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Abstract
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turns and risks through effective diversification. This paper introduces a flexible de-
mand system accommodating heterogeneous substitution, cross-asset complementar-
ities, and diverse investment strategies. By relaxing multinomial logit assumptions,
our model better captures portfolio allocation decisions, linking portfolio weights
to both individual asset and portfolio-wide characteristics. We propose a demand-
inverse approach for the identification of structural parameters. This approach im-
plies a Generalized Method of Moments estimation procedure with novel instruments
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1. Introduction

The conventional wisdom in portfolio choice is that investors consider their entire port-

folio rather than evaluating individual assets in isolation. In practice, this process is

rather messy: not all assets are close substitutes, and some may even complement one an-

other when combined. For example, a hedge fund might balance high-growth tech stocks

against stable blue-chip firms, exploiting their different characteristics and correlations

to manage overall risk more effectively. Yet much of the demand-systems asset pricing lit-

erature treats stocks as independent substitutes, overlooking the critical role these cross-

asset dependencies play in strategic asset allocation. This simplification ignores how in-

vestors rely on diversification, nonlinear interactions, and nuanced risk-return trade-offs.

In this paper, we develop a new characteristic-based demand model that relaxes these

restrictive assumptions and propose an estimation strategy that can still leverage mandate-

based instruments. Our model captures heterogeneous substitution patterns and allows

for asset complementarity, offering a more realistic depiction of how characteristics shape

expected returns and risk exposures. In particular, it enables characteristics to increase

expected returns without necessarily an one-for-one increase in systematic risk. In our

framework, an asset’s portfolio weight depends on its own characteristics as well as those

of other assets in the same portfolio. Consequently, when asset pairs jointly reduce over-

all variance, hence enhancing diversification, they are complements.

Furthermore, we propose a demand-inverse approach to identify our model’s struc-

tural parameters and adopt a Generalized Method of Moments (GMM) estimation proce-

dure. In addition to mandate-based price instruments, we leverage other assets’ charac-

teristics in the same portfolio as additional instruments accounting for cross-asset depen-
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dencies. Through Monte Carlo simulations, we show that ignoring cross-asset dependen-

cies introduces significant bias in price elasticities. Our model significantly reduces this

bias, offering substantial improvements over the commonly used approach of estimating

asset demand proposed by Koijen and Yogo (2019) (henceforth KY19).

The multinomial logit (MNL) demand structure in KY19 implicitly assumes that as-

sets are good substitutes via the Independence of Irrelevant Alternatives (IIA) property.

The IIA implies that the relative demand for any two asset is unaffected by the charac-

teristics of other assets. This simplification overlooks a critical aspect of mean-variance

optimal portfolio choice (Markowitz, 1952): portfolio weights are determined not only

by expected returns and variances but also by covariances between assets. By assuming

independence between assets, the MNL framework fails to capture the role of diversifi-

cation, and overall how cross-asset dependencies influence portfolio allocation.

Another implication of the IIA in KY19 is that the one-factor structure forces any

increase in returns to be matched by a uniform increase in factor loadings, leaving no

room for alpha. In contrast, if omitted risk factors or informational inefficiencies allow for

characteristic-driven return differentials not fully captured by the factor loadings, alpha

can emerge. Such scenarios are arguably more representative of complex institutional

portfolios, where systematic risk and pricing inefficiencies interact in nuanced ways.

To fix the ideas, we gradually build on an example throughout this paper:

Example. Consider two investors representing two pension funds with investment mandates

on the allocation of their assets under management. Alice’s (Bob’s) mandate requires a fixed

weight allocation to value stocks (small-cap stocks). These mandates reflect different invest-

ment strategies: Alice’s strategy focuses on investing in undervalued firms with solid funda-

mentals, while Bob’s strategy targets firms with smaller market capitalization that may offer
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higher growth potential. Ideally, a demand model should capture these differences in how char-

acteristics like book-to-market ratio (as a proxy for value) or market equity (as a proxy for size)

translate into variations in risk-return relationship. However, using the linear MNL framework

of KY19 forces increases in expected returns to be matched by proportionate increases in factor

loadings; same proportional risk-return trade-off for the value strategy as for the size strategy.

Thus, the model leaves no room for returns that exceed what the single factor can explain.

Focusing on the Capital Asset Pricing Model (CAPM) as the benchmark most often

used by academics and practitioners, we see that investors like Alice and Bob indeed

achieve abnormal returns relative to what CAPM predicts. The results are summarized

in Table 1 for quarterly U.S. institutional equity holdings based on SEC 13F filings via

FactSet, combined with quarterly U.S. equity data from the merged Compustat-CRSP

dataset, spanning 2000.Q1 to 2022.Q4. First, we aggregate stock returns and character-

istics within each investor portfolio into portfolio-level returns and characteristics using

portfolio weights. Next, we sort investors into deciles based on one-year lagged charac-

teristics. Finally, we compute equally-weighted average returns and CAPM alphas.

Non-zero alphas across all sorting variables indicate that the CAPM fails to fully ac-

count for systematic risks tied to these characteristics, aligning with well-documented

anomalies in asset pricing (e.g., most recently in Lopez-Lira and Roussanov (2023)). For

instance, portfolios sorted on market equity exhibit a pronounced size effect, with small-

cap focused investors in the 1st decile achieving substantially higher returns and alphas

relative to small-cap focused investors in the 10th decile. These estimates highlight the

limitations of KY19’s linear MNL framework in capturing investors’ heterogeneous sen-

sitivity to asset characteristics and their alpha-seeking behavior.

3



Table 1: Anomalies in Institutional Equity Portfolios

This table reports anomalies in investor equity portfolio returns along dimensions of asset characteris-
tics considered in most demand systems asset pricing frameworks: market equity, book-to-market ratio,
investment (log growth of assets), and profitability (operating profit to book equity). First, we aggregate
stock returns and characteristics within each investor portfolio into portfolio-level returns and charac-
teristics using portfolio weights. Next, we sort investors into deciles based on one-year lagged character-
istics. Finally, we compute equally-weighted average returns and CAPM alphas (percent). Our sample
includes quarterly U.S. institutional equity holdings based on SEC 13F filings via FactSet, combined with
quarterly U.S. equity data from the merged Compustat-CRSP dataset, spanning 2000.Q1 to 2022.Q4.

Deciles 1 2 3 4 5 6 7 8 9 10

Panel A: Market Equity

Excess Returns 6.73 5.39 4.81 4.38 4.03 3.77 3.61 3.48 3.38 3.34
CAPM Alpha 4.34 3.31 2.87 2.51 2.23 2.01 1.87 1.77 1.67 1.60

Panel B: Book to Market

Excess Returns 5.42 4.39 4.00 3.95 3.91 3.95 4.07 4.28 4.39 4.56
CAPM Alpha 3.33 2.55 2.21 2.19 2.15 2.18 2.27 2.42 2.46 2.45

Panel C: Investment

Excess Returns 4.88 3.94 3.79 3.79 3.77 3.86 4.02 4.29 4.76 5.82
CAPM Alpha 2.95 2.20 2.06 2.05 2.00 2.08 2.19 2.40 2.75 3.50

Panel D: Profitability

Excess Returns 6.48 5.20 4.66 4.26 3.95 3.82 3.68 3.60 3.58 3.71
CAPM Alpha 4.02 3.09 2.71 2.41 2.16 2.06 1.96 1.90 1.88 1.99
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Related Literature. This paper relates to two strands of research on discrete choice

models of demand: (i) the finance literature on demand systems in asset pricing and (ii)

the empirical industrial organization (IO) literature on demand with complementarity.

The finance literature, inspired by KY19, has predominantly relied on the MNL frame-

work. While computationally convenient, this approach overlooks heterogeneous substi-

tution patterns arising from investors’ distinct strategies. Our paper extends this liter-

ature by introducing a more flexible model that incorporates heterogeneous risk-return

profiles within investor portfolios, thereby allowing for richer patterns of substitutability

and complementarity.

KY19 started the literature on estimating asset demand systems. This methodologi-

cal approach has been used to study the crucial impact of various investor’s demand on

prices in different asset classes, ranging from equities (Koijen and Yogo, 2019; van der

Beck and Jaunin, 2023; Huebner, 2023; Mainardi, 2023; Gabaix et al., 2023; Noh et al.,

2023; Koijen et al., 2023; Haddad et al., Forthcoming; Gabaix and Koijen, 2024), corpo-

rate bonds (Koijen and Yogo, 2023; Chaudhary et al., 2023; Fang, 2024; Darmouni et al.,

2024; Siani, 2024), government bonds (Koijen et al., 2021; Jansen et al., 2024; Eren et al.,

2024), and currencies (Koijen and Yogo, 2024; Jiang et al., 2024, Forthcoming). Our work

builds on this literature by addressing biases introduced by the IIA assumption and by

allowing for more flexible substitutability and complementarity.

