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Abstract

We develop an empirical framework to analyze vertical relationships with
manufacturer-retailer bargaining. Our key innovation is the introduction of
a novel Nash-in-Nash bargaining model that incorporates uncertainty in
retailers’ pricing responses to wholesale prices. This model extends exist-
ing Nash-in-Nash frameworks by relaxing assumptions about the timing of
wholesale and retail price setting. We show that our model can be micro-
founded by a two-stage noncooperative game with delegated negotiations.
We propose a two-step strategy that separably identifies bargaining and
responsiveness parameters and implies a Generalized Method of Moments
estimation procedure.
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1 Introduction

In many industries, firms deal with retailers (or intermediaries) to distribute their
products to consumers. Prominent examples include the food retail sector, the
pharmaceutical industry, the cable television market, the smartphone industry,
the car market, or the health care sector. These vertical structures often exhibit
multilateral contracting with externalities, where competing upstream firms sell
their products through the same competing downstream retailers.1 Furthermore,
the terms of trade are typically negotiated rather than being dictated by either
the upstream or downstream firms. Over the past decade, the “Nash equilib-
rium in Nash bargains” (Nash-in-Nash) pioneered by Horn and Wolinsky (1988)
has become a workhorse approach to model such complex vertical relations in a
tractable way (Collard-Wexler, Gowrisankaran and Lee, 2019). This approach has
not only influenced the literature on vertical contracting, but has also played a
key role in a number of recent high-profile merger cases (Wright and Yun, 2020;
Carlton, 2020).2 In this framework, upstream and downstream firms engage in
bilateral negotiations over wholesale prices of products, which serve as inputs in
the retailers’ pricing decisions. Existing works typically model the timing of these
stages as either sequential or simultaneous. The sequential timing assumes that
bargaining occurs before retail pricing decisions, whereas the simultaneous timing
considers that both stages take place at the same time.

Researchers often lack direct observation of the true timing and thus make
an assumption based on institutional knowledge or computational convenience
(Lee, Whinston and Yurukoglu, 2021). However, recent research emphasizes that
neither timing assumption is entirely accurate and this modelling choice cannot be
settled by theoretical arguments alone, making it ultimately an empirical question
(Crawford et al., 2018; Rogerson, 2020).3 More importantly, the choice between
sequential and simultaneous timing can have profound implications for a number
of antitrust and regulatory issues such as merger control (see, e.g., Moresi, 2020;
Bonnet, Bouamra-Mechemache and Molina, forthcoming).4 Hence, misspecifying

1Contracting externalities arise from competition on both sides of the market, as the surplus
from an agreement between an upstream and a downstream firm depends on the agreements
formed by other pairs of upstream and downstream firms.

2See, e.g., Comcast/NBC in 2011 (Rogerson, 2014), Anthem/Cigna in 2017 (Sheu and Tara-
gin, 2021), and AT&T/Time Warner in 2018 (Shapiro, 2021; Carlton et al., 2022).

3Rogerson (2020) states that: “Whether and to what extent firms in the real world, which
have limited information and face costs of gathering and analyzing information, account for such
effects (impact of bargaining outcomes on downstream price setting) is an empirical issue.”

4For instance, Moresi (2020) demonstrates that a vertical merger lowers downstream prices
under simultaneous timing, whereas it increases downstream prices under sequential timing when
downstream firms are close competitors (see also Panhans, 2024).
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the timing assumption may result in erroneous predictions and misleading policy
recommendations.

In this article, we develop a framework of vertical relations with Nash-in-Nash
bargaining that relaxes the timing assumption between wholesale and retail price
setting decisions. Our key innovation is the introduction of retailer responsive-
ness parameters. These parameters measure the likelihood that retailers adjust
their retail pricing decisions in response to out-of-equilibrium events during ne-
gotiations with manufacturers. Notably, the sequential and simultaneous timing
assumptions correspond respectively to the responsive and unresponsive configura-
tions of the responsiveness parameters, which are to be estimated from the data.5

The uncertainty in the unresponsiveness preventing a retailer from responding to
unexpected bargaining outcomes can arise from multiple sources. For instance,
adjusting retail prices may involve non-trivial physical and managerial costs (e.g.,
Levy et al., 1997; Zbaracki et al., 2004). Alternatively, coordination failures within
a multidivisionnal retailer may arise due to internal communication errors (e.g.,
Marschak and Radner, 1972; Williamson, 1981; Güth, Müller and Spiegel, 2006).6

Building on Rey and Vergé (2020), we offer a noncooperative microfoundation for
our Nash-in-Nash bargaining model with uncertainty in retailers’ responsiveness,
which provides support for its use in the analysis of vertically related markets.

We develop a two-step strategy to identify our parameters of interest including
bargaining, responsiveness, and marginal cost parameters. This strategy implies a
Generalized Method of Moments (GMM) estimation procedure. In the first step,
given bargaining and responsiveness parameters along with wholesale prices, we
invert the first-order conditions (FOCs) of the Nash-in-Nash bargaining solution
to recover upstream product margins and, in turn, product-level marginal costs
of production.7 We show that these FOCs are linear in the upstream margins,
and that invertibility hinges on the non-zero determinant of this linear system.
We argue that such a condition generically holds and formalize this argument for
sufficiently smooth demand systems (e.g., mixed-logit, probit, GEV). In the second
step, we use instrumental variables (orthogonal to the unobserved marginal cost

5That is, there is no uncertainty about retailers’ ability (responsive) or inability (unrespon-
sive) to adjust their retail prices in response to out-of-equilibrium events during negotiations
with manufacturers.

6That is, the retail pricing division of a retailer may simply fail to observe the outcomes
negotiated by its bargaining division (e.g., van Damme and Hurkens, 1997; Güth, Müller and
Spiegel, 2006).

7Wholesale prices can be either directly observed (e.g., Noton and Elberg, 2018) or inferred
from the data. In the latter case (more common in existing works), the standard approach is to
infer wholesale prices from estimates of consumer demand and the set of equations characterizing
necessary conditions for a Nash equilibrium in retail pricess (e.g., Villas-Boas, 2007).
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factors) to construct moment conditions and identify the model parameters. A key
challenge is separately identifying the bargaining, responsiveness, and marginal
cost parameters, as they jointly determine equilibrium wholesale prices. We show
that exogenous demand shifters and rotators, as well as cost shifters, can provide
identification power. As a result, standard instruments used in the literature
(e.g., BLP-type instruments) remain valid. We conduct Monte Carlo simulations
to provide supportive evidence for the validity of our approach.

Related literature. The present article contributes to the recent empirical lit-
erature on buyer-seller bargaining in vertical markets (see Lee, Whinston and
Yurukoglu, 2021, for a comprehensive survey). Since Draganska, Klapper and
Villas-Boas (2010), many articles have adopted the simultaneous timing assump-
tion, either to account for retail price stickiness or to simplify the estimation of
the Nash-in-Nash bargaining model (e.g., Ho and Lee, 2017; Crawford et al., 2018;
Noton and Elberg, 2018; Sheu and Taragin, 2021). In contrast, another strand of
the literature has opted for the sequential timing assumption on the ground that
retail prices respond to changes in wholesale prices (e.g., Crawford and Yurukoglu,
2012; Yang, 2020; Bonnet, Bouamra-Mechemache and Molina, forthcoming).8 We
show, however, that this timing assumption is not innocuous and may have im-
portant consequences for estimates, counterfactual simulations, and policy impli-
cations (see also Moresi, 2020; Panhans, 2024; Bonnet, Bouamra-Mechemache and
Molina, forthcoming). Our paper proposes a microfounded Nash-in-Nash bargain-
ing model with uncertainty about retailers’ responsiveness in retail pricing deci-
sions that generalizes the timing assumption between wholesale and retail price
settings. To the best of our knowledge, we are the first to make progress in this
direction.

We also contribute to the literature by proposing a unified econometric frame-
work and formally establishing the econometric properties of Nash-in-Nash bar-
gaining models. Our sources of identification for the bargaining and responsiveness
parameters relate to the research on firm conduct in differentiated product mar-
kets (e.g., Berry and Haile, 2014). Specifically, we exploit the variation in market
conditions that are excluded from marginal costs to discriminate between models

8Dubois and Særthe (2020) also consider an empirical model of vertical relations with sequen-
tial timing, where downstream firms adjust their product assortment (instead of retail prices)
in response to wholesale prices determined through the Nash-in-Nash bargaining solution. More
generally, beyond buyer-seller bargaining, sequential timing has been widely used in empirical
studies on vertical contracting (e.g., Brenkers and Verboven, 2006; Villas-Boas, 2007; Ho, 2009;
Bonnet and Dubois, 2010; Goldberg and Hellerstein, 2013; Fan and Yang, 2020; Hristakeva,
2022).
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of vertical relations that differ in both the distribution of bargaining power in
the supply chain and the timing of wholesale and retail price setting.9 As our
framework encompasses existing Nash-in-Nash bargaining models (sequential or
simultaneous timing), one can apply our strategy to solve the identification of the
bargaining parameters in these models, a well-known challenge in this literature.10

Finally, our paper relates to the recent works in empirical industrial organiza-
tion that explore the implications of organizational frictions for market outcomes
such as prices and welfare (e.g., Crawford et al., 2018; Hortaçsu et al., 2024). Our
Nash-in-Nash bargaining model incorporates uncertainty in retailers’ responsive-
ness that measure their abilities of adjusting the retail pricing decisions in response
to out-of-equilibrium events in the bargaining. The uncertainty can arise from mul-
tiple sources, such as non-trivial price adjustment costs (e.g., Levy et al., 1997;
Aguirregabiria, 1999; Zbaracki et al., 2004; Reis, 2006; Goldberg and Hellerstein,
2013; Arcidiacono et al., 2020) and possible coordination failures (e.g., Marschak
and Radner, 1972; Williamson, 1981; Güth, Müller and Spiegel, 2006). We do not
take a specific stance on such sources and do not seek to endogenize them (which
is an interesting avenue for future research).

The remainder of this article is organized as follows. Section 2 introduces our
model of vertical relations with Nash-in-Nash bargaining and intra-retailer fric-
tions. Section 3 studies the identification of our model, including a discussion on
the sources of exogenous variations that help identifying the structural parameters.
Section 4 presents Monte Carlo simulations. Section 5 concludes.

2 Model

2.1 Overview

Consider a market, indexed by t, where M upstream manufacturers, indexed by
m = 1, ...,M , interact with R downstream retailers, indexed by r = 1, ..., R, to
sell their products to consumers. To simplify the exposition, we assume that each
consumer on the market chooses among a set J ≡ {0, 1, . . . , J} of differentiated

9The logic of using exogenous variation in firm markups to empirically distinguish between
models of competition was pioneered by Bresnahan (1982) and extended by Berry and Haile
(2014) to differentiated product markets (see Gandhi and Nevo, 2021, for a literature review).
Aside from the buyer-seller bargaining literature, this approach has also been applied in vertical
markets to test different forms vertical conduct (e.g., Brenkers and Verboven, 2006; Villas-Boas,
2007; Bonnet and Dubois, 2010; Bonnet et al., 2013; Duarte et al., 2024).

10As noted by Gowrisankaran, Nevo and Town (2015): “An interesting extension to explore
in future work is formal identification of the bargaining weights.” See also Lee, Whinston and
Yurukoglu (2021) for an informal discussion of this identification issue.
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products. It is straightforward to extend the arguments to the situation with a
market-varying set of products. We use Jm to denote the set of products owned
by manufacturer m, and Jr the set of products distributed by retailer r.

We consider profit-maximizing manufacturers and retailers. Define respectively
the profit function of manufacturer m and retailer r in market t as follows:

πmt((wjt)j∈Jm ; pt) ≡
∑
j∈Jm

(wjt − µjt) qjt(pt) (1a)

πrt((wjt + cjt)j∈Jr ; pt) ≡
∑
j∈Jr

(pjt − wjt − cjt) qjt(pt) (1b)

where wjt is the wholesale price of product j in market t, pjt is its retail price,
and pt ≡ (p1t, . . . , pJt)denotes the vector of retail prices. The terms µjt and cjt

are respectively the constant marginal cost of production and distribution for
product j in market t.11 Without loss of generality, we absorb cjt in wjt and
µjt and normalize cjt = 0 for all j ∈ J. Finally, qjt(pt) > 0 is the demand for
product j in market t at prices pt. We stack qjt(pt) in a vector-valued function
qt(pt) ≡ (q1t(pt), . . . , qJt(pt)).

