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1 Introduction

Since the seminal contribution of Sims (1980), numerous structural VAR methods have been

developed to study the propagation of unobserved unanticipated shocks to a dynamic system

of observed macroeconomic variables. These identification schemes which rely on exclusion or

sign constraints derived from economic analysis typically involve restrictions on the second-order

moments of the shocks but leave their higher-order moments unrestricted.1

When shocks are not far from being Gaussian, higher moments restrictions are of little use

to identification as they are close to being redundant with the ones imposed on second-order

moments. However, macroeconomic and financial data often look non-gaussian with normal-

time variations coexisting with unusually large positive or negative changes. Examples are the

various types of financial crises potentially leading to sharp recessions, inflation surges induced

by large supply disruptions, or abrupt changes in the stance of macroeconomic policies. These

large and unpredictable events can be viewed as being triggered by structural shocks that are

drawn from a distribution with fat tails of potentially asymmetric mass.

In this paper, we introduce a new identification method that complements the second order-

moment restrictions that are popular in the structural VAR literature with higher-order moment

properties of the structural shocks of interest.

We postulate that the DGP of the economy is a VAR with uncorrelated non-gaussian struc-

tural shocks, therefore departing from gaussianity while keeping the simplicity of a linear trans-

mission mechanism. In this setup, orthonormal rotations of the underlying shock processes leave

their variance-covariance matrix unchanged but have an impact on their third and fourth mo-

ments and it is impossible to recover the “true impact” of a structural shock on the observable

variables without reproducing its correct higher-moment. As we show, if these higher-order

moments were to be known, this property could be used to point identify the impact of the

structural shocks of interest on the observable variables. However, in practice, imposing ex-

act equality restrictions on higher moments of structural shocks is challenging. Indeed, these

shocks are not directly observable and so on need to work with estimated proxies. Moreover,

and related, in-sample estimates of higher-order moments can be very imprecise for sample sizes

typically encountered in macroeconomic applications. Overall, as Montiel Olea, Plagborg-Møller

and Qian (2022) underlines, inference based on these higher-moments equality restrictions can

be misleading. Moreover, the approach point-identifies structural shocks using statistical as-

sumptions rather than restrictions derived from economic theory.

Our approach is more flexible. We impose inequality restrictions on higher moments—

typically the third and/or the fourth moments—of structural shocks of interest that we postu-

late to be non-gaussian. Such postulated non-gaussian features can be motivated by indirect

1See Ramey (2016), Nakamura and Steinsson (2018b) for surveys.
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empirical evidence or by economic reasoning. Rather than point identification, higher-order

moment inequality restrictions are set-identifying conditions. They can thus be combined with

other set-identification constraints derived from economic analysis, typically sign restrictions.

We show analytically how the identified set shrinks when we impose an inequality restriction on

the third moment of the structural shock in a simple illustrative case.

The implementation of our method requires to deal with two difficulties. First, to address

the potential small-sample bias issue associated with the estimation of higher order moments.

To do so we treat the distribution of the structural shock of interest non-parametrically and

impose restrictions on the distance between different percentiles of the empirical distribution

to generate the desired asymmetry and/or fat-tailedness.2 Second, to estimate and conduct

inference in a VAR with non-gaussian errors. To do so, we use a Bayesian approach building on

the work of Petrova (2022) to which we add a few simulation steps to achieve identification via

higher-moment restrictions.

We study the performances of our method by applying it to simulated data from (i) a

calibrated textbook New Keynesian model as in Gaĺı (2015) but in which we assume a Laplace

distribution for the monetary policy shock, and (ii) a medium scale DSGE Smets and Wouters

(2007)’s model estimated on US data. As we document, the monetary policy shock recovered

from that estimated model exhibits significant excess kurtosis. We identify monetary policy

shocks by combining the agnostic sign restrictions of Uhlig (2005) – which impose that monetary

policy shocks move the interest rate and prices move in opposite directions but leave the impact

on real activity unrestricted – with a higher-order moment inequality restriction requiring that

monetary policy shocks exhibit minimal excess-kurtosis.

As Wolf (2020) shows, while a monetary policy tightening has a contractionary impact on

output in the models used to generate the data, Uhlig (2005)’s sign restrictions lead to estimate

that it has no clear effect on output. In contrast, when combining these signs restrictions with

an inequality restriction on the excess kurtosis of monetary policy shocks, we obtain that the

effect is clearly contractionary. As we document, the reason is that our method strongly reduces

the masquerading issue underlined by Wolf (2020), that is the fact that under Uhlig (2005)’s

identification scheme combinations of positive supply and demand shocks, that have a positive

effect on output, can masquerade as contractionary monetary policy shocks.

We also compare the performances of our approach with those of a method that exploits the

independence of structural shocks and relies on exact equality constraints on their third and/or

fourth moments. We show that, while this more restrictive approach allows to point identify

2Loosely speaking, robust estimators of the kurtosis for example consider the ratio between the distance of the
percentiles in the tails and the distance between the percentiles close to the median. In the case of leptokurtic shocks,
the larger the numerator, the thicker the tails; the smaller the denominator the more clustered is the distribution
around the median. Robust estimators of the skewness compute the distance between mean and median.
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the structural shock of interest and performs very well for very large samples, our method is

much more accurate when applied to samples of the size typical in macroeconomic studies. The

reason is that getting unbiased in-sample estimates of higher-order moments then proves to be

quite challenging as these are very sensitive to outliers and minor perturbation of the data.

We then use our identification method to study three empirical questions. In a first applica-

tion, we revisit the question of the effect of monetary policy on output and inflation, this time

using real rather than simulated data. We start by documenting that while various measures

of US monetary policy shocks proposed in the literature have a correlation that can be quite

low, they all feature significant excess kurtosis compared to Gaussian processes. Furthermore,

we also uncover that property in various monetary policy shock measures for the euro area and

the UK. We thus exploit that robust feature to identify monetary policy shocks by imposing

that their excess kurtosis is larger than a lower bound, which is derived from the empirical

distributions of the various proxies available. As above, we combine this higher-order moment

inequality restrictions with Uhlig (2005)’s agnostic sign restrictions. While the impact of mone-

tary policy shock on output is non-significant when using sign restrictions only, our methodology

leads to estimate that a monetary policy tightening induces a significant contraction in output.

This is consistent with the results obtained with alternative ways to sharpen the identification

of monetary policy derived from minimal sign restrictions, such as the narrative restrictions of

Antolin-Diaz and Rubio-Ramı́rez (2018) or additional sign restrictions as in Arias, Caldara and

Rubio-Ramı́rez (2019).

We then turn to two questions that have been less investigated and for which restrictions

on higher-order moments of structural shocks are quite natural. In a second application, we

study the macroeconomic impact of sovereign risk shocks in the euro area. Following the 2010-

2012 Euro Area sovereign debt crisis, these effects were prominent in Euro Area policymaker

discussions. However there is little quantitative assessment of their impact. Bocola (2016)

emphasizes the recessionary impact of these shocks using a structural model. In the structural

VAR approach spirit, we propose an estimation that uses less specific structural assumptions.

We estimate a macro-financial VAR model of the euro area which includes the Italian-German

spread on sovereign bonds. We think of sovereign risk shocks as shocks that can ’relatively’

frequently be very large and positive, that is which feature a positively skewed distribution with

fat-tails. We therefore constraint that sovereign spread shocks meet some inequality constraints

on their third and fourth moments. We combine these higher-order moment restrictions with

the following minimal sign restrictions: a sovereign spread shock increases on impact and for

the following month the 10 year Italian government bond yield, the Italian-German spread and

the non-financial corporate borrowing costs. We find that an increase in sovereign risk leads

to an immediate pronounced tightening of credit conditions. The real economy of the EA also
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responds on impact after the shock and these effects are re-absorbed in less than three years

after the shock. The effects on the unemployment rate of the EA are also quite severe and

last for longer. In contrast, the macroeconomic impact of the sovereign shocks is found to be

non-significant when one relies on sign restrictions to identify them.

Finally, in a third application, we investigate the impact that geopolitical risks have on the

US economy. We use the geopolitical risk index developed by Caldara and Iacoviello (2022)

which is based on newspaper article coverage of geopolitical tensions. This index is both right-

skewed and fat-tailed reflecting that geopolitical tensions can lead to very large positive increases

in geopolitical risks and that happen relatively frequently compared to the Gaussian case. We

propose to identify geopolitical risk shocks by combining third and fourth-order moment inequal-

ity restrictions with some minimal sign restrictions which assume that geopolitical risk tighten

financial conditions on impact. Consistent with what Caldara and Iacoviello (2022) obtain with

the same VAR system but a recursive identification scheme, and consistent with the literature

emphasizing the macroeconomic effects of uncertainty (Bloom 2009), our results indicate that

an increase in geopolitical risk lowers investment and hours. Our estimated effects are signif-

icantly larger and more persistent than what Caldara and Iacoviello (2022) obtain and show

that geopolitical risks lead to a persistent tightening of US financial conditions. Importantly,

using sign restrictions alone leads to very imprecise and statistically non-significant estimated

macroeconomic effects of geopolitical risk shocks.

The paper is organized as follows. The next section (1.1) discusses the existing literature.

Section 2 presents our identification approach and details the estimation strategy. Section 4

shows the role of kurtosis in identifying the effect of monetary policy on output in standard NK

models. Sections 5-7 illustrate the usefulness of our approach in three empirical applications:

measuring the real effects of the US conventional monetary policy, the impact of sovereign spread

shocks in the euro area and the transmission of geopolitical risk shocks.

1.1 Literature review

Our paper contributes to the literature that relies on non-gaussian features of macroeconomic or

financial data to identify structural shocks. Existing methods typically assume a specific non-

gaussian distribution for the VAR reduced form errors and postulate that these are independent

(see Lanne, Meitz and Saikkonen 2017, Gouriéroux, Monfort and Renne 2017, 2019, among

others). These strong assumptions allow to point identify the system of underlying structural

shocks. Jarociński (2021) implements this approach using intraday variations in interest rates

futures to identify the effects of conventional and unconventional US monetary policy shocks

on financial markets. Other scholars (e.g. Lanne, Liu and Luoto 2022, among others) achieve

statistical identification of the structural shocks by minimizing the distance between the VAR
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model-implied empirical innovation higher-order moments and sample counterparts. Finally,

some studies exploit time variation in the conditional variance of shocks to identify them (see

Rigobon 2003, Lewis 2021, Brunnermeier, Palia, Sastry and Sims 2021, among many others).

Lewis (2024) provides a survey of identification methods using higher-order moments properties.

Montiel Olea et al. (2022) underline three potential drawbacks of these methods. First, they

achieve point-identification of shocks by relying on strong statistical assumptions, in particular

by ruling out situations where shocks can be large at the same time, which may be less justified

than restrictions based on economic reasoning. Second, they suffer from potentially large in-

sample biases as they rely on point-estimates of higher-order moments for all the shocks in

the system, each of these being very sensitive to outliers for sample of limited size. Third,

they identify structural shocks using statistical properties rather than constraints derived from

economic reasoning. By contrast, we make much less restrictive assumptions as we merely

postulate deviations from Gaussianity for the structural shocks of interest. We do not rely

on the independence of shocks and allow for co-skewness and co-kurtosis. We also treat the

higher-order moments properties as necessary restrictions that structural shocks should fulfill.

Importantly, and differently from previous contributions, this generates a set-identification of the

shock of interest as opposed to the system point identification. This, in turn, allows us to couple

these restrictions with other popular macroeconomic assumptions based on the signs (or zero)

impact of the shock on the endogenous variables, magnitude or elasticity bounds or narrative

restrictions on historical episodes. In this respect our approach does not substitute to economic

reasoning. Moreover, our methodology does not rest on in-sample estimates of the empirical

innovation higher-order moments. It imposes inequality restrictions on the higher moments of

the structural shock itself using non-parametric robust methods based on the distance between

different percentiles of the shock empirical distribution.

Our approach is also related to the works aiming at sharpening set-identified structural

shocks obtained with restrictions derived from theory. Kilian and Murphy (2012) and Wolf

(2020, 2022) underline that imposing minimal and uncontroversial sign restrictions alone is

often too weak to provide adequate identification of structural shocks. We show that exploiting

higher-order moment restrictions can sharpen the identification of non-gaussian shocks achieved

by imposing minimal sign restrictions. Our method thus complements the recent methods

introduced to solve that issue by either combining sign and narrative restrictions (Antolin-Diaz

and Rubio-Ramı́rez 2018), by considering additional sign restrictions (Arias et al. 2019), or by

relying on proxy-structural shocks that can be used as external instruments (Stock and Watson

2012, Mertens and Ravn 2013, Gertler and Karadi 2015, Barnichon and Mesters 2020, Känzig

2021).

Strikingly, our method delivers results that are comparable to the ones obtained with several
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of these alternative approaches when applied to the identification of monetary policy shocks. In

particular, it identifies that monetary policy tightening has a contractionary impact on GDP.

This effect is sometimes less clear when using proxy-structural monetary shocks as external

instruments because these proxies can also capture other macroeconomic news and therefore

fail to meet the orthogonality condition of an instrument (see Nakamura and Steinsson 2018a,

Jarociński and Karadi 2020, Miranda-Agrippino and Ricco 2021, Andrade and Ferroni 2021).

Jarociński (2021) shows that US monetary surprises obtained using intraday variations in inter-

est rates futures around FOMC announcements are leptokurtic. We document that this feature

can be found in a wide range of proxies for monetary policy shocks – including the recent

measure by Aruoba and Drechsel (2022) who rely on natural processing language techniques

to purge intraday monetary policy surprises from the potential non-gaussianity of the Fed staff

information contained in the Greenbook – and we use that robust characteristic to identify their

effects. As we illustrate, our method can also be implemented to address questions where these

alternatives methods are more difficult or less natural to implement.

Our paper is closely related to Drautzburg andWright (2023) who also exploit non-gaussianity

to sharpen the identified set of structural shocks obtained with sign restrictions. However, their

use of the higher moment restrictions is different from what we do. They refine the identification

set by discarding rotations that are not consistent with statistical independence of the struc-

tural shocks and look at the matrix of higher order moments of candidate shocks to enforce that.

Specifically, their methodology rules out shocks whose higher moments exhibit co-skewness or

co-kurtosis. We do not impose independence. In contrast, we require that a specific struc-

tural shock has non-gaussian features. Moreover, their approach requires computing the higher

order moments (or the marginal empirical distribution) of all the structural shocks in the sys-

tem which grows with the dimension of the VAR, therefore increasing the risk of misleading

inference. Our restrictions are constructed on a handful of robust and non-parametric higher

moments estimates and do not depend on the number of endogenous variables in the VAR.