Recent studies have sought to relax the linear MNL framework. For instance, Chaud-

hary et al. (2023) use a nested logit structure to model flexible substitution across credit

ratings in corporate bond markets. Similarly, Allen et al. (2024) adopt a setup akin to

an Almost Ideal Demand System (Deaton and Muellbauer, 1980) to document varying

substitution patterns across Canadian Treasury bond maturities. On the theoretical side,
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Fuchs et al. (2024) highlight that portfolio choice inherently features cross-asset demand

complementarities driven by diversification motives, raising concerns about the validity

of elasticity estimates derived from demand systems. Davis et al. (2024) further argue

that high substitutability assumptions in classical asset pricing models are a primary

driver of inelastic demand estimates for mean-variance investors. Our paper differs from

the recent works and advances this literature by addressing the bias introduced by the

high substitutability assumption underlying the linear MNL framework. We propose

a structural model that incorporates heterogeneous substitution patterns via investors’

flexible risk-return trade-offs, offering a framework researchers can apply to estimate

elasticities across any asset class.

Finally, our paper bridges the finance and empirical IO literatures by incorporating

potential complementarity into asset demand systems. Complementarity can arise in

differentiated product markets that feature multiple purchases, such as grocery (Deaton

and Muellbauer, 1980; Dubé, 2004; Thomassen et al., 2017; Ershov et al., Forthcoming;

Fosgerau et al., 2024; Iaria and Wang, 2020, 2024; Wang, 2024), newspapers (Gentzkow,

2007; Fan, 2013), telecommunication (Liu et al., 2010; Grzybowski and Verboven, 2016),

and media (Crawford and Yurukoglu, 2012; Crawford et al., 2018). Our asset demand

model, a flexible MNL framework, is microfounded by the mean-variance optimal port-

folio choice. The complementarity has a different nature from that in IO demand models

(e.g., consumption synergy, preference for variety, shopping cost). Methodologically, our

demand-inverse approach resembles the method pioneered by Berry (1994); Berry et al.

(1995) (aka BLP) and the recent one in Wang (2024) that incorporates complementarity

in the BLP framework. Both ours and theirs consist of a first step of demand inverse and

a second step that instruments out unobserved demand shocks, implying a GMM esti-
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mation procedure. Because of distinct microfoundations, the invertibility argument in

our first step and the instrument validity in the second step differ from those in the BLP

approach.

2. Model

We develop a structural asset pricing model from the mean-variance optimal portfolio

choice of heterogeneous long-only investors. The optimal portfolio varies across investors

due to the heterogeneous nature of the portfolio asset composition. Following KY19,

we assume that the asset returns have a one-factor structure, and the expected returns

and the factor loadings on this one factor depend on asset characteristics. We show that

this framework results in a characteristic-based asset demand system where the portfolio

weights of each asset depends on the characteristics of all assets in the investor’s portfolio.

2.1. Notation and Setup

Throughout the remainder of this paper, let the indices i = 1, . . . , I , n = 1, . . . , N , and t

represent investors, assets, and time, respectively. The investment universe of investor i

at time t is denoted by Ni,t ⊆ {1, . . . , N}, and is determined by the investor’s investment

mandate. We refer to the |Ni,t| assets in investor i’s portfolio at time t as inside assets; all

wealth outside of the inside assets are referred to as outside asset. We use lowercase letters

to denote the natural logarithms of corresponding uppercase variables. For example, let

qi,t(n) = ln (Qi,t(n) ) represent the natural logarithm of investor i’s holdings of asset n at

time t. The corresponding vector forms are denoted in bold, such that qi,t = ln (Qi,t ).
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2.2. Mean-Variance Portfolio Choice for Heterogeneous Investors

Investor i at time t allocates her wealth Ai,t across inside assets and an outside asset. Each

inside asset n has a gross return Rt+1(n) from time t to time t + 1. The outside asset has

a gross return Rt+1(0) from time t to time t + 1. The investor puts wi,t of her wealth into

the inside assets, resulting in portfolio returns Rp
t+1:

Rp
t+1 = w′

i,tRt+1 + (1−w′
i,t1)Rt+1(0) = Rt+1(0) +w′

i,t (Rt+1 −Rt+1(0)1) , (1)

The resulting wealth is then governed by the following intertemporal budget constraint:

Ai,t+1 = Ai,t
(
Rt+1(0) +w′

i,t (Rt+1 −Rt+1(0)1)
)
. (2)

Furthermore, the portfolio weights are subject to the intratemporal budget constraint that

their sum cannot exceed one, allowing for a positive allocation to the outside asset:

1′wi,t ≤ 1. (3)

The |Ni,t|-dimensional vector of asset weights in her portfolio wi,t ∈ [0, 1] maximizes the

investor’s expected log utility over her terminal wealth at time T :

max
wi,t

Ei,t ( ln (Ai,T ) ) such that


Ai,t+1 = Ai,t

(
Rt+1(0) +w′

i,t (Rt+1 −Rt+1(0)1)
)
,

1′wi,t ≤ 1.

(4)

Lemma 1 (Solution to the Mean-Variance Portfolio Choice Problem). The optimal
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portfolio weights satisfy

wi,t = Σ−1
i,t (µi,t − λi,t1) , (5)

where λi,t is the Lagrange multiplier on the intratemporal budget constraint (3).

Proof of Lemma 1. See Appendix A.1.

2.3. Characteristic-Based Demand and Cross-Asset Dependencies

Investor i at time t forms expectations about an asset n’s returns based on its observed

and unobserved characteristics. The observed characteristics are log market equity (met),

and other five characteristics xk,t(n) indexed by k including log book equity, dividends to

book equity, operating profits to book equity, log growth of assets, and market beta. Any

further characteristic that investor i considers but is unobserved by the econometrician is

denoted by ln ( ϵi,t(n) ). Let xi,t(n) denote the stacked vector of characteristics and yi,t(n)

their Mth-order polynomial for the assets in investor i’s portfolio at time t:

xi,t(n) =


met(n)

xk,t(n)

ln ( ϵi,t(n) )

 and yi,t(n) =


xi,t(n)

vec (xi,t(n)xi,t(n)
′)

...

 . (6)

Note that these asset-level characteristics directly link to the market level five-factor

model of Fama and French (2015), e.g. via market beta (MKT ), market equity (SMB),

book-to-market equity (HML), profitability (RMW ), investment (CMA). Following KY19,

we assume that returns have a one factor structure at the market level, and that expected

excess returns and factor loadings on this one factor are affine in asset characteristics.

Assumption 1 (Factor Structure of Returns and Characteristic Dependence). Asset
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returns exhibit a one-factor structure:

Rt+1 −Rt+1(0)1 = ai,t + Γi,t
(
RM
t+1 −Rt+1(0)1

)
+ ηi,t, (7)

µi,t(n) = αi,t + Γi,t Ei,t
(
RM
t+1 −Rt+1(0)1

)
, (8)

where µi,t(n) = Ei,t (Rt+1 −Rt+1(0)1 ) is the expected excess returns relative the outside op-

tion, V ar ( ηi,t ) = γi,tI is the idiosyncratic variance, and the covariance matrix of returns:

Σi,t = Γi,tΓ
′
i,t + γi,tI. (9)

The expected excess returns and factor loadings are affine in asset characteristics

µi,t(n) = ϕi,t + yi,t(n)
′Φi,t, (10)

Γi,t(n) = ψi,t + yi,t(n)
′Ψi,t, (11)

where Φi,t and Ψi,t are vectors and ϕi,t and ψi,t are scalars that are constant across assets.

The investor cares about the trade-off between risk - via the covariance matrix Σi,t -

and return - via the expected excess returns µi,t(n). Both of these components are tied

to the characteristics of the assets in the portfolio via Assumption 1. Building on this

parametrization, the mean-variance optimal portfolio choice simplifies to a characteristics-

based asset demand system, where the optimal portfolio weights wi,t(n) are affine in char-

acteristics of the assets in the investor’s portfolio.

Lemma 2 (Characteristics-BasedAssetDemand). The optimal portfolio weights are affine
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in asset characteristics:

wi,t(n) = πi,t + y′
i,t(n)Πi,t, (12)

where Πi,t and πi,t capture how characteristics influence portfolio weights each investor:

Πi,t =
1

γi,t
(Φi,t −Ψi,tκi,t), (13)

πi,t =
1

γi,t
(ϕi,t − λi,t − ψi,tκi,t). (14)

The term κi,t reflects the risk-adjusted expected excess returns contributed by the single factor:

κi,t =
Γ′
i,t (µi,t − λi,t1)

Γ′
i,tΓi,t + γi,t

. (15)

Proof of Lemma 2. See Appendix A.2.

