Consistency and Asymptotic Normality of Instrumental
Variables Estimators

So far we have analyzed, under a variety of settings, the limiting distrib-
ution of T/2 (B — ,BT) as well as Wald, Lagrange Multiplier and Likelihood

Ratio test for Hy : RB'=r versus H4 : RB'#r, under the asumption that
E (Xt (yt - X;ﬂT)) = 0. Indeed, we can always find a 3 such that E (Xt (yt - XgﬂT)) =
0. The issue is: are we really interested in conducting inference on 87

Suppose we want to learn about the effect on wages of an extra year of
education. Also, suppose that the "true" model is:

Inw; = By o + By 1educ; + By zabil; + €

where w; denote the wage of individual 4, and educ; and abil; the years of
education and the ability of individual ¢, ¢ = 1,...,n (i.e. we have a cross section
of individuals). We are interested in conductinfg inference on 3 ;. The problem
is that individual ability is unobserved and is likely to be (positively) correlated
with education.

Now, we run a OLS regression of Inw; on a constant and educ;,

ﬁols
2y (Inw; — 2370 Inw;) (educ; — Y77 educ;)
£ (e — 50 educr)

Tt is easy to see (do it!) that

ﬂols 11~_S>~ ﬁT = 60,1 + pab,edﬁo,%

where p,;, .4 denotes the correlation between education and ability, and that

E ((yi - (/30,1 + pab,edﬁO,Q) educi)educi) =0.

Though, we are interested in making inference on f3;; and not on 3, +
pab,ed/BO,2!”!
In order to do that, we need to use a different estimator, known as Instrumen-

tal Variable (IV) estimators. Suppose the E(zeduc;) # 0 and E(z; (¢€);) = 0,

then 1 n 1 n 1 n
B, == Yo (nwi — 3 350 Inwi) (2 — 5 200 2i)
Y n X (edues — 5 YL educi) (20— 5 200 %)

and ﬁols ‘lj' 50,1'
Let’s generalize. Suppose y; = X;,@i + €, where X; is k x 1, and we want
an estimator consistent for ,81. Now, FE (Xt (yt — Xgﬁf‘)) # 0, but there are p



instruments Zg, p > k, such that F (Zt (yt — Xg,@i>) =0 and F(Z;X}) is of

rank k uniformly in ¢.
Typically, this scenario appears in simultaneous equations systems, i.e.

y=X8"+e
X = ZII +u

wherey is Tx1, X isTxk,Biskx1,ZisTxp,p>k, I pxk. If E(ue) # 0,
then E (Zie;) # 0.
In this case, we want to use the IV estimator

where P37 is p x p.!

Assumption IV-1:

(i) e = XiB8" + e and B (2 (o — XiB8") ) = 0, with X, k x 1 and Z p x 1,
D2
(i) 7 Zthl Z, X, — Qr = 0p(1), where Qr is O(1) and uniformly of full rank £,
(iii) f’%z —P% = 0,(1) and P37 is O(1) and uniformly positive definite.

(iv) VT_l/Qﬁ Zthl Zie, N(0,1,), with Vp = var (ﬁ Zthl Ztet) is uni-
formly positive definite.

Theorem IV-1
(a) Let Assumption IV-1(i)-(iii) hold, then

[= o

BT,IV -pt Lo
(b) Let Assumption IV-1(i)-(iv) hold, then
_ -~ d
DT1/2T1/2 (BT,IV _ ﬂi) N N(O,Ik),
where ) .
Dr = (QrP¥Qr)  QrPF¥VrPFQr (QrPFQr)

(c) Let Assumption IV-1(i)-(iv) hold, and there exists V7 such that Vo — Vi =
0p(1), then

f);l/2T1/2 (BT,IV _ Igi) 4 N(0, Iy,),

~ -1 ~
'When Pz = (% Zthl ZtZ;) , then Bp ry is known as 2SLS (Two-Stage Least
Squares).



where

T T
1 P 1
X (T thz;> P#V,P# (T sz;)
t=1 t=1
1< (1 o
x ((TZth;> P37 <T sz;))
t=1 t=1

Corollary IV-1 R
Let Assumption IV-1(i)-(iv) hold and assume there exists Vr such that

Vi —Vp = o0,(1). If P37 = V7!, then

- S d
Do,lT/2Tl/2 (/6T,IV - ,@i) — N(0, Ix),

1 & 1 & -
N _ 1 D2z /
Do = ((T ;tht> P <T ;ztxt» )

Proof of Theorem IV-1:
(a) Given A-IV1(i)-(iii) and recalling that the inversion of a uniformly positive
definite matrix is a continuous operation, and recallling Property PR1,

where

(b) Let

D;1/2T1/2 (BT,IV - ﬁi)

T
- zZz -1 2z — 1
= DT1/2 (QyPQr) QP VlT/2VT1/2 = Z Zoc,
t=1

+op(1) (1)



where the 0, (1) terms comes from the product rule, as 7z Zg;l Zie, = O,(1),

as it converges in distribution, and (% Z;‘FZI Z:X) — QT) =op(1), (f;sz - PZTZ) =
op(1) becasuse of A-IV1(ii)(iii). Now, given the definition of D, the first term
on the RHS of (1) converges in distribution to N (0, I). The result then follows
from the asymptotic equivalence lemma.