Finally, our paper is connected to the literature arguing that rare and large shocks help to

understand how financial markets price macroeconomic risks (Barro 2006, Gabaix 2012, Gourio

2012) and more generally to the works showing that macroeconomic data favors models featuring

non-gaussian shocks (e.g. Cúrdia, Negro and Greenwald 2014). We assume that structural

shocks are non-gaussian and use this properties to narrow the estimated effects of those shocks

on macroeconomic variables.

2 Identification with higher-order moments

Let us consider that the econometrician observes a n−dimensional vector of empirical inno-

vations, ιt, that are uncorrelated white-noise processes with unit variance, i.e. ιt ∼ (0, I).
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Typically, these innovations will be obtained as the orthogonalized reduced-form residuals of a

VAR model estimated on a long time series of data. In this section, we focus on the identifica-

tion scheme and abstract momentarily from estimation and inference issues, which we discuss

in Section 3. We postulate that these innovations are linear combinations of a n−dimensional

vector of structural shocks, νt, namely,

ιt = Aoνt,

where Ao is the true orthonormal rotation matrix and where the elements of νt have unit-variance

and non-gaussian third or fourth moments, i.e. E(ν3i,t) = ζi ̸= 0 or E(ν4i,t) = ξi ̸= 3 for some i.

In this section, we further assume that E(νi,tνj,tνk,t) = 0 for all i ̸= j, k, E(νi,tνj,tνk,tνn,t) = 0

for all i ̸= j, k,m and E(ν2i,tν
2
j,t) = 1 for all i ̸= j. 3

2.1 Equality restrictions

The higher order moments have been used in Independent Component Analysis (ICA) for re-

constructing the original (demixed) sources of variations from a vector of mixed signals. The

core result of this literature is that if at most one of the components νt is Gaussian, Ao is

point identified up to sign change and permutation of its columns; therefore, all the structural

shocks can be reconstructed from the empirical innovations. This result is shown by Comon

(1994, Theorem 11) and has been discussed and used for identification in the literature, see also

Gouriéroux et al. (2019) and Lanne et al. (2017).

Regardless of the number of non-gaussian shocks in the system considered, higher-order

moments equality restrictions can be used to point identify the impact of a shock of interest as

long as it is non-normally distributed. We illustrate how in the case where such shock features

non-gaussian third or fourth moments.

A spectral decomposition approach The (n×n2) matrix collecting the third moments

can be expressed as follows

E(νtν
′
t ⊗ ν ′t) =

n∑
i=1

ζiJi ⊗ e′i,

where ei is the n× 1 vector with zeros everywhere except a one in the ith position, Ji the n×n

matrix of zeros everywhere except one in the ith position of the main diagonal. The squared

third moment matrix is thus a (n× n) diagonal matrix

E(νtν
′
t ⊗ ν ′t)E(νtν

′
t ⊗ ν ′t)

′ =

(
n∑

i=1

ζiJi ⊗ ei

)(
n∑

i=1

ζiJi ⊗ ei

)′

= Λζ ,

3This assumption is made for exposure and analytical tractability but our method applies to cases where it is
relaxed.
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where Λζ is a diagonal matrix collecting the squared third moments of the structural shocks,

ζ2i (see appendix A.2.2 for a formal derivation). Likewise, the matrix collecting the empirical

innovation third moments can be expressed as E(ιtι
′
t ⊗ ι′t) = AoE(νtν

′
t ⊗ ν ′t)(Ao ⊗ Ao)

′. This

leads to the following eigenvalue/eigenvector or spectral decomposition of the matrix collecting

the squared third moments of the empirical innovations

E(ιtι
′
t ⊗ ι′t)E(ιtι

′
t ⊗ ι′t)

′ = AoΛζA
′
o.

This spectral decomposition implies that the eigenvalue corresponds to the square of the third

moments of the structural shock and the corresponding unit-length eigenvector coincides with

the column of the original mixing or impact matrix. Therefore, as long as the shock of interest

has non-zero third moment and differs from the other structural shock third moments, we can

identify its impact on the empirical innovations. Note however that this requires using the full

array of empirical innovations third moments. Moreover, such an identification is obtained up to

a sign switch and permutation of columns. This implies that one needs additional assumptions

to point identify the shock of interest. For instance one can assume that it has the largest

third moment, in which case it is associated to the largest eigenvalue in the above spectral

decomposition.

Similar arguments carry over to fourth moments. In fact, we can express the (n2×n2) matrix

collecting the fourth moments in excess of the standard normal ones as follows

E(νtν
′
t ⊗ ν ′t ⊗ νt)−Kz =

n∑
i=1

xiJi ⊗ Ji,

where xi is the excess kurtosis of the structural shock i (i.e. xi = ξi−3) and Kz is the matrix of

fourth moments of a normal standard multivariate distribution. The latter is a diagonal matrix

with non-zero elements only on the positions j(n+1)−n for j = 1, ..., n. The matrix collecting

the fourth moments of the empirical innovations, ιt, in excess of the standard normal ones can

be expressed as

E(ιtι
′
t ⊗ ι′t ⊗ ιt)−Kz = (Ao ⊗Ao)(E(νtν

′
t ⊗ ν ′t ⊗ νt)−Kz)(Ao ⊗Ao)

′ =

= PΛξP
′,

where Λξ is a diagonal matrix where the first largest n eigenvalues corresponds to the excess

kurtosis of the structural shocks, see appendix A.2.3. If one further assumes for example that

the shock of interest has the largest fourth moment, one can derive the column of the original

rotation matrix by taking the first n elements of the first eigenvector and divide them by the

absolute value of the first elements of the eigenvector, i.e. P (1 : n, 1)/
√
|P (1, 1)|.
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Remarks When all the elements of νt are non-gaussian, the procedure allows to point identify

all the columns in Ao up to a permutation of columns and a sign switch.4 The other way around,

when νt is a Gaussian distributed random vector, moments higher than the second are not useful

for identification since third moments are zero and fourth moments are invariant to orthonormal

rotations.5

Limitations While this approach allows to achieve point identification of some shocks of

interest, it is also prone to three main limitations which are worth emphasizing. These are rem-

iniscent of the ones made by Montiel Olea et al. (2022). First, it requires that structural shocks

have zero cross third and fourth moment, so it is not suited for situations where the economy

becomes more volatile no matter the source of shocks. Second, the method requires to know

the full set of higher-order moments of the empirical innovations, even when one is interested

in identifying the impact of a single shock. The number of such moments grows significantly

with the size of the VAR model. This is problematic as, as is well-known, estimates of higher-

order moments can be very sensitive to outliers or minor perturbation of the data and so these

might be imprecise in short samples. By using several potentially imprecise estimates of these

higher-order moments, the methodology reinforces the risk of obtaining corrupted estimates of

the shock’s impact on observables.6 Third the eigenvalue decomposition identifies the shock up

to a permutation of columns. This implies that one does not know where to locate one shock of

interest compared to the other. Related to that, the procedure does not imply that the shocks

have an economic contain, since they are obtained only from statistical properties and not from

restrictions implied by economic reasoning.

2.2 Inequality restrictions

Rather than achieving point-identification from a set of potentially imprecise estimates of higher

moments of the empirical innovations, our approach relies on inequality restrictions on the higher

moments of the structural shock itself. These restrictions are set identifying, and can therefore

be combined with other set-identification restrictions.

A necessary condition for identification The starting point of our approach is a result

that maps the higher moments of the structural shock of interest to the column that measures its

impact on the empirical innovations. Without loss of generality assume that we are interested in

4When using restrictions on skewness for identification, Ao is made of the eigenvectors of the n × n matrix of
squared third-moments, E(ιtι

′
t ⊗ ι′t)E(ιtι

′
t ⊗ ι′t)

′. When using restrictions on kurtosis, Ao is reconstructed using the
largest eigenvectors of the n2 × n2 matrix collecting the fourth moments of the empirical innovations, E(ιtι

′
t ⊗ ι′t ⊗ ιt)

by applying the procedure outlined in Kollo (2008). See appendix A.2.4 for more details.
5See Appendix A.2.1
6We illustrate this point in section 4.2 using as laboratory a standard macro New-Keynesian model.
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the last (nth) shock, and let αn bet the rightmost (nth) columns of Ao (the true impact matrix),

which measure the impact of the structural shocks on the empirical innovations.

Proposition 1 Let ν̆n,t = a′
nιt be a candidate structural shock with an a unit-length vector of

weights. Let αn denote the ‘true’ impact of the structural shock on the empirical innovations.

When an = αn, then the candidate shock (ν̆n,t) has the same higher-order property than the

‘true’ structural shock.

The proof is in Appendix A.2.

The proposition offers a necessary condition for identification. Consider a rotation matrix

and an associated candidate structural shock ν̆n,t that leads to different higher moments than

the structural shock, then, according to the proposition, it must be the case that an ̸= αn. In

other words, it is impossible to get the true rotation matrix without generating the correct

higher moments. This implies that one can discard all the rotations that are inconsistent

with the conditions imposed on the higher order moments of the structural shock because

these rotations are inconsistent with the true impact of the structural shock on the empirical

innovations. In particular, the set of admissible rotations can be reduced by imposing the

desired higher moments to lie in a preassigned interval. When the underlying data generating

process is consistent with these inequality restrictions, that is the true structural shock exhibits

deviation from gaussianity, higher-order moment inequality restrictions allows to shrink the set

of rotations.

The other way around, if the ‘true’ moments of the structural shocks of interest are incon-

sistent with the restriction, the set of admissible rotations is empty. E.g., if we assume that

monetary policy shocks are leptokurtic while they are not in the true data generating process,

we will not find rotations satisfying the restrictions. It is important to highlight that similar

considerations apply also to sign, magnitude or narrative restrictions; if we impose ‘incorrect’

restriction on –say– the IRF of the structural shocks either the set of accepted rotation is empty

or the identification of the shock is corrupted because it does not reflect the sign pattern of the

data generating process.

Restrictions considered While a large set of restrictions can potentially be considered, we

focus on restrictions on the third and fourth moments of the distribution of the structural shock.

Let S(x) and K⋆(x) denote estimators of respectively the skewness and the excess kurtosis of

a variable x. The first type of restrictions is on the shape of the distribution of the structural

shock which can be assumed to feature either asymmetry or fat-tails or both, as follows:

Restriction 1 (Asymmetry) The structural shock x features a longer tail on the right (left)

side of the distribution such that its skewness is greater than positive threshold, i.e. S(x) > ϵS

(S(x) < ϵS).
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Restriction 2 (Fat-tailedness) The structural shock x features tails ticker than the normal

distribution such that its excess kurtosis is greater than positive threshold, i.e. K⋆(x) > ϵK.

These restrictions can be combined together in situations where the structural shock is assumed

to have both an asymmetric and leptokurtic distribution. Alternatively, one can postulate that

the structural shock is non-Gaussian without specifying whether the deviation stems from its

third or fourth moment as follows:

Restriction 3 (Non-gaussianity) The structural shock x is not distributed as a Gaussian

distribution if the absolute values of skewness or of excess kurtosis is positive, i.e. |S(x)| > ϵS >

0 or |K⋆(x)| > ϵK > 0.

Finally, another natural restriction is to impose a ranking on the third or on the fourth moment

of the shock of interest as follows:

Restriction 4 (Ranking) The structural shock x1 has the largest absolute value of skewness

or excess kurtosis (or both) among all the shocks in the system, i.e. xj with j = 2, .., n, so that

we have for each j ̸= 1

|S(x1)| > |S(xj)|

|K⋆(x1)| > |K⋆(xj)|.

How to specify HoM inequality restrictions in practice By definition, one does not

observe structural shocks. The higher order restrictions are structural identification assumptions

that can be grounded either on theoretical insights or on empirical evidence using proxy for

unobserved structural shocks. Our applications below provide examples using each type of

motivation.

Once the type of restriction is chosen, the question is how to choose the thresholds of the

inequality restrictions. This amounts to determine a quantification of how much deviation from

the normal deviation is postulated. For skewness a reasonable cutoff point is ϵS = 0.1. This

means that median (mode) and mean are at least ten (thirty) percent apart. For kurtosis,

setting ϵK = .1.5 amounts to assume that realizations larger than 3 standard deviations should

occur at least once every hundred observations (as opposed to roughly one every seven hundred

observations as in the Gaussian case). These numbers are clearly indicative and in general they

depend on how much non-gaussianity a researcher is willing to impose. Alternatively, one can

use values available in other studies in the literature that offer empirical estimates of the shock

of interest, e.g. see section 5.1.

Remark that the modeler faces a trade-off when setting these bounds. Too restrictive bounds

(too large deviations from gaussiantity), can return an empty set. The other way around, too

loose bounds may lead to very imprecise identification.
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Advantages That method overcomes each of these three limitations outlined above. First, it

does not require to impose zero co-skewness or co-kurtosis across the structural shocks. Second,

it only requires estimating the third and/or fourth moment of the structural shock of interest

and allows to use robust estimators of these moments based on the percentile of the empirical

distribution of the shock7, thus avoiding computing a large number of sensitive sample third or

fourth moments which can lead to biased estimates. That risk is further mitigated by the fact

that we impose an inequality rather than equality restriction, which makes the imprecision in

the third or fourth moments estimates having less of an impact on the resulting set of estimates.

Third, inequality restrictions achieve set-identification as opposed to point-identification. Rather

than a drawback, this allows to combine these restrictions with other assumptions such as

signs, zeros, narrative, magnitude and/or statistical independence. In this sense higher-moments

inequality restrictions are modular, as they can be flexibly used standalone or in combination

with other assumptions, in particular some that have economic contain.

2.3 An analytical example

We conclude this section offering an analytical example to illustrate the main point of the

paper, that is inequality restrictions on higher moments of the structural shock can lead to

shrink the identified set of the structural parameter. To this aim, we assume that n = 2 and

that ν1,t ∼ (0, 1) and ν2,t ∼ (0, 1). Moreover, we assume that the third moments of the structural

shocks are zero and one respectively, i.e. E(ν31,t) = 0 and E(ν32,t) = 1, and and cross second and

third moments are zero, i.e. E(ν1,tν2,t) = E(ν1,tν
2
2,t) = E(ν21,tν2,t) = 0. The structural equations

are defined by

ι1,t = cos θoν1,t − sin θoν2,t,

ι2,t = sin θoν1,t + cos θoν2,t,

where θo is the ‘true’ unknown angle of rotation with θo ∈ (−π/2, π/2) so to restrict to have

positive entries in the main diagonal of the impact matrix Ao. We assume θo ̸= 0 else the

problem is trivial. The econometrician does not observe νt and only observes ιt. While first and

second moments do not depend on θo, third moments do. In particular, the population third

moments of the observed empirical innovations are given by E(ι31,t) = − sin3 θo, E(ι32,t) = cos3 θo,

E(ι21,tι2,t) = sin2 θo cos θo, and E(ι1,tι
2
2,t) = − sin θo cos

2 θo. Hence, the matrix of the third

moments of the empirical innovation is given by

E(ιtι
′
t ⊗ ι′t) =

(
sin2 θo − sin2 θo cos θo

− sin θo cos θo cos2 θo

)
︸ ︷︷ ︸

Ω

⊗
(
− sin θo cos θo

)
.