Ultimately, κi,t is a portfolio-wide variable that depends on the characteristics of all

assets in the portfolio. When the characteristics of an assetm in a portfolio changes, then,

all else equal, the risk exposure of other −m assets in the same portfolio are adjusted by

the changing portfolio risk exposure. Thus, without further restrictions as in KY19, the

own characteristics of an asset is not the only source of variation in its portfolio weights.
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xi,t(m) xεi,t(m)

Γi,t(m) Γεi,t(m)

µi,t(m) µεi,t(m)

κi,t κεi,t

Πi,t(−m) Πϵ
i,t(−m)

πi,t(−m) πϵi,t(−m)

wi,t(−m) wϵi,t(−m)

Figure 1: Cross-Asset Dependency

This figure shows the cross-asset dependency in the characteristic-based asset demand derived from
mean-variance portfolio choice. In a portfolio, when the assetm’s characteristics change by an amount
ε, i.e, xε

i,t(m) = xi,t(m) + ε, then, all else equal, the portfolio weights of all other −m assets change.

To model institutional portfolios realistically, it is important to account for wealth al-

located outside the set of modeled assets. The outside asset represents any unobserved

portion of the investor’s wealth, e.g., if the researcher is modeling institutional investor’s

equity demand, then the outside asset includes any equities with missing information in

the dataset, fixed-income securities, or any other asset classes not considered in estima-

tion. By formalizing the role of this outside asset, we ensure that the modeled portion

of the portfolio fits into the investor’s broader wealth allocation, maintaining internal

consistency and economic credibility.

Assumption 2 (Parametrizing the Portfolio Weight on the Outside Asset). The pro-

portion of wealth allocated to the outside asset πi,t is equal to the portfolio weight assigned to

the outside asset wi,t(0):

πi,t = wi,t(0). (16)
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Linking the outside asset’s share of wealth directly towi,t(0) serves two purposes. First,

it aligns the theoretical representation of unmodeled wealth with the empirical measure,

because any fraction of wealth not allocated to the modeled assets is treated as an outside

option, simplifying both interpretation and implementation. Second, it allows for a clean,

empirically tractable partition between modeled and unmodeled assets.

Moreover, realistic portfolios rarely comprise only the modeled subset of assets, e.g., a

large institutional investor only investing in equities. Investors likely keep some residual

wealth in other forms, reflecting liquidity preferences, regulatory constraints, or simply

unobserved investment options. Ensuring a positive outside asset weight mimics these

conditions and preserves the model’s applicability to actual investment scenarios.

Assumption 3 (Positive Weight on the Outside Asset). We assume that the Lagrange

multiplier associated with the intratemporal budget constraint Equation 3 is zero:

λi,t = 0. (17)

This assumption ensures that the portfolio remains realistic and avoids corner solu-

tions where all wealth is allocated to the modeled assets. By allowing a residual alloca-

tion to the outside asset, we prevent the portfolio from becoming artificially constrained.

Hence, our model reflects real-world investor behavior where portfolios extend beyond a

narrow set of securities.

Having established the role of the outside asset, the next challenge is identifying the

structural parameters of our characteristic-based model. Note that under Lemma 2 and
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Assumptions 2, 3, we can express the portfolio weights (12) in relative terms:

wit(n)

wit(0)
= 1 + y′

i,t(n)
Πit

πit
= 1 + y′

i,t(n)


Φi,t

ϕi,t
− Ψi,t

ψi,t
κ
(
(yi,t(n))n∈Ni,t

;
Φi,t

ϕi,t
,
Ψi,t

ψi,t
,
γi,t
ψ2
i,t

)
1− ψi,t

ϕi,t
κ
(
(yi,t(n))n∈Ni,t

;
Φi,t

ϕi,t
,
Ψi,t

ψi,t
,
γi,t
ψ2
i,t

)
 ,

where

κ

(
(yi,t(n))n∈Ni,t

;
Φi,t

ϕi,t
,
Ψi,t

ψi,t
,
γi,t
ψ2
i,t

)
=

∑
n∈Ni,t

(
1 + y′i,t(n)

Ψi,t

ψi,t

)(
1 + y′i,t(n)

Φi,t

ϕi,t

)
∑

n∈Ni,t

(
1 + y′i,t(n)

Ψi,t

ψi,t

)2
+

γi,t
ψ2
i,t

.

In this expression for portfolio weights relative to the outside asset, the constant terms

(ϕi,t, ψi,t) and the coefficient vectors (Φi,t,Ψi,t, γi,t) introduce a scale ambiguity. Without a

normalization, only the ratios Φi,t

ϕi,t
, Ψi,t

ψi,t
, and γi,t

ψ2
i,t

are identifiable, as scaling both numera-

tor and denominator by the same factor leaves these ratios unchanged while altering the

absolute levels of ϕi,t, ψi,t, Φi,t, Ψi,t, and γi,t. This rescaling preserves model predictions

but renders the absolute interpretation of these parameters ambiguous. Consequently,

the model cannot distinguish between genuine shifts in returns and factor loadings ver-

sus arbitrary rescaling of parameter values, necessitating a normalization to resolve this

ambiguity.

Assumption 4 (Identification of Relative Differences). Without loss of generality, we

set the constants in (10) and (11) to unity:

ϕ = ψ = 1. (18)

By fixing ϕ and ψ at unity, we remove arbitrary scaling and anchor the model’s ref-

erence point for expected returns and factor loadings. Hence, the relative differences,
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i.e., how characteristics shift returns and factor exposures, become identifiable. If we

had chosen different constants, e.g., ϕ = 2 and ψ = 1, the structure of the model’s pre-

dictions would remain unchanged, confirming that this is a normalization rather than a

substantive economic restriction. Ultimately, this step ensures a coherent estimation pro-

cess such that the effects of characteristics on risk and return can be estimated without

confounding scale ambiguities, enabling meaningful inference about investor demand

and portfolio formation.

Building on the normalization Assumption 4, we define linear transformations of asset

characteristics that capture the expected returns and factor loadings, respectively. These

definitions operationalize the relationship between portfolio weights and asset character-

istics, enabling a systematic characterization of investor preferences:

Ui,t(n) = Ui,t(xi,t(n)) = 1 + y′
i,t(n)Φi,t, (19)

Vi,t(n) = Vi,t(xi,t(n)) = 1 + y′
i,t(n)Ψi,t. (20)

Together with the feasibility assumptions (2) and (3), we get a structural model of

characteristic-based asset demand that incorporates portfolio-wide risk considerations:

Proposition 1 (Cross-Asset Dependency in Portfolio Weights). A mean-variance in-

vestor’s demand for an asset in her investment universe, relative to the outside asset depends

on three key factors: (i) the asset’s expected returns relative to the outside asset’s returns U(·),
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(ii) its factor loading V (·), and (iii) portfolio-wide systematic risk exposure κ:

wi,t(n)

wi,t(0)
= 1 + y′

i,t(n)Φi,t + y′
i,t(n) (Φi,t −Ψi,t)

κi,t
1− κi,t

, (21)

= exp

(
ln (Ui,t(n) ) + ln

(
1 +

(
1− Vi,t(n)

Ui,t(n)

)(
κi,t

1− κi,t

)))
, (22)

where κ is defined as

κi,t =

∑N
n=1 Ui,t(n)Vi,t(n)

γi,t +
∑N

n=1 V
2
i,t(n)

. (23)

Proof of Proposition 1. See Appendix A.3.

Importantly, Proposition 1 shows that the characteristic-based asset demand can be

flexibly derived from mean-variance portfolio choice without additional assumptions on

the functional form for U(·) and V (·). Nonetheless, by imposing log-linearity of expected

returns U(·) and factor loadings V (·) in asset characteristics xit, we can explore how spe-

cific modeling choices recover existing approaches in the demand system asset pricing

literature, and discuss the relative merits of our model.

Assumption 5 (Log-Linear Specification of Expected Returns and Factor Loadings).

If (19) and (20) are log-linear, we get

Ui,t(n) = exp
(
x′
i,tβi,t

)
, (24)

Vi,t(n) = exp
(
x′
i,tηi,t

)
. (25)

This log-linear specification implicitly assumes that the unobserved component of as-

set characteristics affects both expected returns U(·) and factor loadings V (·) proportion-

ally. However, this assumption can be relaxed to allow for heterogeneity in how U(·) and
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V (·) depend on unobserved demand drivers. For example, introducing different powers

of the unobserved component, e.g., εi,t(n) in U(·) and [εi,t(n)]
τ with τ ̸= 1 in V (·) enables

the model to capture varying sensitivities to latent demand factors across systematic risk

and return components. Furthermore, we can normalize the Equations (24) and (25) in

the following lemma, allowing the intercept term to represent the demand for all assets

relative to the outside asset in the investment universe.

