The Recalibrated and Copula Opinion Pools

James Mitchell*

Warwick Business School, University of Warwick, U.K.

April 16, 2013

Abstract

This paper develops methods for combining density forecasts which accommodate stochastic dependence between different experts’ predictions. Previous work combining density forecasts, using so-called “opinion pools”, has essentially ignored dependence. The proposed basis for modelling the dependence among different experts’ densities is a recalibration function, based on the probability integral transforms of the expert densities. We show that this reduces to a copula function in a special case. We explore the properties of various approximations to the recalibration function both via Monte-Carlo simulations and in an application density forecasting U.K. inflation using the Bank of England’s “fan” chart. We find that the copula opinion pool can deliver more accurate densities than traditional linear and logarithmic opinion pools in many realistic situations.

Keywords: Expert Resolution; Density Forecast Combination; Opinion Pools; Dependence; Copula; Central Bank Fan Charts

1 Introduction

Probability density forecasts are increasingly produced and used by decision makers in a range of environments including in business, economics, finance and meteorology. Density forecasts provide a full impression of the uncertainty associated with a forecast and in general facilitate better (i.e. lower cost) decisions[1]. Only when the Decision Maker has

*Address for correspondence: James.Mitchell@wbs.ac.uk. Thanks to seminar participants at Nottingham, Rome Tor Vergata, Rotterdam and Warwick (Economics) for helpful comments.

[1]The terms risk and uncertainty are treated interchangeably here and, under a Bayesian (Savagian) interpretation, represented by a probability distribution.
a quadratic loss function is their optimal (i.e. cost minimising) decision unaffected by uncertainty (e.g. see Zellner (1986)). Density forecasts can be produced in many ways, reflecting the Decision Maker’s objectives. A common approach is to employ some form of model, whether data or theory driven. But the density forecasts may also be elicited from subjective surveys or involve some judgement being applied to model-based forecasts, as with Delphi forecasts and committee-based forecasts. Or they may come from other sources. Our focus is on combining these density forecasts, taking them as given, irrespective of their informational source. They are simply, in the language of decision analysts, “Expert” density forecasts.

There is a long tradition in management science of aggregating Experts’ densities - of Expert resolution or consensus. Various methods of combining or aggregating these densities have been proposed, including axiomatic and modeling approaches; see Winkler (1986), Genest & Zidek (1986) and Clemen & Winkler (1999) for reviews. This paper considers this model based approach. In its most common manifestation this involves use of the linear and logarithmic opinion pools. A more recent literature in econometrics has shown that (linear) pools across Expert densities can be effective in the face of temporal changes in Expert performance, often due to structural change (e.g., see Jore et al. (2010)), and when the Decision Maker is unsure which Expert is best and suspects that all Expert densities are likely incorrect (see Geweke & Amisano (2011)). Combination weights can be tuned to reflect historical performance (e.g. see Hall & Mitchell (2007)). The linear opinion pool has shown promise in applications forecasting macroeconomic variables (e.g. Mitchell & Hall (2005), Hall & Mitchell (2007) and Garratt et al. (2011)), stock returns (e.g. Geweke & Amisano (2011)), with related studies in meteorology (e.g. Raftery et al. (1995) and Ranjan & Gneiting (2010)).

However, with a few notable exceptions which we discuss below and form the basis for our contribution, little explicit attention when combining these density forecasts has been paid to their possible dependence; this is the case for the widely used linear (and logarithmic) opinion pools. This apparent neglect is despite the shared information which many Experts condition on when forming their density forecasts; e.g. they often exploit overlapping information sets, use similar models to process common data and/or if the densities are formed subjectively read the same newspapers, etc. It also contrasts a larger literature, since Bates & Granger (1969), concerned with the combination of point forecasts accommodating their (linear) dependence.

\[2\] In the statistical literature these “Expert” densities are often called “component” densities; e.g. see Ranjan & Gneiting (2010).
We seek to remedy this omission and to do so work within an established Bayesian paradigm, namely the Expert combination model of Morris (1974, 1977). Under this approach the Decision Maker uses the Experts’ densities as “data” to update, via Bayes’ Theorem, their prior distribution about the future values of the variable(s) of interest. But to arrive at their posterior density, the Decision Maker is required to specify the joint density, or likelihood, derived from the Experts’ marginal densities - the “data”. This requirement appears to have hindered application of the approach in practice: Morris’ (1977, p. 687) words, written thirty-five years ago, remain true today: “One of the future challenges of Expert modeling is the construction of general models of Expert dependence”. Instead we have seen specific applications, assuming normality as in Winkler (1981). Moreover, the focus in the literature, including recently in econometrics, has been on linear and logarithmic pools, where dependence is not accommodated, certainly explicitly.

In Section 2 we develop the Recalibrated and Copula Opinion Pools that accommodate, in a practical manner which is shown to be operational, any stochastic dependence between different Experts’ densities. The basis for modeling dependence among different Experts’ densities is a re-calibration function, based on the probability integral transforms of the Experts’ densities - their “density forecasting errors” (cf. Mitchell & Wallis (2011)). We explain that this Recalibrated Opinion Pool reduces to the product of the Experts’ densities and a copula function in a special case. Thereby, we explicitly relate Morris (1974, 1977) to Jouini & Clemen (1996) and develop the suggestion of Jouini & Clemen (1996) for the Decision Maker to use copula functions to link together the Experts’ (marginal) densities to construct the multivariate density. By decoupling the model of stochastic dependence, captured by the copula, from the Experts’ (marginal) densities we show that the Copula Opinion Pool can generate flexible posterior predictive densities, irrespective of the distributional form of the Experts’ densities. By exploiting the probability integral transforms, rather than just the point forecasting errors as in Jouini & Clemen (1996), the Copula Opinion Pool (COP), via the choice of the copula function, accommodates not only linear but asymmetric dependence too. Pearson correlation offers a sufficient measure of dependence only under joint normality. In turn, we show explicitly how the COP generalizes the approach to handling dependence suggested by Winkler (1981), which is based on the multivariate normal distribution and works off the point forecasting errors only; with the point forecast usually defined as the conditional mean of the predictive density.

More generally, drawing on recent developments in econometrics, in Section 3 we
consider how to operationalize the ROP and in particular how to estimate the COP. Since in many applications the Decision Maker has a time-series of (historical) forecasts from the Experts, which can be evaluated against the subsequent outturns, we consider optimal estimation of the COP using these data. Optimality is defined generally, free from specific assumptions about the nature of the user’s loss function, with respect to the average logarithmic score, generalizing Hall & Mitchell (2007) and Geweke & Amisano (2011) who consider linear combinations only of the Experts. The optimal combination density forecast is the one that maximizes the logarithmic predictive score. Thereby past performance of the pool, over a training period, is used to determine the nature of the COP.

Then in Section 4 we undertake Monte-Carlo simulations to show that dependence can have serious effects on the nature of the combined density. We find the COP offers gains relative to the linear and logarithmic opinion pools. Section 5 then reinforces the superiority of the COP in an application forecasting U.K. inflation using the Bank of England’s fan chart. Section 6 concludes.

