

i with k = 1, 2, the distance metrics is defined as√∑N

i=1(ÂME
(k)
i −AME(k)

i0 )2/N where 0 refers to the true values. For the sieve MLE, the distance corresponding to

the link function is defined as
√∑M

m=1 (ĝ(δm)− g0(δm))2/M where (δm)Mm=1 is an equal-spaced (by 0.1) sequence
of values covering the true range of the index in the data generating process.

nario, we generate R = 200 sets of outcomes (yij)1≤i<j≤N . For each replication, we
implement the MLE using a logit model, a probit model, and polynomial sieves
for function h(δ) = ln (g(δ)/(1− g(δ))) with the sieve space being of order d = 1
to d = 4, respectively. For the logit and probit MLE, we normalize α(1)

1 to its true
value α(1)

10 . For the sieve MLE, we further normalize β(1) = 1 and α(2)
1 to its true

value α(2)
10 . For each model, we compare the estimated distributions of AME(1)

i

and AME(2)
i across i = 1, . . . , N by using distance metrics

√∑N

i=1(ÂME
(k)
i −AME(k)

i0 )2

N

for k = 1, 2. For the sieve MLE, we also compare the estimated link function

to the true one and by the distance metric
√∑M

m=1(ĝ(δm)−g0(δm))2

M
where (δm)Mm=1

is an equal-spaced (by 0.1) sequence of values covering the range of the index in
the data generating process. For each object of interest, we report the average
distance over 200 repetitions.

Our main results are summarized in Table 2. In Appendix G, we report the
distance statistics for other objects (β(1)

i , α(1)
i , and α(2)

i ). First, in the logit scenario,
because the polynomial sieve space contains the true link function, the distance
metric for the link function corresponding to polynomial sieve MLE (columns
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“g”) decreases as the sample size increases, suggesting a convergence towards
the true link function. In other scenarios, the similar pattern holds. Due to
the improved link function estimation, the distances between the distributions of
AMEs predicted by the sieve MLE and the true ones decrease as N increases.
When N = 50, these distance metrics corresponding to the sieve MLE are greater
than those for the correctly specified models (i.e., the row “Logit” in the logit
scenario and the row “Probit” in the probit one). As N increases, the sieve MLE
performs better, achieving similar precision to the correctly specified models when
N = 100 and 200.

When the true link function is exp{2 exp{δ}}
1+exp{2 exp{δ}} , both the probit and logit MLEs

are misspecified. For all the three sample sizes, the MLE with a polynomial sieve
space of dimension d ≥ 2 outperforms logit and probit models when predicting the
distributions of AME(1)

i and AME(2)
i . These results again confirm the consistency

of the sieve MLE in Theorem 3 and its ability in attenuating the misspecification
errors of the link function in finite sample.

5 Empirical Illustration

In this section, we revisit some empirical study in Helpman et al. (2008). In the
original paper, the authors estimate trade flows and explicitly take into account
firm selection into the export market. They first estimate the probability of es-
tablishing exportation from one country to another using a binary model. One
can then control for the fraction of firms that export (consistently estimated from
the first step) and the selection effect due to zero trade flows when estimating the
gravity equation in the second step. In the empirical application, the first step is
implemented as (see their equation 12 on page 455):

Pr(Tij = 1 | distij, wij, ζi, ξj) = Φ
(
−γdistij + w′ijκ+ ζi + ξj

)
, i, j = 1, . . . , N, i 6= j, (14)

where Tij = 1 when country j exports to i and zero otherwise, distij is the log
distance between i and j, wij is a vector of observed country-pair specific variables,
ζi (ξj) is an importer (exporter) fixed effect, and Φ is the standard normal cumu-
lative distribution function. Parameter γ is interpreted as the constant marginal
effect of log distance on the probability of country j exporting to i.

Different from the original empirical setting, we allow γ to be country-specific

25



and the link function to be unknown:10

Pr(Tij = 1 | distij, wij, ζi, ξj) = g(−γexpj distij + w′ijκ+ ζi + ξj), i, j = 1, . . . , N, i 6= j. (15)

Specification (15) relaxes the restriction of constant marginal effect of log distance
in two ways. First, the same country i may react differently when importing
from different countries j and j′ of similar distances if γexpj 6= γexpj′ . Second, two
countries i and j can have different distance effects when exporting to the other
if γexpi 6= γexpj . Besides, treating the link function as parameters to be estimated
can attenuate potential bias due to imposing a known link function, e.g., the thin
tail of Gaussian distribution.
We estimate (15) using the 1986 worldwide trade data sample of Helpman et al.
(2008) and compare several objects of interest across different models to shed light
on the consequences of imposing Gaussian link function and slope homogeneity.
The data include N = 158 countries. As in the original paper, we remove Congo
as an exporter from the sample because it did not export to anyone in 1986.11

This leaves us with 24, 649 observations of directed trade flows (exportation) . We
use the set of controls in the second column of Table 1 of Helpman et al. (2008) as
wij in (15). Most covariates in wij are discrete (e.g., whether two countries have
common border) with the exception of a continuous measure of common religion
belief between two countries. To apply our identification argument, one can choose
distij as the compensating variable as it is continuous and has a relatively large
range (between −0.151 and 5.661). Such a choice is compatible with Assumption
2(e) when the distribution of the importing-country fixed effect ζi is independent
of distij conditional on wij (see the discussion below Assumption 1(e)).

In Figure 1(a), we compare the Gaussian cumulative probability function (red;
the link function in probit model) to the estimated link function g in models
(15). Function h(·) = ln (g(·)/(1− g(·))) in the latter models is estimated by
polynomial sieves of degree d ∈ {3, 5} (blue). We find that the estimated link
functions have thicker left and right tails than Gaussian distribution. As the sieve
dimension increases, the right tail of the estimated link function approaches the
Gaussian one; however, the estimated left tail seems to be still thicker than the

10Specification (15) can be obtained by relaxing some functional-form restrictions in Helpman
et al. (2008). For example, one can relax τε−1

ij = Dγ
ije
−uij (on page 453 in the original paper)

to τε−1
ij = D

γj

ij e
−uij where Dij is the distance between i and j and uij is an unmeasured trade

friction.
11See footnote 23 on page 459 of Helpman et al. (2008) .
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Figure 1: Estimated link function and −γexp
j

(a) Estimated link function
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(b) Estimated −γexp
j

Gaussian distribution. This difference in the link function’s left tail may affect
the slope estimates. Intuitively, to fit the same observed link probability in the
data, Gaussian link function may allocate a greater index value than the link
function estimated by polynomial sieves with d = 5. Given a covariate value (say,
distance), this will lead to an upward bias in the estimate of the corresponding
coefficient. The comparisons of the estimated −γexpj in Figure 1(b) align with this
intuition. We find that the distribution of −γexpj estimated by the probit model
(red histogram) is overall shifted towards the right relative to that corresponding
to the sieve estimation with d = 5 (blue histogram), with the estimated mean of
−γexpj being −0.0952 versus −0.2578.

We now turn to exporting-country-specific marginal effects of distij defined as

AMEdist
j = − 1

N

N∑
i=1

γexpj ∂δg(−γexpj distij + w′ijκ+ ζi + ξj),

where N is the total number of countries. In Figure 2, each subfigure illustrates
the distribution of AMEdist

j estimated by a probit model (14) with homogeneous γ
(first red histogram), a probit model (15) with heterogeneous γexpj (second red his-
togram), and models (15) with heterogeneous γexpj and h(δ) = ln (g(δ)/(1− g(δ)))
being estimated by polynomial sieves of degree d = 1, . . . , 5 (blue histograms).

In the homogeneous probit model, the restriction γexpj = γ assumes away any
variation in γexpj . As a result, AMEdist

j varies across exporting countries solely due
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Figure 2: Estimated distribution of AMEdist
j across countries

to the variation in 1
N

∑N
i=1 φ(−γdistij + w′ijκ + ζi + ξj) where φ is the standard

normal density. In the presence of potential heterogeneity in γexpj , this restricted
model may mechanically understate the dispersion of AMEdist

j . Our findings in
the red histograms align with this intuition. Both probit models with and without
the restriction γexpj = γ predict similar distribution means (−0.0285 and −0.0353,
respectively). However, the standard deviation of AMEdist

j estimated by the ho-
mogeneous probit model is more than 20 times smaller than that estimated by
the probit model with heterogeneous γexpj (0.0027 vs 0.0662). Even if we relax
the probit restriction and flexibly estimate the link function, as illustrated by the
blue histograms in Figure 2, we still find substantial dispersion in the estimated
AMEdist

j ; the standard deviation range from 0.0458 to 0.0545 in these scenarios,
smaller than (but close to) the prediction by the heterogeneous probit model.

Furthermore, we decompose the dispersion in the estimated AMEdist
j into

two components: the variance explained by −γexpj and that explained by
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1
N

∑N
i=1 ∂δg(−γexpj distij + w′ijκ + ζi + ξj). The results are summarized in Table

3. We find that −γexpj explains most of the variation in AMEdist
j (around 94%)

across all models with heterogeneous γexpj . Combined with Figure 2, these results
suggest that imposing homogeneity on γexpj across countries may substantially
restrict the variation in AMEdist

j and distort the analysis of marginal effect of
distance on establishing exportation/importation between country pairs.

Table 3: Variance decomposition of AMEdist
j

Variance Variance explain by −γexpj

Var
(
AMEdist

j

)
Var

(
E
[
AMEdist

j |γdistj

])
in %

Probit with γexpj 0.0658 0.0619 94.12%
Polynomial sieves, d = 1 0.0458 0.0375 93.21%

d = 2 0.0476 0.0444 93.29%
d = 3 0.0470 0.0440 93.69%
d = 4 0.0478 0.0446 93.47%
d = 5 0.0542 0.0507 93.49%

Notes: We obtain E
[
AMEdist

j |γdist
j

]
by regressing AMEdist

j on γdist
j and its polynomial

terms (up to order 5).

6 Conclusion

In this paper, we study a class of two-way fixed effects index function models with
a nonparametric link function and individual- (or time-) specific slopes in index.
This relaxes the practice of specifying a known link function and the homogeneity
restriction on covariate slopes, both of which are commonly adopted in applied
and related econometric works. We show the identification of the fixed effects
parameters and the link function when both N and T are large. We also propose
a nonparametric consistency result for the fixed effects sieve maximum likelihood
estimators. We revisit the study of establishing between-country exportation in
Helpman et al. (2008) and illustrate the consequences of imposing Gaussian link
function and homogeneity on the slope of distance.

Our identification and consistency results provide a foundation for inference.
Existing results in the literature of two-way fixed effects panel models with large
N and large T mostly deal with inferences when the link function is known. Many
focus on correcting the asymptotic bias in the estimates of objects of interest
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such as the slopes and average marginal effects. The link function in our setting
is nonparametrically specified and estimated. Besides, the number of individual
(or time)-specific slopes increases asymptotically. Both complicate the inference,
leaving the applicability of the existing bias corrections to our setting an open
question. In a recent work, Jochmans and Weidner (2024) propose an inference
framework in which one could view the estimated slopes (and individual- or time-
fixed effects) as noisy measurements around the true ones. A key assumption in
their approach is that the noisy measurements are i.i.d. and shrink to zero with
a uniform parametric rate. One interesting avenue of future research is to adapt
their framework to the case of nonparametric link function.

Appendix

Notation and some useful lemmas. For any p ≥ 1 and any two vectors x
and y in Rp, we let 〈x, y〉 denote the usual Euclidean inner product of x with
y. Thus, the Euclidean norm is given by ‖x‖ =

√
〈x, x〉. For a matrix A, we

denote A′ as the transpose of A. For a real symetric matrix A ∈ Rn×n, we let
λ1(A) ≥ · · · ≥ λn(A) denote its real eigenvalues. For any real matrix A ∈ Rn×m,
‖A‖2 :=

√
λ1(A′A) denotes the spectral norm (i.e., the operator norm induced

by the Euclidean norm), ‖A‖F :=
√

tr(A′A) denotes the Frobenius norm, and
‖A‖max := maxi=1,...,n;j=1,...,m |Aij| denotes the element-wise max norm. We use
a.s. to refer to “almost surely” and a.e. “almost everywhere in the domain”.
Define, for all i such that ∑∞t=1M

NT
it ≥ 1, for all (y, x) ∈ Y × Xi,

Γ̂i(y, x) ≡
1

hT
∑∞

t=1 M
NT
it

∑∞
t=1 M

NT
it K

(
Xit−x
hT

)
1{Yit = y}

1
hT
∑∞

t=1 M
NT
it

∑∞
t=1M

NT
it K

(
Xit−x
hT

) .