Lemma 3 (Intercept Term in the Asset Demand System). The intercept term indexed by

K in the asset demand system satisfies

βK,i,t = ηK,i,t = − ln ( εi,t(0) ) . (26)

Proof of Lemma 3. See Appendix A.4.

With Lemma 3, our demand system aligns with economic intuition about investor

preferences, highlighting the role of the outside asset as a benchmark for allocation, with

the intercept capturing systematic influences on all assets. Building on the flexibility

introduced by Proposition 1 and leveraging Assumption 5 and Lemma 3, the following

corollary imposes structure on our generalized MNL specification with potential non-

linearities. Despite these functional form assumptions, this parametrization retains the

flexibility to capture rich substitution patterns, potential complementarities, and varying

elasticities of expected returns and factor loadings with respect to asset characteristics.

Corollary 1 (Implications of Log-Linearity for the Asset Demand System). When

both U(·) and V (·) are log-linear and multiplicative in observed and unobserved components
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in xi,t(n) as in (24) and (25), the generalized characteristic-based asset demand (22) becomes:

wi,t(n)

wi,t(0)
= exp

(
x′
i,t(n)βi,t

) [
1 +

(
1− exp

(
x′
i,t(n)∆i,t

))( κi,t
1− κi,t

)]
, (27)

where we defined the difference in coefficients as ∆i,t = (η0,i,t − β0,i,t, . . . , ηK−1,i,t − βK−1,i,t, 0).

Proof of Corollary 1. See Appendix A.5.

Thus, the term ∆i,t permits variation in the coefficients for expected returns and fac-

tor loadings. However, to better align with existing approaches in the demand-systems

asset pricing literature, additional symmetry assumptions should introduced. The fol-

lowing corollary formalizes this relationship and identifies the necessary and sufficient

conditions under which the nonlinear MNL framework collapses into a linear MNL.

Corollary 2 (Necessary and Sufficient Condition for Linear MNL Specification).

Along with the log-linearity of U(·), the restriction

Φi,t = Ψi,t, (28)

is a sufficient and necessary condition for deriving a linear MNL

wi,t(n)

wi,t(0)
= exp

(
x′
i,t(n)βi,t

)
, (29)

from the non-linear MNL (22).

Proof of Corollary 2. See Appendix A.6.

Under Corollary 2, the log-linear demand system simplifies to the linear MNL specifi-

cation proposed by KY19. This restriction, while computationally convenient — eliminat-

ing all nonlinear terms — imposes proportional responses of expected returns and factor

loadings to asset characteristics. Notably, it implies that the single factor considered by
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the investor fully prices all assets, leaving no room for alpha.

We close our model with market clearing for each asset n:

MEt(n) =
I∑
i=1

Ai,twi,t(n),

where the market value of shares outstanding must equal the wealth-weighted sum of

portfolio weights across all investors.

2.4. Implications of Cross-Asset Dependencies

To provide further context, we revisit the example introduced earlier, interpreting this

result within a specific scenario relative to our generalized demand system.

Example. Assume that Alice and Bob believe institutions consider only value and size strate-

gies. As a result, they form expectations about returns and factor loadings based solely on two

characteristics: log book-to-market equity (value) and log market equity (size). Any changes

in their risk compensation during market events can be modeled using the coefficients on asset

characteristics in Equation 21:

Φi,t + (Φi,t −Ψi,t)
κi,t

1− κi,t

Alice holds shares of Pfizer, a value stock. Recently, Pfizer announced increased retained earn-

ings for future drug development, boosting its book equity without a corresponding increase in

market equity. As the book-to-market ratio rises, Alice expects the stock to become more attrac-

tive to value-oriented investors. This change increases Pfizer’s expected returns’ sensitivity to
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log book equity with its sensitivity to log market equity unchanged. To keep the same weights:

ΦAlice,t(bet(Pfizer)) → (1 + 10%)× ΦAlice,t(bet(Pfizer))

ΨAlice,t(bet(Pfizer)) →
(
1 +

ΦAlice,t(bet(Pfizer))
ΨAlice,t(bet(Pfizer))

× 1

κAlice,t
× 10%

)
×ΨAlice,t(bet(Pfizer))

Bob holds shares of Etsy, a small-cap stock. Last year, Etsy introduced a premium subscription

service offering tools to help sellers grow their businesses, such as sponsored product credits,

enhanced ad placements, and detailed buyer insights. This quarter, Etsy reported higher rev-

enues from subscription fees, increasing its market equity. Bob anticipates that Etsy’s expected

returns’ sensitivity to log market equity will rise. To maintain the same portfolio weights:

ΦBob,t(met(Etsy)) → (1 + 10%)× ΦBob,t(met(Etsy))

ΨBob,t(met(Etsy)) →
(
1 +

ΦBob,t(met(Etsy))
ΨBob,t(met(Etsy))

× 1

κBob,t
× 10%

)
×ΨBob,t(met(Etsy))

However, if Alice’s and Bob’s asset demand were modeled using a linear MNL, the restriction

Φi,t = Ψi,t from Corollary 2 imposes that the model-implied required increase in risk for a

given increase in expected returns would be uniform across characteristics:

ΨAlice,t(bet(Pfizer)) →
(
1 +

1

κAlice,t
× 10%

)
×ΨAlice,t(bet(Pfizer))

ΨBob,t(met(Etsy)) →
(
1 +

1

κBob,t
× 10%

)
×ΨBob,t(met(Etsy))

Since κ is a portfolio-specific parameter, the sensitivity of the factor loading on the market factor

with respect to any asset characteristic would no longer depend on that specific characteristic.
This outcome aligns with the economic intuition of Φi,t = Ψi,t, which implies that
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the market factor perfectly prices all assets. In such a scenario, characteristics lose their

explanatory power for heterogeneity in risk-return profiles across institutional investors.

Consequently, using characteristics to infer differences in risk-return trade-offs would be

futile beyond predicting portfolio holdings.

This restriction is significant because there is likely heterogeneity in how different

characteristics influence risk-return profiles. For example, the assets in Alice’s portfolio

may exhibit greater sensitivity to log book equity, potentially generating alpha relative to

the CAPM. This suggests that the assumption of Φi,t = Ψi,t is overly strong and may fail

to capture the nuanced heterogeneity across characteristics and investors.

Even with an imposed log-linear functional form, a key feature of our model is its

ability to accommodate the substantial heterogeneity in risk-return profiles across insti-

tutional investors by allowing Φi,t ̸= Ψi,t. For instance, value investors may focus on

book-to-market ratios, while momentum investors prioritize past returns, and green in-

vestors emphasize ESG metrics. The non-linear correction term in our model adjusts for

the net risk-return trade-off in an investor’s portfolio with respect to these differing char-

acteristics, enabling it to capture the diversity of institutional preferences and portfolio

dynamics across distinct investment strategies.

2.5. Price Elasticities of Asset Demand

Understanding how investors respond to price changes is central to asset pricing. Price

elasticities quantify these responses, reflecting how investor demand adjusts when prices

move. In our framework, elasticities depend on the entire portfolio composition, con-

trasting with the KY19 MNL model, where cross-elasticities are rigidly proportional and

cannot accommodate varying asset roles or characteristic-driven heterogeneity. For ex-
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ample, an investor’s Tesla holdings respond to a price change in Ford proportional to

their Ford holdings, and their Ford holdings respond to a price change in Tesla propor-

tional to their Tesla holdings.

By relaxing this proportional structure, our model recognizes that an investor’s Tesla

holdings might respond differently to a price change in Ford than vice versa, due to dis-

tinct asset characteristics and their interactions within the portfolio. A price change in

Tesla may trigger larger adjustments than a similar change in Ford, reflecting their unique

contributions to the investor’s overall risk-return trade-off.

The source of this complexity lies in our non-linear correction term, which accounts

for how characteristics influence both expected returns and factor loadings. The price

elasticities in our framework depend on portfolio-specific factors such as the factor risk

exposed returns κi,t, as well as individual asset characteristics through U(·) and V (·). The

non-linear correction term in our model plays a central role, adjusting the elasticities to

account for both the direct response to price changes and the portfolio-wide adjustments

driven by cross-asset dependencies. This correction term ensures that elasticities are sen-

sitive to the heterogeneity in how expected returns and factor loadings interact with the

investor’s portfolio composition, capturing the complexity of investment decisions.