7See also appendix A.4 for a description of robust estimators of third and fourth moments.
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Since Ω is an idempotent matrix, we have that E(ιtι
′
t ⊗ ι′t)E(ιtι

′
t ⊗ ι′t)

′ = Ω. The characteristic

polynomial of Ω is (sin2 θo − λ)(cos2 θo − λ)− sin2 θo cos
2 θo and the associated eigenvalues are

zero and one respectively. This means that the first structural shock third moment equals zero

and the second structural shock third moment equals one. The eigenvector associated with the

non-zero eigenvalue is
(
− sin θo cos θo

)′
.

Our preferred approach does not use the third moments of the empirical innovations directly

and imposes weaker restrictions. In particular, we assume that the second shock has positive

skewness. Moreover, we do not make assumptions about the third moment of the other shock.

Yet, we can restrict considerably the identified set. More formally, we only consider the set of

rotations such that the following inequality is verified,

E(ν̆32,t) > 0.

Let A be a generic rotation with angle θ, i.e. A =

(
cos θ − sin θ
sin θ cos θ

)
and let ν̆t = A′ιt. The

corresponding population moment is then

E(ν̆32,t) = E(− sin θι1,t + cos θι2,t)
3 = [sin θ sin θo + cos θ cos θo]

3

= [sign(cos θo) cos(θ − θo)]
3 > 0.

Since sign(cos θo) = 1 for all θo ∈ (−π/2, π/2), the latter is positive whenever cos(θ − θo) > 0,

which occurs when in the region of points where8

max{−π/2, θo − π/2} < θ < min{π/2, θo + π/2}.

This condition allows to shrink the set of admissible rotations which otherwise would be the set

θ ∈ (−π/2, π/2); in particular, when θo is positive (negative), the lower (upper) bound shrinks.

There is a discontinuity at θo = 0. In such a case, the first (second) structural shock coincides

with the first (second) empirical innovation, all third moments are zero but the third moment

of the second empirical innovation, Eι32,t, and there is no point in considering them as a system

of mixed signals.

3 Bayesian Estimation and Identification

Our estimation and identification approach can be described as follows. We postulate that the

observed data are generated by a V AR(p) model,

yt = Φ1yt−1 + ...+Φpyt−p +Φ0 + ut,

where yt is n×1 vector of endogenous variables, Φ0 is a vector of constant and Φj are n×n ma-

trices, and given initial conditions y0, . . . , y−p+1. We assume that ut is an n−dimensional white

8More details on the solution can be found in the appendix A.3.1.
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noise process with unconditional covariance matrix Σ which is obtained as a linear combination

of the unobserved structural shocks, νt, i.e.

ut = Σ1/2ιt = Σ1/2 Ω νt,

with Ω an orthonormal matrix, ΩΩ′ = Ω′Ω = I.

Inference when shocks are non-gaussian Standard inference on VAR parameters typ-

ically postulates a multivariate normal distribution for the reduced form innovations. Such an

assumption cannot be considered in our context. We propose to adopt a robust Bayesian ap-

proach which allows to construct posterior credible sets which does not request to assume a

specific distribution of the reduced form residuals.

Our approach builds on the work of Petrova (2022). She proposes a robust and computa-

tionally fast Bayesian procedure to estimate the reduced form parameters of the VAR in the

presence of non-gaussianity. In that configuration, the Quasi Maximum Likelihood (QML) esti-

mator9 of the VAR parameters is consistent and asymptotically normal. However, inference on

the intercept is affected when innovations have a non-symmetric distribution; and inference on

Σ is affected when the innovation distribution shows excess kurtosis relative to the multivariate

normal density. Petrova (2022) derives closed-form expressions for corrected Bayesian posterior

distributions that rely on the asymptotic covariance matrix of the QML estimator. Combined

with a prior, one can draw the VAR reduced form parameters from such corrected posterior dis-

tribution without specifying the shock distribution and allowing for asymmetries and fat-tails

(or thin-tails).10

Bayesian procedure Assume that we are interested in identifying the last shock, νn,t. Let

Σ(j) and Φ(j) be the jth draw from the reduced form parameters posterior obtained using above.

The procedure to identify the structural shock using higher-order restrictions goes as follows:

I. Draw Ω̆ from a uniform distribution with the Rubio-Ramı́rez, Waggoner and Zha (2010)

algorithm;

II. Compute the impulse response function and check if the sign (or any other economic)

restrictions are verified;

III. Compute the implied structural shocks

ν̆
(j)
t = Ω̆′

(
Σ(j)

)−1/2
(yt − Φ

(j)
1 yt−1 − ...− Φ(j)

p yt−p − Φ
(j)
0 );

9The QML is the maximum estimator of the quasi-likelihood. The quasi-likelihood in this context coincides with
the likelihood of the VAR when incorrectly assuming normality of the reduced form residuals.

10See appendix A.5 for more details.
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IV. Compute S(ν̆(j)n,t) and/or K(ν̆
(j)
n,t) and check if the higher-order moment inequality restric-

tions are satisfied.

If both [II] and [IV] are satisfied, keep the draw Ω(j) = Ω̆. Then repeat [I] to [IV].

After a suitable number of iterations, the draws are representative of the posterior distribu-

tion of the impulse responses of interest. The estimation of the reduced form parameters and

the computation of the impulse responses using the higher-order moments is performed using

the toolbox described in Ferroni and Canova (2021).11

Robust higher-order moment estimators Our procedure requires to have estimates of

third and fourth moments. As illustrated above, methods using higher-order moments equality

restrictions to identify structural shocks typically require parametric estimates of such moments.

A drawback is that these estimates are known to be very sensitive to outliers with short samples,

(See, e.g., Kim and White 2004). In contrast, our approach allows to rely on robust non-

parametric estimators, therefore mitigating that issue.

These robust estimators are constructed using the empirical distribution of the structural

shocks of interest that are obtained in step III of the above procedure. For third moments

or asymmetries, robust measures exploit the standardized distance between median and mean.

For fourth moments, or tailedness, robust estimators consider the ratio between the distance of

the percentiles in the tails and the distance between the percentiles close to the median. For

example, the larger the numerator, the thicker the tails; the smaller the denominator the more

clustered is the distribution around the median and hence the more leptokurtic the shock is.

In what follows, we use the following estimators of skewness (S) and excess kurtosis (K⋆) of

a random variable x:

S(x) = x̄− F−1(0.5)

std(x)
, K⋆(x) =

F−1(0.975)− F−1(0.025)

F−1(0.75)− F−1(0.25)
− 2.9, (1)

where F−1(α) is the α-percentile of the empirical distribution of x and 2.9 is the value of the

kurtosis of the Gaussian distribution. We discuss several alternative robust estimators in the

appendix (section A.4).

4 How hom inequality restrictions help identify structural shocks?
The impact of monetary policy shocks on output

We illustrate how inequality restrictions on higher moments can improve the identification of

the effects of standard economic shocks on macro variables. In particular, we focus on the long

debated impact of monetary policy on output.

11Codes for replication can be found on the Github page.
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Uhlig (2005) finds that monetary policy shocks have no clear effect on output if one uses an

agnostic identification procedure. More precisely, he imposes sign restrictions on inflation and

interest rate (moving in opposite directions) but remains agnostic about the response on output.

Wolf (2020) shows that Uhlig (2005)’s result is consistent with a standard New Keynesian (NK)

model. The reason is that, when only sign restrictions on inflation and interest rate are imposed,

supply and demand shocks tend to masquerade or disguise as monetary policy shocks. He

concludes that pure sign restrictions are quite weak identifying information. Identification can

be improved with instruments as in Gertler and Karadi (2015) or restriction on the reaction

coefficients of the policy function as in Arias et al. (2019).

In this section, we show that higher moments inequality restrictions also strongly help re-

solving the issue of shocks masquerading as monetary ones when the latter have a non-gaussian

fourth moment that is sufficiently different from supply and demand shocks. We first use sim-

ulated data from a standard calibration of the three equations NK model, as in Wolf (2020),

but where the monetary policy shock is assumed to follow a Laplace distribution and therefore

exhibits excess kurtosis compared to the gaussian distribution. We then use simulations from

a more realistic DSGE model featuring a variety of shocks and frictions, in the same spirit as

Christiano, Eichenbaum and Evans (2005) or Smets and Wouters (2007), and that we estimate

using US postwar data. Strikingly the distribution of estimated monetary policy shock exhibits

excess kurtosis, and more so that the other estimated structural shocks.

4.1 Experimental evidence using a textbook New-Keynesian model

Specification, calibration, and simulations As detailed in Gaĺı (2015), the model in

its log linearized form is described by three equations,

yt =yt+1|t − (it − πt+1|t) + σdν
d
t ,

πt =βπt+1|t + κyt − σsν
s
t ,

it =ϕππt + ϕyyt + σmϵmt ,

with y real output, i the nominal interest rate (the federal funds rate), and π inflation. The model

has three structural disturbances: a demand shock νdt , a supply shock νst , and a monetary policy

shock ϵmt . The first equation is a standard IS-relation (demand block), the second equation is

the New Keynesian Phillips curve (supply block), and the third equation is the monetary policy

rule (policy block). This benchmark model admits the following closed-form solution:

xt =

yt
πt
it

 =
1

1 + κϕπ + ϕy

 σd ϕπσs −σm
κσd −(1 + ϕy)σs −κσm

(ϕy + κϕπ)σd −ϕπσs σm

 νdt
νst
ϵmt

 = Ao νt.
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We consider standard Gaussian supply and demand shocks but leptokurtic monetary policy

shocks which is assumed to follows a Laplace distribution, which excess kurtosis is 3:

νdt ∼ N(0, 1), νst ∼ N(0, 1), ϵmt ∼ Laplace(0, 1).

We assign the following values to the parameters σs = σd = σm = 1, ϕπ = 1.5, ϕy = 0.5

and κ = 0.2. We then simulate a long time series of data, T = 100, 000, compute the sample

covariance of the data and generate candidate rotations using the Haar prior.

Masquerading shocks The masquerading effect of Wolf (2020) is illustrated in the left

panel of figure 1. It displays a scatter plot of all the supply and demand shock realizations in

our simulations and highlights in red circles realizations that generate a negative comovement

between inflation and the interest rate. That latter configuration occurs when supply shocks are

relatively small compared to demand shocks and when supply and demand shocks have the same

sign. In that area, the combination of say positive supply and demand shocks leads to a decline

in inflation (as supply dominates), an increase in output (as supply and demand reinforce), and

an increase in the interest rate induced by the policy rule as the increase in output dominates the

decline in inflation. Overall this combination of demand and supply shocks generates a pattern

which looks like a contractionary monetary policy shock if one only looks at the correlation

between inflation and the interest rate. Hence they masquerade as a monetary policy shock.

However, unlike what a contractionary monetary policy shock implies, output goes up due to

the expansionary demand and supply shocks. As a result, imposing sign restrictions on inflation

and interest rate only fails to capture the contractionary impact of monetary policy shocks on

output that the model implies. This is illustrated in the right panel of figure 1 where the blue

bars report the distribution of the impact on output of monetary policy shocks identified with

sign restriction only on our simulated data. Strikingly, although the true impact implied by the

model nears −.6, the agnostic identification scheme of Uhlig (2005) returns an estimated impact

symmetrically distributed around zero in a range of approximately −.9 and .9.

Combining sign and excess kurtosis restrictions We now complement the same sign

restrictions with a moment inequality restriction on the excess kurtosis of monetary policy shock.

In particular, we postulate that the excess kurtosis of monetary policy shocks needs to be larger

than a threshold value, i.e. K⋆
m > ϵK. with ϵK = 1.5. As illustrated by the red-colored bars in

the right top panel of figure 1, the estimated impact distribution changes drastically compared

to estimates obtained with sign restrictions only: Almost all the estimated positive responses of

output gets chopped away.

The lower panel of figure 1 shows (blue line) how the probability of obtaining an estimated

response of output that is positive (instead of negative in the model) varies with different values
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of the lower bound imposed on the fourth moment of the shock, ϵK. The figure also reports

the acceptance rate when only considering sign restrictions (grey line) and the acceptance rate

when using signs and excess kurtosis restrictions (red line). When ϵK = 0, roughly one fourth

of rotations are accepted with sign only and with sign and kurtosis restrictions, respectively;

the probability that the response of output is positive is roughly one half. As we increase the

minimum value for the excess kurtosis, fewer rotations verify both the signs and the excess

kurtosis restrictions, and the probability of a positive response of output to a monetary policy

shock declines. Eventually it becomes zero when we impose that the excess kurtosis of monetary

policy shocks needs to be larger than 1.8. So the masquerading effect disappears when on imposes

a clear deviation from the gaussian case, but only roughly 60% of the true excess kurtosis of the

shock.

Analytical identified sets We also constructed the identified sets analytically and without

resorting to simulations. The results are very similar than the findings above and are presented

in section A.6.1.
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(a) Realizations of demand and supply shocks: all
(blue circles) and masqueraded MP (red circles).
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(b) Distribution of MP impact on output with sign
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(c) Probability of positive response of y at different
restrictions on monetary policy excess kurtosis.

Figure 1: Masquerading effect (a); impact distribution of monetary policy on output (b); distribution
of excess-kurtosis for the masquerading shock; and (c) probability of positive response of y after a
monetary policy tightening.
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4.2 Experimental evidence using a medium-scale DSGE model

We now study how higher-order moments inequality restrictions perform when applied to data

obtained from simulations of a more realistic model which features a number of real and nominal

frictions and for which we do not specify the underlying distribution of the structural shocks.