The following lemmas will be used in the proofs of Theorems 1 and 2. Their proofs
can be found in Online Appendix F.

Lemma 1. Suppose that Assumption 1 holds. Moreover, K : RK → R is bounded,∫
|K|2+δ (u)du < ∞ for some δ > 2/(µ − 1) > 0, and hT → 0 and ThT → ∞.

Then, as N, T tend to infinity, conditional on F ,

sup
i,x∈Xi

∣∣∣Γ̂i(y, x)− Γi(y, x)
∣∣∣ = op(1),
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where Γi(y, x) ≡ cg(y;x′βi+αi+·),x(2) in Assumption 1(e). Moreover, Γi(y, x) is strictly
monotonic in x′βi + αi.

Due to Lemma 1, the econometrician knows the true value of Γi(ȳ;x) for any
x ∈ Xi and i when T and N are infinity.

Lemma 2. i ←→ i′ in the compensating network G∞ if and only if there exist
(x̃(1)k, x̃(2)k) ∈ Xi, (x(1)k, x(2)k) ∈ Xi′ for k = 1, 2, 3 such that

Γi(y, (x̃(1)k, x̃(2)k)) = Γi′(y, (x(1)k, x(2)k)),

with 
1 x(1)1 x(2)1

1 x(1)2 x(2)2

1 x(1)3 x(2)3

 or


1 x̃(1)1 x̃(2)1

1 x̃(1)2 x̃(2)2

1 x̃(1)3 x̃(2)3


being nonsingular.

A Proof of Theorem 1

Recall that {Ir : r = 1, 2, . . .} is the partition of N \ I0 induced by G∞.
Identification of I0 and G∞. For any i, we can identify Γi(y, x) for x ∈ Xi
by Lemma 1. Because Γi is strictly monotonic in x′βi + αi, then β(1)

i = 0 if and
only if Γi does not depend on x(1) ∈ Xi. Since the latter is identified, we can then
identify if β(1)

i = 0 and I0. Using similar arguments, we can identify if i ←→ i′

and therefore G∞.

Suppose i→ i′ and i, i′ ∈ Ir for some r ≥ 1. Then, β(1)
i 6= 0 and using Lemma 2,

we can find (x(1)k, x(2)k) ∈ Xi′ and (x̃(1)k, x(2)k) ∈ Xi with x̃(1)k = zi→i′(x(1)k;x(2)k)
for k = 1, 2, 3 such that the matrix


1 x(1)1 x(1)1

1 x(1)2 x(1)2

1 x(1)3 x(1)3


is nonsingular. Because of the strict monotonicity in Lemma 1, we have:


1 x(1)1 x(1)1

1 x(1)2 x(1)2

1 x(1)3 x(1)3




(αi′ − αi)/β(1)
i

β
(1)
i′ /β

(1)
i

(β(2)
i′ − β

(2)
i )/β(1)

i

 =


x̃(1)1

x̃(1)2

x̃(1)3

 ,
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and solving this linear system identifies (αi′ − αi)/β(1)
i , β(1)

i′ /β
(1)
i and (β(2)

i′ −
β

(2)
i )/β(1)

i .
Now for a sequence (i1, i2), . . . , (il−1, il) with ik ∈ Ir for k = 1, . . . , l, by ap-

plying the arguments above, we can identify either (αik−1 − αik)/β
(1)
ik

, β(1)
ik−1

/β
(1)
ik

and (β(2)
ik−1
− β(2)

ik
)/β(1)

ik
, or (αik − αik−1)/β(1)

ik−1
, β(1)

ik
/β

(1)
ik−1

and (β(2)
ik
− β(2)

ik−1
)/β(1)

ik−1

for k = 2, . . . , l. Then, we identify β
(1)
ik
/β

(1)
i1 for k = 2, . . . , l, and there-

fore (αik−1 − αik)/β
(1)
i1 and (β(2)

ik−1
− β

(2)
ik

)/β(1)
i1 . This implies the identification of

(αil − αi1)/β(1)
i1 , β(1)

il
/β

(1)
i1 , and (β(2)

il
− β(2)

i1 )/β(1)
i1 . The proof is completed.

B Proof of Theorem 2

The first statement. The identification of (αi, β(1)
i ) in the first statement fol-

lows from Theorem 1 and Assumption 3(a). We now use Assumption 3(b) to
identify β(2)

i? , which will imply the identification of β(2)
i for all i given the identifi-

cation of (β(2)
i − β

(2)
i? )/β(1)

i? in Theorem 1.
Because of the definition of compensating variable in (5) and Theorem 1, we

identify zi?→i(x(1)
it , x

(2)
it ) for any i and t. Then, for any t, the distribution of Yit

is governed by
(
g(y; β(1)

i? zi?→i(x
(1)
it , x

(2)
it ) + β

(2)
i? x

(2)
it + αi? + ξt)

)L
y=0

. Because of As-

sumption 1(c)1, we then know the true value of g(ȳ; (β(1)
i? , β

(2)
i? )z + αi? + ξt) for

any z ∈ Z i?t and t when N and T are infinity. Assumption 3(b) ensures that we
can find a t and z, z′ ∈ Z i?t with z 6= z′ such that g(ȳ; (β(1)

i? , β
(2)
i? )z + αi? + ξt) =

g(ȳ; (β(1)
i? , β

(2)
i? )z′+αi? +ξt). Then, due to Assumption 1(b), we have (β(1)

i? , β
(2)
i? )z =

(β(1)
i? , β

(2)
i? )z′ and identify β(2)

i? /β
(1)
i? = (z(1) − z′(1))/(z′(2) − z(2)).

The second statement. Let s, t such that
{
g(ȳ; β(1)

i? z + β
(2)
i? x

(2) + αi? + ξt) : P(β(1)
i?
,β

(2)
i?
,αi? )(z, x

(2), 1) ∈ ∩i∈N\I0P(β(1)
i?
,β

(2)
i?
,αi? )(Z

i?

it , 1)
}
∩{

g(ȳ; z + β
(2)
1 x(2) + αi? + ξs) : P(β(1)

i?
,β

(2)
i?
,αi? )(z, x

(2), 1) ∈ ∩i∈N\I0P(β(1)
i?
,β

(2)
i?
,αi? )(Z

i?

is , 1)
}
6= ∅.

We can then find (z, x(2)) with P(β(1)
i?
,β

(2)
i?
,αi? )(z, x

(2), 1) ∈ ∩i∈NP(β(1)
i?
,β

(2)
i?
,αi? )(Z

i?

it , 1),
and (z′, x(2)′) with P(β(1)

i?
,β

(2)
i?
,αi? )(z

′, x(2)′ , 1) ∈ ∩i∈NP(β(1)
i?
,β

(2)
i?
,αi? )(Z

i?

is , 1), such that

β
(1)
i? z + β

(2)
i? x

(2) + αi? + ξt = β
(1)
i? z

′ + β
(2)
i? x

(2)′ + αi? + ξs.

We then identify (ξs − ξt)/β(1)
i? by z − z′ + (β(2)

i? /β
(1)
i? )(x(2) − x(2)′).
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The third statement. First note that we can identify (ξt − ξt?)/β(1)
i? that

satisfies (6) with s = t?. Following the same logic we identify (ξt −
ξt?)/β(1)

i? for t ∈ T ?. Since the set P(1,β(2)
i?
/β

(1)
i?

)(Z
i?

it ) is identified for each

i ∈ N \ I0, we then identify g(y; β(1)
i? u + αi? + ξt?) for (y, u) ∈ Y ×

∩i∈N\I0P(1,β(2)
i?
/β

(1)
i?

)(Z
i?

it ) + (ξt − ξt?)/β(1)
i? for any t ∈ T ? and therefore for (y, u) ∈

Y × ∪t∈T ?
(
∩i∈N\I0P(1,β(2)

i?
/β

(1)
i?

)(Z
i?

it ) + (ξt − ξt?)/β(1)
i?

)
. The proof is completed.

C Connectedness of G∞ and Support X 1
i∗

Without loss of generality, suppose i? = 1. The support of x(1)
1 , X 1

1 , plays an
important role in determining the connectedness of G∞ (Assumption 3(a)). When
x

(1)
1 has a large support, e.g., X 1

1 = R, Assumption 3 holds trivially and G∞ is
connected. When X 1

1 is not the entire real line (e.g., a box), G∞ can still be
connected and Assumption 3 holds. The required support condition on X 1

1 is
determined by the ranges of (and economic restrictions on) (βi, αi) and ξt. We
elaborate these points in two examples.

Example 1. Suppose that Xi = X = [a,A]× [b, B] where a < A < 0 and 0 < b <

B. Moreover, Zit = Zi for any (i, t) ∈ N2. This setting can be considered as a
demand model with x(1) being minus price of the goods and x(2) being its quality.
Correspondingly, coefficient β(1)

i > 0 (downward-sloping demand) is interpreted as
the extent of the disutility of price and β(2)

i the preference for quality.
In addition, suppose that max{β(1)

i } > 1 > min{β(1)
i } > 1/max{β(1)

i } > 0,
1
2∆(2)

β := max{β(2)
i } − β

(2)
1 = β

(2)
1 − min{β(2)

i }, and 1
2∆α := max{αi} − α1 =

α1 − min{αi}, i.e., individual 1’s (α1, β1), supposedly equal to (0, 1) to simplify
the exposition, is at the center of the range of (αi, βi) ∈ [min{αi},max{αi}] ×
[min{β(1)

i },max{β(1)
i }] × [min{β(2)

i },max{β(2)
i }], where quantities defined by an

application of the max and min operators are well-defined.
First, Assumption 3(a) holds and G∞ is connected if for any (αi, βi), there exists
xi ∈ X such that αi+β(1)

i x
(1)
i +x(2)

i (β(2)
i −β

(2)
1 ) ∈ (a,A). Because of the connected-

ness of X , continuity of the linear mapping x→ zi(x(1);x(2)), and the intermediate
value theorem, this is equivalent to

sup
(αi,βi)

inf
x∈X
{αi + β

(1)
i x(1) + x(2)(β(2)

i − β
(2)
1 )} = max{αi}+ min{β(1)

i }a+ b(max{β(2)
i } − β

(2)
1 ) < A,

inf
(αi,βi)

sup
x∈X
{αi + β

(1)
i x(1) + x(2)(β(2)

i − β
(2)
1 )} = min{αi}+ max{β(1)

i }A+ b(min{β(2)
i } − β

(2)
1 ) > a.

(16)
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Figure 3: Support Condition on x(1) and Connectedness of G∞ in Assumption 3

(a) Illustration of Assumption 3(a)

0

x
(1)

x
(2

)

a A
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b

(b) (a,A) with which Assumption 3(a) holds

0

a

0

A

(c) Illustration of Assumption 3(b)

0

x
(1)

x
(2

)

a A

B

B'

b

b'

(d) (a,A) with which Assumption 3(b) holds

0

a

0

A

The geometric interpretation of (16) is illustrated in Figure 3(a). The linear
mapping x→ (zi(x(1);x(2)), x(2)) maps the box X to a parallelogram that overlaps
with int(X ), the interior of X (e.g., the red and green ones in Figure 3(a)). The
first inequality in (16) requires the red parallelogram corresponding to the map-
ping defined by (max{αi},min{β(1)

i },max{β(2)
i }), which is stretched to the right,

to overlap with int(X ). Similarly, the second inequality requires the green paral-
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lelogram corresponding to (min{αi},max{β(1)
i },min{β(2)

i }), which is stretched to
the left, to overlap with int(X ). These two parallelograms are the “most distant”
from X in either direction. Inequalities (16) are further equivalent to:

A > min{β(1)
i }a+

∆α + b∆(2)
β

2 ,

A >
1

max{β(1)
i }

a+
∆α + b∆(2)

β

2 max{β(1)
i }

.