(¢) By the same argument as in Part (c) of Theorem OLS-1, given that Dy —
DT = Op(l)

Hypothesis testing can be performed along the same line outline for the
OLS case, simply replacing OLS estimators with IV estimators and using the
appropriate estimator for the covariance matrix.

Sufficient conditions for A-IV1(ii)-(iv) and the consistent estimation of var (T’l/ ey Ztet>

are obtained simply estending the moment and memory conditions to Z; too.

We have seen that instrument should satisfy two properties, i.e. they should
be uncorrelated with the error and they should be correlated with the regressors.
Provided p > k, we can test the null,

Hy:E (Zt (yt - X;ﬁi>> =0
versus
Hy o B (2 (- Xi8Y)) #0

Theorem IV-2 (Tests for overidentifying restrictions).
Let Assumption IV-1(i)-(iv) hold, and there exists V such that Vo —Vp =
0,(1). If P3# = V' then
d
Jrvir — X;Q)—k

where

Jrv,r
1 & - /
= T (T Z Z; (yt - X::BT,IV))
t=1
N 1 E N
PT (T Z Z, (yt - XQﬁT,IV))
t=1

Proof: We shall derive it as a special case when doing GMM testing.

Hausman Test
Hy:E (Xt (yt _ x;gi)) —0
versus

Ha o B (X (- Xi8Y)) #0



Define,
Hy = T (Brav —Bro.) Var (' (Brav —Br))
(Brorv = Bro) (2)
where Var (T1/2 (BT’ - BT,Ols» is an estimator of var (Tl/ 2 (BT, = BT,OlS» :
var (12 By v = Br..))
= war (T2 By - B'))

+var (Tl/2 (BT,ols - ﬂT)>
—2cov (Tl/2 (/aT,IV - ﬁT) T2 (BT,OZS - ﬁT» (3)

The difficult part is to provide an estimator for the last term of (3). We have
already see the two variance terms, it remains to see the covariance term. Con-
sider the case in which P% = V;l. Recall from (1) that,

T'/? (BT,IV - ﬂi)

= (Q’TP%ZQT) P%Z T1/2 Z Ztef + OP
and from (?7) that

T1/2 (I@T,ols - ﬁT)
1 T
= M;lmzxtet—l—OP(l)

t=1

My = T-'S E(X,X}). Under the null of E(Xse;) = 0, note that 3% = 8.
Thus,

o (1 ) 7 - )
= (QTP Qr) QTPZZ zT:ZT: E (Ziere s X's) M_

IfFE (ZtZtet) =0’FE (Z:Z}),E (XtXth) = 0?E (X;X}), and if E (Zsere,X's) =
0 for all t # s, and if E (ZtXth) Qr, then

cov (T1/2 (BT,IV - ET) ,T1/? (BT,ols - ﬂT))
= oar (T1/2 (BT,ols - ﬂT>) = USE (thé)



Thus, in this case
var (T1/2 (BTJV - BT,ols))
= wvar (T1/2 (BTJV - ﬂi))
—var (T1/2 (BT,,JZS - /31>)

and nothing that PZ# = (% Zle E(ZQZt)Ug) -

var (T2 (Br 1y~ Bross))
= (@PFQr) -8 Y BXX))

Theorem IV3 (Hausman Test)
Let Assumption IV-1(i)-(iv) hold, and assume that

@ (T1/2 (BT,IV - BT,OZS))
= Var (T1/2 (ﬁT,Iv - BT,ols)) + op(1)

Then, under Hy, Hp 4, X% and under H 4, Hp diverges to infinity.
Proof: Under Hy,

T2 (BT,IV - BT,OZS)
T2 (Bryy = Bt) =772 (Br. - B7)

The statement then follows by the same type of argument used in the proof of
the Wald test.
Under H 4,

T2 <3T,IV - BT,m)
T/? (BT,IV - ,31) — T2 (BT,ols - ﬂT)
LT1/2 (ﬁi _ ﬁ)

and note that 7''/2 (,81t - BT) diverges.



Weak Instruments

In this section we assume that all data are ¢id, and we have conditional
homoskedasticity. There is almost nothing in the literature about weak instru-
ments dealing with dependence and heterogeneity or even allowing for condi-
tional heteroskedasticity.