The following corollary introduces the elasticity formula implied by our model and

lays the foundation for interpreting its components, particularly the role of the correction

term in shaping investor behavior:

Corollary 3 (Price Elasticity for an Individual Investor). Let qi,t = ln (Ai,twi,t )−pt

be the vector of log shares held by investor i. Then, from Corollary 1, we derive the price
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elasticity of demand for an individual investor i as

−∂qi,t(n)
∂pt(j)

= 1{n = j} − β0,i,t [1{n = j} − wi,t(j)]︸ ︷︷ ︸
Base Elasticities

− [1{n = j}+ wi,t(j)]
exp

(
x′
i,t(j)∆i,t

)
κi,t

1− exp
(
x′
i,t(j)∆i,t

)
κi,t

∆0,i,t︸ ︷︷ ︸
Adjustment for Net Risk Exposure

(30)

− ∂κi,t
∂pt(j)

N∑
r=0

wi,t(r)
exp

(
x′
i,t(r)∆i,t

)
− exp

(
x′
i,t(n)∆i,t

)
(1− κi,t exp

(
x′
i,t(r)∆i,t

)
)(1− κi,t exp

(
x′
i,t(n)∆i,t

)
)︸ ︷︷ ︸

Adjustment for Cross-Asset Dependencies

The base elasticities measure how demand for an asset responds to price changes in a

linear MNL framework as in KY19. In this elasticity component, only the price coefficient

on expected returns matters, i.e., β0,i,t, with no adjustments for a different sensitivity to

factor loadings and the response is proportional to the portfolio weights. Thus, the role

of the risk-return trade-off doesn’t show up.

The second term shows how the differential sensitivities of expected returns and fac-

tor loadings to the characteristics, i.e., ∆i,t ̸= 0, influence demand elasticities. This ad-

justment, further scaled by the market factor’s contribution to the portfolio returns κi,t,

effectively capturing how asset-specific characteristics impact the investor’s portfolio re-

balancing dynamics. For instance, if the net risk of market equity ∆0it is negative, the

second term becomes positive, making the price elasticity larger than that implied by

KY19’s MNL. Intuitively, this corresponds to a scenario where an asset’s risk rises faster

than its returns when its price increases, prompting the investor to cut back more ag-

gressively. Consequently, this component ensures that elasticities accurately reflect the

nuanced contributions of asset characteristics to both returns and systematic risk.
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The third term introduces the complexity of cross-asset interactions by capturing how

changes in one asset j’s price affect the portfolio-wide exposure to systematic risk κi,t

and propagate across all other assets. It reflects the sensitivity of κi,t to price changes

and scales it by the relative differences in characteristics across assets. For example, as-

sets with high portfolio weights or large coefficients on factor loadings exert a dispro-

portionate influence on this term, amplifying their impact on other assets’ elasticities.

This component highlights the interconnected nature of portfolio optimization, where

adjustments to one asset ripple through the entire portfolio, influencing the demand for

seemingly unrelated assets. Similarly, if all assets share the same characteristics, the third

term can also become positive under certain conditions, further amplifying the departure

from the MNL benchmark and potentially inducing complementarity among assets.

3. Identification and Estimation

Having established the theoretical foundation of our demand system, we now turn to

identifying and estimating its structural parameters. We detail how to bridge theory and

empirical implementation by using a demand inverse approach, as in the empirical IO

literature (Berry et al., 1995), to achieve parameter identification, and then applying a

GMM procedure based on the generated moment conditions. We assume the researcher

observes each asset’s portfolio weights (wi,t(n))
Ni,t

i=1 and characteristics (xt(n))
Ni,t

n=1. While

the discussion focuses on investor-date specific parameters, our approach extends natu-

rally to settings where parameters are invariant across investors or time.
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3.1. Identifying Structural Parameters

A core challenge in structural estimation of the characteristic-based demand (22) is un-

derstanding how observed portfolio weights relate to both individual asset characteris-

tics and the broader, portfolio-wide risk-return environment. The first step centers on

expressing the relative portfolio weights in a form that isolates the key structural param-

eters (βit,
√
γit,∆it). The following lemma provides the key initial step, rewriting the asset

demand system in a way that consolidates the main parameters into a single functional

form, and hence serving as the foundation for the subsequent identification results.

Lemma 4 (Reformulating RelativeWeights for Demand Inversion). The asset demand

system (22) can be rewritten to isolate the key structural parameters:

(
wi,t(n)

wi,t(0)

)2

=

(
wi,t(n)

wi,t(0)

Ui,t(n)√
γi,t

)
︸ ︷︷ ︸

Ũi,t(n)

[
√
γi,t +

(
1− exp

(
x′
i,t(n)∆i,t

)) N∑
r=1

Ũi,t(r) exp
(
x′
i,t(r)∆i,t

)]
,

:= Fn

(
Ũi,t(n) ;

√
γi,t,∆i,t

)
, ∀n = 1, . . . , Ni,t. (31)

Proof of Lemma 4. See Appendix A.7.

By expressing the portfolio weights in terms of Ũi,t(n), as in Lemma 4, we isolate the

structural parameters into a neat functional relationship. This representation is crucial

because it prepares the system for the next step: inverting the demand function to recover

these parameters from observed data. To proceed, we must first ensure that this demand

system can indeed be inverted. The next proposition establishes the local invertibility

conditions, building directly on the functional form from Lemma 4 to show that we can

map observable portfolio weights back to the underlying parameters (βit,
√
γit,∆it).
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Proposition 2 (Invertibility of Asset Demand). The asset demand can be inverted to

Ũi,t(n) = F−1
n

((
wi,t(n)

wi,t(0)

)2

;
√
γi,t,∆i,t

)
=
wi,t(n)

wi,t(0)

U0
i,t(n)√
γ0i,t

, ∀n = 1, . . . , Ni,t, (32)

where U0
i,t(n) is Ui,t(n) under the true values (βi,t,

√
γi,t,∆i,t) = (β0

i,t,
√
γ0i,t,∆

0
i,t).

Proof of Proposition 2. See Appendix A.8.

Proposition 2 shows that, given regularity conditions (such as a non-singular Jacobian

of Fn), one can recover the structural parameters from the observed portfolio weights.

This invertibility is not just a technical convenience; it is the cornerstone that allows us to

connect theory with empirical implementation. Once we can invert the demand system,

we can formulate moment conditions and proceed with estimation.

However, before estimating the model, it is critical to understand the precise source

of identification for the parameters (βi,t,
√
γi,t,∆i,t). While Proposition 2 guarantees that

inversion is possible, we still need to pinpoint what aspects of the data identify each

parameter. The following corollary provides a first-order Taylor expansion around the

true parameter values, clarifying how each parameter’s variation leaves distinct traits in

the observable data.
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Corollary 4 (Source of Identification). Given Lemma 4, the first-order Taylor expansion

of Fn
(
Ũi,t(n) ; 1, 0

)
for n = 1, . . . , Ni,t around (

√
γi,t,∆i,t) = (

√
γ0i,t,∆

0
i,t) is given by

ln

(
wit(n)

wit(0)

)
≈ met(n)β

0
0,i,t + x′

−0,t(n)β
0
−0,i,t + ln

 1√
γ0i,t

− U0
i,t(n)

(
wi,t(n)

wi,t(0)

)−1
 1√

γ0i,t

−1



+

Ni,t∑
r=1

wi,t(r)

wi,t(0)
V 0
i,t(r)

[ (
1−exp

(
x′
i,t(n)∆

0
i,t

))
x′
i,t(r)−exp

(
x′
i,t(n)∆

0
i,t

)
x′
i,t(n)

] ∆0
i,t√
γ0i,t

+ ln (ϵi,t(n)) . (33)

Proof of Corollary 4. See Appendix A.9.

Corollary 4 shows how variation in portfolio weights and asset characteristics, com-

bined with suitable, exogenous instruments, is sufficient to identify all structural parame-

ters. Specifically, the price coefficient β0
0it can still be recovered using plausibly exogenous

investment mandates as instruments, as in Koijen and Yogo (2019). Exogenous variation

in characteristics other than price, x−0,t(n), identifies β0
−0,i,t, while additional instruments

are required to identify the parameters
√
γ0i,t and ∆0

i,t. In essence, the corollary clari-

fies how each element of the model contributes to pin down the underlying parameters,

thereby guiding the estimation strategy.

Investment mandates, as in Koijen and Yogo (2019), naturally serve as exogenous in-

struments for prices, given that they impose predetermined, persistent constraints on in-

vestors’ investment universes, such as sector-specific funds or index-tracking mandates.1

Although Fuchs et al. (2024) highlight that the exclusion restriction for such instruments

might be violated under price spillovers, our model explicitly and separately incorporates

1KY19, Koijen et al. (2023) and Bretscher et al. (Forthcoming) show that institutional investors have persis-
tent holdings and hence their investment universes are very stable over time.
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these portfolio-wide interactions. By doing so, we show that the price coefficient β0
0,i,t can

be identified by the argument of “cost shifters” despite complex cross-asset dependen-

cies. To shed light on this point, consider the following instrument for met(n) proposed

by Koijen and Yogo (2019): for each asset n = 1, ..., N ,

zme
it (n) = log

(∑
j ̸=i

Aj,t
1{n ∈ Nj,t}
1 + |Ni,t|

)
.