2 Dependence among the Experts’ densities

Typically dependence between point forecasts and point forecast errors is captured by (Pearson) correlation. However, correlation offers a sufficient summary measure of association only when the point forecasts are jointly normally or, more generally, elliptically distributed. Moreover, while correlation captures linear dependence it cannot measure nonlinear or asymmetric dependence.

Therefore, a more general approach is required for Expert (marginal) forecast densities which may not be Gaussian and even when Gaussian may not follow a multivariate normal distribution. Moreover, we may well expect some type of asymmetric dependence; e.g., there may be differing degrees of correlation between forecasts during upturns than downturns or in times of pronounced uncertainty. Indeed, in the application below forecasting U.K. inflation, we find that the two Experts’ forecasts are more dependent when the outturn falls in the middle of the distribution - when, in a sense, it is business-as-usual - than in the tails, when an extreme event occurs. Pearson (linear) correlation is unable to detect asymmetric dependence like this.

We might also hope to obtain “better” combined density forecasts, or opinion pools, if

3See Embrechts et al. (1999) for a description of the dangers associated with the use of correlation as a measure of dependence.
we account for (any) dependence between N Experts. Certainly, it is well known that the
“optimal” (i.e., mean squared error (MSE) minimizing) in-sample combination of point
forecasts involves examination of the dependence between the competing forecasts; see
Bates & Granger (1969). Only when the forecasts are uncorrelated do the optimal weights
equal the inverse of the relative root MSEs.

Despite this expectation that accommodating Expert dependence will be beneficial,
the two most popular means of combining density forecasts do not account, at least
explicitly, for dependence:

1. The Linear Opinion Pool (LOP) takes a weighted linear combination of the Experts’
probabilities

$$p(y)^{LOP} = \sum_{i=1}^{N} w_i g_i(y) \quad (1)$$

where $g_i(y)$ are the (conditional) density forecasts of Expert i, where $\sum_{i=1}^{N} w_i = 1$.

2. The Logarithmic Opinion Pool (logOP) is

$$p(y)^{logOP} = k \prod_{i=1}^{N} g_i(y)^{w_i} \quad (2)$$

where k is a normalizing constant.

2.1 The Bayesian approach to the aggregation of density forecasts

Our proposed method for handling Expert dependence benefits from taking place within
an established methodological framework for the combination of competing forecasts,
name the Bayesian approach to the aggregation of density forecasts. Following Morris
(1974, 1977), Bayes’ Theorem is used to update the Decision Maker’s prior distribution
of the variable y, $d(y)$, in the light of “data” from the $i = 1, ..., N$ Experts that takes
the form of the joint density, or likelihood, derived from their N densities. This delivers
the posterior density of y conditional on the Decision Maker’s prior and the Experts’
(conditional) densities $g_i(y)$:

$$p(y|g_1,...,g_N) = k.f(g_1,...,g_N|y)d(y) \quad (3)$$
where \(k \) is a normalization constant and \(f(g_1, ..., g_N|y) \) is the likelihood function of the Experts’ predictions. We assume that everything the Decision Maker knows about \(y \) is captured by the Experts’ densities and adopt a non-informative prior. If the Decision Maker did have more information we could simply capture this with another density, the \(N + 1 \)-th Expert’s density. We therefore ignore \(d(y) \) below.

The difficulty faced by the Decision Maker when implementing this approach is deciding upon the form of the likelihood function or joint density. The likelihood must capture the bias and precision of the Experts’ densities as well as their dependence, a point also made by Clemen (1986). To-date this has precluded widespread application of this method.

2.2 Winkler (1981): combining densities looking at their first two moments only

One popular way to implement the Bayesian approach, (3), is to follow Winkler (1981) and assume the multivariate distribution is normal and characterize dependence based on analysis of the point forecasting errors only. (Lindley (1983) derives an analogous result but from a different starting point.) This delivers a tractable analytical expression for \(f(g_1, ..., g_N|y) \).

Let \(m_i = \int_{-\infty}^{\infty} yg_i(y)dy \) and \(v_i = \int_{-\infty}^{\infty} (y - m_i)^2 g_i(y)dy \), respectively, denote Expert \(i \)'s (conditional) mean and variance forecast of \(y \), with \(m = (m_1, ..., m_N)' \) and \(v = (v_1, ..., v_N)' \). The forecasting error for Expert \(i \) is \(s_i = m_i - y \).

Assume the \(N \)-stacked vector \(s = (s_1, s_2, ..., s_N)' \) is mean zero with known covariance matrix \(\Sigma \), where the diagonal of \(\Sigma \) comprises \(v \), thereby leaving \(N(N - 1)/2 \) remaining elements of \(\Sigma \) to be specified. The forecasts \(m_i \) can be recalibrated prior to combination if biased. In addition, and we consider this below, the diagonal of \(\Sigma \) could be estimated as \(E(ss') \). This need not deliver the same estimates for \(v \) if they are not conditional expectations.

Assuming \(f(g_1, ..., g_N|y) = f(s_1, ..., s_N|y) \) and \(s \sim N(0, \Sigma) \), such that \(f \) is a \(N \)-variate normal density, Winkler (1981) shows that the posterior density for \(y \), the combined density (3), conditional on the mean forecasts \(m \) (and possibly but not necessarily \(v \) too),

4 Given non-quadratic loss functions it is well known that the “optimal” central estimate may not equal the mean; e.g. see Zellner (1986).

6
reduces to:

\[p(y|m) \propto \phi \left(\frac{y - m^*}{\sigma_m^*} \right), \]

where \(\phi \) is the standard normal density function and

\[m^* = \frac{e' \Sigma^{-1} m}{e' \Sigma^{-1} e}, \] \(\sigma_m^2 = \frac{1}{e' \Sigma^{-1} e}. \] (5)

(6)

\(m^* \) is the combined point forecast, which we discuss further below. It can be interpreted as the maximum likelihood (ML) estimator. In this sense \(m^* \) is optimal. It is equivalent to the minimum variance solution of Bates & Granger (1969). Below we show how \(m^* \) is not just MSE optimal but the circumstances in which it is the mean of the (logarithmic score) optimal combined density forecast. Winkler (1981) also shows that when \(\Sigma \) is unknown, and determined from a prior (the inverted Wishart distribution) or estimated from a sample covariance matrix, \(h(y|m) \) is a \(t \)-density, with the same posterior mean \(m^* \) as in (5) and posterior variance a scale multiple of \(\sigma_m^2 \). As the degrees of freedom increase this scalar factor trends to unity, and the posterior density tends to normality - as in (4).

\(\sigma_m^2 \) is the variance of the combined forecast. We see from (6) that \(\sigma_m^2 \to 0 \) as the number of forecasters \(N \) tends to infinity, even when they are making errors, so long as all of the \(N(N - 1)/2 \) covariances are either zero or greater than zero. We might expect positive covariances when Experts have access to common information sets etc.. In other words, \(\sigma_m^2 \) can tend to zero even when each Expert remains uncertain about their forecasts \((v_i > 0)\).