(17)

The yellow region defined by the blue line (the first inequality in (17)) and red
line (the second in (17)) in Figure 3(b) shows the values of (a,A) that satisfy
(17). In particular, A can be close to zero (the lower bound of the observed price
of the goods is small) and a close to −(∆α + b∆(2)

β )/(2 min{β(1)
i }), as illustrated

by point S. The size of the corresponding support for x(1), A − a, is then close
to (∆α + b∆(2)

β )/(2 min{β(1)
i }). For any size greater than this length, Assumption

3(a) can always hold with some (a,A). This minimal support requirement becomes
more stringent when the ranges of αi (∆α) and β(2)

i (∆(2)
β ) increase.

Second, Assumption 3(b) holds when one further requires that the parallelograms
the most distant from X overlap, as illustrated by the orange region in Figure
3(c). This is because the preimage of P(1,β(2)

1 )(x) = r for any r ∈ (b′, B′) is a line
segment in this region and therefore not a singleton. In particular, this implies

max{αi}+ min{β(1)
i }a+ b(max{β(2)

i } − β
(2)
1 ) < min{αi}+ max{β(1)

i }A+ b(min{β(2)
i } − β

(2)
1 )

=⇒ A >
min{β(1)

i }
max{β(1)

i }
a+

∆α + b∆(2)
β

max{β(1)
i }

.
(18)

Inequality (18) is stronger than the second one in (17) and is represented by the
dashed red line in Figure 3(d). The values of (a,A) with which Assumption 3(b)
holds, the orange region in Figure 3(d), are then more limited than the yellow one
(corresponding to Assumption 3(a)) and the strict lower bound of A − a, (∆α +
b∆(2)

β )/(min{β(1)
i }) (achieved at S ′), is greater than (∆α + b∆(2)

β )/(2 min{β(1)
i }).

In other words, identifying further β(2)
1 requires a larger support of x(1) than the

one needed for the identification of αi, β(1)
i , and β(2)

i − β
(2)
1 .

Finally, suppose that t? = 1 in Theorem 2. For any t, condition (6) in the second
point of Theorem 2 holds when the projection of the orange region by P(1,β(2)

1 ) (the
segment between b′ and B′ in Figure 3(c)) intersects with itself when translated by
ξt for any t ∈ T. One can then identify ξt for |ξt| < B′ − b′. To point identify
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ξt with |ξt| ≥ B′ − b′, one may need enlarge the support of x(1) relative to that
required by Assumption 3(b).

The next example illustrates how shape restrictions on the dependence of pa-
rameters of interest on observed individual characteristics can attenuate support
requirement on x(1).

Example 2 (Shape restriction and the support of x(1)). We use the setting in
Example 1 but drop x(2) from the model. Suppose that β(1)

i , the parameter of
disutility of price, is an unknown continuous function of wi, individual i’s income,
denoted by β(wi), and decreases in wi, i.e., a richer individual is less sensitive to
price change. Moreover, αi is a continuous function of wi, denoted by α(wi).

Start with the individual with the highest income w̄i whose β(w̄i) is then the
smallest. Now consider the individual whose income is slightly below, say w̄i − ε.
Then, this individual’s β(w̄i−ε) is slightly greater than β(w̄i) and the corresponding
α(w̄i − ε) is slightly different from α(w̄i). Then, the individual with the highest
income can be compensated by the one with the slightly lower income if there exists
x(1) ∈ (a,A),

α(w̄i)− α(w̄i − ε)
β(w̄i − ε)

+ β(w̄i)
β(w̄i − ε)

x(1) ∈ (a,A). (19)

Because α(w̄i)−α(w̄i−ε)
β(w̄i−ε) ≈ 0 and β(w̄i)

β(w̄i−ε) ≈ 1, the compensating variable
α(w̄i)−α(w̄i−ε)

β(w̄i−ε) + β(w̄i)
β(w̄i−ε)x

(1) is always in a neighborhood of x(1). Consequently, as
long as A > a, (19) always holds.

We can repeat this argument to another individual with a slightly lower income
than w̄i− ε and show that she is compensable by the individual with income w̄i− ε,
forming the required sequence of compensation and achieving the connectedness of
G∞. Note that we only require A > a and the size of the support A − a can be
arbitrarily small.

D Proof of Theorem 3

Firstly, we prove that Theorem 2 in section 2 implies Assumption 6 in the setting
of model (2) (Appendix D.1). Secondly, we propose additional conditions that
are sufficient for Assumption 7 (Appendix D.2). Finally, we prove Theorem 3. In
both Appendices D.1 and D.2, we suppose Assumptions 1–5 hold.
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D.1 Sufficient Conditions for Assumption 6

Suppose that the conditions in Theorem 2 hold. Suppose now there is another
maximizer (G′1, G′2, (h′l)Ll=1) ∈ C(Ωα,β,P(Ωα,β)) × C(Ωξ,P(Ωξ)) × Θ̄h. Then,
the following equality holds almost surely in terms of the joint distribution of
(α′, β′, ξ′, x, α, β, ξ) ∼ G′1(α′, β′;α, β)×G′2(ξ′; ξ)×F0(x, α, β, ξ) : for y = 1, . . . , L,

g′(y;α′ + ξ′ + x′β′) = g0(y;α + ξ + x′β). (20)

Without loss of generality, suppose g′(1; v) and g0(1; v) satisfy the strict mono-
tonicity condition in Assumption 1(b). Then, the following equality holds almost
surely:

α′ + ξ′ + x′β′ = (g′)−1(1; g0(1;α + ξ + x′β)).

Now fixing (x, α′, β′, α, β) to some values (x̃, α̃′, β̃′, α̃, β̃) in the domain, we obtain:

ξ′ = (g′)−1(1; g0(1; α̃ + ξ + x̃′β̃))− α̃′ − x̃′β̃′

almost surely for (ξ′, ξ). Consequently, ξ′ is a function of ξ. Denote this function
by φ3(ξ).

Now using Assumption 3(i), we can find (x(1)m, x(2)m), m = 1, 2, 3, in the
domain of X such that 

1 x(1)1 x(2)1

1 x(1)2 x(2)2

1 x(1)3 x(2)3


is of full rank. Then, fixing ξ to some value ξ̃ in the domain, we have:


1 x(1)1 x(2)1

1 x(1)2 x(2)2

1 x(1)3 x(2)3


α′
β′

 =


(g′)−1(1; g0(1;α + ξ̃ + (x(1)1, x(2)1)β))− φ3(ξ̃)
(g′)−1(1; g0(1;α + ξ̃ + (x(1)2, x(2)2)β))− φ3(ξ̃)
(g′)−1(1; g0(1;α + ξ̃ + (x(1)3, x(2)3)β))− φ3(ξ̃)

 .

We then obtain that (α′, β′) is a vector of functions of (α, β), denoted by φ1(α, β)
and φ2(α, β) respectively. We plug φ3, φ1, and φ2 to (20) and obtain: for any
y = 1, . . . , L, almost surely

g′(y;φ1(α, β) + φ3(ξ) + x′φ2(α, β)) = g0(y;α + ξ + x′β).

In other words, a model (2) with (αi, βi) = (φ1(αi0, βi0), φ2(αi0, βi0)) and
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ξt = φ3(ξt0) for all i and t, and g(y; ·) = g′(y; ·) for all y = 1, . . . , L is
equivalent to the true model. Note that the normalizations also apply to
(φ1(αi?0, βi?0), (1, 0)φ2(αi?0, βi?0), φ3(ξt?0)). Then, because of Theorem 2, we ob-
tain that φ1(αi0, βi0) = αi0, φ2(αi0, βi0) = βi0, and φ3(ξt0) = ξt0. Consequently,
g′(y; ·) = g(y; ·) for all y = 1, . . . , L. The uniqueness is proved.

D.2 Sufficient Conditions for Assumption 7

Define

Ah(x) = sup
(α,β,ξ)∈Ω(α,β)×Ωξ,0≤l≤L

{∣∣∣∣∣log exp{hl(α + ξ + xTβ)}
1 +∑L

l=1 exp{hl(α + ξ + xTβ)}

∣∣∣∣∣
}
.

Condition 1.

(a)
∑N

i=1

∑T

t=1 ‖xit‖
NT

= Op(1).

(b) sup
h∈Θ̄h,(α,β,ξ)∈Ω(α,β)×Ωξ

E [A2
h(X)|α, β, ξ] ≤M1 <∞.

(c) sup
(α,β,ξ,x,h)∈Ω(α,β)×Ωξ×Ωx×Θ̄h

E
[
h4
Y (α + ξ + xTβ)

]
≤M2 for some 1 < M2 <∞.

(d) sup
1≤y≤L,hy∈Θ̄hy ,v

|∂vhy(v)| ≤M3.

Condition 1(a)–(d) impose regularities on the distribution of Xit and the log-
likelihood function. When Xit has bounded support and the norm ‖·‖h is stronger
than the sup norm on h and its derivatives, Condition 1(a) holds and Conditions
1(b)–1(d) can be implied by Assumptions 1, 4, and 5.

Assumption 7(a). For any η > 0, consider a collection of open balls
{B(α, β; η/(8M3Mx)) : (α, β) ∈ Ωα,β} where Mx ≥ 1 satisfies

∑
i,t
‖(1,x′it)‖
NT

≤
Mx asymptotically wp1. Because Ωα,β is compact, we can then find Sα,βm :=
B(α(m), β(m); η/(8M3Mx)),m = 1, . . . ,Mη such that Ωα,β ⊂ ∪Mη

m=1Sα,βm . Similarly,
we can find a finite number of open balls Sξm := B(ξ(n); η/(8M3)), n = 1, . . . , Nη

such that Ωξ ⊂ ∪Nηn=1Sξm and Shr := B(h(r); η/8), r = 1, . . . , Rη such that
Θ̄h ⊂ ∪Rηr=1Shm. Define

(α, β) ∈∗ Sα,βm ⇐⇒ m = the minimal m′ such that (α, β) ∈ Sα,βm′ .
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Then, for any (α, β) ∈ Ωα,β, there exists a unique m such that (αi, βi) ∈∗ Sα,βm .
Similarly, we can define such a relationship ∈∗ for ξ ∈ Ωξ and h ∈ Θ̄h.
Define

∆h(r)
it (m,n) = log

 exp{h(r)
yit

(α(m) + ξ(n) + x′itβ
(m))}

1 +∑L
y=1 exp{h(r)

y (α(m) + ξ(n) + x′itβ
(m))}


− E0

log
 exp{h(r)

yit
(α(m) + ξ(n) + x′itβ

(m))}
1 +∑L

y=1 exp{h(r)
y (α(m) + ξ(n) + x′itβ

(m))}

 ∣∣∣∣xit, αi0, βi0, ξt0


= h(r)
yit

(α(m) + ξ(n) + x′itβ
(m))− E0

[
h(r)
yit

(α(m) + ξ(n) + x′itβ
(m))|xit, αi0, βi0, ξt0

]
,

and

∆hit = hyit(αi + ξt + x′itβi)− E0 [hyit(αi + ξt + x′itβi)|xit, αi0, βi0, ξt0] .

Then,

LNT (θNT1 , h)−L 0
NT (θNT1 , h)

= 1
NT

∑
i,t

Rη∑
r=1

Mη∑
m=1

Nη∑
n=1

1{(αi, βi) ∈∗ Sα,βm }1{ξt ∈∗ Sξn}1{h ∈∗ Shr }∆h
(r)
it (m,n)

+ 1
NT

∑
i,t

Rη∑
r=1

Mη∑
m=1

Nη∑
n=1

1{(αi, βi) ∈∗ Sα,βm }1{ξt ∈∗ Sξn}1{h ∈∗ Shr }
(
∆hit −∆h(r)

it (m,n)
)
.

(21)
Moreover, for any (α, β, ξ, h, x, y) and (α̃, β̃, ξ̃, h̃, x, y), we have
∣∣∣hy(α + ξ + x′β)− h̃y(α̃ + ξ̃ + x′β̃)

∣∣∣
≤
∣∣∣hy(α + ξ + x′β)− hy(α̃ + ξ̃ + x′β̃)

∣∣∣+ ∣∣∣hy(α̃ + ξ̃ + x′β̃)− h̃y(α̃ + ξ̃ + x′β̃)
∣∣∣

≤ sup
v
|∂hy(v)| ×

∣∣∣α− α̃ + ξ − ξ̃ + x′(β − β̃)
∣∣∣+ ‖h− h̃‖h

≤M3(‖(1, x′)‖ × ‖(α− α̃, β − β̃)‖+ |ξ − ξ̃|) + ‖h− h̃‖h.