Moreover, we have the market-clearing condition for each n = 1 at time t:

met(n) = log

(
I∑
i=1

Ai,twi,t(n)

)
− st(n), (34)

where st(n) is the log of the total number of shares of asset n at time t. First, un-

der the assumption that both Aj,t and Nj are predetermined and exogenous with re-

spect to current demand shocks, zme
it (n) is therefore orthogonal to the demand shocks.

Second, note that given i and t, the cross-asset variation in zme
it (n) is mainly driven by

log
(∑N

j=1Aj,t
1{n∈Nj,t}
1+|Ni,t|

)
,2 the log of the frequency of the asset n in the investor’s invest-

ment universe weighted by her wealth. Take two assets, say m and n, with similar non-

price characteristics. If this frequency for asset m is higher than asset n, then m appears

more often in the investor’s universe than n, leading to greater overall investment in m

than n (i.e.,
∑I

i=1Ai,twi,t(m) >
∑I

i=1Ai,twi,t(n)) if met(m) = met(n). Then, according to

(34), one has to increase m’s price relative to n’s (i.e., a greater left-hand side of (34) for

2Note that zme
it (n) = log

(
1−

Ai,t1{n∈Nj,t}
1+|Ni,t|∑N

j=1 Aj,t
1{n∈Nj,t}
1+|Ni,t|

)
+ log

(∑N
j=1Aj,t

1{n∈Nj,t}
1+|Ni,t|

)
. When Ai,t1{n∈Nj,t}

1+|Ni,t| is small

relative to
∑N

j=1Aj,t
1{n∈Nj,t}
1+|Ni,t| , the first term will be approximately

Ai,t1{n∈Nj,t}
1+|Ni,t|∑N

j=1 Aj,t
1{n∈Nj,t}
1+|Ni,t|

that is dominated by

log
(∑N

j=1Aj,t
1{n∈Nj,t}
1+|Ni,t|

)
.
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asset m) to clear the market for asset m. Intuitively, zme
it (n) can be seen as a measure of

asset n’s popularity among investors. The more popular n is, the more the investor needs

to pay to get one share, validating the desired first-stage predictive power of zme
it (n) for

met(n).

The assumption that non-price characteristics are exogenous is common in the de-

mand system asset pricing literature that builds on KY19. Particularly, this assumption

treats investors as atomistic, implying that their individual demand shocks do not shape

aggregate conditions. However, as Kim (2024) highlights, correlated demand shocks

driven by institutional rebalancing or procyclical risk-taking—can introduce factor struc-

tures into latent demand. Such correlations violate exogeneity and can bias elasticity

estimates if not properly addressed.

Our framework also introduces the parameters
√
γ0i,t and ∆0

i,t, which appear non-

linearly in the regression via terms like 1√
γ0it

− 1 and ∆0
it√
γ0it

. These parameters can be

identified by a similar argument to the “BLP-type” instruments in the empirical IO lit-

erature (e.g., Berry et al. (1995); Gandhi and Houde (2019)). Concretely, we can use the

exogenous characteristics of other assets in the investor’s portfolio, xt(r), as valid instru-

ments. These characteristics enter through

• the regressor for 1√
γ0i,t

− 1, provided that ∆0
it ̸= 0,

• the regressor for ∆0
it√
γ0i,t

via xt(r), V 0
i,t(r), and wi,t(r)

wi,t(0)
.

The resulting variation is non-linear and non-collinear, guaranteeing that we meet the

rank conditions for separate identification of (γ0it,∆
0
it). Moreover, under Lemma 3, i.e.,

normalizing the mean of latent demand to one, allows us to further identify the constants

β0
Kit + log 1√

γ0it
and β0

Kit, completing the identification of all structural parameters.
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3.2. Generalized Method of Moments Estimation

Having established the identification strategy, we now turn to the estimation of structural

parameters. We employ a GMM approach, leveraging the moment conditions implied by

our model. To ensure these moment conditions are valid, we rely on the exogeneity of

certain asset characteristics, as formalized in Assumption 6.

Assumption 6 (Exogeneity of Asset Characteristics). There exists random variables

zi,t(n) such that
E ( εi,t(n) | zi,t(n), x−0,t(1), . . . , x−0,t(Ni,t) ) = 1 (35)

While KY19 assumes exogeneity only between an asset’s own characteristics and its

latent demand, Assumption 6 in addition accounts for cross-asset dependencies. This

extension guarantees valid orthogonality conditions by requiring an asset’s characteristics

to be exogenous to other assets’ latent demands. In doing so, it ensures error terms remain

uncorrelated with the instruments, enabling consistent GMM estimation.

Building on this exogeneity assumption, Corollary 5 formalizes the moment condi-

tions that link observed portfolio choices to the underlying structural parameters. These

conditions isolate parameters through appropriate functions g(·). Consequently, they

form the essential input for implementing a GMM estimator that recovers (β0
it,
√
γ0it,∆

0
it).

Corollary 5 (Moment Conditions). Given Proposition 2 and Assumption 6, we can con-

struct unconditional moment condition for any measurable function g
(
zi,t(n), (x−0,t(n))

Ni,t

n=1

)
:

E



F−1
n

((
wi,t(n)

wi,t(0)

)2
;
√
γi,t,∆i,t

)
exp

(
x′
t(n)β

0
i,t

) (
wi,t(n)

wi,t(0)

)−1√
γ0i,t − 1

 g (zi,t(n), x−0,t(n))

=0, (36)
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for n = 1, . . . , Ni,t.

Proof of Corollary 5. See Appendix A.10.

Corollary 5 lays out the key orthogonality conditions that arise from combining the

invertibility result with exogenous asset characteristics. These conditions express how

transformations of the observed data must be uncorrelated with the error term, thereby

enabling us to pin down the parameters. In essence, they provide the link from theory to

an implementable estimation strategy.

Because we have 2K+2 parameters, we need at least 2K+2 such conditions to achieve

identification. With sufficient cross-asset variation in instruments and characteristics, we

can construct an appropriate set of g(·) functions that yield a non-singular system of

equations. Using these conditions, we can apply GMM to estimate (β0
it,
√
γ0it,∆

0
it).

3.3. Monte Carlo Simulations

Having established identification and laid out a GMM estimation approach, we now as-

sess the performance of our estimator in a controlled setting. Monte Carlo simulations

allow us to examine how well our method recovers the true structural parameters under

known data-generating processes. By comparing our estimator’s performance against

both an oracle benchmark, which represents an upper bound under partial knowledge

of the true structural parameters, and KY19’s MNL approach, we can quantify the bias

introduced by ignoring cross-asset dependencies.

In the simulations, we generate data under Proposition 1, i.e., from a characteristic-

based demand that explicitly incorporates cross-asset dependencies, for a mean-variance

investor holding a 500-asset portfolio. Next, we draw 200 random latent demands ε,
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and consider cost shifters to instrument for price endogeneity. Finally, we estimate the

parameters using the three estimators: (i) oracle, (ii) KY19, and (iii) our estimator (AW24).

Table 2: Monte Carlo Simulations - Bias in Coefficients

This table shows that ignoring cross-asset dependencies introduces sig-
nificant bias in asset demand estimations. A true model is generated
under the assumption that a characteristic-based demand model with
cross-asset dependencies is a good representation of how investors be-
have in financial markets. We consider a mean-variance investor with
500 assets in her portfolio, with the portfolio weights modeled taking
into account cross-asset dependencies:

wi,t(n) =

exp
(
x′
i,t(n)βi,t

)[
1 +

(
1− exp

(
x′
i,t(n)∆i,t

))(
κi,t

1− κi,t

)]
1 +

N∑
r=1

exp
(
x′
i,t(r)βi,t

) [
1 +

(
1− exp

(
x′
i,t(r)∆i,t

))( κi,t

1− κi,t

)]

The investor considers the log market equity and another asset charac-
teristic. The true model parameters are β = (−1, 1, 0), ∆ = (0.5, 0.5) and√
γ =

√
2. Given this true model, we run 200 Monte Carlo simulations

with different latent demand shocks ε. We consider cost shifters to in-
strument for price endogeneity: me(n) = mc(n)+2x(n)+ε. In each draw,
we estimate the true parameters using (i) an oracle estimator where the
κi,t is known, (ii) the Koijen and Yogo (2019) estimator ignoring cross-
asset dependencies, (iii) our estimator with cross-asset dependencies.