More specifically, we work with the Smets and Wouters (2007) (SW) model, perhaps the most

well-known example of an empirically successful structural business cycle model. In this model

the fluctuations in economic activity, labor market variables, prices and interest rate are ex-

plained by handful of shocks: technology, risk premium, investment demand, monetary policy,

government/exogenous spending, and price and wage markups shocks. We estimate the model

on postwar US data on output, consumption, investment, real wages, inflation, interest rate

and hours worked as in the original Smets and Wouters (2007)’s work.12 We set parameters

at their posterior mode estimates and consider smoothed estimates of the structural shocks as

realizations of these shocks. We then use this model as a laboratory to show how the higher

order moments can sharpen identification.

Supply and demand shocks can masquerade as monetary policy shocks A first

property of the estimated SW model is that, as for the textbook NK model, demand and supply

shocks can masquerade as a monetary policy shock. This is illustrated in figure 2 which reports

–from top to bottom– the impulse response of technology (supply), risk premium (demand) and

monetary policy shocks to output, inflation and interest rate in the SW model respectively; the

last raw displays the dynamic transmission of the sum of supply and demand. Comparing this

raw with the monetary policy one shows that the combination of supply and demand shocks can

generate a sign pattern for inflation and interest rate that is similar to the one resulting from a

monetary policy shock. However, while the output reaction to a monetary policy contraction is

negative, the masquerading combination of supply and demand shocks have a positive impact

on output. As a result, Uhlig (2005)’s agnostic sign restrictions may not be enough to identify

the transmission of monetary policy shocks to output.

Estimated monetary policy shocks are leptokurtic A second striking property of

the estimated SW model is that structural shocks display some form of fat-tailedness, and even

more so for monetary policy shocks. This is illustrated in figure 3 which reports the estimated

shocks realizations (top panels) and the empirical probability distribution against the normal one

(bottom panels). All estimated shocks display some deviations from the gaussian distribution.

In particular, when we compute a robust measure of kurtosis using equation (1), we find an

12Our implementation of the Smets-Wouters model is based on Dynare (see Adjemian, Bastani, Juillard, Karamé,
Maih, Mihoubi, Perendia, Pfeifer, Ratto and Villemot (2011)) replication code kindly provided by Johannes Pfeifer.
The code is available at https://sites.google.com/site/pfeiferecon/dynare.
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Figure 2: SW estimates of impulse response functions. From top to bottom technology, risk premium
and monetary policy shocks and the sum of demand and supply shocks.

excess kurtosis for the SW monetary policy shock equal to 2, well above the excess kurtosis

for other shocks. In contrast the robust measure of skewness is very close to zero for every

structural shock.

Identifying monetary policy shocks in large samples We generate a sample of

50,000 observations for output, inflation and interest rate using random draws from the empirical

distribution of the technology, risk premium and monetary policy shocks. We then assess how

different structural VAR restrictions aiming at identifying monetary policy shocks perform on

these simulated data. We compare three schemes: (i) sign restrictions only, (ii) sign and

higher-order moments inequality restrictions as introduced in section 2.2, and (iii) higher-order

moments equality restrictions using the spectral decomposition approach of section 2.1.

In (i), we postulate that, after a contractionary monetary policy shock, the interest rate

increases on impact and for two consecutive quarters and inflation decreases on impact and for

two consecutive quarters. In the spirit of Uhlig (2005), no restriction is imposed on output. In

(ii) we impose the additional restriction that monetary policy shocks are leptokrutic, with a

robust measure of excess kurtosis larger than 1.6.13 We estimate a VAR with twenty lags and

13That threshold value is chosen to be larger than roughly 80% of the value estimated in the empirical distribution.
Thresholds lower than one do not alter the identified set compared to imposing only sign restrictions. As Figure
15 in the appendix illustrates, the probability that output is positive one year after a monetary policy tightening is
about 40% both with sign and with sign and higher-order moment restrictions. This occurs because both demand and
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Figure 3: SW estimated shocks: form left to right technology, risk premium and monetary policy
shocks. Top panels realizations, bottom panels probability distribution against the normal.

rotate the reduced-form VAR innovations so that the sign restrictions in (i) are satisfied. We

construct 50,000 accepted rotations using the Haar prior (see Rubio-Ramı́rez et al. 2010). For

each of these rotations, we verify if the additional higher moment inequality restriction spelled

out in (ii) is also verified and keep the rotation if so. Finally, in (iii), the rotation matrix is

derived from the spectral decomposition of the matrix of fourth moments of the VAR empirical

innovations.

Figure 4 reports the impulse responses obtained with each identification schemes. The first

row reports the 90% and 99% identified sets of impulse responses obtained when using sign

restrictions only. The second row when combining sign and kurtosis inequality restrictions. The

red dashed line shows the point-identified impulse responses obtained when using the spectral

decomposition of the matrix of fourth moments of the VAR empirical innovations. Finally,

the blue line displays the true monetary policy impulse responses derived from the model. As

in the simple NK model case, the set of responses identified by sign restrictions is so wide

that the impact of monetary policy shock on output is inconclusive. On the contrary, higher

order moments help refining the transmission of monetary policy shocks to output. In the case

of inequality restrictions, the 90% identified set suggests that most of the output trajectories

supply are somehow leptokurtic; however, their tails are not fat enough to masquerade as a monetary policy shock
with leptokurticity larger than 1.3. With such a threshold we start seeing the higher-order moments identified set to
shrink relative to the sign restricted identified set.
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are negative at least after few quarters in line with what the theory predicts.14 Interestingly,

the identification obtained with the spectral decomposition of the empirical innovation fourth

moment matrix is very precise. However, with shorter samples, such precision deteriorates and

inequality restrictions perform better as we show in the next section.

Identifying monetary policy shocks in short samples The identification based on

the spectral decomposition is very precise when working with very large sample of data. How-

ever, the precision deteriorates sharply when working with smaller samples of size typical of

macroeconomic studies. Indeed, this approach requires computing all the fourth moments of

the VAR empirical innovations and the sample counterparts of these fourth moments can be

poorly estimated and very sensitive to outliers in-sample. In contrast, our identification method

only involves estimating the fourth moment of the shock of interest and allows working with

robust estimates of that higher-order moment. It performs well also with smaller samples.

To illustrate that point, we simulate 500 different set of data each consisting of 200 observa-

tions length on output, inflation and interest rate. For each datasets, we estimate a VAR and

computed the monetary policy impulse responses using the spectral or eigenvalue decomposi-

tion and the sign and higher-moment inequality restrictions. Figure 5 reports the dispersion

of the (median) point estimate across identification schemes. With short samples, the spectral

decomposition generates very dispersed point estimates which includes positive responses of

output and prices after a monetary policy shock. This does not occur with our identification

scheme, where point estimate of the responses of output and inflation are robustly estimated to

be negative.

Not only the median impulse response functions are better estimated but the uncertainty

is smaller. Figure 6 reports the median value of the upper and lower bounds of the 68% high

probability density (HPD) sets across artificial samples obtained with sign restrictions only (top

row), higher-moment spectral decomposition (mid row), and sign and higher-moment inequality

restrictions (bottom row). The bounds of the HPD set response of output are negative with

the sign and higher-moment inequality restrictions. This is not the case with the identification

obtained through spectral decomposition or sign restrictions only.

Analytical identified sets We also computed analytically the identified sets obtained when

the different identification schemes discussed above are applied to the SW model. Results are

very similar to the ones obtained with simulations and are reported in section A.6.2 in the

appendix.

14Higher moment inequality restrictions also lead to more precise identified sets when one imposes the sign restrictions
that a monetary policy shock generates on the observed variables; figure 14 in the appendix report the magnitude of
the refinement of the identified set in the context of the SW model.
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Figure 4: Impulse responses to a monetary policy shock using sign restrictions on prices (−) and
interest rate (+) (first row) and sign and higher moment inequality restrictions (second row). The
blue solid line is the true impulse response. The red dashed line indicate the point identification
obtained with spectral decomposition of the fourth moments of empirical innovations. The dark
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are based on a sample of 50,000 observations.
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5 Empirical Application I: US Monetary Policy

We now apply our methodology to observed post-war US data and study the transmission

mechanism of conventional monetary policy in the US. We assume that monetary policy shocks

are drawn from a leptokurtic distribution, where most realizations are tiny but large deviations

are more likely than with normal distributed shock. We start by documenting that indeed

excess kurtosis is a robust feature of monetary policy shocks when looking at a large set of

proxies or estimates obtained for the US, the euro area, or the UK. We show that such higher-

order inequality restrictions help sharpen the identification of monetary policy shocks when

they are combined with a minimal set of sign restrictions, that are agnostic about the impact

on output, as in Uhlig (2005). In particular, we find that a tightening monetary policy surprise

has a contractionary impact on output. This is consistent with the results obtained with recent

approaches used in combination with sign restrictions, e.g. Arias et al. (2019), Antolin-Diaz and

Rubio-Ramı́rez (2018), or relying on external instruments, e.g. Gertler and Karadi (2015).

5.1 Higher moments of monetary policy shock proxies

We document the third and fourth moment properties of a wide set of estimated monetary policy

shocks. In a recent paper, Jarociński (2021) emphasizes that US monetary policy surprises

identified from intraday movements of federal funds rate futures observed in a narrow window

around FOMC announcements exhibit leptokurticity. In this section, we show that this feature is

not specific to daily or intraday variations of interest rates around central bank monetary policy

decisions and announcements, nor to US monetary policy. This property is actually observed

for a wide range of monetary policy shock proxies obtained with data of different frequency, for

different sample-periods, and for different economies.

US data For the US, we consider the recent monetary policy surprises extracted from high

frequency datasets from Gertler and Karadi (2015) (GK), Miranda-Agrippino and Ricco (2021)

(MAR) and Jarociński and Karadi (2020) (JK). Some of these proxies control for the informa-

tion/Delphic effect of monetary policy (as discussed in Campbell, Evans, Fisher and Justiniano

(2012) or Nakamura and Steinsson (2018a)). We also look at the raw (unrotated) first three prin-

cipal components of the intraday variations of the interest rates term structure around FOMC

announcements (i.e. USf1-USf3). We also include monetary policy shocks identified with lower

frequency data, in particular, the Romer and Romer (2004) (RR)15 narrative instrument, Sims

and Zha (2006) (SZ) monetary policy innovations estimated from a SVAR with regimes shifts,

and the monetary policy shock estimated in the Smets and Wouters (2007) (SW) DSGE model.

15We consider here the series constructed in Wieland and Yang (2020) who extend the Romer-Romer (2004) monetary
policy shock series.
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Finally, we also consider the natural language measure constructed by Aruoba and Drechsel

(2022) (AD) where they look at the change in the target interest rate which cannot be predicted

by the textual information contained in the documents prepared by Federal Reserve staff in

advance of policy decisions.

EA data For the Euro Area, we consider the monetary policy surprises constructed in An-

drade and Ferroni (2021), which exploits high-frequency variations of future OIS contracts

around the ECB monetary policy decisions and press conference and distinguish between conven-

tional (AF(target)) and forward guidance shocks (AF(FWG)) controlling for information/Delphic

effects (AF(delphic)). We also look at the unrotated first three principal components of vari-

ations of the Euro Area interest rates futures around the ECB decision and communication

constructed in Altavilla, Brugnolini, Gürkaynak, Motto and Ragusa (2019) (EAf1-EAf3).

UK data For the UK, we consider monetary policy surprises obtained using the high-

frequency data from Gerko and Rey (2017) who looks at change in three-month sterling future

rates observed around the release of the minutes of the MPC (GR(minute)) and inflation report

(GR(IR)), from Cesa-Bianchi, Thwaites and Vicondoa (2020) (CBTV) who use changes in three

months Libor around monetary policy events and the methodology introduced in Gürkaynak,

Sack and Swanson (2005), and from Kaminska and Mumtaz (2022) who look at variations of

the full yield curve of UK government bonds (KM). We also include the monetary policy shocks

obtained by Cloyne and Hurtgen (2016) who employ the Romer-Romer identification approach

to construct a monthly measure of UK monetary policy shocks (CH).

Results Table 1 reports the robust measures of skewness and excess kurtosis for each of these

proxies along with the 95% confidence intervals obtained by bootstrapping the series for all

these various measures. While there is no clear evidence about skewness of the monetary policy

shocks, all the proxies have a statistically significant excess kurtosis, although point estimates

are very dispersed. It is quite striking that all of these proxies are leptokurtic given that they

are obtained using different methods, different datasets, different time spans and countries. As a

result, they span relatively different information sets. For example, in the US the HF measures

of monetary policy surprises and the narrative instrument constructed by RR have a correlation

of about 0.2 only (see figure 12 in the appendix). So it is not straightforward to assess which

proxy better characterizes monetary policy shocks and should be used to instrument the reduced

form VAR residuals. Our proposal to use higher-order moment restrictions to identify monetary

policy shocks rather leverage on a robust feature observed for various proxies.
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Ex-Kurtosis Skewness Sample Size Sample Coverage

SW 2.0 [0.4, 3.2] -0.0 [-0.1, 0.1] 179 1960-2004
SZ 3.8 [1.8, 6.3] 0.0 [-0.0, 0.1] 518 1960-2003
RR 3.2 [1.8, 5.1] 0.0 [-0.1, 0.1] 468 1969-2007
GK 11.3 [5.9, 18.2] -0.3 [-0.3, -0.2] 269 1990-2012
MAR 3.3 [1.2, 5.9] -0.1 [-0.2, 0.0] 228 1991-2009
JK 8.8 [5.4, 15.8] -0.1 [-0.2, -0.0] 323 1990-2016
AD 3.1[1.4, 7.0] -0.0[-0.1, 0.1] 313 1982-2008
USf1 1.4 [0.3, 3.5] 0.1 [-0.0, 0.2] 204 1994-2017
USf2 3.0 [1.4, 7.1] 0.1 [-0.0, 0.2] 204 1994-2017
USf3 1.9 [0.5, 4.4] 0.0 [-0.1, 0.1] 204 1994-2017

AF(target) 2.5 [0.6, 5.3] -0.0 [-0.2, 0.1] 134 2004-2015
AF(delphic) 1.3 [0.2, 3.9] -0.0 [-0.2, 0.1] 134 2004-2015
AF(FWG) 1.4 [0.2, 3.6] 0.0 [-0.1, 0.1] 134 2004-2015

EAf1 3.4 [1.4, 5.6] -0.0 [-0.2, 0.1] 197 2002-2019
EAf2 1.5 [0.3, 3.9] -0.1 [-0.2, 0.0] 197 2002-2019
EAf3 1.1 [0.2, 3.4] 0.0 [-0.1, 0.2] 197 2002-2019

CH 13 [5.9, 38] 0 [-0.1, 0.1] 348 1997-2015
GR(minutes) 2.5 [1.3, 4.9] -0 [-0.2, 0.1] 211 1997-2015

GR(IR) 3.6 [2.8, 4.6] -0.1 [-0.2, 0.0] 211 1997-2015
CBTV 3.4 [0.6, 7.5] -0.1 [-0.2, 0.0] 212 1979-2007
KM 5.3 [2.3, 11.2] -0.0 [-0.1, 0.1] 235 1997-2016

Table 1: Proxies of Monetary Policy shocks/surprises: Ex-Kurtosis & Skewness - Bootstrap; median
and in parenthesis 95% confidence intervals. Proxies descriptions, sources and tags are in Table 2.