Similarly,
∣∣∣E0

[
hy(αi + ξt + x′βi)− h̃y(α̃ + ξ̃ + x′β̃)|x, αi0, βi0, ξt0

]∣∣∣
≤M3(‖(1, x′)‖ × ‖(αi − α̃, βi − β̃)‖+ |ξt − ξ̃|) + ‖h− h̃‖h.

Then, the absolute value of the third line in (21) can be bounded by
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2
NT

∑
i,t [M3 (‖(1, x′it)‖η/(8M3Mx) + η/(8M3)) + η/8] ≤ 3η

4 . Then,

Pr
 sup
θNT1 ∈ΩN

α,β
×ΩT

ξ
,h∈Θ̄h

∣∣∣LNT (θNT1 , h)−L 0
NT (θNT1 , h)

∣∣∣ > η


≤ Pr

 sup
(αi,βi)∈Ωα,β ,ξt∈Ωξ,1≤i≤N,1≤t≤T,h∈Θ̄h

∣∣∣∣∣∣
Rη∑
r=1

1{h ∈∗ Shr }
1
NT

∑
i,t

Mη∑
m=1

Nη∑
n=1

1{(αi, βi) ∈∗ Sα,βm }1{ξt ∈∗ Sξn}∆h
(r)
it (m,n)

∣∣∣∣∣∣ > η

4

 .

We now show that for each r = 1, . . . , Rη,

Pr
(
sup(αi,βi)∈Ωα,β ,ξt∈Ωξ,1≤i≤N,1≤t≤T

∣∣∣ 1
NT

∑
i,t

∑Mη

m=1
∑Nη
n=1 1{(αi, βi) ∈∗ Sα,βm }1{ξt ∈∗ Sξn}∆h

(r)
it (m,n)

∣∣∣ > η
4Rη

)
→ 0.

(22)
This will imply Pr

(
supθNT1 ∈ΩN

α,β
×ΩT

ξ
,h∈Θ̄h

∣∣∣LNT (θNT1 , h)−L 0
NT (θNT1 , h)

∣∣∣ > η
)
→ 0

and therefore Assumption 7(a).
Define

λ
(r)
NT (m,n) = sup

u∈RN ,v∈RT ,‖u‖=‖v‖=1
|uT(∆h(r)

it )i,t(m,n)v|.

In other words, λ(r)
NT (m,n) is the greatest absolute value of the singular values of

the matrix (∆h(r)
it )i,t(m,n) given N and T . Using Conditions 1(c) and Theorem 2

of Latała (2005), we have E0
[
λ

(r)
NT (m,n)

]
≤ C
√
M2 max{

√
N,
√
T}, where C is a

constant that does not depend on N , T , n, mr. Then, for any (αi, βi) ∈ Ωα,β, ξt ∈
Ωξ, 1 ≤ i ≤ N, 1 ≤ t ≤ T ,

∣∣∣∣∣∣ 1
NT

∑
i,t

Mη∑
m=1

Nη∑
n=1

1{(αi, βi) ∈∗ Sα,βm }1{ξt ∈∗ Sξn}∆h
(r)
it (m,n)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1
NT

Mη∑
m=1

Nη∑
n=1

(1{(αi, βi) ∈∗ Sα,βm })Ni=1(∆h(r)
it (m,n))i,t[(1{ξt ∈∗ Sξn})Tt=1]T

∣∣∣∣∣∣
≤ 1
NT

Mη∑
m=1

Nη∑
n=1

λ
(r)
NT (m,n)‖(1{(αi, βi) ∈∗ Sα,βm })Ni=1‖ × ‖(1{ξt ∈ Sξn})Tt=1‖

≤ 1√
NT

Mη∑
m=1

Nη∑
n=1

λ
(r)
NT (m,n).
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Then,

Pr
 sup

(αi,βi)∈Ωα,β ,ξt∈Ωξ,1≤i≤N,1≤t≤T

∣∣∣∣∣∣ 1
NT

∑
i,t

Mη∑
m=1

Nη∑
n=1

1{(αi, βi) ∈∗ Sα,βm }1{ξt ∈∗ Sξn}∆h
(r)
it (m,n)

∣∣∣∣∣∣ > η

4Rη


≤Pr

 1√
NT

Mη∑
m=1

Nη∑
n=1

λ
(r)
NT (m,n) > η

4Rη


≤

4RηE0
[∑Mη

m=1
∑Nη
n=1 λ

(r)
NT (m,n)

]
η
√
NT

≤4RηMηNηC
√
M2 max{

√
N,
√
T}

η
√
NT

→ 0.

This verifies (22) and Assumption 7(a).

Assumption 7(c). We verify Assumptions 2 and 3A in Newey (1991) and then
use Corollary 2.2 in the same paper to prove Assumption 7(c).

For (G′, h′) and (G, h), we have

∣∣∣L 0(G, h, F0)−L 0(G′, h′, F0)
∣∣∣

≤
L∑
y=0

∫ exp{hy0(α + ξ + x′β)}
1 +∑L

y=1 exp{hy0(α + ξ + x′β)}

×
[∫ ∣∣∣∣∣log

(
exp{hy(α′ + ξ′ + x′β′)}

1 +∑L
y=1 exp{hy(α′ + ξ′ + x′β′)}

)∣∣∣∣∣ (dG1(α′, β′|α, β)− dG′1(α′, β′|α, β))dG2(ξ′|ξ)
]

× dF0(x, α, β, ξ)

+
L∑
y=0

∫ exp{hy0(α + ξ + x′β)}
1 +∑L

y=1 exp{hy0(α + ξ + x′β)}

×
[∫ ∣∣∣∣∣log

(
exp{hy(α′ + ξ′ + x′β′)}

1 +∑L
y=1 exp{hy(α′ + ξ′ + x′β′)}

)∣∣∣∣∣ (dG2(ξ′|ξ)− dG′2(ξ′|ξ))dG′1(α′, β′|α, β)
]

× dF0(x, α, β, ξ)

+
L∑
y=0

∫ exp{hy0(α + ξ + x′β)}
1 +∑L

y=1 exp{hy0(α + ξ + x′β)}

×
[ ∫ ∣∣∣∣∣log

(
exp{hy(α′ + ξ′ + x′β′)}

1 +∑L
y=1 exp{hy(α′ + ξ′ + x′β′)}

)
− log

(
exp{h′y(α′ + ξ′ + x′β′)}

1 +∑L
y=1 exp{h′y(α′ + ξ′ + x′β′)}

)∣∣∣∣∣
× dG′2(ξ′|ξ)dG′1(α′, β′|α, β)

]
dF0(x, α, β, ξ)

≤ (|Ωα,β| × ‖G1 −G′1‖1 + |Ωξ| × ‖G2 −G′2‖2)E [Ah(X)] + 2‖h− h′‖h

≤ max{|Ωα,β|
√
M1, |Ωξ|

√
M1, 2}max{‖G1 −G′1‖1, ‖G2 −G′2‖2, ‖h− h′‖h}.

(23)
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Similarly, we replace F0 in (23) by FNT
0 and obtain:

∣∣∣L 0(G, h, FNT
0 )−L 0(G′, h′, FNT

0 )
∣∣∣

≤ max
{
|Ωα,β|

∑
i,tAh(xit)
NT

, |Ωξ|
∑
i,tAh(xit)
NT

, 2
}

max{‖G1 −G′1‖1, ‖G2 −G′2‖2, ‖h− h′‖h}.

Under Assumption 1(a), Conditions 1(a), and 1(e), we have ∑i,tAh(xit)/NT =
Op(1) and therefore max

{
|Ωα,β|

∑
i,t
Ah(xit)
NT

, |Ωξ|
∑

i,t
Ah(xit)
NT

, 2
}

= Op(1). This im-
plies Assumption 3A in Newey (1991).

For any (G, h) ∈ Θ1 ×Θ2 × Θ̄h, we have

L 0(G, (hl)Ll=1, F
NT
0 )

= 1
NT

∑
i,t

L∑
y=0

exp{hy0(αi0 + ξt0 + x′itβi0)}
1 +∑L

l=1 exp{hl0(αi0 + ξt0 + x′itβi0)}

×
∫ [

log
(

exp{hy(α′ + ξ′ + x′itβ
′)}

1 +∑L
l=1 exp{hl(α′ + ξ′ + x′β′)}

)]
dG1(α′, β′|αi0, βi0)dG2(ξ′|ξt0)

=:
∑
i,t

τit,

with

τit := τ(xit, αi0, βi0, ξt0)

≤
L∑
y=0

exp{hy0(αi0 + ξt0 + x′itβi0)}
1 +∑L

l=1 exp{hl0(αi0 + ξt0 + x′itβi0)}
log exp{hy0(αi0 + ξt0 + x′itβi0)}

1 +∑L
l=1 exp{hl0(αi0 + ξt0 + x′itβi0)}

< 0.

We now evaluate Pr
(∣∣∣ 1
NT

∑
i,t (τ(xit, αi0, βi0, ξt0)− E[τ(xit, αi0, βi0, ξt0)])

∣∣∣ > ε
)
.

This amounts to evaluating the covariance between τit and τi′t′ for any (i, t) and
(i′, t′). Note that under Assumption 1,

for i 6= i′, t 6= t′ : Cov(τit, τi′t′) = E [Cov(τit, τi′t′|F)] + Cov(E [τit|F ] ,E [τi′t′|F ])

= Cov(E [τit|F ] ,E [τi′t′|F ])

= Cov(E [τit|αi0, βi0, ξt0] ,E [τi′t′|αi′0, βi′0, ξt′0]),

for i = i′or t = t′ : Cov(τit, τi′t′) = E [τitτi′t′ ]− E [τit]E [τi′t′ ] ≤ E [Ah(Xit)Ah(Xit′)] .

Note that (E [τit|α, β, ξt0])α,β define a set of measurable functions of ξt0 indexed
by (α, β) ∈ Ωα,β. Then, using Rio (1993) and Assumption 4, we have: given any
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(i, i′),

|Cov(E [τit|αi0, βi0, ξt0] ,E [τi′t′ |αi′0, βi′0, ξt′0])|

≤ 2
∫ 2a(|t−t′|)

0
F−1
|E[τit|αi0,βi0,ξt0]|(u)F−1

|E[τi′t′ |αi′0,βi′0,ξt′0]|(u)du,

where F−1
Z (·) refers to the quantile function of the random variable Z. Note that

|E [τit|αi0, βi0, ξt0] | ≤ E [Ah(Xit)|αi0, βi0, ξt0]. Moreover, the latter is smaller or
equal to

√
M1 according to Condition 1(b). Then,

|Cov(E [τit|αi0, βi0, ξt0] ,E [τi′t′ |αi′0, βi′0, ξt′0])|

≤2
∫ 2a(|t−t′|)

0
F−1
E[Ah(Xit)|αi0,βi0,ξt0](u)F−1

E[Ah(Xi′t′ )|αi′0,βi′0,ξt′0](u)du

≤4a(|t− t′|)M1.

Then, since a(m) = O(m−µ) and therefore a(m) ≤ Cm−µ for some C > 0, we
have:

Pr
∣∣∣∣∣∣ 1
NT

∑
i,t

(τ(xit, αi0, βi0, ξt0)− E[τ(xit, αi0, βi0, ξt0)])

∣∣∣∣∣∣ > ε


≤ 1
ε2N2T 2

 ∑
i=i′ or t=t′

M1 +
∑
t6=t′

a(|t− t′|)
∑
i 6=i′

M1


≤ 1
ε2N2T 2

(N2T + T 2N)M1 + C
∑
t6=t′
|t− t′|−µ(N2 −N)M1


≤ M1

ε2N2T 2

[(
1 + C

∞∑
r=1

r−µ
)
N2T + T 2N

]
N,T→∞→ 0.