Manufacturers and retailers make their decisions according to the following
timing. In the first stage, manufacturers and retailers engage in simultaneous
and secret bilateral negotiations to determine wholesale prices of products. In the
second stage, each retailer r learns its state of nature, either “responsive” or “un-
responsive”. With probability ρr, retailer r is in a “responsive” state., where it can
optimally adjust its retail prices upon observing an out-of-equilibrium bargaining
outcome. Conversely, with probability 1 − ρr, retailer r is in a “unresponsive”
state, where it is unable to optimally adjust its retail prices in response to un-
expected bargaining outcomes. In the third stage, given contract secrecy and
realized retailer-specific states, retailers engage in a simultaneous retail price com-
petition.12

We use a new Nash-in-Nash bargaining model that accounts for the uncer-
tainty about retailers’ responsiveness states to determine bargaining outcomes in
the first stage. Our framework generalizes existing Nash-in-Nash solutions in ver-
tical relations that assume that a specific state of nature arises with certainty.

11We consider the case of constant marginal cost of production commonly used in empirical
studies. The scenario of (dis)economies of scale is left for future research.

12Contract secrecy here implies that each retailer sets the retail prices of its products without
observing the trading terms negotiated by its rivals in the first stage. This information structure
is commonly referred to as “interim unobservability” in the vertical contracting literature (see,
e.g., Rey and Vergé, 2004; Gaudin, 2019; Rey and Vergé, 2020). In this information structure,
whether or not a retailer observes other retailers’ realized states of responsiveness is irrelevant
because of the unobservability of others’ trading terms in the first stage.
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Several articles consider sequential timing—wholesale prices are set before retail
prices—which is equivalent to assuming that the “responsive”’ state arises with
probability ρr = 1 for all r (e.g., Crawford and Yurukoglu, 2012; Bonnet, Bouamra-
Mechemache and Molina, forthcoming). Conversely, other articles in the literature
adopt simultaneous timing—wholesale and retail prices are determined at the same
time— corresponding to the configuration in which the “unresponsive” state arises
with probability 1 − ρr = 1 for all r (e.g., Draganska, Klapper and Villas-Boas,
2010; Ho and Lee, 2017; Crawford et al., 2018). To offer support for the reason-
ableness of our surplus division in the vertical chain, we provide a noncooperative
formulation of our Nash-in-Nash bargaining solution. In Appendix A, we demon-
strate that our solution concept coincides with the sequential equilibrium of a
variant of the noncooperative game developed by Rey and Vergé (2020).

In what follows, we proceed in reverse order of timing to formalize each stage.

2.2 Stage 3: Retail price competition

Let wrt and w−rt denote the vectors of wholesale prices for the products distributed
by retailer r and its rivals, respectively. Similarly, let prt and p−rt represent the
vectors of retail prices for the products distributed by retailer r and its rivals,
respectively. Due to contract secrecy, retailer r sets prt to maximize profit, holding
the belief that its rivals pay the equilibrium wholesale prices to manufacturers.13

This retail pricing decision is also made conditional on the realized state of nature.
Formally, consider first the case where retailer r is in the “responsive” state,

implying that it can optimally respond to any unexpected outcomes that occurred
during its negotiations with manufacturers in stage 1. Thus, after observing wrt

and holding the belief that w−rt = w∗−rt, retailer r sets prt such that:

prt(wrt; p∗−rt) ≡ argmax
{pjt}j∈Jr

∑
j∈Jr

(pjt − wjt − cjt)qjt(prt,p∗−rt) (2)

where the ∗ superscripts denote the equilibrium values.
Consider now the case where retailer r is in the “unresponsive” state. As it

cannot adjust its retail prices in response to unexpected bargaining outcomes, it
is as if retailer r were unable to observe wrt (in addition to w−rt). Hence, holding

13As retailer r receives no information about its rivals’ bargaining outcomes (even when it
observes an out-of-equilibrium event during its negotiations with manufacturers), there is no
reason to revise its beliefs regarding w−rt compared to those held during the bargaining stage
(consistent with the “no-signaling-what-you-don’t-know” condition of Fudenberg and Tirole,
1991).
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the belief that wrt = w∗rt and w−rt = w∗−rt, retailer r sets prt such that:

prt(w∗rt; p∗−rt) ≡ argmax
{pjt}j∈Jr

∑
j∈Jr

(pjt − w∗jt − cjt)qjt(prt,p∗−rt) (3)

Two remarks are in order. First, due to contract secrecy, retailer’s pricing
behavior does not depend on other retailers’ realized responsiveness states (see
also footnote 12). Second, the researcher could recover retailers’ price-cost margins
(and marginal costs) from (2) and (3). These identified margins will be used
to identify and estimate the parameters of the Nash-in-Nash bargaining in the
first stage.14 The standard assumption in empirical work is that an equilibrium
is played in the data (see Berry, Levinsohn and Pakes, 1995, and the ensuing
literature). Consequently, (2) and (3), as well as their corresponding first-order
conditions, become observably equivalent when wholesale prices are at equilibrium:

qjt(p∗t ) +
∑

k∈Jr(j)

(p∗kt − w∗kt − ckt)
∂qkt
∂pjt

= 0 ∀j ∈ J. (4)

In Appendix B, we describe how to recover retailers’ margins and marginal costs
from (4).

2.3 Stage 2: Realization of retailers’ responsiveness states

Prior to the retail price competition, each retailer learns its responsiveness state.
With probability ρr, retailer r is in a “responsive” state, where it can optimally
adjust its retail prices in response to any out-of-equilibrium outcome that may have
occured during its negotiations with manufacturers. Conversely, with probability
1 − ρr, retailer r finds itself in an “unresponsive” state, where it is unable to
adjust its retail prices following unexpected bargaining outcomes. We do not
impose restrictions on the correlation between retailers’ state realizations.

The retailer-specific parameter ρr is interpreted as the likelihood that retailer
r’s pricing decisions are responsive to deviations in the bargaining outcomes for
its products. We take a fairly agnostic stance about the sources of uncertainty
surrounding the retailer’s responsiveness in pricing decisions. It may stem from
non-trivial price adjustment costs. For instance, Levy et al. (1997) document
that physical price adjustment costs (e.g., labor costs of changing shelf prices)

14In some situations, the researcher directly observes retailers’ markups (e.g., the Dominick’s
dataset in Goldberg and Hellerstein (2013)) and does not need to back out them from the pricing
game in the third stage. However, one may still need (2) and (3) to characterize retailers’ pricing
in the out-of-equilibrium events in the Nash-in-Nash bargaining of the first stage.
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account for 0.7% of revenues at five multistore supermarket chains ($105, 887 per
store per year). Additionally, Zbaracki et al. (2004) provide evidence that man-
agerial costs associated with gathering information, making pricing decisions, and
communicating these decisions within the retailer can be up to six times higher
than physical costs. They further highlight that costs of renegotiating prices can
reach up to twenty times the physical costs. Such costs are relevant in business-
to-business contexts where retail prices are determined through bargaining, as in
insurer-employer relationships (Ho and Lee, 2017). Besides, intra-retailer infor-
mation frictions may also induce the uncertainty about the responsiveness. In a
multidivisional retailer, coordination failures could arise between the bargaining
division, in charge of negotiating wholesale prices, and the pricing division, which
sets retail prices, due internal communication errors.15 In this context, parame-
ter ρr can be seen as an “all-or-nothing” signal technology: before setting retail
prices, the pricing division either receives the (correct) outcomes negotiated by
the bargaining division with a certain probability or no information at all.16 We
refer to Rogerson (2020) for a discussion on other types of within-firm frictions.

2.4 Stage 1: Manufacturer-retailer bargaining

In stage 1, manufacturers and retailers engage in bilateral negotiations over whole-
sale prices of products that account for the uncertain realizations of retailers’ re-
sponsiveness states in stage 2. Formally, taking other wholesale prices as given,
the equilibrium wholesale price of product j ∈ Jm ∩ Jr solves the following Nash
bargaining problem:

w∗jt ≡ argmax
wjt

(
πmt(ρr)− π−jmt (ρr)

)λj (
πrt(ρr)− π−jrt (ρr)

)1−λj (5)

where parameter λj is the bargaining weight of manufacturer m vis-à-vis retailer r
in the negotiation over wjt. The terms πmt(ρr) and πrt(ρr) represent respectively
the profit that manufacturer m and retailer r get if an agreement is reached:

πmt(ρr) = ρrπmt(wjt,w∗mt,−j,prt(wjt,w∗rt,−j; p∗−rt),p∗−rt) + (1− ρr)πmt(wjt,w∗mt,−j,p∗t )
πrt(ρr) = ρrπrt(wjt,w∗rt,−j,prt(wjt,w∗rt,−j; p∗−rt),p∗−rt) + (1− ρr)πrt(wjt,w∗rt,−j,p∗t )

15Hortaçsu et al. (2024) provide direct evidence of pricing frictions due to miscoordination
between different divisions within an airline company.

16This type of signal technology is employed in papers such as Rubinstein (1989), Laffont and
Tirole (1993), van Damme and Hurkens (1997), and Güth, Müller and Spiegel (2006).
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where w∗mt,−j is the vector of equilibrium wholesale prices for all products owned
by manufacturer m except product j ∈ Jm, w∗rt,−j is the vector of equilibrium
wholesale prices for all products distributed by retailer r except product j ∈ Jr,
and p∗t denotes the vector of equilibrium retail prices. Finally, the terms π−jmt (ρr)
and π−jrt (ρr) denotes respectively the status quo payoffs of manufacturer m and
retailer r in the event of bilateral disagreement, which are given by:

π−jmt(ρr) = ρrπ
−j
mt(w∗mt,−j,p

−j
rt (w∗rt,−j; p∗−rt),p∗−rt) + (1− ρr)π−jmt(w∗mt,−j,p∗−jt)

π−jrt (ρr) = ρrπ
−j
rt (w∗rt,−j,p

−j
rt (w∗rt,−j; p∗−rt),p∗−rt) + (1− ρr)π−jrt (w∗rt,−j,p∗−jt)

where p∗−jt is the vector of equilibrium retail prices for all products except j, and
p−jrt (w∗rt,−j; p∗−rt) corresponds to the vector of out-of-equilibrium retail prices set
by retailer r when product j is no longer offered in market t and other retailers’
prices are p∗−rt.

We derive the first-order conditions of (5) that characterize the surplus division
in market t: for j ∈ J with j ∈ Jm ∩ Jr,

∑
k∈Jm

(w∗kt − µkt)
1− λj

λj

(
q∗kt − ρrq

−j
kt (p−jrt (w∗rt,−j; p∗−rt),p∗−rt)− (1− ρr)q−jkt (p∗−jt)

)
q∗jt

− ρr
∑
h∈Jr

∂qkt
∂pht

∂pht
∂wjt

(
πrt(w∗rt; p∗t )− π

−j
rt (ρr)

)  =
(
πrt(w∗rt; p∗t )− π

−j
rt (ρr)

)
q∗jt,

(6)

where q−jkt denotes the out-of-equilibrium demand for product k when product j
is not offered in market t. The formulas and computational details can be found
in Appendix C.

As previously outlined, ρr in (6) measure the likelihood that retailer r will
be in the responsive state and adjust its retail pricing decisions in stage 3 in re-
sponse to out-of-equilibrium events during negotiations with manufacturers. When
ρr = 1 (responsiveness), both retailer r and its manufacturers anticipate that
the outcomes of their wholesale negotiations will fully influence r’s retail pric-
ing decisions. In this case, (6) boils down to the first-order conditions of the
Nash-in-Nash model with sequential timing (e.g., Crawford and Yurukoglu, 2012;
Bonnet, Bouamra-Mechemache and Molina, forthcoming). When instead ρr = 0
(unresponsiveness), both retailer r and its manufacturers anticipate that r’s re-
tail pricing decisions will remain unaffected by unexpected bargaining outcomes.
Therefore, (6) reduces to the first-order conditions of the Nash-in-Nash model
with simultaneous timing (e.g., Draganska, Klapper and Villas-Boas, 2010; Ho
and Lee, 2017). In most applied work, however, the timing of wholesale and retail
price setting remains unobserved and “certainly neither timing assumption is com-
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pletely accurate” (Crawford et al., 2018, page 911). Rather than taking a specific
stance on the binary timing choice, (6) allow for more general form of conducts,
i.e., neither the responsive nor the unresponsive state may arise with certainty
(0 ≤ ρr ≤ 1 for r = 1, . . . , R). The researcher can then identify and estimate the
conduct (parameters ρr, r = 1, ..., R) from the data, mitigating misspecification
risks. Finally, responsiveness parameters ρr have a different nature from the bar-
gaining parameters λj. We illustrate their distinctive theoretical interpretations
in the noncooperative game that microfounds our Nash-in-Nash bargaining (see
Appendix A). In Section 3.2, we discuss their separable identification.