5.2 Monetary policy transmission with sign and kurtosis restrictions

VAR specification We consider the dataset studied in Uhlig (2005) which consists of Real

GDP (y), GDP Deflator (pi), Commodity Price Index (pcom) and the Federal Funds Rate

(FFR) over a 1965m1 to 2003m12 sample.16 We estimate the VAR parameters assuming 12

lags. As the QML or least square (LS) estimates of the autoregressive coefficients are asymp-

totically consistent, so the LS residuals are treated as consistent estimators of the reduced form

shocks. Figure 7 plots the least square estimates of the whitened VAR reduced form shock, i.e.

the reduced form residuals orthogonalized using the Cholesky factorization of the least square

estimates of the residuals covariance matrix. The first row of the figure displays the estimated

series and the second row compares the probability plot of the empirical distribution against

16Uhlig (2005) uses data obtained by interpolating real GDP with industrial production, and the deflator with CPI
and PPI.
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Figure 7: Whitened Least Square residuals.

a standard normal distribution (dash line); departures from the dash line indicate departures

from the normality assumptions. Departures from normality are not fully evident for the output

and prices whitened residuals; while there are few observations in the tails that lie far from the

normal distribution, the Kolmogorov-Smirnov (K-S) test fails to reject the null that they could

have come from a standard normal distribution; their respective p−values are 0.12 and 0.42.

More evident departures from normality arise for the whitened residuals of the commodity prices

and of the federal funds rate where the K-S test p−values are 0.07 and 0.00 respectively. The

FFR residuals seems to be characterized by a large negative value at the beginning of the 80’s.

Even after removing the extreme values (min and max) of the FFR residuals, we still reject the

null of normality with a p−value smaller than 1e-8. As a matter of fact the robust measure of

skewness are all very close to zero, whereas the robust measures of kurtosis of the federal funds

rate residual is significantly larger than those implied by the Gaussian distribution. Hence, the

source of non-gaussianity seems more evident in the tails thickness rather than in the asymmetry

of the distribution.

Identifying assumptions We combine the sign restrictions of Uhlig (2005) with an in-

equality restriction on the shock fourth moment as follows.

Assumption 1 An unexpected monetary policy shock induces an increase in the federal funds

rate and a decline in the GDP deflator and in the price of commodities on impact and for the

following five months.
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Assumption 2 An unexpected monetary policy shock is leptokurtic and the robust measure of

excess kurtosis larger than 1.2, i.e. K⋆
mp > 1.2.

The threshold for excess kurtosis is guided by the results of table 1 in section 5.1. We choose

a conservative value below the lowest value (1.4) of robust excess kurtosis estimates observed

across different proxies of US monetary policy shocks. Still this threshold implies sizeable

deviations from gaussianity.17
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Figure 8: Impulse responses to a monetary policy shock. The colored areas indicate 68% credible
sets. Sign restrictions red. Sign and kurtosis (K⋆

mp > 1.2) restrictions blue.

17As a reference, a random variable distributed –say– as mixture of two normal distributions where the random
variable is drawn with a 0.8 (0.2) probability from (three times) the standard normal distribution has a robust excess
kurtosis of 1.5. With this distribution, the probability of observing a realization distant two (three) standard deviations
away from the mean is 25% (700 %) more likely that in the standard normal case.
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Results Figure 8 reports the impulse response function (IRF) to a monetary policy shock.

The median IRF obtained with sign restrictions only is in red. The one obtained with both

sign and higher moments restrictions is in blue. Shaded areas depict the associated 68 %

confidence sets.18 We find that monetary policy shocks have no clear effect on output when

these are identified only with sign restrictions on interest rate and inflation. When these are

complemented with an inequality restriction on the excess kurtosis of monetary policy shocks,

almost all the positive responses of output are chopped away and the distribution tilts towards

negative outcomes only. Note that the response of the FFR after an initial 25bps increase

is almost the same under both identification schemes. Yet, when using inequality restriction

on the monetary policy shock kurtosis, prices decline significantly less after a monetary policy

shock – the impact is about half of the size than what is obtained with sign restriction only. So

higher-order moments restrictions also affect the estimated slope of the Phillips curve.

Discussion The confidence bands are obtained using the Haar prior as in Rubio-Ramı́rez

et al. (2010). There is a debate as to whether such a prior is overly informative—and the

prior selection does not vanish asymptotically (e.g. Baumeister and Hamilton 2015)—or not

(e.g. Arias, Rubio-Ramirez and Waggoner 2020). Giacomini and Kitagawa (2021) propose to

compute a ‘robust credible region’ that relies on a prior class that specifies an ‘unrevisable’

prior for the structural parameter given the reduced-form estimates. Figure 17 in the appendix

illustrates that our findings remain valid when using such an approach.

We obtain results that are qualitatively similar to the ones of Arias et al. (2019) who com-

plements Uhlig (2005)’s sign restrictions with the additional constraints that the federal funds

rate response to output and to prices must be non negative, consistent with what a standard

monetary policy reaction function would imply. As Wolf (2020) illustrates using data simulated

from a NK model, supply and demand shocks masquerading as monetary policy shocks lead to

a response of the federal funds rate to output that is negative instead of positive in the model.

So Arias et al. (2019)’s identification scheme helps getting rid of these shocks and better identify

monetary policy. As figure 18 in the appendix shows, imposing Uhlig (2005)’s sign restrictions

on our sample also leads to an estimated response of the policy rate to output that is significantly

negative. As figure 18 also shows, imposing the additional inequality restrictions on the shock’s

kurtosis significantly moves that estimated reaction which becomes centered around zero, which

mitigates the masquerading issue.

18See figure 16 for the 90% confidence bands.
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6 Empirical application II: Sovereign Risk in the Euro Area

In the wake of the Great Recession, the Euro Area has experienced an acute sovereign crisis

leading to very large spreads between government bond yields for countries that were exposed

to sovereign risk and the other members. These spreads were driven by macroeconomic fun-

damentals but also by an increase in perceived sovereign risk. As a matter of fact, sovereign

spreads dropped very significantly after Mario Draghi made his infamous “Whatever it takes”

statement in 2012 which asserted the ECB commitment to intervene on sovereign debt markets

to prevent any risk of potential break-up of the euro area. These sharp increases in sovereign

risks are believed to have had large negative macroeconomic consequences in particular through

their impact on the balance sheet of financial intermediaries and therefore lending to the private

sector. However, identifying such a macroeconomic impact of euro area sovereign risk shocks

is challenging as they coincided with other shocks — the Great Recession, the ensuing delever-

aging shocks, and the contractionary monetary policy shocks implied by the zero lower bond

constraint — that also had negative macroeconomic consequences. Some scholars address that

issue by using bond market reactions observed in a tight window around key political events.

The assumption is that these market reactions capture policy choices that will only affect the

debt sustainability but not current and future economic conditions. They then use these market

reaction as instruments for the reduced form residuals obtained from country level panel VAR

or local projections (e.g. Bahaj 2020, Balduzzi, Brancati, Brianti and Schiantarelli 2023). Other

contributions rely on a structural model that they estimate using country specific data (Bocola

2016) or US regional data and euro-area country data (Martin and Philippon 2017). We propose

to use sign and higher-order moment inequality restrictions in a structural VAR to estimate the

impact of sovereign shocks on euro area aggregates.

VAR specification We use monthly data on the EA industrial production (IP, in log), the

EA consumer prices measured by core HICP (Core, in log), the unemployment rate (UNR, in

percent), a measure of non-financial corporation borrowing costs (NFC spreads, in percent),19

the one year money market rate (Euribor 1y, in percent), the spread between the 5 year Italian

and German bond yield (It-De 5y), and the 10 year government bond yield for Italy (It 10y, in

percent), and Germany (De 10y, in percent). The sample period goes from 1999m1 to 2019m12.

We estimate a VAR model with six lags and uninformative priors for the parameters of interest.

Looking at the reduced form residuals higher moments properties, there are salient departures

for normality for some variables: The K-S test rejects the null that the borrowing costs, the

one year Euribor and the spread could have come from a standard normal distribution; for the

remaining variables the test fails to reject the null hypothesis of normality.

19We use the non-financial corporation borrowing costs constructed in Gilchrist and Mojon (2017).
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Identifying assumptions We impose the following restrictions on the sign of the impulse

responses to a sovereign risk shock.

Assumption 3 An unexpected spread shock increases the 5 year Italian - German sovereign

spread, increases the 10 year Italian government bond yield, and the NFC borrowing costs on

impact and for the following month.

This assumption is consistent with models featuring sovereign default risk and financial inter-

mediaries (e.g. Corsetti, Kuester, Meier and Muller 2013, Bocola 2016). We are agnostic about

the reaction of other macroeconomic variables to that shock and therefore leave their reaction

unrestricted. Other shocks can potentially satisfy these sign restrictions, so we combine them

with higher order moments inequality restrictions capturing what we assume to be a feature

specific of sovereign risk shocks: They increase sharply relatively frequently.

Assumption 4 The spread shock has moderate asymmetry to the right and moderate fat tails,

In particular, the skewness larger than 0.2 and excess kurtosis larger than 0.5, i.e. Ssp > 0.2

and K⋆
sp > 0.5.

Here, we use the robust measure of skewness and kurtosis (see, section 3). A skewness value

larger than 0.2 only imposes a moderate right-skewness. The latter combined with an excess

kurtosis larger than 0.5 implies that the frequency of large positive events is twice (six times) as

large for realizations bigger than two (three) standard deviations relative to the normal case.20

Results Figure 9 shows the results obtained with our identification scheme (in blue) and

compare them with what a standard recursive ordering identification — where the sovereign

risk shock affects the Italian, German sovereign yields and their spread on impact, but the other

financial and macroeconomic conditions with a lag — implies (in red). Impulse responses are

normalized so that the maximum median effect on the spread over the response horizon is one

percent. The identification using signs and higher moments restrictions produces interesting

dynamic responses. A sovereign risk shocks leading to a 100 basis points peak increase in the

5-year italian-german sovereign spread generates a 50 basis points increase in the Italian 10-year

bond yield as well as a 25 basis points decline in the German 10-year bond yield, consistent

with flight to quality effects. Credit conditions tighten with a NFC spread increasing by 70 basis

points, showing a large pass-through from the sovereign risk to the corporate sector. Industrial

production contracts by nearly 2 percent 16 months after the shock and the unemployment rate

increases by almost 50 basis point 18 months after the shock. The price level for core goods

and services increase to reach by a tiny (and non statistically significant) 1 basis points peak

20Assuming that the distribution is skewed in addition to leptokurtic makes the shock differ from monetary policy
which in the previous section was assumed to be leptokurtic but symmetric.
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one year after the shock. The 1-year Euribor drops as monetary policy eases to stabilize the

economy. In less than three years the shock is absorbed. These effects are qualitatively similar

to what (Bahaj 2020) obtain on average for Ireland, Italy, Portugal, and Spain over a crisis 2007-

13 sample period. Our estimates of the macroeconomic effects are larger though. This is even

more the case as our estimates are for euro area aggregates and includes no-crisis time. This

suggests that country specific sovereign risk shocks have negative spillovers on other monetary

union members even if they are not affected by sovereign risk.
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Figure 9: Impulse responses to a spread shock. Recursive ordering in red. Sign and higher-order
moment restrictions in blue. Impulse responses are normalized so that the maximum median impact
on the spread is 1 percent. The solid line indicates the median response and the colored areas report
the 68% confidence bands.

The results obtained with a recursive ordering scheme offer a very different picture, with some

puzzling patterns. A shock leading to a one percent increase in the sovereign spread triggers

an increase in the 10-year Italian bond yield. It also increases the German ones, so there is

no flight to quality effect. Credit costs increase but only modestly and with a delay compared
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to our proposed identification. Industrial production increases in the short run and declines

after two years; the unemployment rate increases for several months after the shock reaching

its peak in three to four years after the impulse. The price level only modestly increases but

it is not significant. Finally the 1-year money market rate increase, signalling monetary policy

tightening. Overall, these effects do not seem consistent with what sovereign risk would produce,

implying that the identification mixes several structural shocks. Figure 10 shows the results

obtained when only the sign restrictions (i.e. assumption 3) are used. The results show that

these constraints are not restrictive enough as this scheme does not generate any statistically

significant response.21

20 40 60

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03
IP

20 40 60
-6

-4

-2

0

2

4

10-3 Core

20 40 60

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

UNR

20 40 60

-0.2

0

0.2

0.4

0.6

0.8

NFC Spread

20 40 60
-1

-0.5

0

0.5

Euribor 1y

20 40 60

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

It-De 5y

20 40 60

0

0.5

1

It 10y

20 40 60
-0.5

0

0.5
De 10y

sign
sign+HOM

Figure 10: Impulse responses to a spread shock. Sign restrictions in red. Sign and higher-order
moment restrictions in blue. Impulse responses are normalized so that the maximum median impact
on the spread is 1 percent. Solid line median response and colored areas report the 68% confidence
bands.

21Figures 9 and 10 report report the 68% confidence bands. Figures 19 and 21 in the appendix report also the 90%
confidence sets.

37



7 Empirical Application III: The Macroeconomic Effects of
Geopolitical Risk

What are the effects of rising geopolitical tensions on the US economy? Caldara and Iacoviello

(2022) develop an index of geopolitical risks (GPR) that can be used to address that question.

Such an index is obtained by computing the share of articles mentioning adverse geopolitical

events in leading newspapers published in the United States, the United Kingdom, and Canada.

The GPR index captures exogenous events that are not caused, at least within a quarter, by

US macroeconomic performances. However, large adverse geopolitical events can also lead to

unforeseen policy decisions, from either the fiscal authority, think of military spending shocks,

or from the central bank, think of the Fed emergency reaction to 09/11, and some articles

discussing geopolitical tensions can also be articles discussing these unforeseen policy decisions.