Moreover, this approach characterizes dependence based on analysis of the point forecasting errors only, when we might wish to model the dependence between all fractiles of the densities. It does not exploit any available information on other characteristics.

5The likelihood \(h(m|y) \) implies \(m \) are \(N \) random variables sampled from a normal distribution with common mean \(y \) and variance-covariance matrix \(\Sigma \). Treating \(\Sigma \) as fixed and known, differentiation of the likelihood with respect to \(y \) reveals that the ML estimator \(m^* : \sqrt{T} (m^* - y) \sim N(0, (e' \Sigma^{-1} e)^{-1}). \) See also Halperin (1961).

6In the specific context of the Winkler model, Clemen & Winkler (1985) show how Expert dependence reduces information in the sense that \(\sigma_m^2 \) declines. By way of contrast, below we focus on the use of scoring rules (cf. Gneiting & Raftery (2007)), specifically the logarithmic score, to evaluate the densities given the subsequent outturns \(y \).

7Jouini & Clemen (1996) also work off the point forecasts only, even though the copula approach they describe is, as we explain below, more general.
of the density forecasts. In contrast, we propose methods that combine known density forecasts not just in terms of the accuracy of the point forecasts but the calibration of the ‘whole’ density as indicated by their probability integral transforms. In so doing we show that the copula approach is easy to apply when one does more than look at point forecast errors as in Jouini & Clemen (1996).

2.3 The Recalibrated Opinion Pool (ROP)

Without loss of generality consider \(N = 2 \) Experts. The posterior density of \(y \) conditional on the Experts’ densities \(g_1(y) \) and \(g_2(y) \) is given, via Bayes’ Theorem, as

\[
p(y|g_1, g_2) = k.f(g_1, g_2|y),
\]

where \(k \) is a normalization constant and \(f(g_1, g_2|y) \) is the likelihood function of the Experts’ predictions.

Importantly, \(f(g_1, g_2|y) \) can be re-written as the product of the marginal densities and a “joint re-calibration function” \(c(z_1, z_2) \), where \(z_1 = G_1(y_1) \) and \(z_2 = G_2(y_2) \) are the probability integral transforms (pits); see Morris (1977). This follows from application of the change of variables formula in the vector case - and yields the ROP:

\[
p(y|g_1, g_2) = k.c(z_1, z_2).g_1(y).g_2(y).
\]

2.4 Properties of the ROP: the Copula Opinion Pool as a special case

Specification of \(f(g_1, g_2|y) \) is key to combining dependent Expert densities. As (8) shows it contains information beyond that contained in \(g_1(y) \) and \(g_2(y) \). Specifically, the joint

\[
\begin{align*}
\frac{\delta G_1(y)}{\delta y} &= g_1(y) \\
\frac{\delta G_2(y)}{\delta y} &= g_2(y)
\end{align*}
\]

Then from the change of variables formula:

\[
\begin{align*}
c(z_1, z_2) &= f(G_1^{-1}(z_1), G_2^{-1}(z_2)) \\
&\quad \times \begin{vmatrix}
\frac{\delta G_1^{-1}(z_1)}{\delta z_1} & \frac{\delta G_1^{-1}(z_1)}{\delta z_2} \\
\frac{\delta G_2^{-1}(z_2)}{\delta z_1} & \frac{\delta G_2^{-1}(z_2)}{\delta z_2}
\end{vmatrix} \\
c(z_1, z_2) &= f(G_1^{-1}(z_1), G_2^{-1}(z_2)) \\
&\quad \times \begin{vmatrix}
\frac{1}{g_1(y)} & 0 \\
0 & \frac{1}{g_2(y)}
\end{vmatrix} \\
f(g_1, g_2) &= g_1(y).g_2(y)c(z_1, z_2).
\end{align*}
\]
re-calibration function \(c(z_1, z_2) \) in (8) reflects both the “probabilistic calibration” of each Expert’s density and Expert dependence.

Probabilistic calibration of the forecast distribution \(G_i(y) \) relative to the true (but in general unknown) true distribution \(F(y) \) is defined, for a sequence \(t = 1, ..., T \), by Gneiting et al. (2007) as

\[
\frac{1}{T} \sum_{t=1}^{T} F_t \circ G_{i,t}^{-1}(z) \to z_i \text{ for all } z_i \in (0, 1) \quad (9)
\]

\((i = 1, ..., N)\) and indicates marginal density calibration failure when the pits \(z = G_i(y) \) deviate from uniformity. It does not, however, capture calibration failure resulting in serial dependence of the pits as explained in Mitchell & Wallis (2011). Two different Experts, with different density forecasts, can both satisfy (9) and deliver uniform pits, even in large samples, if they correctly condition on their differing and incomplete information sets; in this case misscalibration is picked up via temporal dependence of the \(z \).

We delineate special cases of the ROP, (8), by rewriting the joint density \(c(z_1, z_2) \) as the product of its marginals and a copula function \(c^*(.) \):

\[
c(z_1, z_2) = f_1(z_1)f_2(z_2)c^*(1 - F_1(z_1), 1 - F_2(z_2)) \quad (10)
\]

where \(c^*(.) \) can capture, as we review in Section 3.1 below, general forms of Expert dependence. This decomposition, possible for any multivariate density, follows from Sklar’s theorem (Sklar (1959)).

When the marginal densities \(g_1(y) \) and \(g_2(y) \) are probabilistically well-calibrated and their pits are uniform \(f_1(z_1) = 1, F_1(z_1) = z_1 \) and \(f_2(z_2) = 1, F_2(z_2) = z_2 \). In this case

\[
c(z_1, z_2) = c^*(z_1, z_2) \quad (11)
\]

and the Copula Opinion Pool (COP) is given as

\[
p(y|g_1, g_2) = k.c^*(z_1, z_2).g_1(y_1).g_2(y_2). \quad (12)
\]

Recalibration functions have also been employed to improve combined density forecasts in cases where Expert dependence is ignored. Outside of the Bayesian framework, Ranjan & Gneiting (2010), for example, use the linear opinion pool to combine the densities and then recalibrate the pool based on their pits, \(z \). In our framework, a variant of this would involve combining the densities using the logarithmic opinion pool with unit weights, \(g_1(y_1).g_2(y_2) \), and recalibrating not using \(c^*(z_1, z_2) \) which accommodates dependence as well as calibration, but \(c^*(z) \) which reflects calibration only.
The COP is determined by \(c^*(z_1, z_2) \), which is a copula function. This amounts to the case considered by Jouini & Clemen (1996), who do not discuss calibration, or lack of. Jouini & Clemen (1996) also focused on specific ways to estimate \(c^*(z_1, z_2) \), based on the point forecasting errors, and did not exploit the “density forecasting errors”, \(z_i \).