The role of retailers’ responsiveness on counterfactual outcomes. In
addition to the surplus division in the vertical chain, retailers’ responsiveness in
retail pricing decisions may also significantly affect counterfactual analysis. We
now perform two Monte Carlo exercises to shed light on this point. In both
exercises, we use a setting of bilateral oligopoly withM = 3, R = 3, and J = 9 (i.e.,
every manufacturer sells its brand to every retailer, interlocking relationships). In
the first one, we analyze the model’s predictions of an upstream merger and a
downstream merger under three different parameter configurations: ρr = ρ ∈
{0, 0.5, 1} for all r = 1, 2, 3. The model’s other parameters, e.g., parameters of
demand, bargaining, and costs, are the same. We refer to Section 4 for more
details on the data generating process.

The results are depicted in Figure 1. The left panel shows the average percent-
age change in retail prices, and the right panel displays the average percentage
change in wholesale prices for the merging firms. We find that the merger pre-
dictions differ remarkably across the three configurations of ρ, which aligns with
the discrepancies between simultaneous and sequential timing in merger analysis
found by some recent works (e.g., Moresi, 2020; Panhans, 2024; Bonnet, Bouamra-
Mechemache and Molina, forthcoming). In the downstream merger case, the pre-
dicted average decrease in wholesale prices for the merging firms’ products is much
larger when ρ = 1 (−14.34%) than when ρ = 0 (−1.15%). This discrepancy im-
plies that the relative increase in retail prices when ρ = 1 (+1.71%) is half as large
as when ρ = 0 (+3.26%). The differences are even more striking in the upstream
merger case. While the wholesale prices for the merging firms’ products increase
on average by 15.02% when ρ = 0, they decrease by −19.15% when ρ = 1. We
obtain similar predictions for retail prices, which rise by 6.2% when ρ = 0 and fall
by −5.27% when ρ = 1.

In the second exercise, we first generate the data under ρ = 0 and ρ = 1.
Then, using the data generated under each case, we estimate the bargaining and
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Figure 1: Merger predictions under different configurations of ρ

Notes: In the pre-merger market configuration, there are M = 3 manufacturers, R = 3 retailers, and J = 9
products (interlocking relationships). We simulate a mixed logit demand model with in which the indirect utility
Uij = β0+βixj−αipj+ξj+εij , and the marginal cost function for product j is given by µj = κ0+κvvj+κxxj+ωj .
We draw (ξj , ωj) from a mean-zero bivariate normal distribution with variances σ2

ξ = σ2
ω = 2 and covariance

σξω = 0.1, and xj , vj are i.i.d. according to U(0, 1). We set β0 = −3, βi ∼ N(4, 1), αi ∼ lnN(0.49, 0.64),
and κ0 = κv = κx = 1. We also set λ = 0.5 for each manufacturer-retailer pair. Given this configuration,
we compute the retail prices by solving the equilibrium of our model (i.e., the bargaining equilibrium and
the downstream price equilibrium described in (6) and (4), respectively). We consider mergers between two
competing firms in the downstream market (bars corresponding to “Downstream Merger”) and the upstream
merger.(bars corresponding to “Upstream Merger”). The y-axis shows the average percentage change in retail
(left figure) and wholesale prices (right figure) for the merging firms’ products.

marginal cost parameters under both the true specification and the false one.
Finally, we use the parameter estimates from both the true and false specifications
to simulate upstream and downstream mergers as in our first exercise. Figure 2
presents the merger simulation results, with panel (a) showing the case where the
true specification is ρ = 1, and panel (b) the case where the true specification
is ρ = 0. We find important biases due to misspecifying the value of ρ. In the
upstream merger case, the simulation under the misspecified model systematically
overestimates (resp. underestimates) the wholesale and retail price increases when
the true specification is ρ = 1 (resp. ρ = 0). For instance, panel (a) shows a larger
wholesale price increase under the misspecified model (+15.25%) than under the
true model (+1.03%). Similarly, the simulation results indicate a larger retail price
increase under the misspecified model (+3.88%) compared to the true model where
retail prices are nearly unaffected by the merger (+0.02%). These misspecification
biaises also arise in the downstream merger case, particularly when the true model
specification is ρ = 1 (panel (a)). In this scenario, the merger simulation suggests
a lower wholesale price decrease under the misspecified model (−0.97%) than
under the true model (−8.95%). This discrepancy leads to a much larger retail
price increase under the misspecified model (+3.92%) compared to the true model

12



Figure 2: Counterfactual predictions, true and misspecified bargaining
models

(a) True model specification: ρ = 1

(b) True model specification: ρ = 0

Notes: We generate T = 500 markets for each case, either ρ = 1 (sequential timing) or ρ = 0 (simultaneous
timing), using a demand and supply specification similar to the one used in Figure 1. Given the true ρ
(say, ρ = 1), we take the simulated data and estimate the bargaining, responsiveness, and marginal cost
parameters under both the true specification (ρ = 1) and the false specification (ρ = 0) of the bargaining
model. We then use parameter estimates to simulate both an upstream and a downstream merger under
the true and the false model specification. The y-axis shows the average percentage change in retail and
wholesale prices for the merging firms’ products.

(+1.85%). To summarize, the second exercise highlights the potential risk of
imposing a timing assumption (either ρ = 1 or 0) when one does not observe the
true one. Misspecifying the value of ρ could even lead to qualitatively misleading
counterfactual outcomes and flawed policy recommendations.
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3 Identification and estimation

We now examine the identification and estimation of the Nash-in-Nash model
described by (6). Suppose that demand functions qt(·) as well as the equilibrium
retail prices p∗t and wholesale prices w∗t are known.17 Denote by q∗t = qt(p∗t )
the observed vector of demand in market t. We consider that the number of
markets grows asymptotically to infinity (T → ∞), while the maximum number
of products sold across all markets remains fixed. We aim to identify and estimate
bargaining parameters λ = (λj)Jj=1, responsiveness parameters ρ = (ρr)Rr=1, and
the parameters governing marginal costs (µjt)j,t.

Our strategy relies on the set of first-order conditions from the Nash-in-Nash
bargaining model (6) and proceeds in two steps. In the first step, we invert (6) to
back out the J-dimensional vector of marginal costs (µjt)Jj=1 for all t = 1, . . . , T .
Specifically, let Dt(q∗t ,p∗t ;λ,ρ) be a J × J matrix with the (j, k)th element given
by:

dj,k =
1− λj

λj

(
q∗kt − ρr(j)q

−j
kt (p−jrt (w∗rt,−j; p∗−rt),p∗−rt)− (1− ρr(j))q−jkt (p∗−jt)

)
q∗jt

− ρr(j)
∑

h∈Jr(j)

∂qkt
∂pht

∂pht
∂wjt

(
πr(j)t(w∗r(j)t; p∗t )− π

−j
r(j)t(ρr(j))

) 
(7)

Using (7), we can rewrite (6) in vector-matrix notations as follows:

[Dt(q∗t ,p∗t ;λ,ρ)�ΩM ] (w∗jt−µjt)Jj=1 = −
[(
πr(j)t(w∗r(j)t; p∗t )− π

−j
r(j)t(ρr(j))

)
q∗jt
]J
j=1

,

where � refers to the element-wise (Hadamard) product, and ΩM is the J × J

ownership matrix of manufacturers where the (j, k)th element equals 1 if j
and k are owned by the same manufacturer and 0 otherwise. Suppose that
Dt(q∗t ,p∗t ;λ,ρ) � ΩM is invertible, the J-dimensional vector of marginal costs
is given by:

(µjt)Jj=1 = (µjt(w∗jt,q∗t ,p∗t ;λ,ρ))Jj=1

= (w∗jt)Jj=1 + [Dt(q∗t ,p∗t ;λ,ρ)�ΩM ]−1
[(
πr(j)t(w∗r(j)t; p∗t )− π

−j
r(j)t(ρr(j))

)
q∗jt
]J
j=1

(8)

17Note that one can estimate demand and use the set of first-order conditions characterizing
the retailers’ pricing behavior in the downstream market to back out wholesale prices (e.g.,
Villas-Boas, 2007). According to our notations, these (inferred) wholesale prices incorporate
marginal distribution costs.
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where the second term on the right-hand side of (8) corresponds to the (negative)
J-dimensional vector of manufacturers’ markups (−(w∗jt − µjt)Jj=1).

In the second step, we first introduce the following assumption on marginal
costs.

Assumption 1.

(i). (Monotonicity) µjt = mcj(vjt;ωjt), where vjt are observed cost shifters for
product j, ωjt is an unobserved cost shock, and mcj(·) is an unknown function
strictly increasing in ωjt for any given vjt.

(ii). (Exogeneity) There exists random variables zjt such that E [ωjt | zjt] = 0 for
j = 1, ..., J .

Assumption 1(i) specifies the marginal cost µjt as a function of observed cost
shifters vjt and unobserved cost shocks ωjt. It covers the linear and additive
cost structure (mcj(v;ω) = κv + ω) as well as nonlinear ones. However, the
unobserved cost shocks are potentially correlated with the manufacturers’ markup
term in (8), introducing endogeneity issues that threaten the identification of λ
and ρ.18 Assumption 1(ii) addresses this concern by requiring the existence of
variables zjt that explain the manufacturers’ markups while remain orthogonal to
the cost shocks. In other words, exogenous variation in manufacturers’ markups
is necessary for disentangling the contribution of the markup term from that of
marginal costs in wholesale prices. As discussed below, such instruments may
include exogenous cost and demand shifters.

Combining Assumption 1 and (8), we obtain conditional moment conditions
on true parameters (λ0,ρ0) and (mcj0(·; ·))Jj=1 : for j = 1, ..., J ,

E
[
mc−1

j0

(
µjt(w∗jt,q∗t ,p∗t ;λ0,ρ0); vjt

)
| zjt

]
= 0, (9)

where mc−1
j (·; v) is the inverse function of mcj(v; ·) with respect to ω given v.

To identify the parameters of interest from (9), we face two challenges. First,
we must determine whether and under what conditions the system of equations
in (6) is invertible. This requires establishing the conditions for the invertibility
of the matrix Dt(q∗t ,p∗t ;λ,ρ) � ΩM (i.e., non-zero determinant). Second, what
instrumental variables zjt can provide identification power, especially for the sep-
arable identification of λ0 and ρ0. Given the invertibility of mcj0(·; v) for any
v (due to the monotonicity in Assumption 1), one can establish some high-level

18The source of endogeneity arises from the dependence of manufacturers’ markups on demand
and its derivatives, which are correlated with unobserved cost factors.
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requirements on such instruments. When mcj0 is parametrically specified (e.g.,
additively linear in vjt and ωjt), classic rank conditions around the true parame-
ters (e.g., Rothenberg, 1971) can achieve at least local identification. When mcj0
is nonparametrically specified, one can rely on arguments such as completeness
conditions on z.19 This requires the variation of zjt to be sufficiently rich so that
for any (λ̃, ρ̃, (m̃cj(·; ·))Jj=1) 6= (λ0,ρ0, (mcj0(·; ·))Jj=1), there exists zjt = z and
some product j such that E

[
m̃c−1

j

(
µjt(w∗jt,q∗t ,p∗t ; λ̃, ρ̃); vjt

)
| zjt = z

]
6= 0. We

will show that exogenous demand and cost shifters can provide such identification
power.

Our two-step strategy implies a Generalized Method of Moments (GMM) es-
timation procedure. For instance, suppose that mcj0(vjt;ωjt) = τj0vjt + ωjt and
zjt is a vector of K dimensions, one can then construct moment conditions based
on (9): for j = 1, ..., J ,

E
[
(µjt(w∗jt,q∗t ,p∗t ;λ0,ρ0)− κj0vjt)zjt

]
= 0,

adopt the usual parametric GMM estimator given by:

(λ̂, ρ̂, (κ̂j)Jj=1) ≡ argmin
λ,ρ,(κj)Jj=1

[ 1
T

T∑
t=1

(µjt(w∗jt,q∗t ,p∗t ;λ,ρ)− κjvjt)zjt
]J
j=1

>

W

[ 1
T

T∑
t=1

(µjt(w∗jt,q∗t ,p∗t ;λ,ρ)− κjvjt)zjt
]J
j=1


(10)

where W is a weighting matrix of dimension JK × JK.20

In the rest of this section, we solve the two aforementioned challenges.

3.1 Invertibility of the Nash-in-Nash first-order conditions

Given (λ,ρ), the determinant of Dt(q∗t ,p∗t ;λ,ρ) � ΩM , denoted as
det (Dt(q∗t ,p∗t ;λ,ρ)�ΩM), is a function of the equilibrium retail prices and
the corresponding quantities (p∗t ,q∗t ) ∈ R2J . The set of (p∗t ,q∗t ) that delivers
det (Dt(q∗t ,p∗t ;λ,ρ)�ΩM) = 0 defines a lower-dimensional object in R2J . Intu-
itively, this set implies a constraint on the underlying demand and cost shocks and
is often “thin”. As long as demand and supply shocks exhibit sufficient variation
across markets, one obtains almost surely det (Dt(q∗t ,p∗t ;λ,ρ)�ΩM) 6= 0.