As noticed by Caldara and Iacoviello (2022), the GPR index indeed correlates with measures of

policy shocks, for instance the military spending shock of Ramey (2011). Isolating these shocks

therefore raises an identification issue. We propose to address it by combining sign and higher

order moments restrictions.

VAR specification Caldara and Iacoviello (2022) also provide a structural VAR analysis of

the macroeconomic effects of geopolitical risk (GPR) for the US economy. Their VAR consists

of eight quarterly variables: (i) the log of the GPR index: (ii) the VIX; (iii) the log of real

business fixed investment per capita; (iv) the log of private hours per capita; (v) the log of the

S&P 500 index; (vi) the log of the WTI price of oil; (vii) the yield on two-year US Treasuries;

(viii) the Chicago Federal Reserve National Financial Conditions Index (NFCI). The estimation

sample is 1986:Q1 to 2019:Q4 and the VAR admits two lags.

Identifying assumptions Caldara and Iacoviello (2022) identify a GPR shock using a re-

cursive scheme, with the GPR index ordered first. This assumes that any contemporaneous

correlation between the GPR index and the other variables in the VAR comes from the causal

effect of the GPR shock on the other variables. As reported in Figure 11 which replicates their

approach, a one standard-deviation unforeseen increase in geopolitical risk has a significant con-

tractionary impact on financial conditions and macroeconomic aggregates such as investment

and hours. However, as Caldara and Iacoviello (2022) note, the GPR index can also captures

other shocks, such as policy shocks. If these shocks also affect financial and macroeconomic

conditions contemporaneously, a recursive ordering may in part capture these as well as the

geopolitical risk ones. This could explain why, under a recursive ordering identification scheme,

although the geopolitical tensions last well over one year after the initial GPR shock, the VIX

starts to decline, the 2-year bond yield declines, and overall financial conditions, as captured by
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Figure 11: Impulse responses to a GPR shock. Recursive restrictions in red. Sign and higher-order
moment restrictions in blue. For each identification scheme we impulse the shocks with a one standard
deviations. Solid line median response and colored areas report the 68% and 90% confidence bands.

the NFCI index, loosen. One way to address this potential issue is to use sign restrictions requir-

ing that, on impact, the GPR shock increases the GPR index and tighten financial conditions

by lowering the SP500 and increasing the 2-year US treasury yield. However, unreported results

show that these sign-restrictions are too loose and lead to a set of admissible rotations that is

too large and median IRFs that are not significantly different from zero. We thus investigate

an alternative identification scheme which combines these sign restrictions with restrictions on

higher-order moments of the GPR shock. Indeed, the GPR index is skewed to the right and

leptokurtic consistent with the intuition that geopolitical risks are characterized by spikes in

international tensions which are large and relatively frequent. We assume that geopolitical risk

shocks have a distribution that is also skewed to the right and leptokurtic. More specifically, we

postulate:
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Assumption 5 An unexpected GPR shock lowers the SP500 and increase the 2-year US trea-

sury yield on impact.

Assumption 6 The GPR shock has small asymmetry to the right and fat tails, In particular,

the skewness larger than 0.1 and excess kurtosis larger than 1.5, i.e. Sgpr > 0.1 and K⋆
gpr > 1.5.

Results As Figure 11 illustrates, consistent with the results in Caldara and Iacoviello (2022),

we find evidence of a persistent contractionary effect of GPR shocks on financial conditions and

macroeconomic aggregates. The estimated effects obtained with our scheme are less precise

compared to the recursive ordering as we achieve set-identification rather than point identifica-

tion. But they are larger and more persistent, consistent with the possibility that the recursive

identification scheme can capture both the effects of geopolitical surprises and of coincident

expansionary fiscal and monetary policy shocks resulting from discretionary decisions taken in

the wake of some geopolitical events. Interestingly, the reaction of the 2-year treasury yield

is positive on impact, consistent with an increase in risk premium, but then non-significantly

different from zero soon after the shock. This may reflect the offsetting effects that an expan-

sionary fiscal and monetary policy implemented after the geopolitical risk shock would have on

that yield. Finally, oil prices do not significantly react to geopolitical shock either. Indeed,

depending on the shock, oil prices may in some cases decline due to drop in demand associ-

ated with an increased uncertainty, and, in other cases, increase if geopolitical events happen in

oil producing countries. Overall, the evidence is in line with models where uncertainty shocks

lower investment (Bloom 2009) and employment (Basu and Bundick 2017) and tighten financial

conditions (Gilchrist, Sim and Zakrajsek 2014).
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A Appendix

A.1 Additional Tables and Figures

tag Paper Description Frequency country

SZ Sims and Zha (2006) SVAR zero restrictions M US
RR Romer and Romer (2004) narrative M US
GK Gertler and Karadi (2015) HF M US
MAR Miranda-Agrippino and Ricco (2021) HF corrected for info-effect M US
JK Jarociński and Karadi (2020) HF corrected for info-effect M US
SW Smets and Wouters (2007) DSGE Q US
AD Aruoba and Drechsel (2022) Text based and LLM M US

AF Andrade and Ferroni (2021) HF corrected for info-effect M EA

GK(M) Gerko and Rey (2017) HF around minutes M UK
GK(IR) Gerko and Rey (2017) HF around the inflation report M UK
CBTV Cesa-Bianchi et al. (2020) HF around monetary policy events M UK
KM Kaminska and Mumtaz (2022) HF around monetary policy events M UK
CH Cloyne and Hurtgen (2016) narrative M UK

Table 2: Various monetary policy surprises, estimates and sources.
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in top panels. Sign and kurtosis (Kmp > 1.2) restrictions bottom panels.
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Figure 18: Distribution of the response of the policy rate to output. Sign restrictions in red. Sign
and kurtosis (Kmp > 1.2) restrictions in blue.
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Figure 19: Impulse responses to a spread shock. Recursive ordering in red. Sign and higher-order
moment restrictions in blue. Impulse responses are normalized so that the maximum median impact
on the spread is 1 percent. The solid line indicates the median response and the colored areas report
the 68% and 90% confidence bands.
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Figure 20: Impulse responses to a spread shock. Sign restrictions in red. Sign and higher-order
moment restrictions in blue. Impulse responses are normalized so that the maximum median impact
on the spread is 1 percent. Solid line median response and colored areas report the 68% and 90%
confidence bands.
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Figure 21: Impulse responses to a GPR shock. Recursive restrictions in red. Sign and higher-order
moment restrictions in blue. Impulse responses are normalized to one standard deviation. Solid line
median response and colored areas report the 68% and 90% confidence bands.
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A.2 Derivations

Notation First, define ek as the n× 1 vector with zeros everywhere except a one in the kth

position, Jk the n × n matrix of zeros everywhere except one in the kth position of the main

diagonal and Jjk the n × n matrix of zeros everywhere except one in the (j, k)th element. For

example, when n = 3, k = 2 and j = 3 we have

e′2 =
(
0 1 0

)
, J2 =

0 0 0
0 1 0
0 0 0

 and J3,2 =

0 0 0
0 0 0
0 1 0

 .

Notice that

e′k ⊗ ek =Jk,k = Jk,

e′j ⊗ ek =Jk,j ,

e′j ⊗ ek =eke
′
j .

Denote with In the identity matrix of size n and with vec(X) the column-wise vecotrization of

X. The following identities hold

vec(In) =

n∑
i=1

ei ⊗ ei,

vec(In)vec(In)
′ =

(
n∑

i=1

ei ⊗ ei

)(
n∑

i=1

ei ⊗ ei

)′

=

(
n∑

i=1

ei ⊗ ei

)(
n∑

i=1

e′i ⊗ e′i

)
=

=

n∑
k,j=1

(ek ⊗ ek)(e
′
j ⊗ e′j) =

n∑
k,j=1

eke
′
j ⊗ eke

′
j =

=

n∑
k,j=1

Jk,j ⊗ Jk,j .

Define the commutation matrix, Kn,n, the (n
2×n2) matrix consisting of n×n blocks where the

(j, i)−element of the (i, j) block equals one, elsewhere there are all zeros. Notice that

Kn,n =

n∑
k,j=1

Jk,j ⊗ Jj,k.

Assumptions about the structural shocks ν: We assume that the strucutral shocks

are independent and identically distributed over time. Moreover, we postulate that

• E(ν2i,t) = 1 and E(νi,tνj,t) = 0 for all i, j;

• E(ν3i,t) = ζi and E(νi,tνj,tνk,t) = 0 for all i ̸= j, k;

• E(ν4i,t) = ξi, E(ν2i,tν
2
j,t) = 1 for all i ̸= j, and E(νi,tνj,tνk,tνm,t) = 0 for all i ̸= j, k,m.
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Define the empirical innovation as

ι1,t = α1,1ν1,t + ...+ α1,mνn,t,

...

ιn,t = αn,1ν1,t + ...+ αn,nνn,t,

and we define with Ao the matrix collecting the structural coefficients αi,j . Finally, define the

candidate structural shocks, ν̆t, as ν̆t = A′ιt, and denote with αk and ak are the kth column of

Ao (the true impact matrix) and A (a candidate rotation) respectively.

A.2.1 Normal distribution fourth moments

In this section we show that the fourth moments of a multivariate normal distribution are

invariant to orthonormal rotation matrix. Denote with Kz the matrix that collects the fourth

moments of the standard normal distribution, which are given by

Kz = In2 +Kn,n + vec(In)vec(In)
′,

see Kollo (2008) for more details. First, we show that Kz is invariant to orthonormal rotations.

Using the property of the commutation matrix22 that Kn,n(A⊗B) = (B⊗A)Kn,n, we have that

the commutation matrix is invariant to any orthonormal rotation Ω, i.e. (Ω⊗Ω)′Kn,n(Ω⊗Ω) =

Kn,n(Ω ⊗ Ω)′(Ω ⊗ Ω) = Kn,n(Ω
′ ⊗ Ω′)(Ω ⊗ Ω) = Kn,n(Ω

′Ω ⊗ Ω′Ω) = Kn,n. Moreover, using

the relationship between the vectorization and Kronecker product, i.e. vec(ABC) = (C ′ ⊗
A)vec(B), we have that (Ω⊗Ω)′(vec(In)vec(In)

′)(Ω⊗Ω) = (Ω′⊗Ω′)vec(In) ((Ω
′⊗Ω′)vec(In))

′ =

vec(Ω′InΩ)vec(Ω
′InΩ)

′ = vec(In)vec(In)
′. Therefore, we have that

(Ω⊗ Ω)′ Kz (Ω⊗ Ω) = Kz.

Denote with Kn the matrix that collects the fourth moments of the multivariate normal distri-

bution with covariance Σ, which is given by

Kn = (In2 +Kn,n)(Σ⊗ Σ) + vec(Σ)vec(Σ)′.

Using the same properties of matrices and Kronecker products it is straightforward to show that

Kn = (Σ1/2 ⊗ Σ1/2)′ Kz (Σ1/2 ⊗ Σ1/2).

22See e.g. Schott (2016) (Theorem 8.26 at page 342)
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A.2.2 Third moments

Assume that E(ν3n,t) = ζn ̸= 0. The (n × n2) matrix collecting the structural shocks third

moments can be written as

E(νtν
′
t ⊗ ν ′t) = E(νtν

′
t ⊗ [

(
ν1,t ... 0

)
+ · · ·+

(
0 ... νn,t

)
]) =

= E(ν1,tνtν
′
t ⊗ e′1 + ...+ νn,tνtν

′
t ⊗ e′n) =

= E(ν1,tνtν
′
t)⊗ e′1 + ...+ E(νn,tνtν

′
t)⊗ e′n =

= ζ1J1 ⊗ e′1 + ...+ ζnJn ⊗ e′n =

=
n∑

k=1

ζkJk ⊗ e′k.

Using the properties of the Kronecker product, i.e. (A⊗B)(C ⊗D) = AC ⊗BD, notice that(
n∑

i=1

ζiJi ⊗ ei

)(
n∑

i=1

ζiJi ⊗ ei

)′

=

=

n∑
i=1

ζ2i
(
Ji ⊗ e′i

) (
Ji ⊗ e′i

)′
+

n∑
i ̸=k

ζiζk
(
Ji ⊗ e′i

) (
Jk ⊗ e′k

)′
︸ ︷︷ ︸

=0

=

=
n∑

i=1

ζ2i
(
Ji ⊗ e′i

) (
ei ⊗ J ′

i

)
=

n∑
i=1

ζ2i
(
Ji ⊗ e′i

) (
ei ⊗ J ′

i

)
=

=
n∑

i=1

ζ2i Jiei ⊗ (Jiei)
′ =

n∑
i=1

ζ2i ei ⊗ e′i =

=

n∑
i=1

ζ2i J
′
i =

ζ21 . . . 0
...

. . .
...

0 . . . ζ2m

 = Λζ .

where Λζ is a diagonal matrix collecting the squared third moments of the structural shocks.

Notice that the cross product are zero since (Ji ⊗ e′i)(ek ⊗ J ′
k) = Jkei ⊗ e′kJ

′
i = 0. Using again

the property of the Kroeneker product, the third moments of the candidate structural shocks

are given by

E(ν̆tν̆
′
t ⊗ ν̆ ′t) = A′E(ιtι

′
tA⊗ ι′tA) = A′E(ιtι

′
t ⊗ ι′t)(A⊗A) =

= A′E(Aoνtν
′
tA

′
o ⊗ ν ′tA

′
o)(A⊗A) = A′AoE(νtνt ⊗ ν ′t)(A

′
o ⊗A′

o)(A⊗A) =

= A′AoE(νtνt ⊗ ν ′t)(A
′
oA⊗A′

oA) =

= A′Ao[ζ1J1 ⊗ e′1 + ...+ ζnJn ⊗ e′n](A
′
oA⊗A′

oA) =

= ζ1(A
′AoJ1 ⊗ e′1)(A

′
oA⊗A′

oA) + ...+ ζn(A
′AoJn ⊗ e′n)(A

′
oA⊗A′

oA) =

= ζ1A
′AoJ1A

′
oA⊗ e′1A

′
oA+ ...+ ζnA

′AoJnA
′
oA⊗ e′nA

′
oA.
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Notice that for all k = 1, ..., n,

e′kA
′
oA =

(
α′

ka1 α′
ka2 . . . α′

kan

)
;

A′AoJkA
′
oA =

a′
1α1 . . . a′

1αn

. . .

a′
nα1 . . . a′

nαn


0 . . . 0

1
0 . . . 0


α′

1a1 . . . α′
1an

. . .

α′
na1 . . . α′

nan

 =

=

(a′
1αk)(α

′
ka1) . . . (a′

kαk)(α
′
ka1)

. . .