Then, L 0(G, h, FNT
0 ) p→ L 0(G, h, F0) for any (G, h). Assumption 2 of Newey

(1991) is verified.
Under Condition 1(b), we have E

[∑
i,tAh(xit)/NT

]
≤
√
M1. Then,

E
[
max

{
|Ωα,β|

∑
i,t
Ah(xit)
NT

, |Ωξ|
∑

i,t
Ah(xit)
NT

, 2
}]

is bounded. Using Corollary 2.2 (and
the discussion below this corollary) in Newey (1991), we obtain Assumption 7(c).
Assumption 7(b). First, define

ξ̃∗t
(
{αi, βi}Ni=1, h

)
:= arg max

ξ∈Ωξ

1
N

N∑
i=1

E.|ξt0

[
log

(
exp{hYit(αi + ξ +X ′itβi)}

1 +∑L
y=1 exp{hy(αi + ξ +X ′itβi)}

)]
︸ ︷︷ ︸

=:Lt(ξ;{αi,βi}Ni=1,h)

,

(24)
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where E.|ξt0 [·] is with respect to (Yit, Xit, αi0, βi0) conditional on ξt0. Both
Lt(ξ; {αi, βi}Ni=1, h) and ξ̃∗t

(
{αi, βi}Ni=1, h

)
depend on t via ξt0. Similarly, define

(α̃∗i , β̃∗i )
(
{ξt}Tt=1, h

)
:= arg max

(α,β)∈Ω(α,β)

1
T

T∑
t=1

E.|αi0,βi0

[
log

(
exp{hYit(α + ξt +X ′itβ)}

1 +∑L
y=1 exp{hy(α + ξt +X ′itβ)}

)]
︸ ︷︷ ︸

=:Li(α,β;{ξt}Tt=1,h)

,

where E.|αi0,βi0 [·] is with respect to (Yit, Xit, ξt0) conditional on (αi0, βi0).

Condition 2.

(a) For any t, (α, β) ∈ Ω(α,β) and h ∈ Θ̄h, E.|ξt0
[
log

(
exp{hYit (α+ξ+X′itβ)}

1+
∑L

y=1 exp{hy(α+ξ+X′itβ)}

)]
is strongly concave with respect to ξ, uniformly with some constant λ < 0.

(b) For any i, ξ ∈ Ωξ and h ∈ Θ̄h, E.|αi0,βi0
[
log

(
exp{hYit (α+ξ+X′itβ)}

1+
∑L

y=1 exp{hy(α+ξ+X′itβ)}

)]
is

strongly concave with respect to (α, β), uniformly with some constant λ < 0.

(c) ∂(α,β,ξ)f0x(x|α, β, ξ) is bounded by some constant Cf uniformly for (x, α, β, ξ),
where f0x(x|α, β, ξ) is the density function of x conditional on (α, β, ξ).

We verify the stochastic equicontinuity for ξ̃ using Conditions 2(a) and (c). One
can apply similar arguments to show the the stochastic equicontinuity of (α̃, β̃)
using Conditions 2(b) and (c).

Because of the strong concavity in Condition 2(b), ξ̃∗t
(
{αi, βi}Ni=1, h

)
is the

unique maximizer. Suppose that ξ̃∗t
(
{αi, βi}Ni=1, h

)
is an interior solution. Using

arguments similar to those in the proof of Assumption 7(a), we can show that

sup
(αi,βi)∈Ωα,β ,1≤i≤N ;ξ∈Ωξ;h∈Θ̄h;1≤t≤T

∣∣∣∣ 1
N

N∑
i=1

log
[

exp{hyit(αi + ξ + x′itβi)}
1 +∑L

y=1 exp{hy(αi + ξ + x′itβi)}

]

− 1
N

N∑
i=1

E
[
log

(
exp{hYit(αi + ξ +X ′itβi)}

1 +∑L
y=1 exp{hy(αi + ξ +X ′itβi)}

)] ∣∣∣∣ p→ 0.

Then,

sup
(αi,βi)∈Ωα,β ,1≤i≤N ;h∈Θ̄h;1≤t≤T

∣∣∣ξ̃ ((xit, yit)Ni=1; {αi, βi}Ni=1, h
)
− ξ̃∗t

(
{αi, βi}Ni=1, h

)∣∣∣ p→ 0.

Using the First-Order Condition corresponding to (24), we obtain:

∂ξ̃∗t
(
{αi, βi}Ni=1, h

)
∂ξt0

= −
[
∂2Lt(ξ; {αi, βi}Ni=1, h)

∂ξ2

]−1
∂2Lt(ξ; {αi, βi}Ni=1, h)

∂ξt0∂ξ
. (25)
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Condition 2(b) implies
∣∣∣∣∣
[
∂2Lt(ξ;{αi,βi}Ni=1,h)

∂ξ2

]−1
∣∣∣∣∣ ≤ λ−1. Moreover, because of As-

sumption 4, we have: for any (α, β, h),

∂2
ξt0ξE.|ξt0

[
log

(
exp{hY (α + ξ +X ′β)}

1 +∑L
y=1 exp{hy(α + ξ +X ′β)}

)]

=∂ξt0E.|ξt0
[
∂hY (α + ξ +X ′β)−

L∑
l=1

exp{hr(α + ξ +X ′β)}∂hr(α + ξ +X ′β)
1 +∑L

r=1 exp{hr(α + ξ +X ′β)}

]
︸ ︷︷ ︸

=:h̃Y (α+ξ+X′β)

=
∫ L∑

l=1

exp{hl0(αi0 + ξt0 + x′βi0)}h̃0l(αi0 + ξt0 + x′βi0)
1 +∑L

r=1 exp{hr0(αi0 + ξt0 + x′βi0)}
h̃l(α + ξ + x′β)f(x|αi0, βi0|ξt0)d(x, αi0, βi0)

+
∫ L∑

l=1

exp{hl0(αi0 + ξt0 + x′βi0)}h̃l(α + ξ + x′β)
1 +∑L

r=1 exp{hr0(αi0 + ξt0 + x′βi0)}
∂ξf0x(x;αi0, βi0, ξt0)f0(α,β)(αi0, βi0)d(x, αi0, βi0).

Now using Conditions 1(d) and 2(c), we obtain
∣∣∣h̃l(α + ξ +X ′β)

∣∣∣ ≤M3 and

∣∣∣∣∣∂2
ξt0ξE.|ξt0

[
log

(
exp{hY (α + ξ +X ′β)}

1 +∑L
y=1 exp{hy(α + ξ +X ′β)}

)]∣∣∣∣∣ ≤M2
3 +M3Cf .

Then,
∣∣∣∣∂2Lt(ξ;{αi,βi}Ni=1,h)

∂ξt0∂ξ

∣∣∣∣ ≤ M2
3 + M3Cf and

∣∣∣∣∂ξ̃∗t ({αi,βi}Ni=1,h)
∂ξt0

∣∣∣∣ ≤ (M2
3 +

M3Cf )λ−1. For any (t, s) with |ξt0 − ξs0| ≤ δ, we then have∣∣∣ξ̃∗t ({αi, βi}Ni=1, h
)
− ξ̃∗s

(
{αi, βi}Ni=1, h

)∣∣∣ ≤ (M2
3 +M3Cf )λ−1δ.

Given any ε, η > 0, we can choose Tε,η, and Nε,η such that

Pr

 sup
(αi,βi)∈Ωα,β ,1≤i≤N ;h∈Θ̄h;1≤t≤T

∣∣∣ξ̃ ((xit, yit)Ni=1; {αi, βi}Ni=1, h
)
− ξ̃∗t

(
{αi, βi}Ni=1, h

)∣∣∣
︸ ︷︷ ︸

=:(∆NT (ε,η)−ε/3)/2

>
ε

3

 < η.

Then, for any (t, s) with |ξt0 − ξs0| < δε := ε/(3(M2
3 +M3Cf )λ−1), we have:

|ξ̃
(
(xit, yit)Ni=1; {αi, βi}Ni=1, h

)
− ξ̃

(
(xis, yis)Ni=1; {αi, βi}Ni=1, h

)
|

≤ 2× (∆NT (ε, η)− ε/3)/2 + (M2
3 +M3Cf )λ−1δε

< ∆NT (ε, η).

Note that Pr(∆NT (ε, η) > ε) < η.
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Proof of Theorem 3. First, we construct a compact subset of C(Ωα,β,P(Ωα,β)),
denoted by ΘG1 , which ĜNT

1 and id1 belong to. The construction of such a set of
C(Ωξ,P(Ωξ)), denoted by ΘG2 , is similar.

Note that for any (α, β) ∈ Ωα,β and ‖(α′, β′) − (α, β)‖ < ε, we have
‖id1(·|α′, β′) − id1(·|α, β)‖P = ‖(α′, β′) − (α, β)‖ < ε. Let ΘG1 be the subset
of C(Ωα,β,P(Ωα,β)) that includes id1 and is pointwise equicontinuous: at each
(α, β) ∈ Ωα,β, for any ε > 0, there exists δε(α, β) < min{δε/3/3, ε} such that

sup
G1∈ΘG1 ,‖(α′,β′)−(α,β)‖P<δε(α,β)

‖G1(·|α′, β′)−G1(·|α, β)‖P < ε (26)

where δε is defined in Assumption 7(b). Note that for any (α, β) ∈ Ωα,β,
{G1(·|α, β) : G1 ∈ ΘG1} is a subset of the compact set P(Ωα,β). As a result,
{G1(·|α, β) : G1 ∈ ΘG1} is relatively compact for any (α, β) ∈ Ωα,β. Then, ac-
cording to Arzelá-Ascoli theorem, ΘG1 is precompact and therefore its closure is
compact in the metric ‖ · ‖1. To simply notation, we use ΘG1 to denote its closure.
The construction of ΘG2 is analogous.

We now prove the following proposition.

Proposition 1. ĜNT
1 ∈ ΘG1 and ĜNT

2 ∈ ΘG2 asymptotically wp1.

Proof. We prove ĜNT
1 ∈ ΘG1 . The proof of ĜT

2 ∈ ΘG2 is similar. Define

λi(α, β) :=
∏

r 6=i,r∈SN (α,β)
‖(α, β)− (αr0, βr0)‖2.

We will use the following lemma. The proof is in Online Appendix F.

Lemma 3. Suppose that Assumption 4 holds. Then,

sup
(α,β)∈Ωα,β

min
1≤i≤N

‖(α, β)− (αi0, βi0)‖ ≤ 2 lnN
cC2N

and
sup
ξ∈Ωξ

min
1≤t≤T

|ξ − ξt0| ≤
1
cT

1
3

asymptotically wp1, where C2 = π3/2

Γ(5/2) and µ is defined in Assumption 4.

Remark 1. Lemma 3 implies that for any (α, β), when N is large enough so
lnN√
N
> 2 lnN

cC2N
, there exists at least one i such that (αi0, βi0) ∈ SN(α, β). Similarly,

when T is large enough, there exists at least one t such that ξt0 ∈ SN(ξ).
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Note that (α, β) = (α̂NTi , β̂NTi ) maximizes ∑T
t=1 log exp{ĥNTyit (α+ξ̂NTt +x′itβ)}

1+
∑L

y=1 exp{ĥNTy (α+ξ̂NTt +x′itβ)}
.

Then, according to Assumption 7(b), for any ε/3, η > 0, there exist Nε/3,η, δε/3
such that for any N > Nε/3,η,

sup
1≤i,r≤N :‖(αi0,βi0)−(αr0,βr0)‖<δε/3

‖(α̂NTi , β̂NTi )− (α̂NTr , β̂NTr )‖ < ε/3

holds on the event {∆NT (ε/3, η) < ε/3} whose probability is at least equal to
1− η.
Fix a (α, β) ∈ Ωα,β. Now consider any (α̃, β̃) with ‖(α̃, β̃) − (α, β)‖ < δε/3/3.
Define i∗ = arg mini∈SN (α,β) ‖(α − αi0, β − βi0)‖ and ĩ∗ = arg mini∈SN (α̃,β̃) ‖(α̃ −
αi0, β̃ − βi0)‖. Note that:

‖ĜNT
1 (·|α, β)− ĜNT

1 (·|α̃, β̃)‖P ≤ ‖ĜNT
1 (·|α, β)− ĜNT

1 (·|αi∗0, βi∗0)‖P + ‖ĜNT
1 (·|α̃, β̃)− ĜNT

1 (·|αĩ0, βĩ0)‖P
+ ‖ĜNT

1 (·|αi∗0, βi∗0)− ĜNT
1 (·|αĩ0, βĩ0)‖P

= ‖ĜNT
1 (·|α, β)−Dirac(α̂i∗ ,β̂i∗ )‖P + ‖ĜNT

1 (·|α̃, β̃)−Dirac(α̂ĩ,β̂ĩ)
‖P

+ ‖Dirac(α̂i∗ ,β̂i∗ ) −Dirac(α̂ĩ,β̂ĩ)
‖P .