19Such arguments have been used in the identification of nonparametric IV models (e.g., Newey
and Powell, 2003) and the demand literature (e.g., Berry and Haile, 2014; Iaria and Wang, 2021).

20In practice, one can concentrate out cost parameters (κj)Jj=1 of the objective function in
(10) (see, e.g., Bonnet, Bouamra-Mechemache and Molina, forthcoming; Molina, 2024).
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We propose an intertibility result to formalize this intuition in a class of demand
systems routinely used in applied work. Recall that p−j and ξ−jt refer to the
subvector (pk)k 6=j,1≤k≤J and (ξkt)k 6=j,1≤k≤J , respectively. The proof can be found
in Appendix E.

Theorem 1 (Invertibility). Suppose that Assumption 1(i) holds and demand func-
tions qjt(p) = qj(p; ξt) and q

−j
kt (p−j) = q−jk (p−j; ξ−jt) are real analytic with respect

to p and p−j for j = 1, ..., J and k 6= j respectively, given demand shocks ξt =
(ξjt)Jj=1. Then, under regularity conditions E.1, det (Dt(q∗t ,p∗t ;λ,ρ)�ΩM) 6= 0
almost surely for (ξt,ωt), where ωt = (ωjt)Jj=1.

The real-analytic condition in Theorem 1 requires that demand functions be suf-
ficiently smooth with respect to prices. This condition is satisfied by common
demand models such as the linear, multinomial logit, nested logit, mixed logit,
and mixed probit models.21 In addition, it accommodates flexible substitution
patterns among products, including both substitutability and complementarity.
Moreover, Theorem 1 imposes no restrictions on the upstream or downstream
market structures (i.e., no constraints on the ownership matrices ΩM and ΩR).
Finally, it is possible to obtain the invertibility by using other conditions (e.g., on
market structures or substitution patterns among products) rather than the real
analyticity of the demand system. We provide some examples in Appendix F.

3.2 Sources of identification and instruments

To shed light on the sources of identification for the bargaining and responsiveness
parameters, we focus on the bilateral negotiation between manufacturer m and
retailer r over wjt. The computational details can be found in Appendix D.

At the equilibrium wholesale and retail prices, the partial derivative of the
joint profit for this pair with respect to wjt is given by:

∂ (πmt(ρr) + πrt(ρr))
∂wjt

= ρr
∑
k∈Jm

(w∗kt − µkt)
∑
h∈Jr

∂qkt
∂pht

∂pht
∂wjt

(11)

Hence, the responsiveness parameter ρr governs the extent to which the joint profit
πmt(ρr) + πrt(ρr) deteriorates when w∗jt increases.22 Interestingly, one can relate
(11) to the slope of the bargaining frontier evaluated at equilibrium wholesale and

21See Iaria and Wang (2024) for a discussion on the real-analytic property of the mixed logit
and mixed probit demand models with a linear index indirect utility structure.

22Keeping all other wholesale prices fixed, the decrease in joint profit resulting from an increase
in w∗jt stems from the so-called “double-marginalization” phenomenon (e.g., Spengler, 1950).
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Figure 3: Responsiveness parameters and bargaining frontier

Notes: The x-axis represents the profit of retailer r and the y-axis represents the profit of manufacturer m. Each
curve depicts the bargaining frontier (or Pareto frontier) for the bilateral negotiation between manufacturer m
and retailer r over wjt. The dot on each curve indicates the Nash bargaining solution for λ = 0.5.

retail prices:

∆πmt(πrt(w∗jt,w∗−jt))
∆πrt(w∗jt,w∗−jt)

= −1− ρr
∑
k∈Jm(w∗kt − µkt)

∑
l∈Jr

∂qkt
∂plt

∂plt
∂wjt

q∗jt

= −1− 1
q∗jt

∂ (πmt(ρr) + πrt(ρr))
∂wjt

.

(12)

The term −1 reflects the mechanical inverse relationship between the changes
in retailer r’s and manufacturer m’s profits due to a change in wjt (i.e., a zero-
sum relationship). The second term represents the rate of surplus transfer from
retailer r to manufacturer m via wjt. Hence, ρr determines the steepness of the
bargaining frontier. We illustrate this interpretation in Figure 3. When ρr = 0
(unresponsiveness), the slope of the bargaining frontier equals −1, indicating that
an increase in wjt (around w∗jt) does not affect the joint profit πmt(ρr) + πrt(ρr).
In contrast, when ρr > 0, the slope of the bargaining is greater than −1, implying
any surplus transfer from retailer r to manufacturer m via wjt deteriorates the
joint profit. This negative effect on joint profit intensifies as ρr increases, with the
case ρr = 1 (responsiveness) exhibiting the most significant negative effect. This
interpretation of ρr contrasts with that of the bargaining parameter λj: while ρr is
directly related to the slope (tangent) of the bargaining frontier at w∗jt, λj governs
the division of the joint profit between manufacturer m and retailer r, (i.e., the
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Nash solution on the bargaining frontier corresponding to w∗jt ). Thus, intuitively,
exogenous variation affecting the size of the joint profit should aid in identifying
the responsiveness parameters, whereas exogenous variation affecting the split of
the joint profit should help identify the bargaining parameters.

Based on these insights, we now proceed with a more formal analysis of the
separable identification of the bargaining and responsiveness parameters.

Identification via approximative form. Let us rearrange the first-order con-
ditions from the Nash-in-Nash bargaining model (6) as follows:

∑
k∈Jm(j)

(w∗kt − µkt)
1− λj

λj

q∗kt − ρr(j)q
−j
kt (p−jr(j)t(w∗rt,−j; p∗−rt),p∗−r(j)t)− (1− ρr(j))q−jkt (p∗−jt)

πr(j)t(ρr(j))− π−jr(j)t(ρr(j))
q∗jt

− ρr(j)
∑

h∈Jr(j)

∂qkt
∂pht

∂pht
∂wjt

 = q∗jt

(13)

for j = 1, ..., J . We develop the Taylor expansion of (13) at
(

1−λj
λj

)J
j=1

= 0J and
(ρr)Rr=1 = 0R as follows: for j = 1, ..., J ,

∑
k∈Jm(j)

(w∗kt − µkt)
[1− λj

λj

qkt(p∗t )− q
−j
kt (p∗−jt)

πr(j)t(w∗r(j)t,p∗t )− π
−j
r(j)t(w∗r(j)t,−j,p∗−jt)

qjt(p∗t )

− ρr
∑

h∈Jr(j)

∂qkt
∂pht

∂pht
∂wjt

]
' qjt(p∗t ).

(14)

By inverting (14) and using vector-matrix notations, we can approximate our
bargaining model described in (8) as follows:23

(w∗kt)Jk=1 ' (µkt)Jk=1 + Aλ

( λj
1− λj

)J
j=1

+
(
diag

((ρr(j)λj
1− λj

)J
j=1

)
Bt �ΩM

)
Aλ

(
λj

1− λj

)J
j=1

 (15)

where diag
( (

ρr(j)λj
1−λj

)J
j=1

)
is a J × J diagonal matrix constructed from the vector(

ρr(j)λj
1−λj

)J
j=1

using the diag(·) operator, and Aλ and Bt are two J×J matrices with

the (j, k)th element respectively given by aj,k =
∑

k∈Jm(j)
qkt(p∗t )−q−j

kt
(p∗−jt)

πr(j)t(w∗r(j)t,p
∗
t )−π−j

r(j)t(w
∗
r(j)t,−j ,p

∗
−jt)

23Concretely, we apply the following matrix operations: Diag(u)(E � F) = (Diag(u)E) � F,
(GE)−1 = E−1G−1 and (G+E)−1 ' G−1−G−1EG−1, where E, F, and G are square matrices,
and u is a vector.
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and bj,k = 1
qjt(p∗t )

∑
h∈Jr(j)

∂qkt
∂pht

∂pht
∂wjt

.

The approximative form in (15) delivers useful insight for the identification
of our bargaining, responsiveness, and cost parameters. First, the marginal cost
shifters enter in (µk)Jk=1 and are excluded from Aλ and Bt. We can thus identify
the cost parameters in µkt via the variation in cost shifters. Second, when ρ = 0R
(unresponsiveness), (15) is linear in

(
λj

1−λj

)J
j=1

. Therefore, the identification of
bargaining parameters λ is achieved through the variation in Aλ that is unrelated
to unobserved marginal cost factors in (µk)Jk=1. This includes, among others things,
exogenous variation in demand shifters.24 In the general case when ρ 6= 0R,
the identification is analogous to that in a nonlinear least square model. The
key insight is that

(
ρr(j)λj
1−λj

)J
j=1

interacts with Bt, offering an additional source of
variation beyond that provided by Aλ. Thus, to identify λ, one can vary Aλ while
keeping

(
diag

( (
ρr(j)λj
1−λj

)J
j=1

)
Bt �ΩM

)
Aλ unchanged. The variation in Bt �ΩM

is then used to further identify ρ.
This approximative-form analysis demonstrates that commonly used instru-

ments, such as demand and cost shifters, still provide identification power via
equilibrium outcomes (q∗t ,p∗t ,w∗t ). Additionally, the derivatives ∑

h∈Jr(j)

∂qkt
∂pht

∂pht
∂wjt

in

Bt also provide a valuable source of variation for identification. This argument
resembles that of the demand rotators in Bresnahan (1982), which change de-
mand through slopes rather than intercepts. We illustrate these insights via the
following examples.

Example 1 (Triangle vertical structure). Consider a vertical market with one
manufacturer (M = 1) and two retailers (R = 2). The manufacturer sells its
brand to both retailers, resulting in two products being offered to consumers. We
suppose that the demand for each product is linear and given by:

q1t(p1t, p2t) = δ1t − p1t + 0.5p2t,

q2t(p1t, p2t) = δ2t − p2t + 0.5p1t.

Additionally, we make the simplifying assumption that q−2
1t = q−1

2t = q∗2t + q∗1t at
the equilibrium retail prices (p∗1t, p∗2t). The marginal cost structure is given by
µjt = κjvjt + ωjt, where κj 6= 0 is an unknown cost parameter. From the sets of

24For instance, when the number of products and market structure (ΩM and ΩR) vary across
market in an exogenous way, the resulting variation in Aλ is also useful for the identification of
λ.

20



first-order conditions (4) and (6), we obtain (see Appendix G for details):
w∗1t
w∗2t

 = 1
15

 1−λ1
λ1

+ 8
15ρ1 + 7

15 −
(

1−λ1
λ1

+ 4
15ρ1 + 2

15

)
−
(

1−λ2
λ2

+ 4
15ρ2 + 2

15

)
1−λ2
λ2

+ 8
15ρ2 + 7

15

−1

︸ ︷︷ ︸
Θ

8δ1t + 2δ2t − 7µ1t + 2µ2t

8δ2t + 2δ1t − 7µ2t + 2µ1t


︸ ︷︷ ︸

δ̃t

+
µ1t

µ2t

 (16)

First, one can shift δ̃t via (δ1t, δ2t) to identify the four elements of Θ. With these
four identified elements, we have a system of equations from which we can identify
the four unknown parameters λ1, λ2, ρ1, and ρ2. Finally, by varying the cost
shifters v1t and v2t in µ1t and µ2t, one can identify the cost parameters κ1 and κ2,
respectively.

In practice, the identification of our model using demand and cost shifters can be
loosely summarized as comparing the number of unknowns parameters to the num-
ber of available moments. As in Example 1, suppose we have J product-specific
cost parameters, J bargaining parameters, and R ≤ J responsiveness parameters.
The total number of parameters is thus 2J+R. Analogous to Example 1, each cost
shifter provides a moment that just identifies the corresponding cost parameter.
In addition, by varying J demand shifters, we can obtain J2 moments from the
Jacobian matrix ∂(w∗1 ,...,w∗J )

∂(δ1,...,δJ ) . As long as the number of moments, J + J2, is at least
as large as the number of parameters, 2J + R, identification can in principle be
achieved. The inequality J + J2 ≥ 2J +R holds whenever J ≥ 2. However, when
J = 1 (implying that R = 1), we only have 2 moments to identify 3 parameters.
In this case, as shown in the following example, one can rely on arguments such
as demand rotators to generate additional moments.

Example 2 (Bilateral monopoly). Consider a bilateral monopoly (M = 1 and
R = 1) where only one product is offered to consumers. We suppose that the
demand for this product has an exponential form: qt(pt) = δtp

−εt
t with εt > 1. As

in Example 1, the marginal cost structure is given by µt = κvt + ωt, where κ 6= 0
is an unknown cost parameter. From the sets of first-order conditions (4) and (6),
we obtain (see Appendix G for details):

w∗t =
(

1− λ
λ
− 1
εt − 1

)−1 (1− λ
λ

+ ρ
εt

εt − 1

)
(κvt + ωt).