Bias

Oracle KY19 AW24

βme 0.024 0.417 0.055

βother 0.054 0.245 0.115

constant 0.036 0.299 0.101
√
γ 0 - 0.073

∆me 0 - 0.090

∆other 0 - 0.126

Median RMSE

Own Price Elasticity 0.024 0.772 0.191
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Looking at the results in Table 2, we see that ignoring cross-asset dependencies (KY19)

introduces substantial bias in nearly all parameters, often an order of magnitude higher

either of the other two estimators. Our estimator (AW24) reduces these biases markedly,

though it does not completely eliminate them; nonetheless, it is very close to oracle

benchmark which represents the upper bound. Notably, the median RMSE for own price

elasticity is dramatically lower under our approach compared to KY19, indicating that

accounting for cross-asset interactions greatly improves estimation accuracy.

4. Conclusion

This paper advances the literature on asset demand systems by developing a flexible

characteristic-based framework that accommodates heterogeneous substitution patterns,

potential cross-asset complementarities, and the pursuit of alpha through distinct in-

vestor strategies. By relaxing the rigid substitutability assumptions inherent in MNL

models, our approach provides a more realistic and nuanced depiction of portfolio allo-

cation behavior. This generalization bridges the gap between demand systems and mean-

variance portfolio optimization, offering a robust framework capable of capturing diverse

risk-return trade-offs and investor preferences across assets.

Beyond its theoretical advancements, we propose a demand inverse approach to iden-

tify structural parameters, linking the economic model to observed data via moment con-

ditions, and then adopt a GMM procedure for estimation. To address price endogeneity,

we validate the continued applicability of mandate-based instruments and extend the

framework by incorporating the characteristics of other assets within an investor’s port-

folio as additional instruments to capture cross-asset dependencies. Monte Carlo simu-
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lations confirm the robustness of our framework, showing that it substantially reduces

biases in elasticity estimates under conditions of cross-asset dependency, enhancing both

precision and interpretability.

Our model is versatile and can be applied to a variety of asset classes, including eq-

uities, bonds, and currencies. Its flexibility allows researchers to capture the complex

interplay between asset characteristics and investor preferences across different markets.

By integrating flexible substitution, cross-asset complementarity, and alpha pursuit, this

paper provides a robust foundation for advancing demand system approaches in asset

pricing and improving our understanding of investor behavior and market outcomes.
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Appendix

A. Proofs

Proof of Lemma 1. The expected log utility over the investor’s terminal wealth at time T can be written as

Ei,t ( ln (Ai,T ) ) = ln (Ai,T ) +

T−1∑
s=t

Ei,t

(
ln

(
Ai,s+1

Ai,s

))
,

≈ ln (Ai,T ) + Ei,t

(
rt+1(0) +w′

i,tµi,t +
w′

i,tΣi,twi,t

2

)
, (A.1)

with µi,t and Σi,t denoting the excess log returns and the covariance matrix of log returns. Mind that the log

return on the portfolio is not the same as the linear combination of log of individual assets. However, over

a short time interval, we can use a second-order Taylor approximate, which results in an approximation

of expected log utility around mean-variance utility. In the continuous-time limit, this approximation

becomes an exact solution as discussed in detail in Campbell and Viceira (2002, Chapter 2).

Then, the Lagrangian and the first-order condition for the portfolio choice problem are

Li,t = ln (Ai,T ) +

T−1∑
s=t

Ei,t

(
rt+1(0) +w′

i,tµi,t +
w′

i,tΣi,twi,t

2
+ λi,s (1− 1′wi,s)

)
,

⇒ ∂Li,t

∂wi,t
= µi,t − Σi,twi,t − λi,t1 = 0,

⇒ wi,t = Σ−1
i,t (µi,t − λi,t1) . (A.2)

40



Proof of Lemma 2. Under Assumption 1, the optimal portfolio weights from Lemma 1 are

wi,t = Σ−1
i,t (µi,t − λi,t1) ,

=
1

γi,t

(
I−

Γi,tΓ
′
i,t

Γ′
i,tΓi,t + γi,t

)
(µi,t − λi,t1) ,

∣∣∣∣∣ from the Woodbury matrix identity

=
1

γi,t
(µi,t − λi,t1− Γi,tκi,t) ,

∣∣∣∣∣ κi,t =
Γ′
i,t (µi,t − λi,t1)

Γ′
i,tΓi,t + γi,t

= πi,t + y′
i,t(n)Πi,t,

∣∣∣∣∣ πi,t = (ϕi,t − λi,t − ψi,tκi,t)/γi,t

Πi,t = (Φi,t −Ψi,tκi,t)/γi,t

(A.3)

Proof of Proposition 1. Under Lemma 2 and Assumptions 2, 3 and 4, we can write

wit(n)

wit(0)
= 1 + y′

i,t(n)
Πit

πit
,

∣∣∣∣∣ Lemma 2 & Assumption 2

= 1 + y′
i,t(n)

Φit −Ψitκit
1− κit

,

∣∣∣∣∣ Assumptions 3 & 4

= 1 + y′
i,t(n)

(
Φit + (Φit −Ψit)

(
κit

1− κit

))
,

= 1 + y′
i,t(n)Φit +

(
1 + y′

i,t(n)Φit −
(
1 + y′

i,t(n)Ψit

))( κit
1− κit

)
,

= Ui,t(n) + (Ui,t(n)− Vi,t(n))

(
κit

1− κit

)
,

= Ui,t(n)

(
1 +

(
1− Vi,t(n)

Ui,t(n)

)(
κit

1− κit

))
(A.4)
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Proof of Lemma 3. When n = 0:

Ui,t(0, ..., 0, 1, ln ( εi,t(0) )) = exp (βK,i,t + ln ( εi,t(0) ) ) , (A.5)

Vi,t(0, ..., 0, 1, ln ( εi,t(0) )) = exp ( ηK,i,t + ln ( εi,t(0) ) ) , (A.6)

then, we have for (21):

wi,t(0)

wi,t(0)
= exp

(
ln (Ui,t(0) ) + ln

(
1 +

(
1− Vi,t(0)

Ui,t(0)

)(
κi,t

1− κi,t

)))
,

⇔ 1 = exp

(
βK,i,t + ln ( εi,t(0) ) + ln

(
1 +

(
1− exp

(
x′
i,t(n)∆K,i,t

))( κi,t
1− κi,t

)))
,

⇔ 0 = βK,i,t + ln ( εi,t(0) ) + ln

(
1 +

(
1− exp

(
x′
i,t(n)∆K,i,t

))( κi,t
1− κi,t

))
,

⇔ βK,i,t = − ln ( εi,t(0) ) , (A.7)

resulting from ∆K,i,t = 0 and which holds for any value of κit.

Proof of Corollary 1.

wi,t(n)

wi,t(0)
= exp

(
ln (Ui,t(n) ) + ln

(
1 +

(
1− Vi,t(n)

Ui,t(n)

)(
κi,t

1− κi,t

)))
,

= exp

(
ln
(
exp

(
x′
i,tβi,t

) )
+ ln

(
1 +

(
1−

exp
(
x′
i,tηi,t

)
exp

(
x′
i,tβi,t

))( κi,t
1− κi,t

)))
,

= exp

(
x′
i,tβi,t + ln

(
1 +

(
1− exp

(
x′
i,t(n)∆i,t

))( κi,t
1− κi,t

)))
,

= exp
(
x′
i,tβi,t

)
exp

(
ln

(
1 +

(
1− exp

(
x′
i,t(n)∆i,t

))( κi,t
1− κi,t

)))
,

= exp
(
x′
i,t(n)βi,t

) [
1 +

(
1− exp

(
x′
i,t(n)∆i,t

))( κi,t
1− κi,t

)]
. (A.8)

Proof of Corollary 2. One needs two conditions to derive (29) in which βit does not depend on asset

characteristics xt = (xt(1), . . . , xt(N)).

Condition 1.
Πit

πit
is a constant vector that does not depend on xit.
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Condition 2. the coefficients in the constant vector satisfy the restrictions that these coefficients coin-

cide with those of the Taylor expansion of the exponential function around zero.

Condition 2 is a functional form assumption on the asset-specific index and it is satisfied under Assump-

tion 5. We show that Condition 1 is the key to delivering the multinomial logit specification (and therefore

the IIA restriction); note that from the proof of Proposition 1:

Πit

πit
= Φit + (Φit −Ψit)

(
κit

1− κit

)
, (A.9)

which is constant if and only if when κit = 0 or Φit = Ψit. However, note that κi,t > 0 because U(·) and

V (·) are both positive functions under Assumption 5. Thus, κi,t can never be zero and
Πit

πit
is a constant

vector if and only if Φit = Ψit.