But when \(z_1 \) and \(z_2 \) are not both uniform they are re-calibrated:

\[
c(z_1, z_2) = f_1(z_1)f_2(z_2)c^*(1 - F_1(z_1), 1 - F_2(z_2))
\]

(13)

and essentially we need to model the multivariate density of the uniform pits \(c(z_1, z_2) \). But this can be seen as akin to re-calibrating the marginal densities, using the re-calibration functions \(f_1 \) and \(f_2 \), and then modelling their dependence via the copula.\[10\]

Only under Expert independence does \(c(z_1, z_2) = 1 \). Then the COP reduces to the product of individual densities as in a logarithmic pool, (2), but with unit weights on each individual density.

2.5 Familiar special cases of the COP

2.5.1 Gaussian Expert densities and a Gaussian copula \(\Rightarrow \) Winkler (1981)

Let \(g_1(y) \) and \(g_2(y) \) be two Expert Gaussian densities with means \(m_i \) and standard deviations \(\sigma_i \) (\(i = 1, 2 \)). Then the COP is given as

\[
p(y|g_1, g_2) = k.c(z_1, z_2).\prod_{i=1}^{2} \frac{1}{\sigma_i} \phi(u_i)
\]

(14)

where \(u_i = (y - m_i)/\sigma_i \) and \(\phi \) is the p.d.f. of the standard normal distribution.

When \(c(z_1, z_2) = c(G_1(y), G_2(y)) = c(\Phi(u_1), \Phi(u_2)) \) is a Gaussian copula p.d.f. it takes the form

\[
\frac{1}{|R|^{1/2}} \exp \left\{ -\frac{1}{2} u'(R^{-1} - I)u \right\}
\]

(15)

where \(u = (u_1, ..., u_N)' \), \(u_i = \Phi^{-1}(G_i(y)) = (y - m_i)/\sigma_i \) and \(R \) is the correlation matrix of the standardized point forecasting errors, the \(u_i \)'s, such that \(\Sigma = DRD \) where \(D = \text{diag}\{\sigma_i}\).

\[10\] In this case, it might be helpful to parameterize this process. One possibility is to use the beta density (since this keeps the outturns between 0 and 1). This is the density analogue of the beta-transformed combination in Ranjan & Gneiting (2010).
Then the normal COP is

\[p(y|g_1, g_2)^{NorCOP} = \frac{1}{|R|^{1/2}} \exp \left\{ -\frac{1}{2} u'(R^{-1} - I) u \right\} \prod_{i=1}^{N} \frac{1}{\sigma_i} \phi(u_i) \]

(16)

where the Experts’ (marginal) densities are fixed.

But since

\[\frac{1}{|R|^{1/2}} \exp \left\{ -\frac{1}{2} u'(R^{-1} - I) u \right\} \prod_{i=1}^{N} \frac{1}{\sigma_i} \phi(u_i) = \frac{\exp \left\{ -\frac{1}{2} u'R^{-1} u \right\}}{(2\pi)^{N/2} \prod_{i=1}^{N} \sigma_i |R|^{1/2}} \]

(17)

it follows that \(p(y|g_1, g_2)^{NorCOP} \) is equivalent to Winkler seen in (4) as

\[\exp \left\{ -\frac{1}{2} (y-m)'\Sigma^{-1}(y-m) \right\} \]

is nothing more than the multivariate normal density, on which Winkler relies. So \(R \) is the correlation matrix of the point forecasting errors, but in this special case, given the assumed Gaussian copula, this fully captures the dependence between the density forecasting errors too\(^{11}\). This means we know \(p(y|g_1, g_2)^{NorCOP} \) is Gaussian with mean and variance as given in (5) and (6).

An important distinction is that, focusing on \(N = 2 \), in Winkler there are three parameters to estimate in \(\Sigma \) but only one in norCOP - the correlation coefficient. That is, Winkler estimates all of \(\Sigma \); i.e. it essentially re-calibrates the variances of the marginal densities so that they equal the variance of the point forecast errors. This need not equal the variance of the density forecast, when the density forecast is not constructed as the efficient projection so that the pits are uniform (and the point forecast errors are unbiased). In the norCOP these variances are fixed, and only the correlation coefficient is estimated.

2.5.2 Independent Experts ⇒ logarithmic opinion pool

We have already seen that for general Expert densities under independence \(c(z_1, z_2) = 1 \). Then the COP reduces to the product of individual densities as in a logarithmic pool, but with unit weights on each individual density. But further intuition on the consequences of ignoring dependence when combining can be gained by continuing to consider Gaussian

\(^{11}\)Clemen & Reilly (1999) provide a discussion of the use of the normal copula when modelling multivariate processes rather than multiple Expert forecasts of a scalar, \(y \), as here.
Experts.

When R is diagonal $\frac{1}{|R|^{1/2}} \exp \left\{ -\frac{1}{2}u'(R^{-1} - I)u \right\} = 1$ and $p(y|g_1, g_2)^{NorCOP}$ becomes

$$p(y|g_1, g_2)^{NorCOP} = \prod_{i=1}^{N} \frac{1}{\sigma_i} \phi(u_i)$$

namely a logarithmic opinion pool. This shows how the logOP can be motivated within the Bayesian framework of Morris, albeit as a special case under independence. It also shows how the Winkler approach relates to logarithmic opinion pools.

For normal component densities, when R is diagonal, the mean and variance of the Winkler approach via (5) are given as

$$m^* = \frac{\sigma_2^2 m_1 + \sigma_1^2 m_2}{\sigma_1^2 + \sigma_2^2}, \quad (18)$$

$$\sigma_m^{*2} = \frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_2^2}, \quad (19)$$

which is the same mean and variance as derived in a different way for the logarithmic pool with unit weights on each Expert density; e.g., see Wallis (2011).

3 Estimation of the ROP and the COP

Our focus, as explained in the Introduction, is on estimating the parameter(s) of the opinion pools objectively using historical data. Alternative approaches include subjective assessment of the parameters; e.g. see Clemen & Reilly (1999).

The COP is more convenient to operationalize and estimate than the ROP. The ROP, (8), with the Experts’ densities taken as given, requires the recalibration function $c(z_1, z_2)$ to be be specified. Specification of this appears as demanding as of $f(g_1, g_2|y)$ itself. Any bivariate (more generally multivariate) distribution on the unit circle is permissible; and it is unclear when and how the Decision Maker might have a preference for a specific (known) distribution. In the simulations below, we therefore consider nonparametric estimators for $c(z_1, z_2)$. This, of course, offers a practical means of estimating the ROP in large samples only.

But with the marginal densities $g_1(y)$ and $g_2(y)$ considered probabilistically well-calibrated, perhaps after post-processing, the COP ‘only’ requires specification of the copula function $c^*(z_1, z_2)$. Again nonparametric estimators might be considered, but
given their possible advantages in small samples and to contrast the ROP, we consider a parametric approach. This requires a copula function to be chosen.