(a′
1αk)(α

′
kan) . . . (a′

nαk)(α
′
kan)

 =

= A′αkα
′
kA.

Therefore we have for all k = 1, ..., n,

E(ν̆tν̆
′
t ⊗ ν̆ ′t) =

∑
k

ζkA
′AoJkA

′
oA⊗ e′kA

′
oA =

=
∑
k

ζk
(
α′

ka1 ×A′AoJkA
′
oA α′

ka2 ×A′AoJkA
′
oA . . . α′

kan ×A′AoJkA
′
oA
)
=

=
(∑

k ζkα
′
ka1 ×A′AoJkA

′
oA

∑
k ζkα

′
ka2 ×A′AoJkA

′
oA . . .

∑
k ζkα

′
kan ×A′AoJkA

′
oA
)
=

=
(
Φ(1) Φ(2) . . . Φ(n)

)
.

As E(ν̆3n,t) occupies the (n, n2) position in the matrix E(ν̆tν̆
′
t ⊗ ν̆ ′t), we can focus on the

(n, n)−element of Φ(m), i.e.

Φ(n) =
∑
k

ζkα
′
kan ×A′AoJkA

′
oA =

= ζ1α
′
1an ×A′AoJ1A

′
oA+ · · ·+ ζnα

′
nan ×A′AoJnA

′
oA

If an = αn, then α′
jan = α′

jαn = 0 with j ̸= n and α′
nan = α′

nαn = 1. Hence,

Φ(n) = ζnA
′AoJnA

′
oA

The (n, n)−element of Φ(n) equals ζm(a′
nαn)(α

′
nan) = ζm. Finally, notice that if ζn = 0, the

impact column vector an of the matrix A is not identified.
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A.2.3 Fourth moments

Assume that E(ν4n,t) = ξn ̸= 3. The (n2 × n2) matrix collecting the full set of structural shocks

fourth moments can be written as

K = E(νtν
′
t ⊗ ν ′t ⊗ νt) = E

(ν1,tνtν
′
t ⊗ e′1 + ...+ νn,tνtν

′
t ⊗ e′n)⊗

ν1,t
...

νn,t


 =

= E
(
(ν1,tνtν

′
t ⊗ e′1 + ...+ νn,tνtν

′
t ⊗ e′n)⊗ (ν1,te1 + ...+ νn,ten)

)
=

= E(ν21,tνtν
′
t)⊗ e′1 ⊗ e1 + ...+ E(ν2n,tνtν

′
t)⊗ e′n ⊗ en +

∑
j ̸=k

E(νj,tνk,tνtν
′
t)⊗ e′j ⊗ ek =

=

Eν41,t · · · 0
. . .

0 · · · Eν21,tEν2n,t

⊗ e′1 ⊗ e1 + ...+

Eν21,tEν2n,t · · · 0
. . .

0 · · · Eν4n,t

⊗ e′n ⊗ en

+
∑

j ̸=k j,k=1

 E(ν21,tνj,tνk,t) · · · E(ν1,tνn,tνj,tνk,t)
. . .

E(ν1,tνn,tνj,tνk,t) · · · E(ν2n,tνj,tνk,t)

⊗ Jk,j =

=

ξ1 · · · 0
. . .

0 · · · 1

⊗ e′1 ⊗ e1 + ...+

1 · · · 0
. . .

0 · · · ξn

⊗ e′n ⊗ en +
∑
j ̸=k

(Jj,k + Jk,j)⊗ Jk,j =

= ((ξ1 − 1)J1 + In)⊗ J1 + ...+ ((ξn − 1)Jn + In)⊗ Jn +
∑
j ̸=k

(Jj,k + Jk,j)⊗ Jk,j =

=
n∑

i=1

(ξi − 1)Ji ⊗ Ji + In ⊗ (J1 + · · ·+ Jn) +
∑
j ̸=k

(Jj,k + Jk,j)⊗ Jk,j =

=
n∑

i=1

(ξi − 1)Ji ⊗ Ji + In2 +
n∑

j ̸=k j,k=1

(Jj,k + Jk,j)⊗ Jk,j .

Since e′i ⊗ ei = Ji and e′j ⊗ ek = Jk,j , for any i, j, k; and In = J1 + · · · + Jn. It is convenient

to express the fourth moments in deviation from the standard normal distribution analogs. To

this end define ξi = xi + 3; when xi = 0 then the fourth moments coincide with the standard
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normal distribution ones. We can rewrite the fourth moments of the structural shock as follows

K =
n∑

i=1

(xi + 2)Ji ⊗ Ji + In2 +
n∑

j ̸=k j,k=1

(Jj,k + Jk,j)⊗ Jk,j =

=

n∑
i=1

xiJi ⊗ Ji + In2 + 2

n∑
i=1

Ji ⊗ Ji +

n∑
j ̸=k j,k=1

[Jj,k ⊗ Jk,j + Jk,j ⊗ Jk,j ] =

=
n∑

i=1

xiJi ⊗ Ji + In2 +

 n∑
i=1

Ji ⊗ Ji +
n∑

j ̸=k j,k=1

Jj,k ⊗ Jk,j

+

 n∑
i=1

Ji ⊗ Ji +
n∑

j ̸=k j,k=1

Jk,j ⊗ Jk,j

 =

=

n∑
i=1

xiJi ⊗ Ji + In2 +

n∑
j,k=1

Jj,k ⊗ Jk,j +

n∑
j,k=1

Jk,j ⊗ Jk,j =

=
n∑

i=1

xiJi ⊗ Ji + In2 +Kn,n + vec(In)vec(In)
′︸ ︷︷ ︸

Kz

=

=
n∑

i=1

xiJi ⊗ Ji +Kz,

where Kn,n is the commutation matrix, vec is the column-wise vectorization of matrix and

Kz denotes the matrix that collects the fourth moments of the standard normal distribution.

Therefore, we obtain that the the excess fourth moments of the structural shocks are given by

the following sum of diagonal matrices,

E(νtν
′
t ⊗ ν ′t ⊗ νt)−Kz =

n∑
i=1

xiJi ⊗ Ji.

It is straightforward now to derive the fourth moments of the candidate structural shocks

E(ν̆tν̆
′
t ⊗ ν̆ ′t ⊗ ν̆t) = E(A′ιtι

′
tA⊗ ι′tA⊗A′ιt) = E(A′[(ιtι

′
t ⊗ ι′t)(A⊗A)]⊗A′ιt) =

= E((A′ ⊗A′)[(ιtι
′
t ⊗ ι′t)(A⊗A)⊗ ιt]) =

= E((A′ ⊗A′)[(ιtι
′
t ⊗ ι′t)(A⊗A)⊗ ιt · 1]) =

= E((A′ ⊗A′)[(ιtι
′
t ⊗ ι′t ⊗ ιt)((A⊗A)⊗ 1)]) =

= (A′ ⊗A′)E(ιtι
′
t ⊗ ι′t ⊗ ιt)(A⊗A)

With similar algebra we get

E(ν̆tν̆
′
t ⊗ ν̆ ′t ⊗ ν̆t) = (A′ ⊗A′)(Ao ⊗Ao)E(νtν

′
t ⊗ ν ′t ⊗ νt)(A

′
o ⊗A′

o)(A⊗A) =

= (A′ ⊗A′)(Ao ⊗Ao)

(
n∑

i=1

xiJi ⊗ Ji +Kz

)
(A′

o ⊗A′
o)(A⊗A) =

= Kz + (A′ ⊗A′)(Ao ⊗Ao)

(
n∑

i=1

xiJi ⊗ Ji

)
(A′

o ⊗A′
o)(A⊗A)︸ ︷︷ ︸

K⋆

63



In this case as well, with no departure from the normality (i.e. xi = 0 for all i) the rotation

matrix cannot be identified. Since we focus on the kurtosis of the shock ordered last, we are

interested in the (n2, n2)−element of the matrix E(ν̆tν̆
′
t ⊗ ν̆ ′t ⊗ ν̆t) we can disregard the first

matrix Kz and only consider the (n2, n2)− element of the matrix K⋆.

K⋆ = (A′ ⊗A′)(Ao ⊗Ao)

(
n∑

i=1

xiJi ⊗ Ji

)
(A′

o ⊗A′
o)(A⊗A) =

= (A′Ao ⊗A′Ao)

(
n∑

i=1

xiJi ⊗ Ji

)
(A′

oA⊗A′
oA) =

=
n∑

i=1

xi(A
′AoJiA

′
oA)⊗ (A′AoJiA

′
oA) =

=

n∑
i=1

xi(A
′αiα

′
iA)⊗ (A′αiα

′
iA).

The (n2, n2)−element of K⋆ is the sum of the square of the (n, n)−elements of the matrices

A′αiα
′
iA times xi for i = 1, . . . , n, which is given by

K⋆
(n2,n2) = x1(a

′
nα1)

2(α′
1an)

2 + · · ·+ xm(a′
nαn)

2(α′
nan)

2 =

= x1(a
′
nα1α

′
1an)

2 + · · ·+ xm(a′
nαnα

′
nan)

2.

Hence we have that K⋆
(n2,n2) +Kz

(n2,n2) = xn + 3 = ξn, if an = αn (since α′
jan = 0 if j ̸= n and

α′
nan = 1 ).

A.2.4 Eigenvector decomposition of fourth moments

The eigenvector decomposition of fourth moments is based on Kollo (2008) and it requires more

notation. The approach computes first the sum of the n2 blocks of (n × n) sub-matrices of

the fourth moment matrix and then take the eigenvalue/vector decomposition of the resulting

matrix. The eigenvectors associated to non-zero eigenvalues coincide with the columns of the

original rotation matrix up to a sign switch and permutation of columns.

Definition Let A be an m× n matrix and B an mr× ns partitioned matrix consisting of r× s

blocks Bi,j , i = 1, ...,m and j = 1, ..., n. The star product A ⋆ B of A and B is an r × s matrix

such that

A ⋆ B =
m∑
i=1

n∑
j=1

ai,jBi,j .

Define with In the n× n matrix of ones. Notice that

In ⋆ E(ιtι
′
t ⊗ ι′t ⊗ ιt) = Im ⋆ (Ao ⊗Ao)(K −Kz)(Ao ⊗Ao)

′ =

=

n∑
i,j=1

(Ao ⊗ αi)(K −Kz)(αj ⊗Ao)
′.
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We use of the Lemma 1 in Kollo (2008), which we report here

Lemma Let M , N , U and V be n× n matrices and a, b be n× 1-vectors. Then

(M ⊗ a′)diag(Kn,n)(U ⊗ V )diag(Kn,n)(b⊗N) = Mdiag(a)(U ◦ V )diag(b)N,

where ◦ denotes the elementwise (Hadamard) product of matrices and diag is the diagonal

matrix constructed on the vector.

Let Λξ be the diagonal matrix collecting the excess fourth moments of the structural shocks,

i.e. E(ν4i,t)− 3; we have that

K −Kz = diag(Kn,n)(Λξ ⊗ In)diag(Kn,n).

We then have

Im ⋆ Ξ4 =

m∑
i,j=1

(Ao ⊗ αi)(K −Kz)(αj ⊗Ao)
′ =

=

m∑
i,j=1

(Ao ⊗ αi)diag(Kn,n)(Λξ ⊗ In)diag(Kn,n)(αj ⊗Ao)
′ =

=
m∑

i,j=1

Ao(Λξ ◦ In)diag(αi)diag(αj)A
′
o =

= Ao

 m∑
i,j=1

(Λξ ◦ In)diag(αi)diag(αj)

A′
o,

where the matrix in square brackets is diagonal. Therefore we can compute the eigenvalue/vetor

decomposition of the n× n matrix Im ⋆ E(ιtι
′
t ⊗ ι′t ⊗ ιt) and retrieve the impact matrix.

A.3 Examples

A.3.1 Bivariate case - third moments

To derive the identified set we use the following trigonometric identities:

a cosx+ b sinx = sgn(a)
√
a2 + b2 cos

(
x+ arctan

(
− b

a

))
;

x = arctan(tan(x)); tanx =
sinx

cosx
; tan(−x) = − tanx.

The higher-moment restrictions is then

(cos θ cos θo + sin θ sin θo)
3 >0

(sgn(cos θo) cos (θ − θo))
3 >0
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A.4 Robust estimates of kurtosis and skewness

Estimates of kurtosis and skewness based on fourth and third sample moments can be very

sensitive to outliers with short samples, see Kim and White (2004). When shocks are distributed

with t-student with low degrees of freedom, not even a million draws are enough to have median

unbiased estimates of kurtosis, see Ferroni and Tracy (2022). A number of robust measures

have been proposed in the literature and they all perform well for the sample size typically

considered in macroeconomics. These robust estimators are constructed using ratios of distance

between different percentiles of the empirical distribution. Loosely speaking, robust measures of

kurtosis consider the ratio between the distance of the percentiles in the tails and the distance

between the percentiles close to the median. The larger the numerator, the thicker the tails; the

smaller the denominator the more clustered is the distribution around the median. Hence, with

distributions centered around zero, realizations are often very small but sometime quite big.

Robust measures of skewness exploit the distance between median and mean. More formally,

let x be a random variable with cumulative density function F , the robust measures of kurtosis

considered are:

• Moors (1988) kurtosis:

Km(x) =
(p7 − p5) + (p3 − p1)

p2 − p4
,

where pj represents the octile of the empirical distribution of x, i.e. pj = F−1(j/8) with

j = 1, ..., 7. If x follows a Gaussian distribution, then Km(x) equals 1.23. Therefore the

excess kurtosis is given by EKm(x) = Km(x)− 1.23.

• Hogg (1972) kurtosis:

Kh(x) =
u0.05 − l0.05
u0.5 − l0.5

,

where uα(lα) is the average of the upper (lower) α percentile of the distribution of x. If x

follows a Gaussian distribution, then Kh(x) equals 2.59. Therefore the excess kurtosis is

given by EKh(x) = Kh(x)− 2.59.

• Crow and Siddiqui (1967) kurtosis:

Kcs(x) =
F−1(0.975)− F−1(0.025)

F−1(0.75)− F−1(0.25)
,

where F−1(α) is the α percentile of the distribution of x. If x follows a Gaussian dis-

tribution, then Kcs(x) equals 2.91. Therefore the excess kurtosis is given by EK(x)cs =

Kcs(x)− 2.91.

Robust measures of skewness considered are:

• Bowley (1926) skewness:

Sb(x) =
p3 + p1 − 2× p2

p3 − p1
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where pj represents the quartiles of the empirical distribution of the candidate shock, i.e.

pj = F−1(j/4) with j = 1, 2, 3.