Moreover,

‖ĜNT
1 (·|α, β)−Dirac(α̂i∗ ,β̂i∗ )‖P =‖

∑
i∈SN (α,β),i 6=i∗

λi(α, β)∑
i∈SN (α,β) λi(α, β)

(
Dirac(α̂i,β̂i) −Dirac(α̂i∗ ,β̂i∗ )

)
‖P

= sup
‖f‖BL≤1

∣∣∣∣∣∣
∑

i∈SN (α,β),i 6=i∗

λi(α, β)∑
i∈SN (α,β) λi(α, β)

(
f(α̂i, β̂i)− f(α̂i∗ , β̂i∗)

)∣∣∣∣∣∣
≤

∑
i∈SN (α,β),i 6=i∗

‖(α− αi0, β − βi0)‖−2∑
i∈SN (α,β) ‖(α− αi0, β − βi0)‖−2‖(α̂i − α̂i∗ , β̂i − β̂i∗)‖.

By the definition of SN(α, β), when N is large enough, ‖(αi0−αi∗0, βi0− βi∗0)‖ ≤
‖(α−αi∗0, β−βi∗0)‖+‖(αi0−α, βi0−β)‖ ≤ 2 lnN√

N
≤ 2δε/3

3 < δε/3 for all i ∈ SN(α, β).
As a result,

‖ĜNT
1 (·|α, β)−Dirac(α̂i∗ ,β̂i∗ )‖P ≤

∑
i∈SN (α,β),i 6=i∗

‖(α− αi0, β − βi0)‖−2∑
i∈SN (α,β) ‖(α− αi0, β − βi0)‖−2

ε

3 <
ε

3

holds on the event {∆NT (ε/3, η) < ε/3}. Similarly,

‖ĜNT
1 (·|α̃, β̃)−Dirac(α̂ĩ∗ ,β̂ĩ∗ )‖P <

ε

3
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holds on the same event. Moreover,

‖Dirac(α̂i∗ ,β̂i∗ ) −Dirac(α̂ĩ,β̂ĩ)
‖P = ‖(α̂i∗ , β̂i∗)− (α̂ĩ∗ , β̂ĩ∗)‖

and
‖(αi∗0, βi∗0)− (αĩ∗0, βĩ∗0)‖ ≤ 2 lnN√

N
+ ‖(α̃, β̃)− (α, β)‖ < δε/3.

Then, ‖Dirac(α̂i∗ ,β̂i∗ ) − Dirac(α̂ĩ,β̂ĩ)
‖P < ε/3 on the event {∆NT (ε/3, η) < ε/3}.

Consequently, ‖ĜNT
1 (·|α, β)− ĜNT

1 (·|α̃, β̃)‖P < ε for any ‖(α̃, β̃)− (α, β)‖ < δε/3/3
and therefore ĜNT

1 ∈ ΘG1 on the event {∆NT (ε/3, η) < ε/3} whose probability is
at least equal to 1− η. This conclusion holds for any η > 0. Proposition 1 is then
proved.

For any h ∈ Θ̄h and realizations (yit)i,t, the following inequality holds asymptoti-
cally with probability 1 (wp1):
∣∣∣LNT (θNT10 , h)−LNT (θNT10 , h0)

∣∣∣
≤ 1
NT

∑
i,t

|hyit(αi0 + ξt0 + x′itβi0)− hyit0(αi0 + ξt0 + x′itβi0)|

+ 1
NT

∑
i,t

∣∣∣∣∣∣log
1 +

L∑
y=1

exp{hy(αi0 + ξt0 + x′itβi0)}
− log

1 +
L∑
y=1

exp{hy0(αi0 + ξt0 + x′itβi0)}
∣∣∣∣∣∣

≤ 1
NT

∑
i,t

[
|hyit(αi0 + ξt0 + x′itβi0)− hyit0(αi0 + ξt0 + x′itβi0)|+ max

1≤y≤L
{|hy(αi0 + ξt0 + x′itβi0)− hy0(αi0 + ξt0 + x′itβi0)|}

]

≤ 2
NT

∑
i,t

max
1≤y≤L

|hy(αi0 + ξt0 + x′itβi0)− hy0(αi0 + ξt0 + x′itβi0)|

≤2‖h− h0‖h.
(27)

We now prove Theorem 3. Denote by hNTl0 the projection of hl0 on ΘNT
hl

for
l = 1, . . . , L and hNT0 = (hNTl0 )Ll=1. By the definition of θ̂NT in (8) and the uniform
convergence in Assumption 7(a), we have for any ε > 0,

L 0
NT (θ̂NT ) > L 0

NT (θNT10 , hNT0 )− ε/3 (28)

asymptotically wp1. Moreover, by Assumption 7(c), we have
∣∣∣L 0

NT (θNT10 , h0)−L 0(id1, id2, h0;F0)
∣∣∣ =

∣∣∣L 0(id1, id2, h0;FNT
0 )−L 0(id1, id2, h0;F0)

∣∣∣
≤ ε/3

(29)
asymptotically wp1. Besides, by (27) and Assumption 5 we have: when N and T
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are large enough, ‖hNT0 − h0‖h is so small that

|L 0
NT (θNT10 , hNT0 )−L 0

NT (θNT10 , h0)| < ε/3. (30)

Then, combining (28)–(30), we have:

L 0
NT (θ̂NT ) > L 0(id1, id2, h0;F0)− ε (31)

asymptotically wp1. Using the definition of ĜNT in (10), we can express (31) as

L 0
NT (θ̂NT ) = L 0(ĜNT , ĥNT ;FNT

0 ) > L 0(id1, id2, h0;F0)− ε.

Using Gibbs’ inequality, we have

L 0(ĜNT , ĥNT ;FNT
0 ) ≤ L 0(id1, id2, h0;FNT

0 ).

As a result,

L 0(id1, id2, h0;FNT
0 ) ≥ L 0(ĜNT , ĥNT ;FNT

0 ) > L 0(id1, id2, h0;F0)− ε. (32)

hold asymptotically wp1.

Using the compactness of ΘG1 ×ΘG2 × Θ̄h and Assumption 6, we have: when ε is
small enough, we can find δ(ε) > 0 such that

L 0(id1, id2, h0;F0) > sup
max{‖G1−id1‖1,‖G2−id2‖2,‖h−h0‖h}≥δ(ε),(G,h)∈ΘG1×ΘG2×Θ̄h

L 0(G, h;F0) + 3ε.

(33)
Using Assumption 7(c), we then have: for ε/2,

∣∣∣L 0(id1, id2, h0;FNT
0 )−L 0(id1, id2, h0;F0)

∣∣∣ ≤ ε/2 (34)

and

sup
max{‖G1−id1‖1,‖G2−id2‖2,‖h−h0‖h}≥δ(ε),(G,h)∈ΘG1×ΘG2×Θ̄h

∣∣∣L 0(G, h;FNT
0 )−L 0(G, h;F0)

∣∣∣ ≤ ε/2

(35)
asymptotically wp1. Then, using (34) and (32), we obtain:

L 0(ĜNT , ĥNT ;FNT
0 ) > L 0(id1, id2, h0;FNT

0 )− 3ε/2.
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Moreover,

L 0(id1, id2, h0;FNT
0 )

≥ L 0(id1, id2, h0;F0)− ε/2 (by (34))

≥ sup
max{‖G1−id1‖1,‖G2−id2‖2,‖h−h0‖h}≥δ(ε),(G,h)∈ΘG1×ΘG2×Θ̄h

L 0(G, h;F0) + 5ε/2 (by (33))

= sup
max{‖G1−id1‖1,‖G2−id2‖2,‖h−h0‖h}≥δ(ε),(G,h)∈Θ̄G1×ΘG2×Θ̄h

(
L 0(G, h;F0)−L 0(G, h;FNT

0 ) + L 0(G, h;FNT
0 )

)
+ 5ε/2

≥ sup
max{‖G1−id1‖1,‖G2−id2‖2,‖h−h0‖h}≥δ(ε),(G,h)∈ΘG1×ΘG2×Θ̄h

L 0(G, h;FNT
0 )

− sup
max{‖G1−id1‖1,‖G2−id2‖2,‖h−h0‖h}≥δ(ε),(G,h)∈ΘG1×ΘG2×Θ̄h

∣∣∣L 0(G, h;F0)−L 0(G, h;FNT
0 )

∣∣∣+ 5ε/2

≥ sup
max{‖G1−id1‖1,‖G2−id2‖2,‖h−h0‖h}≥δ(ε),(G,h)∈ΘG1×ΘG2×Θ̄h

L 0(G, h;FNT
0 ) + 2ε (by (35)).

holds asymptotically wp1. Consequently,

L 0(ĜNT , ĥNT ;FNT
0 ) > sup

max{‖G1−id1‖1,‖G2−id2‖2,‖h−h0‖h}>δ(ε),(G,h)∈ΘG1×ΘG2×Θ̄h
L 0(G, h;FNT

0 ) + ε/2.

Then, we have max{‖G1 − id1‖1, ‖G2 − id2‖2, ‖h − h0‖h} < δ(ε) asymptotically
wp1. This implies

‖ĜNT
1 − id1‖1 = sup

(α,β)∈Ωα,β
‖ĜNT

1 (·|α, β)−Dirac(α,β)(·)‖ < δ(ε),

‖ĜNT
2 − id2‖2 = sup

ξ∈Ωξ
‖ĜNT

2 (·|ξ)−Diracξ(·)‖ < δ(ε),

and
‖ĥNT − h0‖h < δ(ε).

The proof is completed.
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Online Appendix

E Extensions

In this appendix, we discuss the extensions of Theorems 1 and 2 to models with
heterogeneous slopes across time and with multinomial outcomes.

Heterogeneous slope across time. The case of heterogeneous slope across
time mirrors the case of heterogeneous slope across individuals in terms of indi-
vidual and time dimensions. We can apply the argument of compensating variable
across time periods to obtain the identification results. To start with, we modify
Assumption 1.

Assumption 1′ (Model).

(a) Single index and two-way fixed effects: for all (i, t),

Pr (Yit = y|(Xis)s≤t,F) = g(y;X ′itβt + αi + ξt),

with, almost surely, supi ‖βt‖ ≤ Cβ <∞. Moreover, g is unknown.

(b) Monotonicity and smoothness: there exists ȳ ∈ Y such that the function
v 7→ g(ȳ; v) is strictly increasing and L-Lipschitz.

(c) Cross-section independence and weak serial dependence:

1. Conditional on F , {(Yit, X ′it) : t = 1, 2, . . .} is independent across i.

2. Let µ > 1. Conditional on F , for each i, {(Yit, X ′it) : t = 1, 2, . . .} is
α-mixing with mixing coefficient satisfying supi ai(m) = O(m−µ) as
m→∞, where

ai(m) := sup
t

sup
A∈Ait,B∈Bit+m

|Pr(A ∩B)− Pr(A) Pr(B)| ,

and for Zit := (Yit, X ′it), Ait is the σ-field generated by (Zit, Zit−1, . . .),
and B1

t is the σ-field generated by (Zit, Zit+1, . . .).

(d) Conditional on F , Xit has density pit with respect to the Lebesgue measure
on RK such that pit(x) ≤ pmax <∞ for all (i, t) and x ∈ RK.
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(e) Let K denote a bounded kernel function. For all strictly monotonic functions
f : R → (0, 1) and x = (x(1), x(2)) ∈ X , almost surely, there exists a constant
cf,x(2) nontrivially depending on f such that, for all t,

1
hNN

∑N
i=1K

(
Xit−x
hN

)
f(αi)

1
hNN

∑N
i=1K

(
Xit−x
hN

) → cf,x(2) as N →∞.

Define a compensating variable:

zt→t′(x(1);x(2)) = [x(1)β
(1)
t′ + x(2)(β(2)

t′ − β
(2)
t ) + ξt′ − ξt]/β(1)

t . (36)

Intuitively, zt→t′(x(1);x(2)) is the needed value of x(1) for individual i with x(2) at
time t to make her indices at time t′ and t equal: αi + ξt + β

(1)
t zt→t′(x(1);x(2)) +

β
(2)
t x(2) = αi + ξt′ + β

(1)
t′ x

(1) + β
(2)
t′ x

(2).

Definition 1′. Time period t is compensable at (x(1), x(2)) ∈ X t′ by time period t
if and only if (zt→t′(x(1);x(2)), x(2)) ∈ X t.12

With Definition 1′, we can then define a compensating network of time periods and
achieve the relative identification (along the time dimension) similar to Theorem
1. Under conditions analogous to Assumption 3, we can further achieve point
identification similarly to Theorem 2.