3.1 Choice of the copula function

The practical obstacle to easy implementation of the COP is choosing which copula to use. As Joe (1997) and Nelsen (1999) review, there are many to choose from. We confine attention here to the normal, t, Joe-Clayton and Frank copulae as this is sufficient to illustrate the flexibility of the COP. We continue to focus on $N = 2$ Experts; while many copula functions extend naturally to higher dimensions the application below considers 2 Experts.

Different copula functions allow specifically for different types of dependence; they allow for the fact that association may be stronger in one part of the distribution than the other. The issue is to determine the ‘right’ copula.

- The Gaussian copula density is determined by a single parameter ρ, where $\rho \in (-1, 1)$, and is given as $c_N(z_1, z_2) =$

$$\frac{1}{\sqrt{1 - \rho^2}} \exp \left\{ -\frac{\rho^2 (\Phi^{-1}(z_1)^2 + \Phi^{-1}(z_2)^2) - 2\rho \Phi^{-1}(z_1) \Phi^{-1}(z_2)}{2(1 - \rho^2)} \right\}$$

(20)

where Φ^{-1} is the inverse cdf of a standard normal random variable.

- The t copula density is determined by two parameters ρ and \tilde{v}, $\tilde{v} > 2$, and is given as $c_T(z_1, z_2) =$

$$\frac{\Gamma \left(\frac{\tilde{v} + 2}{2} \right) t_{\tilde{v}}(T^{-1}(z_1; \tilde{v}))^{-1} t_{\tilde{v}}(T^{-1}(z_2; \tilde{v}))^{-1}}}{\tilde{v} \pi \Gamma \left(\frac{\tilde{v}}{2} \right) \sqrt{1 - \rho^2}} \left(1 + \frac{(T^{-1}(z_1; \tilde{v})^2 + T^{-1}(z_2; \tilde{v})^2 - 2\rho T^{-1}(z_1; \tilde{v}) T^{-1}(z_2; \tilde{v}))^{-(\tilde{v}+2)}}{\tilde{v}(1 - \rho^2)} \right)^{-\frac{\tilde{v}}{2}}$$

(21)

where $T^{-1}(.; \tilde{v})$ is the inverse cdf of a Student’s $t_{\tilde{v}}$ random variable and Γ is the gamma density. Similarly to the univariate case, the t-copula generalises the normal copula by allowing for joint fat tails; this means it allows for a higher probability of extreme outcomes for both marginal densities. The t-copula allows the two densities to be related in the extreme tails even when $\rho = 0$. For the normal copula there is zero tail dependence as long as $\rho < 1$; see Embrechts et al. (1999). Therefore, as
Chen et al. (2004) show, the differences between the normal and \(t \)-copulae can be significant - they can imply quite different dependence characteristics.

- The Joe-Clayton copula is determined by two parameters \(\tau^U \) and \(\tau^L \), \(\tau^U, \tau^L \in (0, 1) \), and is given as
 \[
 c_{JC}(z_1, z_2) = 1 - \left(1 - \left([1 - (1 - z_1)^\kappa]^{-\gamma} + [1 - (1 - z_2)^\kappa]^{-\gamma} - 1 \right)^{-1/\gamma} \right)^{1/\kappa}
 \]
 \(\kappa = 1/\log_2(2 - \tau^U) \), \(\gamma = -1/\log_2(\tau^L) \). \(\tau^U \) and \(\tau^L \) allow for tail dependence; and thereby the Joe-Clayton copula accommodates extreme events, such as both Experts making large density forecasting errors in either the same or opposite directions. The normal copula, when \(\rho < 1 \), has \(\tau^U = \tau^L = 0 \), implying that both Experts are independent in the tails. We follow Patton (2006) and to impose symmetry of the copula when \(\tau^U = \tau^L \) use the symmetrized Joe-Clayton copula
 \[
 c_{SJC}(z_1, z_2) = 0.5c_{JC}(z_1, z_2) + 0.5c_{JC}(1 - z_1, 1 - z_2) + z_1 + z_2 - 1
 \]

- The Frank copula is determined by \(\theta \in (-\infty, \infty) \) and is given as
 \[
 c_{Frank}(z_1, z_2) = -\frac{1}{\theta} \ln \left(1 + \frac{\exp\{-\theta z_1\} - 1}{\exp\{-\theta z_2\} - 1} \right)
 \]
 and implies asymptotic tail independence.

3.2 Optimal estimation of the COP

Given a time-series \((t = 1, ..., T)\), the past performance of the opinion pool - over some training period - can be used to estimate the parameters in the COP. This use of historical data is similar both to how point forecast are combined (see Bates & Granger (1969)) and to how the weights are chosen in optimal linear opinion pools (see Hall & Mitchell (2007) and Geweke & Amisano (2011)).

Optimality is defined generally, free from specific assumptions about the nature of the user’s loss function, with respect to the average logarithmic score, generalizing Hall & Mitchell (2007) and Geweke & Amisano (2011) who consider linear combinations of the Experts only.\(^{12}\)

\(^{12}\)Gneiting & Raftery (2007) discuss a general class of proper scoring rules to evaluate density forecast
The optimal COP is the one that maximizes the logarithmic predictive score. As Hall & Mitchell (2007) discuss, by maximizing the logarithmic score of the COP its Kullback-Leibler Information Criterion (KLIC) distance relative to the true but unknown density is being minimized. As in Geweke & Amisano (2011), no assumption is made in estimation that one of the Experts is correct.

Specifically, the KLIC distance between the true density \(f_t(y_t) \) and the copula opinion pool \(p_t(y_t) \) \((t = 1, ..., T)\) is defined as:

\[
KLIC_t = \int f_t(y_t) \ln \left(\frac{f_t(y_t)}{p_t(y_t)} \right) dy_t \quad \text{or} \quad (25)
\]

\[
KLIC_t = E[\ln f_t(y_t) - \ln p_t(y_t)]. \quad (26)
\]

The smaller this distance the closer the density forecast to the true density. \(KLIC_t = 0 \) if and only if \(f_t(y_t) = p_t(y_t) \).

Under some regularity conditions \(E[\ln f_t(y_t) - \ln p_t(y_t)] \) can be consistently estimated by \(\overline{KLIC} \), the average of the sample information on \(f_t(y_t) \) and \(p_t(y_t) \) \((t = 1, ..., T)\):

\[
\overline{KLIC} = \frac{1}{T} \sum_{t=1}^{T} [\ln f_t(y_t) - \ln p_t(y_t)]. \quad (27)
\]

Definition 1 The optimal COP is \(p^*(y|g_1, g_2) \), where the optimal parameter vector \(\rho_T^* \) minimizes this KLIC distance. This minimization is achieved as follows:

\[
\rho_T^* = \arg \max_{\rho} h_T(\rho)
\]

where \(h_T(\rho) = \frac{1}{T} \sum_{t=1}^{T} \ln p_t(y_t|g_{1t}, g_{2t}) \) is the average logarithmic score of the COP over the training sample \(t = 1, ..., T \).