• Groeneveld and Meeden (1984) skewness:

Sgm(x) =
mean−median

E|x−median|

where E|x−median| represents the average of the absolute deviation from the median.

• Kendall and Stewart (1977) skewness:

Sks(x) =
mean−median

σ

where σ is the standard deviation of the empirical distribution of the candidate shock.

Clearly, all these robust measures of skewness are zero with the normal distribution.

A.5 Estimation and Identification

In this section we briefly describe the estimation and identification strategy that we use to

estimate a VAR with non-gaussian errors and to construct IRF using higher-order moment

restrictions. Let a V AR(p) be:

yt = Φ1yt−1 + ...+Φpyt−p +Φ0 + ut,

where yt is n × 1 vector of endogenous variables, Φ0 is a vector of constant and Φj are n × n

matrices. We assume y0, . . . , y−p+1 are fixed. We assume that ut are i.i.d. zero mean random

vectors with unconditional covariance matrix Σ. We assume that the VAR reduced form shocks

are linear combination of the unobserved structural shocks, νt, i.e.

ut = Σ1/2ιt = Σ1/2 Ω νt,

where Σ1/2 is the Cholesky factorization of Σ and Ω is an orthonormal matrix, i.e. ΩΩ′ =

Ω′Ω = I. The structural shocks, νt, are zero-mean orthogonal shocks with unitary variance, i.e.

νt ∼ (0, I).

Standard inference on VAR parameters typically postulates a multivariate normal distribu-

tion for the reduced form innovations. Such an assumption cannot be considered in our context.

We propose to adopt a robust Bayesian approach which allows to construct posterior credible

sets without the need for distributional assumptions of the reduced form residuals. The Bayesian

approach we use builds on the work by Petrova (2022), where she propose a robust and compu-

tationally fast Bayesian procedure to estimate the reduced form parameters of the VAR in the

presence of non-gaussianity. While Bayesian inference about the autoregressive coefficients is
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asymptotically unaffected by the distribution of the error terms, inference on the intercept and

the covariance matrix are invalid in the presence of skewness and kurtosis.

The robust approach relies on the asymptotic normality of the Quasi Maximum Likelihood

(QML) estimator23 of reduced form parameters, autoregressive coefficients and covariances;

Petrova (2022) derives the closed form expression for the asymptotic covariance matrix of the

QML estimator allowing for fast simulation from its asymptotic distribution. In the case of sym-

metric distribution (no skewness), she shows that asymptotic valid inference for Σ can be per-

formed by drawing from the asymptotic normal distribution centered in the consistent estimator

of Σ, i.e. the QML estimator Σ̂, and with covariance matrix equal to 1
T

(
K̂ − vech(Σ̂)vech(Σ̂)′

)
,

where K̂ is a consistent estimator of the fourth moment of the VAR reduced form shocks. Im-

portantly, as previously mentioned, sample counterparts of the fourth moments can be poorly

estimated and be sensitive to outliers. We then follow Petrova (2022) and consider a shrinkage

approach which consists in tilting the sample fourth moments estimates of the reduced form

orthogonalized errors towards the normal distributed counterparts. In particular, the shrinkage

estimator for the kurtosis is defined as

K̂⋆ =
T

T + τ
K̂T +

τ

T + τ
D+

n (In +Kn,n + vec(In)vec(In)
′)D+′

n , (2)

where K̂T represents the sample fourth moments of the orthogonalized reduced form residuals,

i.e. K̂T = 1/T
∑

vech(ιtι
′
t)⊗vech(ιtι

′
t) with ιt = Σ̂−1/2ut; Kn,n is a commutation matrix, which

is a (n2×n2) matrix consisting of n×n blocks where the (j, i)−element of the (i, j) block equals

one, elsewhere there are all zeros; and D+
n is the generalized inverse of the duplication matrix

Dn.
24 The first bit of the equation (2) represents the sample fourth moments and the second

bit the fourth moments implied by a standard normal distribution; τ is the amount of shrinkage

that we assign to the normal implied moments; the larger this value the more weight we give to

the normality assumption.

It is important to highlight at this point that the sample fourth moments are used only to

construct the asymptotic covariance matrix of the reduced form VAR errors volatility matrix

which measures the asymptotic uncertainty around the consistent estimator of Σ. Fourth sample

moments are not used for the shock’s identification.

The posterior distribution of the autoregressive parameters conditional on Σ is standard and

any prior can be used for the purpose. When there important departures from symmetry, the

posterior distributions for the intercept term and the covariance matrix are not independent even

for large samples, so robust Bayesian inference requires consistently estimating third moments.

As for the fourth moments, we consider the consistent shrinkage estimator given by Ŝ⋆
T = T

T+τ ŜT

23The QML is the maximum estimator of the quasi-likelihood. The quasi-likelihood in this context coincides with
the likelihood of the VAR when incorrectly assuming normality of the reduced form residuals.

24For more details on the notation for the multivariate kurtosis see Kollo (2008).
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where ŜT = (1/T
∑

vech(utu
′
t)⊗ ut).

For inferential purposes it is useful to rewrite the VAR in a seemingly unrelated regression

(SUR) format. Let k = np+ 1, we have

Y︸︷︷︸
T×n

= X︸︷︷︸
T×k

Φ︸︷︷︸
k×n

+ E︸︷︷︸
T×n

,

with

Y =


y′1
y′2
...
y′T

 =


y1,1 y1,2 ... y1,n
y2,1 y2,2 ... y2,n
...

yT,1 yT,2 ... yT,n

 , X =


x′
0 1

x′
1 1
...

x′
T−1 1

 , xt
(np×1)

=


yt
yt−1
...

yt−p+1

 ,

Φ =


Φ′
1
...
Φ′
p

Φ′
0

 , E =

 u′1
...
u′T

 .

Assuming a flat prior25, the estimation identification procedure can be then summarized as

follows. Let Ŝ = (Y −XΦ̂)′(Y −XΦ̂) and Φ̂ = (X ′X)−1X ′Y , the steps of the Gibbs sampler

are for j = 1, ...., J

1. Draw Σ(j) from

N
(
vech(Ŝ), Ĉ

)
,

where Ĉ = 1
T D

+
n

(
Ŝ1/2 ⊗ Ŝ1/2

)
Dn

(
K̂⋆ − vech(In)vech(In)

′
)
D′

n

(
Ŝ1/2 ⊗ Ŝ1/2

)′
D+′

n cap-

tures the fourth moments.

2. Conditional on Σ(j), draw Φ(j) from

N
(
Φ̂,Σ(j) ⊗ (X ′X)−1

)
,

i. In case of an asymmetric distribution, the intercept, Φ0, is drawn from

N(Φ̂0 + Ŝ⋆Ĉ−1vech(Σ(j) − Ŝ),Σ(j) − 1/T Ŝ⋆
T Ĉ−1Ŝ⋆′

T ).

3. Draw Ω̆ from a uniform distribution with the Rubio-Ramı́rez et al. (2010) algorithm and

I. compute the impulse response function and check if the sign restrictions are verified,

II. compute the implied structural shocks

ν̆
(j)
t = Ω̆′

(
Σ(j)

)−1/2
(yt − Φ

(j)
1 yt−1 − ...− Φ(j)

p yt−p − Φ
(j)
0 ),

and check if the higher moment inequality restrictions are satisfied.

25Se the appendix for extending the Gibb sampler to informative priors.
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If both [I] and [II] are satisfied, keep the draw Ω(j) = Ω̆. Else repeat [I] and [II].

After a suitable number of iterations, the draws are representative of the posterior distribution

of interest. The estimation of the reduced form parameters and the computation of the impulse

responses and of the higher order moments is performed using the toolbox described in Ferroni

and Canova (2021).26

A.5.1 Informative priors

Assume a multivariate normal MN prior for the autoregressive parameters

Φ ∼ N(Φ0,Σ⊗ V ) =(2π)−nk/2|Σ|−k/2|V |−n/2 exp

{
−1

2
tr
[
Σ−1(Φ− Φ0)

′V −1(Φ− Φ0)
]}

.

Modify the second step of the Gibbs sample with the following

Φ|Σ, Y,X, ∼ N(Φ,Σ⊗ (X ′X + V −1)−1),

Φ = (X ′X + V −1)−1(X ′Y + V −1Φ0).

A.6 Identified set

In this section, we discuss how we construct the identified set with sign restrictions and with

sign and higher-order moment restrictions when the DGP is the three equation static NK model

and for the SW model respectively (without simulating the data from the DGP). In what follows

the identified set is defined as the superior and inferior bounds of the impulses responses over

the set of possible accepted rotations. For a formal definition, see Wolf (2020) Appendix A.1

Definition 2.

A.6.1 NK model

Consider the simple NK example of section 4.1. The solution of the model is a VMA of order

zero, i.e. yt
πt
it

 =
1

1 + κϕπ + ϕy

 σd ϕπσs −σm
κσd −(1 + ϕy)σs −κσm

(ϕy + κϕπ)σd −ϕπσs σm


︸ ︷︷ ︸

B

νdt
νst
ϵmt

 =

= Σ1/2 Ao ϵt.

26Codes for replication can be found on the Github page.
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where Σ1/2 = chol(BB′) and the true rotation matrix Ao is given by Ao = Σ−1/2B. It follows

that

Σ−1/2

yt
πt
it

 = ιt = Ao ϵt.

Notice that the true rotation matrix is difficult to characterize analytically because of the

Choleski decomposition which is needed to construct the orthogonalized innovations. There-

fore, we characterize the identified set numerically. We characterize a candidate orthonormal

rotation using the Givens rotations (which do not require simulation). In particular, a candidate

rotation A(θ1, θ2, θ3) is constructed as follows

A(θ1, θ2, θ3) =

1 0 0
0 cos θ1 − sin θ1
0 sin θ1 cos θ1

 cos θ2 0 − sin θ2
0 1 0

sin θ2 0 cos θ2

cos θ3 − sin θ3 0
sin θ3 cos θ3 0
0 0 1

 ,

for some θj ∈ [0, π] for j = 1, 2, 3. We discretize the latter interval with step of size 0.1

and construct a three dimensional grid. We constructed 250,047 (i.e. 633) different candidate

rotations. For notation purposes I will drop the argument of A.

Let A be a candidate rotation and ν̆ = Aι a candidate structural shock. First, we verify if

the signs are verified, i.e. it > 0 and πt < 0 on impact. To verify that the higher-order moment

restriction is verified, we compute the excess kurtosis matrix of the candidate shocks, K⋆, which

is given by (see section A.2 for a derivation)

K⋆ = (A′ ⊗A′)(Ao ⊗Ao) K⋆
ϵ (A′

o ⊗A′
o)(A⊗A) (3)

where K⋆
ϵ is the excess kurtosis matrix of the structural shocks (i.e. a matrix of zero except a 3

in the (9, 9)th position). To enforce the restriction, we keep the rotation if

K⋆(9, 9) > threshold.

If both requirements are verified, then the candidate rotation is accepted. We consider the

threshold to vary between [0:0.25:3]. Figure 22 reports the identified set in case of the

sign restriction identification only with the red lines and the sign and higher-order moment

restrictions with gray lines where darker shades of gray indicate a larger threshold. When we

set threshold=0, the identified sets with the sign restrictions and with sign and higher-order

moment inequality restrictions coincide.
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Figure 22: NK model identified set: sign restriction identification red lines; sign and higher-order
moment inequality restriction identification in gray lines with darker shades of gray indicating a
larger threshold. True impact in blue.
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A.6.2 SW model

In this section we consider the SW model equations at the posterior mode parameterization.

As in the NK example, we assume that the excess kurtosis of monetary policy shock is 3 and

the remaining shocks have zero excess kurtosis. Once the model is solved it can be cast in the

ABCD representation, i.e.

xt = Axt−1 + B̃

νdt
νst
ϵmt


yt
πt
it

 = Cxt−1 + D̃

νdt
νst
ϵmt


where in this case as well the shocks are renormalized to have a unit variance, i.e. B̃ = BΣ1/2 and

D̃ = DΣ1/2. The SW model admits the following VMA(∞) representation, see e.g. Fernández-

Villaverde, Rubio-Ramı́rez, Sargent and Watson (2007),

yt = D̃ϵt + CB̃ϵt−1 + CAB̃ϵt−2 + . . .

Let Σw be the covariance of one step ahead prediction error, wt = yt − Et−1(yt), which is a

linear function of the structural shocks, wt = D̃ϵt. By construction we have, Σw = D̃D̃′. In this

setup the true rotation matrix Ao is given by

Ao = Σ−1/2
w D̃.

The VMA of the SM model can be expressed as

yt = Σ1/2
w︸︷︷︸
L0

Aoϵt + CB̃A′
o︸ ︷︷ ︸

L1

Aoϵt−1 + CAB̃A′
o︸ ︷︷ ︸

L2

Aoϵt−2 + . . . (4)

= L0ιt + L1ιt−1 + L2ιt−2 + . . .

where the last equation characterize the impulse responses of the model to recursive represen-

tation of the one step ahead prediction error, wt. Let F be the matrix of the impulse responses

of interest for a candidate rotation A, i.e.

F =

(
L0A
L1A

)
.

For each of the candidate rotations constructed as in the previous sections, A, we verify that

• after a monetary policy shock we have F (3, 3) > 0, F (6, 3) > 0 (it > 0, it+1 > 0) and

F (2, 3) < 0, F (5, 3) < 0 (πt < 0 and πt+1 < 0), and

• K⋆(9, 9) > threshold, using the matrix in equation (3), where K⋆
ϵ is the excess kurtosis

matrix of the structural shocks (i.e. a matrix of zero except a 3 in the (9, 9)th position).
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If both restrictions are satisfied, then the candidate rotation is accepted. In this setup as

well, we consider different values of the threshold; in particular, we allow it to vary between

[0:0.25:3]. Figure 23 reports the identified set in case of the sign restriction identification

with red areas and the sign and higher-order moment restrictions with gray areas where darker

shades of gray indicate a larger threshold. When we set threshold=0, the identified sets with

the sign restrictions and with sign and higher-order moment inequality restrictions coincide.

When we set threshold=1.5, the identified sets is represented by the dashed black lines.

Figure 23: Smets and Wouters (2007) model identified set: sign restriction identification set is dis-
played with red areas; sign and higher-order moment inequality restriction identification is displayed
with gray areas with darker shades of gray indicating a larger threshold. Dashed black lines display
the identified set when the excess kurtosis of the candidate MP shock is larger than 1.5. True impact
and propagation in blue.
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