Multinomial outcomes. Consider a model with multinomial outcomes: the
probability of individual i from choosing yit ∈ {1, . . . , J} at time t is

Pr(yit = j | (αij, ξsj, βij, xisj)s=1,...,t
j=1,...,J) = gj(vit), (37)

where vit = (vitj)Jj=1 with vitj = αij + ξtj + x′itjβij,
∑J
j=1 gj(vit) < 1, and J is

known. The residual probability, g0(vit) = 1 −∑J
j=1 gj(vit), is usually defined as

the probability of choosing the outside option. Model (37) is a common setting in
empirical research such as demand estimation (Berry et al., 2013; Dubois et al.,
2020). Define g(vit) = (gj(vit))Jj=1, αi = (αij)Jj=1, βi = (βij)Jj=1, ξt = (ξtj)Jj=1.

To extend the identification results to (37), we first replace the monotonicity in
Assumption 1(b) by the invertibility of g(v), i.e., the mapping g(·) is a bijection.
The following assumption provides a set of sufficient conditions for the invertibility.

12We assume that X t does not depend on i to simplify the exposition. This holds, e.g., if
{xit}i≥2 is i.i.d. conditional on (ξt, βt) for all t ∈ T.
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Assumption 1(b)′. The mapping g satisfies the following conditions:

• The support of (vit1, . . . , vitJ), V, is a Cartesian product.

• (Weak substitutes) gj(v) is weakly decreasing in vk for all j = 1, . . . , J and
k /∈ {0, j}.

• (Connected strict substitution) For all v ∈ V and any nonempty subset of
{1, . . . , J}, K, there exists k ∈ K and l /∈ K such that gl is strictly decreasing
in vk.

Assumption 1(b)′ is a multi-index version of Assumption 1(b). It is motivated by
sufficient conditions for the invertibility of demand by Berry et al. (2013) and usu-
ally satisfied in the setting of discrete-choice random utility models with separably
additive index and idiosyncratic error in indirect utility. This assumption implies
that g is a bijection from V to g(V). Moreover, it implies that the aggregated
choice probability function, i.e., the integral of g(vit) over ξt for a given i, satisfies
Assumption 1(b)′ and is therefore a bijection. Both bijection properties enable
to apply the argument of compensating variable as in the single-index case. As
argued in Berry et al. (2013), Assumption 1(b)′ is convenient in practice due to its
Cartesian support requirement and it applies even when g may not be not differen-
tiable. This contrasts other arguments such as those by Gale and Nikaido (1965)
which require rectangular support condition and differentiability of g. In contrast,
due to the weak substitutes requirement in Assumption 1(b)′, the derivative of gj
(if differentiable) with respect to vk is restricted to be nonpositive for all k 6= j.
As an alternative, one can require gj(·) to be strictly increasing with respect to
index vj for all j = 1, . . . , J and the mapping g to have strictly diagonally domi-
nant Jacobian, which will also imply the bijection properties we need to apply the
argument of compensating variable but allows for positive cross derivatives in g.
Second, analogously to the single-index case, we define a compensating vector of
dimension J :

zi→i′(x(1);x(2)) = (zi→i′,j(x(1);x(2)))Jj=1 =
(
[αi′j − αij + x

(1)
j β

(1)
i′j + x

(2)
j (β(2)

i′j − β
(2)
ij )]/β(1)

ij

)J
j=1

zi→i′(x(1);x(2)) is the needed value of x(1) for individual i with x(2) to make her
and i’s indices equal: for j = 1, . . . , J ,

αij + ξtj + β
(1)
ij zi→i′,j(x(1);x(2)) + β

(2)
ij x

(2)
j = αi′j + ξtj + β

(1)
i′j x

(1)
j + β

(2)
i′j x

(2)
j .
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The definition of compensation and compensating network should be accordingly
modified. In particular, the rank condition in the definition of compensating
network should now hold for all j = 1, ..., J : individual i is compensable by
individual i′ at least at (x(1)k, x(2)k) ∈ Xi for k = 1, 2, 3 with


1 x

(1)1
j x

(2)1
j

1 x
(1)2
j x

(2)2
j

1 x
(1)3
j x

(2)3
j


being nonsingular for j = 1, . . . , J . With these modifications, one can readily
apply the arguments in the proofs of Theorems 1 and 2.

F Proofs of Lemmas

Proof of Lemma 1. Define ∆1
it :=

MNT
it K

(
Xit−x
hT

)
1{Yit=y}

hT
∑∞

t=1 M
NT
it

and ∆2
it :=

MNT
it K

(
Xit−x
hT

)
g(y;X′itβi+αi+ξt)

hT
∑∞

t=1M
NT
it

.
First Part. We show: ∑

t

(∆1
it −∆2

it) = op(1). (38)

Let EF (resp. VarF) denotes the expectation (resp. variance) with respect to
the distribution of the data conditional on the unobserved effects F . For all
t, EF

(
∆1
it −∆2

it|X t
i ,M

NT
)

= 0.

VarF
( ∞∑
t=1

∆1
it −∆2

it

)

= EF
[ ∞∑
t=1

VarF
(
∆1
it −∆2

it|X t
i ,M

NT
)]

+ 2
∑
s<t

CovF
(
∆1
is −∆2

is,∆1
it −∆2

it

)
.

(39)

Focus on the first term. We have

VarF
(
∆1
it −∆2

it|X t
i ,M

NT
)

=
MNT

it K2
(
Xit−x
hT

)
h2
T (∑∞t=1M

NT
it )2 δit(Xit)(1− δit(Xit)),

where δit(Xit) := g(y;X ′itβi + αi + ξt). Because 0 ≤ δit(Xit)(1 − δit(Xit)) ≤ 1,
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∑∞
t=1M

NT
it = T ,

(∑
tM

NT
it

)2
= T 2, and

EF
[
K2

(
Xit − x
hT

) ∣∣∣∣MNT
]
≤ hTC,

where C := pmax
∫
K2(u)du <∞, we have

EF
[ ∞∑
t=1

VarF
(
∆1
it −∆2

it|X t
i ,M

NT
) ∣∣∣∣MNT

]
≤ hTC

∑∞
t=1M

NT
it

T 2h2
T

≤ C

ThT
.

Hence, as N, T tend to infinity,

EF
[ ∞∑
t=1

VarF
(
∆1
it −∆2

it|X t
i ,M

NT
)]
→ 0

We now turn to the second term in (39). For all (s, t) such that s < t, we have

EF
[
∆1
is −∆2

is|Xs
i ,M

NT
]

= EF
[
∆1
it −∆2

it|Xs
i ,M

NT
]

= 0.

Hence, it suffices to show that, almost surely,

CovF
(
∆1
is −∆2

is,∆1
it −∆2

it|MNT
)
→ 0.

Let ζit := 1
hT
K
(
Xit−x
hT

)
[1{Yit = y} − g(y;X ′itβi + αi + ξt)]. We have

CovF
(
∆1
is −∆2

is,∆1
it −∆2

it|MNT
)

= MNT
is MNT

it

h2
TT

2 CovF
(
K
(
Xis − x
hT

)
1{Yis = y}, K

(
Xit − x
hT

)
1{Yit = y}

)

= MNT
is MNT

it

T 2 CovF
(
ζis, ζit|MNT

)
.

Conditional on F ,MNT , {ζit : t = 1, 2, . . .} is α-mixing. Moreover, for all t,

EF
(
|ζit|2+δ |MNT

)
= EF

(∣∣∣∣ 1
hT
K
(
Xit − x
hT

)
1{Yit = y}

∣∣∣∣2+δ)

≤ EF
(∣∣∣∣ 1
hT
K
(
Xit − x
hT

)∣∣∣∣2+δ)

≤ C ′ <∞.

By Proposition 2.5 in Fan and Yao (2003), there exists a positive constant C ′′ <∞
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such that
CovF

(
ζit, ζis|MNT

)
≤ C ′′ai(|t− s|)δ/(2+δ).

Hence, by majoring the sum of covariances by the sum of covariances for the closest
possible time sequence (all successive periods), we have

EF
[∑
s<t

MNT
is MNT

it

T 2 CovF
(
ζit, ζis|MNT

)]
≤ C ′′

1
T 2

∑
1≤s<t≤T

ai(|t− s|)δ/(2+δ) → 0.

This shows (38).
Second part. Now given Equation (38), and because

∆3
i := 1

hT
∑∞
t=1M

NT
it

∞∑
t=1

MNT
it K

(
Xit − x
hT

)
= Op(1),

we have ∑
t=1

∆1
it −∆2

it

∆3
i

= op(1).

It remains to show that ∑
t ∆2

it

∆3
i

= Γi(y, x) + op(1). (40)

Then, by the continuous mapping theorem, we have

Γ̂i(y, x)− Γi(y, x) =
∑
t=1

∆1
it −∆2

it

∆3
i

+
∑
t=1

∆2
it

∆3
i

− Γi(y, x) = op(1).

Consider the decomposition

∑
t ∆2

it

∆3
i

=
1

hT
∑∞

t=1 M
NT
it

∑∞
t=1M

NT
it K

(
Xit−x
hT

)
[g(y,X ′itβi + αi + ξt)− g(y, x′βi + αi + ξt)]

1
hT
∑∞

t=1M
NT
it

∑∞
t=1M

NT
it K

(
Xit−x
hT

)

+
1

hT
∑∞

t=1M
NT
it

∑∞
t=1M

NT
it K

(
Xit−x
hT

)
g(y, x′βi + αi + ξt)

1
hT
∑∞

t=1 M
NT
it

∑∞
t=1M

NT
it K

(
Xit−x
hT

) .

By Assumptions 1(a),(b), and (e), the second term converges almost surely to
cg(y,x′βi+αi+·),x(2) , and Γi(y, x) := cg(y,x′βi+αi+·),x(2) is strictly monotonic in x′βi+αi.
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Let us show that the first term is op(1).

ANT :=
∣∣∣∣∣ 1
hT
∑∞
t=1M

NT
it

∞∑
t=1

MNT
it K

(
Xit − x
hT

)
[g(y,X ′itβi + αi + ξt)− g(y, x′βi + αi + ξt)]

∣∣∣∣∣
≤ L

hTT

∞∑
t=1

MNT
it

∣∣∣∣K (
Xit − x
hT

)∣∣∣∣ |(Xit − x)′βi|

≤ LCβ
hTT

∞∑
t=1

MNT
it

∣∣∣∣K (
Xit − x
hT

)∣∣∣∣ ‖Xit − x‖ .

Then, by similar argument as before, there exists a positive constant := C ′′′ <∞
such that uniformly over N, T, i, t,

EF
[∣∣∣∣K (

Xit − x
hT

)∣∣∣∣ ‖Xit − x‖ |MNT
]
≤:= C ′′′h2

T .

Then,

EF
[
ANT |MNT

]
≤ LCβ := C ′′′

hTT

∞∑
t=1

MNT
it h2

T = LCβ := C ′′′hT = op(1).

Proof of Lemma 2. ( =⇒ ) Suppose i ←→ i′ in G∞ and, without loss of
generality, i → i′. By the first part of Lemma 1, for some (x(1)k, x(2)k) ∈ Xi′ for
k = 1, 2, 3 with 

1 x(1)1 x(2)1

1 x(1)2 x(2)2

1 x(1)3 x(2)3


being nonsingular, we have

Γi(y, (zi→i′(x(1)k;x(2)k), x(2)k)) = Γi′(y, (x(1)k, x(2)k))

with zi→i′(x(1)k;x(2)k), x(2)k) ∈ Xi. Hence, letting x̃(1)k := zi→i′(x(1)k;x(2)k), x(2)k),
there exist some (x̃(1)k, x̃(2)k) ∈ Xi, (x(1)k, x(2)k) ∈ Xi′ for k = 1, 2, 3 such that

Γi(y, (x̃(1)k, x̃(2)k)) = Γi′(y, (x(1)k, x(2)k)),

with 
1 x(1)1 x(2)1

1 x(1)2 x(2)2

1 x(1)3 x(2)3


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being nonsingular. When i′ → i, we obtain the same equality with


1 x̃(1)1 x̃(2)1

1 x̃(1)2 x̃(2)2

1 x̃(1)3 x̃(2)3


being nonsingular.
(⇐= ) Suppose that there exist (x̃(1)k, x̃(2)k) ∈ Xi, (x(1)k, x(2)k) ∈ Xi′ for k = 1, 2, 3
such that

Γi(y, (x̃(1)k, x̃(2)k)) = Γi′(y, (x(1)k, x(2)k)),

with either 
1 x(1)1 x(2)1

1 x(1)2 x(2)2

1 x(1)3 x(2)3

 or


1 x̃(1)1 x̃(2)1

1 x̃(1)2 x̃(2)2

1 x̃(1)3 x̃(2)3


being nonsingular. By the second part of Lemma 1, x̃(1)k = zi→i′(x(1)k;x(2)k), x(2)k)
so that i→ i′, or x(1)k = zi′→i(x̃(1)k; x̃(2)k), x̃(2)k) so that i′ → i. Then, i←→ i′ in
G∞. The proof is completed.