Assuming concavity for \(h(\rho) \), \(\rho_T^* = \arg \max_{\rho} h_T(\rho) \) converges almost surely to \(\rho^* = \arg \max_{\rho} h(\rho) \).

Accuracy, whereby a numerical score is assigned based on the predictive density at time \(j \) and the value of \(y \) that subsequently materializes, here assumed without loss of generality to be at time \(j + 1 \). A common choice for the loss function \(L_T \), within the proper class (cf. Gneiting & Raftery (2007)), is the logarithmic scoring rule. More specific loss functions might be appropriate in some applications. In this case these rather than the logarithmic score might be minimized via the following.
4 Monte-Carlo Simulations

To explore the properties of the ROP and COP, and compare them to the LOP and logOP alternatives which do not accommodate Expert dependence, we carry out a set of Monte-Carlo simulations. (These simulations, which indicate how dependence has a serious affect on the nature of the combined density, are consistent with simple experiments (not reported) we carried out involving use of the COP to combine two different Gaussian Expert densities using the four different copula functions considered above. These simple experiments confirmed that the COP can generate more flexible densities, with skewness and kurtosis, when we move beyond the normal copula and vary the parameter(s) in the copula.)

In each case the KLIC is used to judge density forecasting performance of the respective pool, \(p_{jt}(y_t) \), relative to the true or ideal (i.e. the correct) conditional density, \(f_t(y_t) \):

\[
\text{KLIC}_{jt} = E \{ \ln f_t(y_t) - \ln p_{jt}(y_t) \} = E \{ d_{jt}(y_t) \}. \tag{28}
\]

\(\text{KLIC}_{jt} \) is the expected difference in their log scores, with \(d_{jt}(y_t) \) the “density forecasting error” (Mitchell & Wallis (2011)), which can be used to construct Giacomini & White (2006) type tests for equal predictive accuracy \(f_t(y_t) = p_{jt}(y_t) \).

To ensure relevance in a time-series forecasting context we forecast an autoregressive process. This involves extending the simulation experiments in Smith & Wallis (2009) and Mitchell & Wallis (2011) who, not modelling Expert dependence, focus on the LOP and logOP with equal combination weights. Here we seek to isolate how Expert dependence affects the relative performance of the different Opinion Pools.

4.1 Forecasting an autoregressive process

Consider the second-order autoregressive data-generating-process

\[
Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \varepsilon_t, \quad \varepsilon_t \sim N(0, \sigma^2_\varepsilon). \tag{29}
\]

The true or ‘ideal’ forecast distribution of \(Y_t \) given an information set \(\Omega_t \) comprising observations \(y_{t-1} \) and \(y_{t-2} \), the model and its parameter values is

\[
f_t(y_t) = N(\phi_1 y_{t-1} + \phi_2 y_{t-2}, \sigma^2_\varepsilon). \tag{30}
\]

The following two (misspecified) Expert densities are then combined via the various
opinion pools:

1. Expert 1 (AR1) is a random walk forecaster:

\[AR1_t = N(y_{t-1}, 2(1 - \rho_1)\sigma^2_y), \] \((31) \)

where \(\sigma^2_e = (1 - \phi_1 \rho_1 - \phi_2 \rho_2)\sigma^2_y \) and \(\rho_1 \), are autocorrelation coefficients:

\[\rho_1 = \phi_1/(1 - \phi_1 - \phi_2), \rho_2 = \phi_1 \rho_1 + \phi_2. \] \((32) \)

2. Expert 2 (AR2) uses a first order AR with the same variance:

\[AR2_t = N((2\rho_1 - 1)y_{t-1}, 2(1 - \rho_1)\sigma^2_y). \] \((33) \)

The contemporaneous correlation between the Expert’s forecast errors is \(\rho_1 \). Expert dependence can therefore be controlled in the simulations below by varying \(\phi_1 \) and \(\phi_2 \) (subject to stationarity restrictions). Thereby, we establish how Expert dependence affects the performance, as measured by the KLIC, of the different opinion pools. If focus were on MSE loss - and the points forecasts only - since the variances of both Expert densities are identical, the optimal combination involves equal weights, irrespective of \(\rho_1 \). The simulations below therefore indicate if and how Expert dependence does matter when focus is on the entire density, not simply the conditional mean.

We assume that these Experts use least-squares regression of \(y_t \) on its lagged value to estimate the parameters in their densities, but we neglect parameter estimation error and use the corresponding ‘true’ values. Therefore, while misspecified, having ignored \(y_{t-2} \), each Expert is probabilistically well-calibrated. While we take these Expert densities as given, the parameter(s) in the Opinion Pool are estimated at each Monte-Carlo replication.

4.2 Simulation results

To distinguish time dependence from Expert dependence we vary \(\phi_1 \) and \(\phi_2 \), and in turn \(\rho_1 \) and \(\rho_2 \), to generate six different stationary processes used to estimate and fit the two Expert densities and the various opinion pools. We assume \(T = 150 \), typical of macroeconomic samples (and recall the parameter(s) in the opinion pools are estimated at each replication).\(^{13}\) We carry out 1000 Monte Carlo replications for each experiment.

\(^{13}\)The ROP results below are a cheat and use 10,000 (rather than \(T = 150 \)) pits from both Experts: we then estimate the multivariate density of the pits \(c(z_{1}, z_{2}) \) nonparametrically via the bivariate histogram.
Table 1: Simulation Results: KLIC rejection rates at nominal 5% level as time and Expert dependence change

<table>
<thead>
<tr>
<th></th>
<th>$\rho_1=0.33$</th>
<th>$\rho_1=0.33$</th>
<th>$\rho_1=0.33$</th>
<th>$\rho_1=0.02$</th>
<th>$\rho_1=0.33$</th>
<th>$\rho_1=0.67$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\rho_2=0.2$</td>
<td>$\rho_2=0.4$</td>
<td>$\rho_2=0.8$</td>
<td>$\rho_2=0.4$</td>
<td>$\rho_2=0.4$</td>
<td>$\rho_2=0.4$</td>
</tr>
<tr>
<td>AR1</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>AR2</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>67</td>
</tr>
<tr>
<td>ROP</td>
<td>6</td>
<td>47</td>
<td>100</td>
<td>67</td>
<td>47</td>
<td>6</td>
</tr>
<tr>
<td>norCOP</td>
<td>9</td>
<td>51</td>
<td>100</td>
<td>60</td>
<td>51</td>
<td>12</td>
</tr>
<tr>
<td>sjcCOP</td>
<td>4</td>
<td>40</td>
<td>100</td>
<td>74</td>
<td>40</td>
<td>3</td>
</tr>
<tr>
<td>frankCOP</td>
<td>5</td>
<td>42</td>
<td>100</td>
<td>60</td>
<td>42</td>
<td>7</td>
</tr>
<tr>
<td>tCOP</td>
<td>14</td>
<td>55</td>
<td>100</td>
<td>62</td>
<td>55</td>
<td>8</td>
</tr>
<tr>
<td>LOPop</td>
<td>96</td>
<td>98</td>
<td>100</td>
<td>100</td>
<td>98</td>
<td>49</td>
</tr>
<tr>
<td>LOP</td>
<td>97</td>
<td>99</td>
<td>100</td>
<td>100</td>
<td>99</td>
<td>58</td>
</tr>
<tr>
<td>logOP</td>
<td>14</td>
<td>48</td>
<td>100</td>
<td>71</td>
<td>48</td>
<td>50</td>
</tr>
</tbody>
</table>

Notes: AR1 and AR2 are the two (marginal) Expert forecast densities; ROP is the recalibrated opinion pool; norCOP, sjcCOP, tCOP and frankCOP are the copula opinion pools with normal, Symmetrized Joe-Clayton, t and Frank copula functions; LOPop is the linear opinion pool with optimized weights; LOP is the equal-weighted linear opinion pool; logOP is the logarithmic opinion pool.