First, by varying vt, one can identity the quantity

A(ε) := κ

(
1− λ
λ
− 1
ε− 1

)−1 (1− λ
λ

+ ρ
ε

ε− 1

)

for each ε in the support of εt. Second, note that when ε tends to 1
1−λ from the
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right, we have 1−λ
λ
− 1

ε−1 decreases to zero and A(ε) tends to infinity. Then,
by observing that A(ε∗) is equal to infinity at some observed ε∗, we learn that
ε∗ is equal to 1

1−λ and thus identify λ = 1 − 1
ε∗
. In addition, we can identify

A(ε1)/A(ε2) for given ε1 and ε2 and this ratio only depends on λ and ρ, then
we can identify ρ from this ratio and the identified λ. Finally, κ is identified by
A(ε)

(
1−λ
λ
− 1

ε−1

) (
1−λ
λ

+ ρ ε
ε−1

)−1
.

In Example 2, the nonlinearity in the demand and the variation in εt allows us to
rotate w∗t around µt and achieve the identification of (λ, ρ). This stands in contrast
to the linear demand case with J = 1, where it is impossible to rotate w∗ around
µ and separately identify λ and ρ (see Appendix G). Despite this singularity,
empirical researchers frequently work with nonlinear demand models and multiple
products (J ≥ 2). As a result, identification is generally achieved in practice.

4 Monte Carlo study

In this section, we use Monte Carlo simulations to assess the finite sample proper-
ties of our GMM estimator (10) using the instrumental variables proposed in our
identification arguments (e.g., demand and cost shifters, BLP-type instruments).

Based on Monte Carlo studies of supply models with oligopoly competition
(e.g., Skrainka, 2012; Armstrong, 2016; Conlon and Gortmaker, 2020), we con-
sider the following data generating process. We generate 100 datasets with
T ∈ {500, 1000} markets. In each market, we have M = 3 manufacturers and
R = 3 retailers, where each manufacturer deals with each retailer (i.e., interlock-
ing relationships). We define a product as a manufacturer-retailer combination,
implying a total of J = 9 products offered to consumers. Hence, we have multi-
product manufacturers and retailers, with |Jm| = |Jr| = 3 for all r = 1, . . . , R
and m = 1, . . . ,M . We specify the demand in market t to be mixed-logit with the
indirect utility given by:

Uijt = βixj − αipjt + ξjt + εijt

where xjt iid∼ U(0, 1), εijt iid∼ GEV(0, 1, 0), βi ∼ N(1, 1), and αi ∼ lnN(0.49, 0.64),
implying that the population mean of αi is 2 and its variance is 2. We specify the
marginal cost of product j in market t as follows:

µjt = κ0 + κvvjt + κxxjt + ωjt

where vjt iid∼ U(0, 1). We set the marginal cost parameters to κ0 = κv = κx = 1, and
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the bargaining and responsiveness parameters to λj = λ = 0.5 and ρr = ρ = 0.5,
respectively. As in Conlon and Gortmaker (2020), we draw the structural error
terms ξjt and ωjt from the following bivariate normal distribution

ξjt
ωjt

 i.i.d.∼ N

0
0

 ,
0.2 0.1

0.1 0.2

 .
Finally, we generate retail prices by solving the bargaining and downstream pricing
equilibrium characterized by (6) and (4), respectively.25 We treat the demand
parameters as known and focus on the finite sample estimates of the parameters
in our bargaining model.

We compare the finite-sample performance of two estimators: nonlinear least
squares (NLLS) and the generalized method of moments (GMM). The NLLS does
not address the endogeneity of market shares that are embedded in the manu-
facturers’ markup term. The GMM estimator outlined in (10) accounts for this
endogeneity issue. In addition to a constant term and the demand/cost shifters
(xjt, vjt), we use two sets of (excluded) instrumental variables:

zBLPjt =
 ∑
k∈Jr(j)t\{j}

xkt
∑

k∈Jt\Jr(j)t

xkt
∑

k∈Jm(j)t\{j}
xkt


zBHjt =

 ∑
k∈Jr(j)t\{j}

ξkt
∑

k∈Jt\Jr(j)t

ξkt
∑

k∈Jm(j)t\{j}
ξkt

∑
k∈Jr(j)t\{j}

vkt
∑

k∈Jt\Jr(j)t

vkt
∑

k∈Jm(j)t\{j}
vkt


The first set of instruments zBLPjt corresponds to the traditional BLP instruments
widely used in the literature. The second set of instruments zBHjt is based on
insights from Berry and Haile (2014), which suggest exploiting variation in un-
observed characteristics and cost shifters of competing products to discriminate
between oligopoly models.26

We report the NLLS and GMM estimates results in Table 1. As expected, the
NLLS estimator produces large bias for all parameters (e.g., the bias is 0.335 for
λ and −0.437 for ρ); increasing the number of markets from T = 500 to T = 1000

25As emphasized in Conlon and Gortmaker (2020), Monte Carlo studies that do not generate
prices and market shares from equilibrium play may raise concerns about the validity of BLP-
type instruments, as markups are not “endogenous”. Note that we discarded certain Monte Carlo
draws due to convergence issues.

26Note that the unobserved characteristics of competing products (ξ−jt) are independent of
ωjt in our Monte Carlo design, ensuring the exogeneity of these variables.
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Table 1: Monte Carlo results

True NLLS GMM
Bias SE RMSE Bias SE RMSE

T = 500
λ 0.5 0.335 0.003 0.335 0.047 0.151 0.158
ρ 0.5 -0.437 0.004 0.437 0.047 0.389 0.392
κ0 1 -3.825 0.043 3.826 -0.049 0.215 0.221
κv 1 -0.697 0.012 0.697 0.003 0.047 0.047
κx 1 -0.720 0.011 0.720 -0.013 0.049 0.051

T = 1000
λ 0.5 0.335 0.002 0.335 0.026 0.104 0.107
ρ 0.5 -0.436 0.003 0.436 0.040 0.304 0.307
κ0 1 -3.829 0.033 3.829 -0.013 0.154 0.155
κv 1 -0.694 0.010 0.694 0.001 0.033 0.033
κx 1 -0.719 0.008 0.719 -0.007 0.049 0.051
Notes: “NLLS” stands for the nonlinear least squares estimator and “GMM” is
the 2-step GMM estimator. The biases, standard errors (SE), and root mean
square errors (RMSE) are obtained based on 100 replications.

does not reduce the bias. In contrast, the GMM estimator exhibits fairly low
bias. When T = 500, the bias is 0.047 for both λ and ρ, which is less than 10%.
The standard errors suggest that obtaining precise estimates for ρ is more difficult
than other parameters, likely due to the greater nonlinearity of the model with
respect to this parameter. Additionally, the root mean square errors are nearly
identical to the standard errors, as the bias for each parameter is small relative to
its standard error. As the number of markets increases from T = 500 to T = 1000,
the bias, standard errors, and root mean square errors all decrease. For instance,
the root mean square errors of λ and ρ drop by 32% and 22%, respectively. This
result indicates an improvement in the performance of our GMM estimator as the
number of markets increases, verifying our identification analysis and consistent
with the asymptotic theory.

5 Conclusion

We develop an empirical framework of vertical relationships that incorporates a
novel Nash-in-Nash bargaining model with uncertainty in retailers’ pricing re-
sponses to wholesale prices. This allows us to generalize the timing assumptions
routinely used in existing literature. We demonstrate that the proposed model
can be microfounded by a noncooperative game along the lines of Rey and Vergé
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(2020). We use a two-step strategy to identify and estimate the bargaining, re-
sponsiveness, and marginal cost parameters. We show that exogenous variations
in demand shifters, rotators, and cost shifters provide identification power. Our
Monte Carlo simulations support these instruments’ validity. As a next step, we
plan to apply our methodology to investigate the extent to which retailers are
responsive in retail pricing decisions to the brewer-retailer bargaining in Chicago.

Our framework offers several valuable perspectives for future research of empir-
ical Nash-in-Nash bargaining. A methodological question in our framework is how
to improve the efficiency of the GMM estimation given the high nonlinearity. For
instance, it remains to be explored whether and how one can construct optimal
instruments analogously to those in demand estimation (Reynaert and Verboven,
2014; Gandhi and Houde, 2023) and testing firm conduct (Backus, Conlon and
Sinkinson, 2021). Another promising direction is to endogenize the responsive-
ness parameters. In other words, the degree of uncertainty regarding a retailer’s
responsiveness in retail pricing decisions could be an outcome of some corporate
decisions, such as the adoption of new information technologies (e.g., Holmes,
2001; Basker, 2012).
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Appendix
A Microfoundation
In this appendix, we propose a noncooperative microfoundation for our Nash-in-Nash bargaining
model with uncertainty about retailers’ responsiveness in retail pricing decisions.

To this purpose, we adapt the noncooperative game developed in Rey and Vergé (2020) to
our framework of vertical relations. Consider an industry with a vertical structure as described in
Section 2, whereM (multi-product) upstream manufacturers deal with R (multi-product) down-
stream retailers. Assume that every manufacturer-retailer pair has positive gains from trade,
resulting in an interlocking relationships distribution network (i.e., competing manufacturers
deal with the same set of competing retailers). Taking this distribution network as given, we
consider a game with manufacturer-retailer bargaining and retail price competition that follows
the spirit of our model introduced in Section 2. Specifically, the timing of play can be outlined as
follows. In the first stage, manufacturers and retailers engage in secret and bilateral negotiations
over wholesale prices. In the second stage, retailers learn their state of nature (either responsive
or unresponsive with probabilities ρr and 1− ρr, respectively). In the last stage, retailers com-
pete in retail prices for consumers. Although stages 2 and 3 remain as in Section 2, the first stage
is modelled following the random-proposer bargaining game with delegated agents introduced
in Rey and Vergé (2020). Specifically, we assume that both manufacturers and retailers rely on
delegated agents, denoted by mj and rj with j = 1 . . . , J , to negotiate wholesale prices (we drop
market subscript to simplify notation). Hence, each pair of delegated agents mj − rj negotiates
over wj , with each agent acting on behalf of its firm by seeking to maximize its profit. Formally,
the game is described as follows:

• Stage 1: Manufacturer-retailer bargaining.
Each wholesale price wj is determined through a bilateral negotiation between a mj − rj
pair according to the following protocol.

– Stage 1.a: mj proposes a wholesale price to rj . If rj accepts the offer, the bilateral
negotiation concludes and the game proceeds to stage 2; otherwise, it moves to
stage 1.b. All offers and acceptance decisions are simultaneous and secret.

– Stage 1.b: If rj rejects mj ’s initial offer, nature selects one agent to make a new
(and final) offer, with mj chosen with probability φ and rj with probability 1− φ.
This selection process is independent across pairs of agents, and its outcome remains
secret.

– Stage 1.c: The selected agent (either rj or mj) makes a final offer to its counterpart,
which either accepts or rejects it. If the offer is accepted, the bilateral negotiation
concludes, and product j is sold to rj ’s retailer at the agreed wholesale price. If the
offer is rejected, a disagreement ensues, and product j is not offered on the market.
All offers and acceptance decisions continue to occur simultaneously and secretly.

• Stage 2: State of nature.
Each retailer learns its state of nature: with the probability ρr, retailer r is in a responsive
state and, with probability 1− ρr, it is in an unresponsive state.
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• Stage 3: Retail price competition.
Given contract secrecy and the realized state of the nature, retailers simultaneously set
retail prices.

We look for the sequential equilibrium (Kreps and Wilson, 1982) of this three-stage game. The
notion of sequential equilibrium requires firms’ beliefs to be “consistent”, meaning that any
player observing a deviation believes all others will continue to follow the equilibrium strategies,
assuming that this deviation stems from a “tremble” (Fudenberg and Tirole, 1991). Hence, no
agent revises its beliefs regarding wholesale prices negotiated by other agents when an unexpected
bargaining outcome occurs in stage 1. Likewise, when setting retail prices in stage 3, a retailer
observing a deviant wholesale price still conjectures that its rivals have negotiated the equilibrium
wholesale prices. Given any ρ ∈ [0, 1]R and λ ∈ [0, 1]J , we show that there exist φ ∈ [0, 1]J such
that the Nash-in-Nash bargaining outcomes, as characterized by (6), and the retail prices set by
retailers replicate the sequential equilibrium of the above noncooperative game, that is: w∗j = w?j
and p∗j = p?j for all j = 1, . . . , J , where the superscript ? denotes the equilibrium outcome of the
noncooperative game and ∗ is that of the model with Nash-in-Nash bargaining (Section 2).