Proof of Lemma 4. Given

Ni,t∑
n=1

wi,t(n)

wi,t(0)
Vi,t(n) =

Ni,t∑
n=1

Ui,t(n)Vi,t(n) +

Ni,t∑
n=1

Vi,t(n) (Ui,t(n)− Vi,t(n))
κi,t

1− κi,t
,

=

Ni,t∑
n=1

Ui,t(n)Vi,t(n) +

Ni,t∑
n=1

Ui,t(n)Vi,t(n)−
Ni,t∑
n=1

V 2
i,t(n)

 ∑Ni,t

n=1 Ui,t(n)Vi,t(n)

γi,t +
∑Ni,t

n=1 V
2
i,t(n)−

∑Ni,t

n=1 Ui,t(n)Vi,t(n)
,

= γi,t
κi,t

1− κi,t
, (A.10)

we can rewrite (22) as:

wi,t(n)

wi,t(0)
= Ui,t(n)

[
1 +

1

γi,t

(
1− Vi,t(n)

Ui,t(n)

) N∑
r=1

wi,t(r)

wi,t(0)
Vi,t(r)

]
, (A.11)

or equivalently,

(
wi,t(n)

wi,t(0)

)2

=

(
wi,t(n)

wi,t(0)

Ui,t(n)√
γi,t

)
︸ ︷︷ ︸

Ũi,t(n)

[
√
γi,t +

(
1− exp

(
x′
i,t(n)∆i,t

)) N∑
r=1

Ũi,t(r) exp
(
x′
i,t(r)∆i,t

)]
,

:= Fn

((
Ũi,t(n)

)Ni,t

n=1
;
√
γi,t,∆i,t

)
, (A.12)
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where the right-hand side defines a function of (Ũit(n))
Nit
n=1 given (

√
γit,∆it).

Proof of Proposition 2. By the inverse function theorem

(
Fn

(
(Ũit(n))

Nit
n=1;

√
γ0it,∆

0
it

))Nit

n=1

(A.13)

is at least locally invertible at

(Ũit(n))
Nit
n=1 =

(
wit(n)

wit(0)

Uit0(n)√
γ0it

)Nit

n=1

(A.14)

if the Jacobian matrix has non-zero determinant. Note that the Jacobian matrix is

∂Ũ

(
Fn

((
Ũi,t(n)

)Ni,t

n=1
;
√
γ0i,t,∆

0
it

))Ni,t

n=1

=
√
γ0i,tdiag

(
wi,t(n)

wi,t(0)

)Ni,t

n=1

I+
1

γ0i,t


U0
i,t(1)− V 0

i,t(1)

...

U0
i,t(N)− V 0

i,t(N)


[
V 0
i,t(1) · · ·V 0

i,t(N)

]
diag

( (
U0
it0(n)

)−1
)Nit

n=1
,

(A.15)

Using the matrix determinant lemma, its determinant is non-zero if and only if

det

 I+
1

γ0i,t


U0
i,t(1)− V 0

i,t(1)

...

U0
i,t(N)− V 0

i,t(N)


[
V 0
i,t(1) · · ·V 0

i,t(N)

]
 = 1 +

∑Ni,t

n=1 V
0
i,t(n)

(
U0
i,t(n)− V 0

i,t(n)
)

γ0i,t
̸= 0.

(A.16)

When the joint distribution of the latent demands (ϵit(1), ..., ϵit(N)) is continuous,

Ni,t∑
n=1

V 0
i,t(n)

(
U0
i,t(n)− V 0

i,t(n)
)

(A.17)
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is a continuous random variable conditional on (x0,t(n), x−0,t(n))
Ni,t

n=1 with x−0,t(n) the log market equity

and x−0,t(n) any other asset characteristics, while γ0i,t is a constant. Consequently,

γ0i,t ̸=
Ni,t∑
n=1

V 0
i,t(n)

(
U0
i,t(n)− V 0

i,t(n)
)

(A.18)

holds with probability one and thus

det

(
∂Ũ

(
Fn

((
Ũi,t(n)

)Ni,t

n=1
;
√
γ0i,t,∆

0
it

))Ni,t

n=1

)
̸= 0, (A.19)

and the inverse holds locally.

Proof of Corollary 4. We fix Ũi,t(n) to Ũ0
i,t(n) for n = 1, ..., Ni,t and develop the first-order Taylor expan-

sion of Fn

((
Ũi,t(n)

)Ni,t

n=1
; 1, 0

)
, around (

√
γi,t,∆i,t) = (

√
γ0i,t,∆

0
i,t):

ln

(
wi,t(n)

wi,t(0)

)
+ ln

 U0
i,t(n)√
γ0i,t


= logFn

((
Ũit0(n)

)Ni,t

n=1
; 1, 0

)

≈ ln

(
Fn

((
Ũ0
i,t(n)

)Ni,t

n=1
;
√
γ0i,t,∆

0
i,t

)) ∣∣∣∣∣ Note that this is equal to ln

((
wit(n)

wit(0)

)2
)

+

∂√γFn

((
Ũ0
i,t(n)

)Ni,t

n=1
;
√
γ0i,t,∆

0
i,t

)
Fn

((
Ũ0
i,t(n)

)Ni,t

n=1
;
√
γ0i,t,∆

0
i,t

) (
1−

√
γ0i,t

)
+

∂∆0
i,t
Fn

((
Ũ0
i,t(n)

)Ni,t

n=1
;
√
γ0i,t,∆

0
i,t

)
Fn

((
Ũ0
i,t(n)

)Ni,t

n=1
;
√
γ0i,t,∆

0
i,t

) (
−∆0

i,t

)

= 2 ln

(
wi,t(n)

wi,t(0)

)
+ U0

i,t(n)

(
wi,t(n)

wi,t(0)

)−1
 1√

γ0i,t

− 1



+

Ni,t∑
r=1

wi,t(r)

wi,t(0)
V 0
i,t(r)

[ (
1− exp

(
x′
i,t(n)∆

0
i,t

))
x′
i,t(r)− exp

(
x′
i,t(n)∆

0
i,t

)
x′
i,t(n)

] ∆0
i,t√
γ0i,t

, (A.20)
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which is, for n = 1, ..., N , equivalent to

ln

(
wit(n)

wit(0)

)
≈ met(n)β

0
0,i,t + x′

−0,t(n)β
0
−0,i,t + ln

 1√
γ0i,t

− U0
i,t(n)

(
wi,t(n)

wi,t(0)

)−1
 1√

γ0i,t

− 1



+

Ni,t∑
r=1

wi,t(r)

wi,t(0)
V 0
i,t(r)

[ (
1− exp

(
x′
i,t(n)∆

0
i,t

))
x′
i,t(r)− exp

(
x′
i,t(n)∆

0
i,t

)
x′
i,t(n)

] ∆0
i,t√
γ0i,t

+ ln ( ϵi,t(n) ) . (A.21)

Proof of Corollary 5. Using Assumption 5 and Proposition 2, we get

⇒ wi,t(n)

wi,t(0)

U0
i,t(n)√
γ0i,t

= F−1
n

((
wi,t(1)

wi,t(0)

)2

, . . . ,

(
wi,t(Ni,t)

wi,t(0)

)2

;
√
γi,t,∆i,t

) ∣∣∣∣∣ Proposition 2

⇔ U0
i,t(n) =

F−1
n

(
· ; √γi,t,∆i,t

)
· wi,t(0) ·

√
γ0i,t

wi,t(n)

⇒ exp
(
x′
t(n)β

0
i,t

)
· εi,t =

F−1
n

(
· ; √γi,t,∆i,t

)
· wi,t(0) ·

√
γ0i,t

wi,t(n)

∣∣∣∣∣ Assumption 5

⇔ εi,t =
F−1
n

(
· ; √γi,t,∆i,t

)
· wi,t(0) ·

√
γ0i,t

exp
(
x′
t(n)β

0
i,t

)
· wi,t(n)

(A.22)

Substituting the expression for εi,t in Assumption 6, we have

E

 F−1
n

(
· ; √γi,t,∆i,t

)
· wi,t(0) ·

√
γ0i,t

exp
(
x′
t(n)β

0
i,t

)
· wi,t(n)

∣∣∣∣∣∣ zi,t(n), x−0,t(1), . . . , x−0,t(Ni,t)

 = 1 (A.23)

To create a valid moment condition, multiply both sides of the equation by any measurable function

g (zi,t(n), x−0,t(1), . . . , x−0,t(Ni,t)) and take expectations over the entire distribution to get

E



F−1
n

(((
wi,t(n)
wi,t(0)

)2)Ni,t

n=1

;
√
γi,t,∆i,t

)
· wi,t(0) ·

√
γ0i,t

exp(x′
t(n)β

0
i,t) · wi,t(n)

− 1

 g
(
zi,t(n), (x−0,t(n))

Ni,t

n=1

)
 = 0 (A.24)
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