Table 1 shows the KLIC rejection rates at the nominal 5% level as time and Expert dependence change for each Expert and the various opinion pools. These include the optimized LOP (denoted LOPop) as well as the equal weighted LOP and logOPs, simply denoted LOP and logOP in Table 1.

We draw two main conclusions from Table 1. First, looking at the final three columns, with temporal dependence ρ_2 fixed at 0.4, we see that as ρ_1 is increased the rejection rates decrease. This improvement in performance for the pools as Expert dependence increases is most pronounced for the COPs, especially the Symmetrized Joe-Clayton copula which has the lowest rejection rates. The traditional linear and logarithmic pools, including when the combination weights in the LOP are optimized, do not match the performance with 100 bins in $[0, 1]^2$. We did, in an attempt to facilitate a fair comparison with the other pools, experiment when T is smaller with fitting a (normal) kernel but the ROP performed very poorly. We conclude that implementation of the ROP is practical only in very large samples. The ROP results below are therefore presented only for illustrative purposes.
of the COPs, with at $\rho_1 = 0.67$ the COPs offering gains of nearly 50%. Accommodating Expert dependence via the COP delivers improved density forecast accuracy.

Secondly, looking at the first three columns of Table 1 when Expert dependence is fixed at $\rho_1 = 0.33$ but temporal dependence as measured by ρ_2 is increased instead, we see rejection rates increase across the board. This reflects the fact that as ρ_2 rises the component Expert densities themselves become poorer. This deterioration in quality of the Expert densities becomes so pronounced that no opinion pool can deliver competitive density forecasts. Rubbish in, Rubbish Out. Hence we see rejection rates of 100% when $\rho_2 = 0.8$. But for lower values of ρ_2 we again see benefits to combination, with again the COPs outperforming traditional linear and logarithmic pools. The linear pool in particular performs poorly, with rejection rates close to 100% even when $\rho_2 = 0.2$.

5 An application: the Bank of England’s “fan” chart for inflation

Economic forecasts play a central role in helping the Monetary Policy Committee at the Bank of England assess the key economic risks when they set monetary policy. We consider the quarterly sequence of inflation forecasts published by the Bank of England in their Inflation Report in February, May, August and November, which we correspond to quarters q1, q2, q3 and q4, respectively. These forecasts are not mechanically produced by a model or combination of models but also reflect the Bank’s judgement.

The Bank of England has published density forecasts for inflation, at least up to eight quarters ahead, from 1993q1. Up until 1995q4 these took the form of charts showing the central projection, together with an estimate of uncertainty based on the historical mean absolute error. At this stage the Bank of England did not quantify a skew so that modal, median and mean projections are equal; the density forecast is (implicitly) assumed normal. From 1996q1 the Bank of England published the so-called “fan” chart, based on the two-piece normal distribution, that allows for skewness or the “balance of risks” to be on the upside or downside; see Britton et al. (1998). From 1997q3 these charts have been based on the deliberations of the Monetary Policy Committee (MPC). The forecasts are then stated in the Inflation Report to “represent the MPC’s best collective judgement about the most likely path for inflation... and the uncertainties surrounding those central projections”. The measure of inflation targeted has changed over the sample

14 The parameters of the density forecasts can be downloaded from the Bank of England’s website.
period, from RPIX to CPI inflation, and we evaluate forecasts relative to the appropriate outturn.15 Strictly the forecasts examined are conditional on unchanged interest rates.

The quality of the Bank of England’s forecasts attracted considerable flak through the late 2000s and early 2010s. The Bank’s Governor was forced to write several \textit{mea culpa} letters to the U.K. Chancellor of the Exchequer as inflation persistently exceeded the target of 2% by more than 1% (as seen in the bottom panel of Figure 2). This repeated breach of its mandate from Parliament culminated in an official independent review - the Stockton Review - in 2012. This found the Bank’s (point) forecasts to be “marginally” worse than outside Experts. It therefore seems appropriate to see whether Expert combination would have delivered improved (density) forecasts.

We consider combining the Bank of England (BoE) Expert density with a Climatological (or unconditional) Gaussian Expert. Such an Expert is popular in statistics as a reference forecast (e.g. see Gneiting et al. (2007)) and involves Least Squares projection of inflation on an intercept. With the mean inflation rate estimated to be just above 2% in our macroeconomic context this relates to the (two year ahead) inflation target which the BoE is charged with delivering.

Table 2 reports the average logarithmic scores of these two Experts and of combinations of their densities produced via the different opinion pools. The full-sample, T, is used to estimate the pools. We defer recursive (real-time) estimation of the parameters in the pools to future work, with higher T.

Table 2 shows that relative forecast accuracy varies across the two Experts - BoE and Climatological - with the forecasting horizon, h. At $h = 1$, which is in fact a “nowcast”, the BoE Expert is clearly better, but at $h = 8$ the Climatological Expert is preferred. Only at the medium range (around $h = 4$ to $h = 6$ quarters ahead) do we observe more equality in performance between the two Experts. This is critical in understanding when combination helps. From Table 2 we see that it is at these medium ranges that the copula pools do consistently deliver gains relative to the best individual Expert. The logarithmic score of the preferred pool is placed in red font. We see that from $h = 4$ to $h = 6$ this is the Symmetrized Joe-Clayton COP. The optimized linear opinion pool does beat the best individual Expert at $h = 4$ but at $h = 5$ to $h = 6$ returns the same density as the Climatological Expert, as the BoE Expert receives no weight in the combination. It is from $h = 4$ to $h = 6$ quarters ahead that the individual Experts’ forecasts are also more dependent; the final row of Table 2 shows that the correlation between the conditional

15The final projection for RPIX inflation was published in the February 2004 \textit{Inflation Report}.