As stages 2 and 3 are similar to those described in Section 2, we consider stage 1 by focusing
on the mj − rj pair that negotiates over wj . For the sake of exposition, we omit p in πr and
πm. Moreover, without loss of generality, we assume that πr(·; w?

−j) and πm(·; w?
−j) are at

most single-peaked for all m = 1 . . . ,M and r = 1, . . . , R. We also focus on the case where
∂πr(w?j ,w

?
−j)

∂wj
< 0 and ∂πm(w?j ;w?

−j)
∂wj

> 0, as the equilibrium of the noncooperative game must lie
on the bargaining (or Pareto) frontier.27

Consider first that nature selects rj to propose a final offer to mj in stage 1.c. Taking all
other wholesale prices as given (w−j = w?

−j), rj offers wj to maximize retailer r’s profit subject
to each agent’s participation constraint, that is:

wj ≡ argmax
wj

πr(wj ,w?
−j , ρr) subject to

πm(wj ,w?
−j , ρr) ≥ π−jm (w?

−j , ρr)

πr(wj ,w?
−j , ρr) ≥ π−jr (w?

−j , ρr)

where πm(·), πr(·), π−jm (·), and π−jr (·) are defined as in (C.3a), (C.3b), (C.4a), and (C.4b),
respectively. As πr(wj ; w?

−j , ρr) has at most a single peak and is decreasing with respect to wj
at equilibrium wholesale prices, it follows that w∗j ≥ wj . Furthermore, as [wj , w∗j ] lies on the
bargaining (or Pareto) frontier, πr(wj ; w?

−j ; ρr) is decreasing and πm(wj ; w?
−j ; ρr) is increasing

in wj ∈ [wj , w∗j ]. As a result, we have πr(wj ,w?
−j , ρr) > π−jr (w?

−j , ρr) and πm(wj ,w?
−j , ρr) =

π−jm (w?
−j , ρr). That is, rj ’s final offer is such that mj ’s participation constraint is binding.

Consider now that nature selects mj to propose a final offer to rj in stage 1.c. Taking all
other wholesale prices as given (w−j = w?

−j), mj offers w̄j to maximize manufacturer m’s profit
subject to each agent’s participation constraint, that is:

w̄j ≡ argmax
wj

πm(wj ,w?
−j , ρr) subject to

πm(wj ,w?
−j , ρr) ≥ π−jm (w?

−j , ρr)

πr(wj ,w?
−j , ρr) ≥ π−jr (w?

−j , ρr)

27Under contract secrecy, πr is always decreasing in wj . Due to the double-marginalization problem, πm
may also decrease in wj . Intuitively, however, any scenario in which

∂πm(wj ;w∗−j)
∂wj

< 0 cannot constitute an
equilibrium, as the mj − rj pair would always be able to find an alternative wholesale price that is Pareto
improving.
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Following similar reasoning as above, we have w̄j ≥ w∗j , πm(w̄j ,w?
−j , ρr) > π−jm (w?

−j , ρr), and
πr(w̄j ,w?

−j , ρr) = π−jr (w?
−j , ρr). That is, mj ’s final offer is such that rj ’s participation con-

straint is binding. In summary, we have w̄j ≥ w∗j ≥ wj , with πr(wj ,w?
−j , ρr) decreasing and

πm(wj ,w?
−j , ρr) increasing over wj ∈ [wj , w̄j ].

Proceeding backwards, consider now stage 1.a. Given that nature selects rj with probability
1− φj to make a final (counter)offer, mj ’s maximization problem is given by:

max
wj

πm(wj ; w?
−j , ρr) subject to

πm(wj ; w?
−j , ρr) ≥ φjπm(w̄j ; w?

−j , ρr) + (1− φj)πm(wj ; w?
−j , ρr)

πr(wj ; w?
−j , ρr) ≥ φjπr(w̄j ; w?

−j , ρr) + (1− φj)πr(wj ; w?
−j , ρr)

(A.1)

Hence, mj seeks to maximize manufacturer m’s profit taking into account that rj may re-
ject its offer and make an ultimate (counter)offer with probability 1 − φj . Denote w?j as the
solution to (A.1), which can be described as follows. First, given that φj ∈ [0, 1], the partic-
ipation constraints in (A.1) imply that w?j ∈ [wj , w̄j ]. Second, as [wj , w̄j ] is on the bargain-
ing (or Pareto) frontier, πr(wj ; w?

−j ; ρr) is decreasing and πm(wj ; w?
−j ; ρr) is increasing over

wj ∈ [wj , w̄j ]. Hence, w?j is such that rj is indifferent between accepting or rejecting mj ’s offer,
that is πr(w?j ; w?

−j , ρr) = φjπr(w̄j ; w?
−j , ρr) + (1 − φj)πr(wj ; w?

−j , ρr). Note that any wj > w?j
would violate rj ’s participation constraint, ruling it our as a solution to (A.1). Similarly, given
that πm(wj ; w?

−j , ρr) has at most a single peak and is increasing over wj ∈ [wj , w̄j ], any wj < w?j
would reduce manufacturer m’s profit. Therefore, wj = w?j is the unique solution to (A.1).

In summary, we have w?j ∈ [wj , w̄j ], with w?j = wj when φj = 0 and w?j = w̄j when φj = 1.
As w∗j ∈ [wj , w̄j ], we can replicate the Nash-in-Nash solution characterized in (6) by choosing an
appropriate φj ∈ [0, 1] such that w?j = w∗j for all j = 1, . . . , J . Hence, as stages 2 and 3 remain
unchanged, it follows directly that the equilibrium outcomes of the model in Section 2 coincide
with the sequential equilibrium of the noncooperative game developed in this appendix.

B Retailers’ price-cost margins
At the equilibrium wholesale prices, the first-order conditions of (2) and (3) in stage 3 coincide:

qjt(p∗t ) +
∑
k∈Jr(j)

(p∗kt − w∗kt − ckt)
∂qkt
∂pjt

= 0 ∀j ∈ J

We re-write these first-order conditions as follows:

qt + (ΩR �Qp)(p∗t −w∗t − ct) = 0J (B.1)

where � is the element-wise (Hadamard) product, ΩR denotes the J × J ownership matrix of
retailers where the (j, k)th element equals 1 if products j and k are distributed by the same
retailer in market t and 0 otherwise, and Qp =

(
∂qkt
∂pjt

)
j,k

is the J × J matrix of the partial
derivatives of demand with respect to retail prices. We can then recover the J-dimensional
vector of price-cost margins of retailers as follows:

p∗t −w∗t − ct = −(ΩR �Qp)−1qt (B.2)
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as long as ΩR�Qp is invertible. The invertibility can be implied by diagonal dominance (Berry
and Haile, 2014), a property that holds in commonly used demand models (e.g., nested or mixed
logit).

C Manufacturers’ price-cost margins
In stage 1, manufacturers and retailers engage in secret and bilateral negotiations to determine
wholesale prices (and consequently, manufacturers’ price cost margins), anticipating the potential
impact of bargaining outcomes on retail price competition between retailers. Hence, before
analyzing the wholesale price setting stage, we first review the retail price setting stage (stage 3).
As wholesale contracts are kept secret, each retailer sets the retail prices of its products based
on the belief that the wholesale prices paid by its rivals are at equilibrium. However, each
retailer’s pricing behavior depends on the realized state of nature in stage 2: “responsive ” or
“unresponsive”.

Downstream retail pricing in the responsive state. When the “responsive” state arises,
retailer r sets its retail prices based on the observed bargaining outcomes (wjt)j∈Jr , that is:

prt(wrt; p∗−rt) ≡ argmax
{pjt}j∈Jr

∑
j∈Jr

(pjt − wjt − cjt)qjt(prt,p∗−rt)

where prt denotes the vector of retail prices set be retailer r, wrt is the vector of wholesale prices
paid by retailer r, and p∗−rt is the vector of equilibrium retail prices set by retailer r’s rivals.
Moreover, when a bargaining breakdown occurs over wjt for j ∈ Jr, retailer r sets the retail
prices of its remaining products given the removal of product j from market t:

p−jrt (wrt,−j ; p∗−rt) ≡ argmax
(pkt)k∈Jr\{j}

∑
k∈Jr\{j}

(pkt − wkt − ckt)q−jkt (prt,−j ,p∗−rt) (C.1)

where prt,−j is the vector of out-of-equilibrium retail prices set by retailer r following a bargaining
breakdown over wjt, q−jkt is the demand for product k when product j is not offered in market t,
and wrt,−j is the vector of wholesale prices for all products distributed by retailer r except
product j ∈ Jr. In practice, we can use an algorithm similar to that described in Bonnet,
Bouamra-Mechemache and Molina (forthcoming) to compute p−jrt .

Downstream retail pricing in the unresponsive state. When the “unresponsive” state
arises, retailer r sets its retail prices based on the belief that (w∗jt)j∈Jr , that is:

prt(w∗rt; p∗−rt) ≡ argmax
{pjt}j∈Jr

∑
j∈Jr

(pjt − w∗jt − cjt)qjt(prt,p∗−rt)

Hence, when a bargaining breakdown occurs over wjt for j ∈ Jr, retailer r never adjusts the
retail prices of its remaining products accordingly.

Nash-in-Nash bargaining with uncertainty in retailers’ responsiveness. Each
manufacturer-retailer pair negotiate wholesale prices of products given the uncertainty about
the retailer’s state of responsiveness, where ρr ∈ [0, 1] denotes the probability that retailer r is
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in the “responsive” state. We focus on the bilateral negotiation between manufacturer m and
retailer r over wjt for j ∈ Jr ∩ Jm. Taking other wholesale prices as given (i.e., w−jt = w∗−jt),
the equilibrium wholesale price w∗jt is defined as follows:

w∗jt ≡ argmax
wjt

(
πmt(ρr)− π−jmt(ρr)

)λj (
πrt(ρr)− π−jrt (ρr)

)1−λj
(C.2)

The terms πmt(ρr) and πrt(ρr) in (C.2) denote the profits of manufacturer m and retailer r in
the case of an agreement, which are respectively given by:

πmt(ρr) =ρr

[
(wjt − µjt) qjt(prt(wjt,w∗rt,−j ; p∗−rt),p∗−rt)

+
∑

k∈Jm\{j}

(w∗kt − µkt) qkt(prt(wjt,w∗rt,−j ; p∗−rt),p∗−rt)
]

(C.3a)

+ (1− ρr)
[

(wjt − µjt) qjt(p∗t ) +
∑

k∈Jm\{j}

(w∗kt − µkt) qkt(p∗t )
]

πrt(ρr) =ρr

[ (
pjt(wjt,w∗rt,−j ; p∗−rt)− wjt − cjt

)
qjt(prt(wjt,w∗rt,−j ; p∗−rt),p∗−rt)

+
∑

k∈Jr\{j}

(
pkt(wjt,w∗rt,−j ; p∗−rt)− w∗kt − ckt

)
qkt(prt(wjt,w∗rt,−j ; p∗−rt),p∗−rt)

]
(C.3b)

+ (1− ρr)
[

(p∗jt − wjt − cjt)qjt(p∗t ) +
∑

k∈Jr\{j}

(p∗kt − w∗kt − ckt) qkt(p∗t )
]

where w∗rt,−j denotes the vector of equilibrium wholesale prices for all products distributed
by retailer r except product j ∈ Jr, and p∗t is the vector of equilibrium retail prices. When
wjt = w∗jt, these profits boil down to πmt =

∑
j∈Jm(w∗jt − µjt)qjt(p∗t ) and πrt =

∑
j∈Jr (p

∗
jt −

w∗jt − cjt)qjt(p∗t ) and the dependence on ρr disappears.
The terms π−jmt(ρr) and π−jrt (ρr) in (C.2) denote the status quo payoffs of manufacturer m

and retailer r in the event of a disagreement, which are respectively given by:

π−jmt(ρr) =ρr
∑

k∈Jm\{j}

(w∗kt − µkt) q
−j
kt (p−jrt (w∗rt,−j ; p∗−rt),p∗−rt)

+ (1− ρr)
∑

k∈Jm\{j}

(w∗kt − µkt) q
−j
kt (p∗−jt) (C.4a)

π−jrt (ρr) =ρr
∑

k∈Jr\{j}

(
p−jkt (w∗rt,−j ; p∗−rt)− w∗kt − ckt

)
q−jkt (p−jrt (w∗rt,−j ; p∗−rt),p∗−rt)

+ (1− ρr)
∑

k∈Jr\{j}

(p∗kt − w∗kt − ckt) q
−j
kt (p∗−jt) (C.4b)

where p∗−jt is the vector of equilibrium retail prices for all products except j.
Using (C.3a), (C.3b), (C.4a), and (C.4b), we can derive the first-order condition of (C.2) as
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follows:
∂πmt(ρr)
∂wjt