Proof of Lemma 3. We prove a more general version of the first statement in
Lemma 3 with the dimension of β being K ≥ 1. Define δ(N) =

(
lnN
cCkN

) 1
K+1 where

Ck = π(K+1)/2

Γ((K+3)/2) and c is the constant in Assumption 4.
First, given any (α, β), we examine the probability of the event E(α, β,N) :=

{min1≤i≤N ‖(α, β)− (αi0, βi0)‖ > δ(N)}. Under Assumption 4,

Pr (E(α, β,N)) =
N∏
i=1

Pr (‖(α, β)− (αi0, βi0)‖ > δ(N)) ≤
(

1− lnN
N

)N
.

Second, because Ωα,β is compact (say, the unit square), for a given N , we can
always find up to R(Ωα,β)N/(lnN) sets in {Ball(α,β)(δ(N))}(α,β)∈Ωα,β such that
their union covers Ωα,β where R(Ωα,β) is a constant that only depends on Ωα,β

and c. Denote by Bs each of the finite sets. Now consider the probability of the
event

{ sup
(α,β)∈Ωα,β

min
1≤i≤N

‖(α, β)− (αi0, βi0)‖ > 2δ(N)}

⊂ ∪
R(Ωα,β)N

(lnN)
s=1 { sup

(α,β)∈Bs
min

1≤i≤N
‖(α, β)− (αi0, βi0)‖ > 2δ(N)}.
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The probability of {sup(α,β)∈Bs min1≤i≤N ‖(α, β)− (αi0, βi0)‖ > 2δ(N)} is bounded
by (1− lnN/N)N that corresponds to the probability of none of the (αi0, βi0)
falling in Bs. Then,

Pr
(

sup
(α,β)∈Ωα,β

min
1≤i≤N

‖(α, β)− (αi0, βi0)‖ > 2δ(N)
)

≤ R(Ωα,β)N
lnN

(
1− lnN

N

)N
∼ R(Ωα,β)

lnN → 0.

The proof of the second statement differs from that of the first one in that ξt0 is not
independent across t, but only admits a weak dependence specified in Assumption
4. Define δ(T ) = 1

2cT
1
3
. Note that for any t and ξ ∈ Ωξ, Pr(|ξ − ξt0| ≥ δ(T )) =

1− Pr(|ξ − ξt0| < δ(T )) ≤ 1− 2cδ(T ). To adapt the proof of the first statement:

Pr
(

min
1≤t≤T

|ξ − ξt0| ≥ δ(T )
)
≤ Pr

(
|ξ − ξt0| ≥ δ(T ), t = 1, 1 + T

1
3 (1/µ+1), ..., 1 + b T − 1

T
1
3 (1/µ+1)

cT
1
3 (1/µ+1)

)
≤ Pr

(
|ξ − ξt0| ≥ δ(T ), t = 1 + T

1
3 (1/µ+1), ..., 1 + b T − 1

T
1
3 (1/µ+1)

cT
1
3 (1/µ+1)

)
Pr (|ξ − ξ10| ≥ δ(T )) + a(T 1

3 (1/µ+1))

≤ Pr
(
|ξ − ξt0| ≥ δ(T ), t = 1 + 2T 1

3 (1/µ+1), ..., 1 + b T − 1
T

1
3 (1/µ+1)

cT
1
3 (1/µ+1)

)
Pr
(
|ξ − ξ

1+T
1
3 (1/µ+1)0

| ≥ δ(T )
)

Pr (|ξ − ξ10| ≥ δ(T ))

+ a(T 1
3 (1/µ+1)) (1 + Pr (|ξ − ξ10| ≥ δ(T )))

≤ Pr (|ξ − ξ10| ≥ δ(T )) Pr
(
|ξ − ξ

1+T
1
3 (1/µ+1)0

| ≥ δ(T )
)
...Pr

|ξ − ξ
1+b T−1

T
1
3 (1/µ+1)

cT
1
3 (1/µ+1)0

| ≥ δ(T )
+ a(T 1

3 (1/µ+1))
2cδ(T )

≤ (1− 2cδ(T ))
b T−1

T
1
3 (1/µ+1)

c
+ a(T 1

3 (1/µ+1))
2cδ(T ) .

Following the same strategy as the proof of the first statement, we obtain that

Pr
(

sup
ξ∈Ωξ

min
1≤t≤T

|ξ − ξt0| > 2δ(T )
)
≤ R(Ωξ)

δ(T )

(1− 2cδ(T ))
b T−1

T
1
3 (1/µ+1)

c
+ a(T 1

3 (1/µ+1))
2cδ(T )



= 2cR(Ωξ)


(1− 2cδ(T ))

b T−1

T
1
3 (1/µ+1)

c

2cδ(T )︸ ︷︷ ︸
∼T 1/3 exp{−T

1
3 (1−1/µ)}

+ a(T 1
3 (1/µ+1))

(2cδ(T ))2︸ ︷︷ ︸
≤O(T

1
3 (1−µ))


→ 0.

The proof is completed.

G Monte Carlo: Additional Results

Results on coefficients estimates. In the MLE with polynomial sieves in Sec-
tion 4, we normalize (β(1), α

(1)
1 , α

(2)
1 ) by their true values. As discussed in footnote
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Table 4: Finite-sample performances of the sieve MLE when g0(δ) = exp{2 exp{δ}}
1+exp{2 exp{δ}}

Polynomial sieve β
(2)
i α

(1)
i α

(2)
i

N = 50, d = 1 1.2807 0.2750 0.4599
d = 2 1.6370 0.5189 0.8434
d = 3 1.6271 0.5074 0.7889
d = 4 1.6186 0.5074 0.7750

N = 100, d = 1 0.8724 0.1918 0.2835
d = 2 0.8593 0.2807 0.6784
d = 3 0.8104 0.1796 0.4755
d = 4 0.8103 0.1721 0.4627

N = 200, d = 1 0.5692 0.1103 0.1916
d = 2 0.5509 0.4599 0.8361
d = 3 0.4147 0.0547 0.1269
d = 4 0.4235 0.0586 0.1326

Notes: Each cell corresponds to the average dis-
tance metrics between the estimated object and its
true value over 200 repetitions for a given sample
size N and MLE with polynomial sieves of degree
d = 1, ..., 4.

8, together with these normalizations, Theorem 3 implies that the estimators for
(β(2)

i , α
(1)
i , α

(2)
i ) converge to their true values as N increases to infinity. In Table 4,

we report their distance metrics defined as
√∑N

i=1(β̂(2)
i −β

(2)
i0 )2

N
,
√∑N

i=1(α̂(1)
i −α

(1)
i0 )2

N
, and√∑N

i=1(α̂(2)
i −α

(2)
i0 )2

N
, for the scenario g0(δ) = exp{2 exp{δ}}

1+exp{2 exp{δ}} . For each sieve dimension
d and each object of interest, the corresponding distance metric decreases as N
increase from 50 to 200.

Results on alternative data generating process. We consider the same
static binary choice model as that in section 4 with a different generating process
for covariates: for 1 ≤ i < j ≤ N ,

Pr(yij = 1|wij, βi, α(1)
i , α

(2)
j ) = g0(w(1)

ij β
(1) + w

(2)
ij β

(2)
i + α

(1)
i + α

(2)
j ),

where w(1)
ij = |zi − zj| and w

(2)
ij = |xi − xj|. xi and zi are respectively i.i.d.

U [−1, 1] and U [−1, 0] across i = 1, . . . , N . Individual-specific slopes β(2)
i = −0.2−

0.1xi − µi where µi are i.i.d. U [0, 1]. Fixed effects α(1)
i = 0.5xi + η

(1)
i and α(2)

i =
0.5xi + η

(2)
i where η(1)

i (η(2)
i ) are i.i.d. U [−0.5, 0.5]. We set β(1) = 1. (xi)Ni=1,

(zi)Ni=1, (µi)Ni=1, (η(1)
i )Ni=1, and (η(2)

i )Ni=1 are independent. Note that (w(1)
ij , w

(2)
ij )j 6=i
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Table 5: Finite-sample performances: Polynomial sieves

Scenario g0(δ) = exp{δ}
1+exp{δ} Φ(δ) exp{2 exp{δ}}

1+exp{2 exp{δ}}

AME(1)
i AME(2)

i g AME(1)
i AME(2)

i g AME(1)
i AME(2)

i g
N = 50, Logit 0.0426 0.1729 × 0.0493 0.1554 × 0.0720 0.1069 ×

Probit 0.0417 0.1804 × 0.0491 0.1676 × 0.0633 0.1223 ×
Poly. sieve, d = 1 0.0363 0.1744 0.0947 0.0504 0.1678 0.0974 0.0729 0.1321 0.1485

d = 2 0.0575 0.1776 0.1042 0.0560 0.1689 0.0991 0.0560 0.1122 0.0992
d = 3 0.0729 0.1880 0.1110 0.0742 0.1913 0.1157 0.0586 0.1134 0.0995
d = 4 0.0853 0.1968 0.1232 0.0830 0.1975 0.1194 0.0596 0.1162 0.0949

N = 100, Logit 0.0240 0.1188 × 0.0309 0.1075 × 0.0559 0.0859 ×
Probit 0.0229 0.1196 × 0.0290 0.1098 × 0.0479 0.0911 ×

Poly. sieve, d = 1 0.0233 0.1188 0.0700 0.0314 0.1102 0.0658 0.0537 0.0991 0.1245
d = 2 0.0264 0.1194 0.0737 0.0323 0.1104 0.0665 0.0383 0.0779 0.0961
d = 3 0.036804 0.1272 0.0791 0.0306 0.1106 0.0637 0.0371 0.0774 0.0945
d = 4 0.0528 0.1353 0.1031 0.0319 0.1112 0.0634 0.0369 0.0777 0.0928

N = 200, Logit 0.0144 0.0784 × 0.0209 0.0723 × 0.0482 0.0714 ×
Probit 0.0137 0.0785 × 0.0186 0.0721 × 0.0431 0.0716 ×

Poly. sieve, d = 1 0.0144 0.0784 0.0413 0.0210 0.0725 0.0358 0.0479 0.0772 0.1145
d = 2 0.0151 0.0785 0.0426 0.0210 0.0724 0.0364 0.0278 0.0566 0.1126
d = 3 0.0158 0.0786 0.0431 0.0188 0.0722 0.0358 0.0230 0.0562 0.0817
d = 4 0.0166 0.0788 0.0473 0.0191 0.0723 0.0353 0.0233 0.0562 0.0780

Notes: Each cell corresponds to the average distance metrics between the estimated object and its true value over
200 repetitions for a given sample size N , scenario of true link function g0, and the model used in the MLE (logit,
probit, or polynomial sieves of degree d = 1, . . . , 4). For AME(k)

i with k = 1, 2, the distance metrics is defined as√∑N

i=1(ÂME
(k)
i −AME(k)

i0 )2/N where 0 refers to the true values. For the sieve MLE, the distance corresponding to

the link function is defined as
√∑M

m=1 (ĝ(δm)− g0(δm))2/M where (δm)Mm=1 is an equal-spaced (by 0.1) sequence of
values covering the true range of the index in the data generating process.

are not independent across i’s and Assumption 1(c) is violated. The results are
summarized in Table 5. Despite the violation, the sieve MLE seems to have an
analogous performance to the one under the data generating process in section 4.
One potential reason is that the identification and consistency results could hold
under weaker (or alternative) assumptions than those proposed in the paper. We
leave this possibility for future research.
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