20
Table 2: Combining the Bank of England and Climatological Experts: Average Logarithmic Score (1993q4-2011q4) by Forecast Horizon, h, and correlation (r) between the two Experts’ pits

<table>
<thead>
<tr>
<th></th>
<th>h=1</th>
<th>h=2</th>
<th>h=3</th>
<th>h=4</th>
<th>h=5</th>
<th>h=6</th>
<th>h=7</th>
<th>h=8</th>
</tr>
</thead>
<tbody>
<tr>
<td>BoE</td>
<td>541</td>
<td>873</td>
<td>1149</td>
<td>1297</td>
<td>1387</td>
<td>1394</td>
<td>1773</td>
<td>2443</td>
</tr>
<tr>
<td>Climat.</td>
<td>1087</td>
<td>1077</td>
<td>1059</td>
<td>1047</td>
<td>1045</td>
<td>1046</td>
<td>1050</td>
<td>1053</td>
</tr>
<tr>
<td>norCOP</td>
<td>490</td>
<td>788</td>
<td>1002</td>
<td>1075</td>
<td>1074</td>
<td>1029</td>
<td>1116</td>
<td>1230</td>
</tr>
<tr>
<td>sjcCOP</td>
<td>838</td>
<td>1077</td>
<td>1172</td>
<td>1024</td>
<td>964</td>
<td>974</td>
<td>1412</td>
<td>2169</td>
</tr>
<tr>
<td>FrankCOP</td>
<td>490</td>
<td>796</td>
<td>1027</td>
<td>1129</td>
<td>1140</td>
<td>1092</td>
<td>1155</td>
<td>1269</td>
</tr>
<tr>
<td>tCOP</td>
<td>494</td>
<td>794</td>
<td>999</td>
<td>1062</td>
<td>1055</td>
<td>1019</td>
<td>1104</td>
<td>1230</td>
</tr>
<tr>
<td>LOPop</td>
<td>541</td>
<td>829</td>
<td>973</td>
<td>1028</td>
<td>1045</td>
<td>1046</td>
<td>1050</td>
<td>1053</td>
</tr>
<tr>
<td>LOP</td>
<td>684</td>
<td>852</td>
<td>975</td>
<td>1063</td>
<td>1110</td>
<td>1124</td>
<td>1144</td>
<td>1206</td>
</tr>
<tr>
<td>logOP</td>
<td>490</td>
<td>799</td>
<td>1050</td>
<td>1185</td>
<td>1237</td>
<td>1216</td>
<td>1224</td>
<td>1297</td>
</tr>
<tr>
<td>r</td>
<td>0.0</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.5</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Notes: BoE and Climat. are the Bank of England and climatological (marginal) Expert forecast densities; norCOP, sjcCOP, tCOP and frankCOP are the copula opinion pools with normal, Symmetrized Joe-Clayton, t and Frank copula functions; LOPop is the linear opinion pool with optimized weights; LOP is the equal-weighted linear opinion pool; logOP is the logarithmic opinion pool.

Mean forecasts from the two Expert’s densities is higher at these horizons than when $h = 1$ to $h = 3$ or $h = 7$ to $h = 8$.

Consistent with the simulations, the benefits to the COP accrue when dependence between the Experts is higher. Table 2 shows that at the short horizons, when the BoE forecast is competitive, combination can in fact still help. But with the BoE Expert so superior to the Climatological one, the two Experts’ forecasts are distinct; we observe a 0.0 correlation coefficient between their conditional mean forecasts at $h = 1$. This explains why the logOP, which assumes independence, works well. But since the COP nests the logOP it is no surprise that the normal and Frank COPs deliver identical predictive densities and also minimize the logarithmic score at $h = 1$. At $h = 2$ and $h = 3$ dependence between the Expert densities increases and we do observe the COPs delivering more accurate densities than either Expert.

At the longer horizons, $h = 7$ and $h = 8$, the Climatological Expert is clearly preferred.
to the BoE Expert and the best combination is no combination at all. This is consistent with the optimized LOP returning a zero weight on the BoE Expert.

5.1 More detailed analysis of the one-year ahead forecasts

We now focus on the one-year ahead forecasts ($h = 5$). At this horizon the optimized LOP weight on the BoE Expert equals 0.03 explaining why the accuracy of the LOP matches that of the Climatological Expert. But this preference for a single Expert in the linear pool masks the considerable dependence that exists between the two Expert’s density forecast errors as measured by their pits. Figure 1 plots the scatterplot between their pits and suggests these density forecasting errors do fan out, such that the two Experts have both made large negative density forecasting errors together but are surprised in different ways on the upside. This is confirmed when looking at the ML parameters from the estimated SJC-COP. $\hat{\tau}_L = 0.76$ and $\hat{\tau}_U = 0.15$ confirm lower tail dependence.

Figure 2 reveals that this lower tail dependence is consistent with both Experts making large negative density forecasting errors together over the recent recession. The top panel of Figure 2 shows that the quarter-by-quarter log scores of the sjcCOP, LOP and logOP all took a big hit over 2008-9 in the aftermath of the global financial crisis. But explicitly assuming Expert independence, as in the logOP, is the worst idea, with the lowest scores returned over the recession. The optimized LOP, which recall is essentially the Climatological Expert, in fact forecasts best over the recession itself, but this is at the expense of consistently lower scores than the sjcCOP before and after the recession. This is because, as the middle panel of Figure 2 indicates, the optimized LOP delivers a far too wide density forecast, explaining why the probability of inflation exceeding 3% is essentially unchanged from 1993-2011. By contrast, the sjcCOP exhibits more variation, reflecting its sharper densities. Comparison with the bottom panel of Figure 2 indicates that the sjcCOP does correctly anticipate the rise in inflation above the 3 per cent target from 2010.

The superiority of these probability event forecasts constructed from the three pools is confirmed statistically when we undertake encompassing tests following Clements & Harvey (2010). These involve using a logit model to relate the binary outturn (was inflation greater than 3% or not) to the three probability event forecasts. We find t-ratios of 3.1 on the sjcCOP, 1.5 on the LOP and -1.7 on the logOP. One also cannot reject the null hypothesis that the sjcCOP encompasses the other two Experts at a p-value of 2%.

We conclude the empirical application by stressing the importance of the model space
used as the basis for combination or pooling. As discussed above, the performance of the different opinion pools is sensitive to the quality and relationship between the component Expert densities. If one Expert density dominates the other(s), it should be no surprise when no pool helps. As recent econometric work has found combining Expert densities is beneficial when there is uncertainty about the preferred Expert (e.g., see Jore et al. (2010)) and when the Decision Maker suspects that all Expert densities are likely incorrect (see Geweke & Amisano (2011)).

6 Conclusion

This paper sets out a general framework to accommodate stochastic dependence, including asymmetric dependence, between multiple Experts’ probability density forecasts. In so doing it proposes a recalibrated and copula opinion pool. Simulations indicate the flexibility of the proposed copula opinion pool and an application using forecasts from the Bank of England reveals its utility to Decision Makers.

Future work should consider applications with more than two Experts, where there may be gains to trading off flexibility with parsimony when specifying higher-dimensional copula functions.
Figure 2: One year ahead probability event forecasts for the Symmetrized Joe-Clayton COP, the optimized LOP and the logarithmic opinion pool
References