πmt(ρr)− π−jmt(ρr)
= −1− λj

λj

∂πrt(ρr)
∂wjt

πrt(ρr)− π−jrt (ρr)

⇔
ρrqjt(prt(w∗jt,w∗rt,−j ; p∗−rt),p∗−rt) + (1− ρr)qjt(p∗t ) + ρr

∑
k∈Jm

(w∗kt − µkt)
∑
h∈Jr

∂qkt
∂pht

∂pht
∂wjt∑

k∈Jm
(w∗kt − µjt)

[
ρr
(
qkt(prt(w∗jt,w∗rt,−j ; p∗−rt),p∗−rt)− q

−j
kt (p−jrt (w∗rt,−j ; p∗−rt),p∗−rt)

)
+ (1− ρr)

(
qkt(p∗t )− q

−j
kt (p∗−jt)

)]
= − λj

1− λj

∂πrt(ρr)
∂wjt

πrt(ρr)− π−jrt (ρr)

where by convention q−jjt (p−jrt (w∗rt,−j ; p∗−rt),p∗−rt) = q−jjt (p∗−jt) = 0. At wjt = w∗jt,
we have qjt(prt(w∗jt,w∗rt,−j ; p∗−rt),p∗−rt) = qjt(p∗t ) and πrt(ρr) = πrt (the de-
pendence on ρr disappears). Moreover, as shown in Appendix D, we have
∂πrt
∂wjt

= −qjt(p∗t ). Hence, the first-order condition of (C.2) boils down to:

qjt(p∗t ) + ρr
∑
k∈Jm

(w∗kt − µkt)
∑
h∈Jr

∂qkt
∂pht

∂pht
∂wjt∑

k∈Jm
(w∗kt − µjt)

[
qkt(p∗t )− ρrq

−j
kt (p−jrt (w∗rt,−j ; p∗−rt),p∗−rt)− (1− ρr)q−jkt (p∗−jt)

] = λj
1− λj

qjt(p∗t )
πrt − π−jrt (ρr)

⇔

[ ∑
k∈Jm

(w∗kt − µkt)ρr
∑
h∈Jr

∂qkt
∂pht

∂pht
∂wjt

+ qjt(p∗t )
](

πrt − π−jrt (ρr)
)

=
∑
k∈Jm

(w∗kt − µjt)
[
qkt(p∗t )− ρrq

−j
kt (p−jrt (w∗rt,−j ; p∗−rt),p∗−rt)− (1− ρr)q−jkt (p∗−jt)

] λj
1− λj

qjt(p∗t )

⇔
∑
k∈Jm

(w∗kt − µkt)
[(

qkt(p∗t )− ρrq
−j
kt (p−jrt (w∗rt,−j ; p∗−rt),p∗−rt)− (1− ρr)q−jkt (p∗−jt)

) 1− λj
λj

qjt(p∗t )

− ρr
∑
h∈Jr

∂qkt
∂pht

∂pht
∂wjt

(
πrt − π−jrt (ρr)

)]
=
(
πrt − π−jrt (ρr)

)
qjt(p∗t ) (C.5)

Manufacturers’ price-cost margins. For each market t, we have a total of J price-cost
margins of manufacturers, i.e., w∗jt − µjt ∀j ∈ J. In a spirit similar to the price-cost margins of
retailers, we rely on a system of J equations where (C.5) is the jth equation. More specifically,
it can be shown that (C.5) is the jth equation of the following system of Nash-in-Nash first order
conditions written in matrix form as follows:[(

Qt �ΩM

)(
diag

((
1− λj
λj

)J
j=1

)
�
(
qt1>J

))

− diag
((
ρr(j)

)J
j=1

)(((
πRt − πoutRt

)
1>J
)
� I
)(

(Pwt
Qpt)�ΩM

)](
w∗jt − µjt

)J
j=1

= −qt �
((
πRt − πoutRt

)
1>J
)

(C.6)

where > is the transpose operator, � refers to the element-wise (Hadamard) product, 1J is an
all-ones vector of dimension J (every element is equal to 1), I is the J × J identity matrix, and

diag
((

1−λj
λj

)J
j=1

)
and diag

((
ρr(j)

)J
j=1

)
are two J × J diagonal matrices constructed from the

J-dimensional vectors
(

1−λj
λj

)J
j=1

and
(
ρr(j)

)J
j=1, respectively. Additionally, qt = (q1t, . . . , qJt) is

the J-dimensional vector of demand at equilibrium retail prices, ΩM denotes the J×J ownership
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matrix of manufacturers where the (j, k)th element equals 1 if products j and k are owned by
the same manufacturer in market t and 0 otherwise, and Qpt is the J × J matrix of first partial
derivatives of demand with respect to retail prices where the (j, k)th element equals ∂qkt

∂pjt
. We

now describe the terms Pwt
, Qt, πRt, and πoutRt in (C.6). The term Pwt

refers to the J × J
matrix of retail pass-through, where the (j, k)th element equals ∂pkt

∂wjt
if k ∈ Jr(j) and 0 otherwise.

This matrix solely depends on the downstream market structure and the Jacobian and Hessian
matrices of demand with respect to retail prices (see, e.g., Bonnet, Bouamra-Mechemache and
Molina, forthcoming, for computational details). The term Qt is a J × J matrix given by:

Qt =
((
ρr(j)

)J
j=1 1>J

)


q1t(p∗t ) −q−1
2t (p−1

r(1)t,p
∗
−r(1)t) · · · −q−1

Jt (p−1
r(1)t,p

∗
−r(1)t)

−q−2
1t (p−2

r(2)t,p
∗
−r(2)t) q2t(p∗t ) · · · −q−2

Jt (p−2
r(2)t,p

∗
−r(2)t)

...
...

. . .
...

−q−J1t (p−Jr(J)t,p
∗
−r(J)t) −q−J2t (p−Jr(J)t,p

∗
−r(J)t) · · · qJt(p∗t )



+
((

1− ρr(j)
)J
j=1 1>J

)


q1t(p∗t ) −q−1
2t (p∗−1t) · · · −q−1

Jtt
(p∗−1t)

−q−2
1t (p∗−2t) q2t(p∗t ) · · · −q−2

Jt (p∗−2t)
...

...
. . .

...
−q−J1t (p∗−Jt) −q−J2t (p∗−Jt) · · · qJt(p∗t )


Finally, the terms πRt and πoutRt are two J-dimensional vectors given by:

πRt =
(
πr(j)t

)J
j=1 =

 ∑
k∈Jr(j)

(p∗kt − w∗kt − ckt)qkt(p∗t )

J

j=1

=
(
− (ΩR �Qpt)

−1 qt
)
� qt

and

πoutRt =
(
ρr(j)

)J
j=1 �

(
π−jr(j)t(p

−j
r(j)t,p

∗
−r(j)t)

)J
j=1

+
((

1− ρr(j)
)J
j=1

)
�
(
π−jr(j)t(p

∗
−jt)

)J
j=1

⇔ πoutRt =
(
ρr(j)

)J
j=1 �

 ∑
k∈Jr(j)\{j}

(p−jkt − w
∗
kt − ckt)q

−j
kt (p−jr(j)t,p

∗
−r(j)t)

J

j=1

+
((

1− ρr(j)
)J
j=1

)
�

 ∑
k∈Jr(j)\{j}

(p∗kt − w∗kt − ckt)q
−j
kt (p∗−jt)

J

j=1

⇔ πoutRt =
(
ρr(j)

)J
j=1

�

[
ΩR �∆out

Rt �


0 q−1

2t (p−1
r(1)t,p

∗
−r(1)t) · · · q−1

Jt (p−1
r(1)t,p

∗
−r(1)t)

q−2
1t (p−2

r(2)t,p
∗
−r(2)t) 0 · · · q−2

Jt (p−2
r(2)t,p

∗
−r(2)t)

...
...

. . .
...

q−J1t (p−Jr(J)t,p
∗
−r(J)t) q−J2t (p−Jr(J)t,p

∗
−r(J)t) · · · 0

1J

]

+
(
1− ρr(j)

)J
j=1 �

[
ΩR �


0 q−1

2t (p∗−1t) · · · q−1
Jt (p∗−1t)

q−2
1t (p∗−2t) 0 · · · q−2

Jt (p∗−2t)
...

...
. . .

...
q−J1t (p∗−Jt) q−J2t (p∗−Jt) · · · 0


(
− (ΩR �Qpt)

−1 qt
)]

where ∆out
Rt is a J × J matrix of out-of-equilibrium retail price-cost margins with the (j, k)th

element being 0 if j = k, p−jkt −w∗kt−ckt if k ∈ Jr(j)\{j}, and p∗kt−w∗kt−ckt otherwise. Similar to
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the vector of equilibrium retail price-cost margins (p∗jt − w∗jt − cjt)Jj=1, every out-of-equilibrium
retail price-cost margin in ∆out

Rt solely depends on demand functions and its derivatives as well
as the downstream market structure. For example, p−jkt − w∗kt − ckt is the kth element of the

following (|Jr(j)|− 1)-dimensional vector −
(
Ωr(j) �Qp−j

t

)−1
q−jr(j)t(p

−j
r(j)t,p

∗
−r(j)t), where Ωr(j)

and Qp−j
t

are two (|Jr(j)| − 1)× (|Jr(j)| − 1) matrices analogous to ΩR and Qpt , but restricted
to retailer r(j)’s products.

Let Dt be the J × J matrix on the left-hand side of (C.6). Then, we can rewrite (C.6) as:

Dt

(
w∗jt − µjt

)J
j=1 = −qt �

((
πRt − πoutRt

)
1>J
)

(C.7)

When Dt is invertible (see Appendices E and F), the J-dimensional vector of price-cost margins
of manufacturers can be derived from (C.7) as follows:

(
w∗jt − µjt

)J
j=1 = −D−1

t qt �
((
πRt − πoutRt

)
1>J
)

(C.8)

D Joint profit and slope of the bargaining fron-
tier

Consider the bilateral negotiation between manufacturer m and retailer r over wjt, taking all
other wholesale prices as given. First, note that the partial derivatives of manufacturer m’s and
retailer r’s profit with respect to wjt, evaluated at the equilibrium wholesale and retail prices,
are given by:

∂πrt(ρr)
∂wjt

= ρr

−q∗jt +
∑
h∈Jr

∂pht
∂wjt

q∗ht +
∑
k∈Jr

(p∗kt − w∗kt − ckt)
∑
h∈Jr

∂qkt
∂pht

∂pht
∂wjt

− (1− ρr)q∗jt

= ρr

[
− q∗jt +

∑
h∈Jr

∂pht
∂wjt

(
q∗ht +

∑
k∈Jr

(p∗kt − w∗kt − ckt)
∂qkt
∂pht

)
︸ ︷︷ ︸

= ∂πrt
∂pht

=0

]
− (1− ρr)q∗jt

= −q∗jt

∂πmt(ρr)
∂wjt

= ρr

q∗jt +
∑
k∈Jm

(w∗kt − µkt)
∑
l∈Jr

∂qkt
∂plt

∂plt
∂wjt

+ (1− ρr)q∗jt

= ρr
∑
k∈Jm

(w∗kt − µkt)
∑
l∈Jr

∂qkt
∂plt

∂plt
∂wjt

+ q∗jt

Hence, we have

∂ (πmt(ρr) + πrt(ρr))
∂wjt

= ρr
∑
k∈Jm

(w∗kt − µkt)
∑
h∈Jr

∂qkt
∂pht

∂pht
∂wjt

.

Second, note that at the equilibrium wholesale and retail prices, ∂πrt(ρr)
∂wjt

< 0. This strict
monotonicity implies that one can write wjt as a function of πrt(ρr) along the path of equilibrium
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outcomes. Then, the slope of the bargaining frontier at the equilibrium profit outcomes is:

∆πmt(πrt(w∗jt,w∗−jt))
∆πrt(wjt,w∗−jt)

=
∆πmt(πrt(w∗jt,w∗−jt))/∆wjt

∆πrt(wjt,w∗−jt)/∆wjt

=
q∗jt + ρr

∑
k∈Jm

(w∗kt − µkt)
∑
h∈Jr

∂qkt
∂pht

∂pht
∂wjt

−q∗jt

= −1− ρr

∑
k∈Jm(w∗kt − µkt)

∑
l∈Jr

∂qkt
∂plt

∂plt
∂wjt

q∗jt

= −1− 1
q∗jt

∂ (πmt(ρr) + πrt(ρr))
∂wjt

.

The term −1 simply reflects the mechanical inverse relationship between the changes in re-
tailer r’s and manufacturer m’s profits with respect to wjt (i.e., a zero-sum relationship). The
second term represents the rate of surplus transfer from retailer r to manufacturer m through
wjt (i.e., the steepness of the bargaining frontier), which is directly related to ∂(πmt(ρr)+πrt(ρr))

∂wjt
.

E Proof of Theorem 1
Without loss of generality, we fix the observed cost variables vj and abuse the notation µj =
mcj(ωj). Our result can be then understood as being conditioned on the observed cost variables.
We remove notation t to simplify the exposition. We assume away the pathological case in which
the determinant of D(q∗,p∗;λ,ρ)� ΩM is a constant function.

At p∗ and w∗, we derive the FOCs for the downstream price competition: for j ∈ Jr,

qj(p∗; ξ) +
∑
k∈Jr

(p∗k − w∗k) ∂qk(p∗; ξ)
∂pj

= 0. (E.1)

Denote by pe(ξ,w) the correspondence from (ξ,w) to p determined by (E.1). We then have
p∗ ∈ pe(ξ,w∗). Denote by we(ξ,µ;λ,ρ) the correspondence from (ξ,µ) to w determined by
(6). We then have w∗ ∈ we(ξ,µ;λ,ρ).

Assumption E.1.

(i). ∂q
∂p is negative definite.

(ii). (ξ,ω) is absolutely continuous with respect to Lebesgue measure in R2J . Denote by f(ξ,ω)

their (conditional) density function. Moreover, µj(·) is continuous in ωj.

(iii). pe(ξ,w) is a vector of continuous functions of w for any ξ in its domain Ξ.

(iv). we(ξ,µ;λ,ρ) is a vector of continuous functions of µ for any ξ ∈ Ξ.

(v). p−jk (wFr/{j}; p−Jr ) is a continuous function of wFr/{j} for any k 6= j, k ∈ Fr(j).

Assumption E.1(i) strengthens the negative semidefinite Slutsky matrix to negative definite. It is
compatible with the connected substitutes conditions (Berry, Gandhi and Haile, 2013) as well as
demand with complementarity (Wang, 2021). Assumption E.1(ii) is satisfied when the demand
and supply shocks are continuous. Assumptions E.1(iii) and (iv) require the downstream pricing
competition and the upstream Nash bargaining to have unique (and continuous) outcomes, both
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of which are often necessary for empirical research and counterfactual simulations. Similarly,
Assumption E.1(v) requires retailer’s re-optimization of the downstream prices in the case of
bargaining disagreement to have unique (and continuous) outcomes. This is equivalent to that
given the equilibrium prices of products owned by retailers other than r, the FOCs of the profit
maximization when one of r’s product is removed have a unique (and continuous) solution.

The proof proceeds in four steps.

Step 1. pe(ξ,w) is almost everywhere (a.e.) differentiable with respect to w for given ξ.
Using Assumption E.1(i), we can invert (E.1) and express the price-cost margins of retailers
as:28

p−w = −
(

OR ◦
∂q
∂p

)−1
q. (E.2)

(E.2) defines a continuously differentiable mapping from p ∈ RJ to w ∈ RJ . According to Sard’s
theorem, the set W̃ =

{
w ∈ RJ : Det

(
∂w
∂p (pe(ξ,w))

)
= 0
}
is of zero Lebesgue measure. Then,

on RJ\W̃, according to the Inverse Function Theorem, ∂pe
∂w exists and equal to

[
∂w
∂p (pe(ξ,w))

]−1
.

Step 2. p = pe(ξ,w) is real analytic with respect to w ∈ RJ \ W̃. Moreover, RJ \ W̃ is a
union of up to countable connected open sets.
Because qj(p; ξ) is real analytic with respect to p ∈ RJ , combining this with (E.2), we then
obtain that w can be written as a real analytic function of p. Then, according to the Inverse
Function Theorem, p = pe(ξ,w) is real analytic with respect to w ∈ RJ \ W̃.

Note that the set P̃ =
{

p ∈ RJ : Det
(
∂w
∂p (p)

)
= 0
}
defines the zero set of the real analytic

function Det
(
∂w
∂p (p)

)
. It can then be written as ∪J−1

k=0Sk, where Sk is a k-dimensional submani-
fold in RJ (Theorem 6.3.3 on page 168 in Krantz and Parks (2002)). Consequently, RJ \ P̃ is an
union of up to countable connected open sets. Because of the continuity of pe(ξ,w) with respect
to w (Assumption E.1(iii)), RJ \ W̃ = (pe)−1(ξ;RJ \ P̃) is also an union of up to countable
connected open sets.

Analogously, we can prove that the best response function of retailer r for product j ∈ Fr,
pj(w; p−Fr ), is real analytic with respect to w for given p−Fr . Then, pj(w; pe−Fr (ξ,w)) is real
analytic with respect to w. In addition, the price adjustment function for product k 6= j and
k ∈ Fr(j), p−jk (wFr/{j}; p−Jr ) is real analytic with respect to wFr/{j} given p−Jr . As a result,
p−jk (wFr/{j}; pe−Fr (ξ,w)) is real analytic with respect to w. To simplify the exposition, we
abuse the notation W̃ to denote the finite unions of all the zero measure sets (which has still
zero Lebesgue measure) of these real analytic functions. Then, RJ \ W̃ that is still a union of
up to countable connected open sets.

Step 3. The matrix D(q∗,p∗;λ,ρ)� ΩM is a.e. (in the space of w) non-singular.
Because of the result in Step 2, at the true λ0 and ρ0, each component in D(q∗,p∗;λ0,ρ0)�

ΩM is a real analytic function of w ∈ RJ \ W̃. Then, its determinant is also real analytic with
respect to w ∈ RJ \ W̃ and therefore, according to Mityagin (2020), the set of zeros of the

28 The ownership matrix OR is a block-diagonal matrix with each block being a square matrix of 1s. Because
∂q
∂p is negative definite, then − ∂q

∂p is positive definite and therefore a P-matrix (Gale and Nikaidô, 1965). Then,
all the principal minors of ∂q

∂p are negative and OR ◦ ∂q
∂p is invertible.
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determinant in RJ \ W̃ is of zero Lebesgue measure. Moreover, W̃ is also of zero Lebesgue
measure. As a result, the determinant is a.e. non-zero in RJ .

Step 4. Given ξ, denote by Wnz the set of w such that the determinant of D(q∗,p∗;λ0,ρ0)�
ΩM is non-zero. According to Step 3, Wnz has full Lebesgue measure in RJ . Then, for any
w′ ∈ Wnz, by using (6), we can uniquely back out a µ′. Denote by Ωµ the set of all such
µ′. According to Assumption E.1(iv), w = we(ξ,µ;λ,ρ) then defines an a.e. continuously
differentiable bijection from Ωµ to Wnz. Using Assumption E.1(ii) and the monotonicity of
mcj(ωj) in ωj , we obtain:

Pr(we(ξ,µ;λ,ρ) ∈Wnz) =
∫
dξ

∫
1we(ξ,mc(ω);λ,ρ)∈Wnzf(ξ,ω)(ξ,ω)dω

=
∫
dξ

∫
1w∈Wnzf(ξ,w)(ξ,w;λ,ρ)dw

= 1,

where f(ξ,w)(·;λ,ρ) is the density function of (ξ,w) given (λ,ρ). The proof is completed.

F Arguments for the Invertibility
In this appendix, we propose invertibility arguments that do not rely on the real analyticity
in Theorem 1. To simplify the exposition, we remove the notation t. Consider the following
restrictions on demand and supply.

Assumption F.1.

(i). For any k 6= j, (w,p) and ρ ∈ {0, 1}, q−jk (ρ) ≥ qk(ρ) and q−j0 (ρ) > q0(ρ). Moreover,
∂qj
∂pj

< 0 and ∂qj
∂pk
≥ 0 for j, k = 1, ..., J and j 6= k.

(ii) (Single-product retailer) ΩR = IJ×J and ∂pj
∂wj
≥ 0 for j = 1, ..., J .

Assumption F.1(i) restricts products to be weakly substitutes. It also captures the intuition
that removing a product is at least a weakly positive demand shock for other products and a
strictly positive shock for the outside option. Assumption F.1(ii) specifies downstream retailer
to be single-product. Moreover, the dependence of each product’s retail price on its wholesale
price is non-negative.

Proposition 1. Suppose that Assumption F.1 holds. Then, Det (D(q∗,p∗;λ,ρ)� ΩM ) 6= 0.

Proof. Note that at the equilibrium prices and the corresponding demand, ∂πr(ρ)
∂wj

= −q∗j < 0
for any ρ ∈ [0, 1] (see Appendix D). Besides, using Assumption F.1(i), we obtain that for any
ρ ∈ [0, 1] and k 6= j,

qk(ρ)− q−jk (ρ) = ρ(qk(1)− q−jk (1)) + (1− ρ)qk(0)− q−jk (0) ≤ 0,
J∑
k=1

(
qk(ρ)− q−jk (ρ)

)
=
[

1−
J∑
k=1

qk(ρ)
]
−

1−
∑
k 6=j

q−jk (ρ)


= q−j0 (ρ)− q−j0 (ρ)

> 0.

(F.1)
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Then, matrix D1 :=
[

1−λj
λj

∂πr(j)(ρr(j))
∂wj

(
qk(ρr(j))− q−jk (ρr(j))

)]
j,k=1,...,J

is strictly diagonally
dominant with negative diagonal and non-negative off-diagonal elements.

When OR is the identity matrix, (6) becomes

∑
k∈Jm

(w∗k − µk)
[
− 1− λj

λj
q∗j

(
qk(ρr(j))− q−jk (ρr(j))

)
+ ρr(j)

∂qk
∂pj

∂pj
∂wj

(πr(j)(ρr(j))− π−jr(j)(ρr(j)))
]

= −(πr(j)(ρr(j))− π−jr(j)(ρr(j)))q∗j .

Because of Assumption F.1(i), then the matrix

D2 =
(
ρr(j)

∂qk
∂pj

∂pj
∂wj

(πr(j)(ρr(j))− π−jr(j)(ρr(j)))
)
j,k=1,...,J

has non-positive diagonals and non-negative off-diagonal elements. Then, D(q∗,p∗;λ,ρ) =
D1 + D2 is strictly diagonally dominant and therefore a P -matrix (Gale and Nikaidô, 1965).
Consequently, D(q∗,p∗;λ,ρ) � ΩM , which is block-diagonal with the diagonal elements being
the principal minors of D(q∗,p∗;λ,ρ), has a positive determinant. The proof is completed.

G Examples 1 and 2 : Details
Example 1. Under the linear demand condition, we have:

p1(w1; p2) = δ1 + w1 + 0.5p2

2 , p1(w1; p2)− w1 = δ1 + 0.5p2 − w1

2 ,

q1(p1(w1; p2), p2) = δ1 + 0.5p2 − w1

2 ,

p2(w2; p1) = δ2 + w2 + 0.5p1

2 , p2(w2; p1)− w2 = δ2 + 0.5p1 − w2

2 ,

q2(p1, p2(w2; p1)) = δ2 + 0.5p1 − w2

2 .

At w = w∗, we have p∗1 = p1(w∗1 ; p∗2) and p∗2 = p2(w∗2 ; p∗1). Then,

p∗1 = 8
15 (w∗1 + δ1) + 2

15 (w∗2 + δ2) ,

q∗1 = p∗1 − w∗1 = 8
15(δ1 + w∗1) + 2

15 (δ2 + w∗2)− w∗1 ,

p∗2 = 2
15 (w∗1 + δ1) + 8

15 (w∗2 + δ2) ,

q∗2 = p∗2 − w∗2 = 2
15(δ1 + w∗1) + 8

15 (δ2 + w∗2)− w∗2 .

Plugging p−1
2 , p−2

1 and (q∗1 , q∗2) in (6), we obtain (16).

Example 2. Under the exponential demand, we have

p(w) = ε

ε− 1w, p(w)− w = 1
ε− 1w,

q(p(w)) = δ

(
ε

ε− 1

)−ε
w−ε.

At w = w∗, we have p∗ = p(w∗), and q∗ = q(p∗). Then, setting w = w∗ in (6) and plugging
these quantities, we obtained the desired result.
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Failure of identification: linear demand with J = 1. Consider a case in which
there is a single manufacturer and a single retailer, producing and selling one product respec-
tively. Moreover, the demand for this product is linear, q(p) = δ − αp. Then, using the FOC of
the retailer’s profit maximization in the frictionless state, we obtain

p(w) = β + αw

2 , p(w)− w = β − αw
2α ,

q(p(w)) = β − αw
2 .

At w = w∗, we have p∗ = p(w∗), and q∗ = q(p∗). Then, setting w = w∗ in (6) and plugging
these quantities, we obtain

w∗ − µ = 1
2

[
1− λ
λ

+ ρ

2 + 1
2

]−1(
δ

α
− µ

)
.

The variation in demand shifter δ and/or rotator α can only identify 1−λ
λ + ρ

2 but not separably
λ and ρ. However, one can still identify τ in µ by varying the cost shifter in µ.
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