We have seen how to test for instruments exogeneity in the overidentified
case. Though, good instruments has to be correlated with the regressors. Con-
sider again,

y=X8"+e¢ (4)

X =ZII+u (5)
we need that II be of full rank k. Note that, as F(Z;u;) is zero,

= (E(X'X)""

E(X'Z)
If IT is of rank less than k, then we have what we the so called weak instruments
problem.?

We proceed in two stages. First, we analyze how to test for the null of NO
weak instruments versus the alternative of weak instruments. For the case of
k =1, can just do an F test for the null IT = 0. For the case of £ > 1, think are
more complex.

Hall, Rudebusch and Wilcox (International Economic Review 1996) suggest
the following approach. Note that they assume that observations are not only
iid but also jointly normal.

Compute the k canonical correlation r1,...,7, between X and Z as the k
non-negative solutions to the determinant equations:

det (X’(rQIT - Z(z’z)‘lz’)x) ~0

Note that 77 are estimated canonical correlations. Order them so that 7 > r?
As the canonical correlations are strictly linked with the k eigenvalues of
(X'X)"(X'Z)(Z'Z)" " (Z'X), the full rank condition is equivalent to the fact
that the smallest canonical correlation is strictly positive. Let p; > ...p;, > 0,
be the "population" canonical correlations.
Construct the statistic:

~Tln (1-17)

Under the null Hy : p, =0, —T'In (1 - r,%) <, X(p—(k—1)): Where p is the number
of instruments.

2Sometime the case of II of rank smaller than k is termed irrelevant instruments, while
the case of Z'X/T ~ CT~1/2 is indeed called weak instruments (e.g. Staiger and Stock
Econometrica 1997).



The statistic above assume iid normal (note that is very similar to Johansenn
test for rank of cointegrating vector...).

If the full rank condition fails, then B,V’T is no longer consistent for B%.

Thus, means that we can no longer performs inference on B*, based on Wald, LM
and LR tests. Inference with chi-squared limiting distribution can be performed
using the Anderson and Rubin (AR) statistic (Annals of Mathematical Statistics
1949), which does not use the IV estimators. Suppose, we want to test

Ho:B" =By vs Ha: 8" # B,

where 3 is a k x 1 vector of given "numbers". In terms of the system (4) and

(5),
ARr (8y)
Ly —XBy) (2(2'2)'2) (v - XB,)
75 (v = XB8y) (Tr — 2(Z'2)'Z) (v — XBy)

If errors are iid normal then ARz (3,) is distributed as F(p, T — p), otherwise

if we drop normality p~! ARy < an regardless failure of full rank conditions.
Again, this is because the AR statistics does not make use of the IV estimators!
Thus, we can test hypotheses even if in the presence of weak instruments.

Though, we now want to see what are the confidence set in the presence of
weak identification. Let’s cg.g5 be the 5% percent critical values of a X?p—(k‘—l))'
We take a grid of values to test under the null, ...8¢;, Bo2;s s Bom-.. We say
that B, ; belongs to the 95%—confidence interval if the P-value associated to
ARt (B,) is larger than 0.05. In the case of failure of the rank conditions
the confidence set may be unbounded. For example, suppose k = p = 1 and
E(X.;Z;) =0, in this case the confidence set is all the real line.

More Recent Developments

(1) The Anderson and Rubin statistic is characterized by a limiting distribu-
tion with degree of freedom equal to the number of instruments. This creates a
problem whenever we have a large number of instruments. Kleibergen (Econo-
metrica 2002), proposes a modification of the AR statistics which has a limiting
distribution equal to the number of parameters to be estimated, provided that
the number of instruments grows at a rate slower than T, i.e. p = pr = o(T).

(2) If the number of instruments grows with the sample size, but not too
fast, then it is possible to obtain consistent IV estimator even in the case of
weak instrments (Chao and Swanson, Econometrica 2005).



Generalized Method of Moment Estimator

Let g; (B) = g (yt, X4, Zs; B) where B € R*, and g is RP—valued, with p > k.
Define, the GMM estimators as:

R 1 Z ! R 1z
Brovum = arg ggg <T ;gt (5)) Qr (T ; gt (5))
= arg gg}rgl Gr (B)' SAZTGT (B)

with Q7 be p x p. When p = k we have ezactly identified GMM, when p > k we
have overidentified GMM. Qr is called estimated weighting matriz.
Note that OLS is GMM with G (8) = & S°7_, X, (y: — X}8) , and Qr = I,
Also, note that IV is GMM with G (8) = £ 32, Z, (y, — X}8), and Qp =
Pz?.

Ezxample 1: Nonlinear IV
yr = (X, B)+e

and X; is endogeneous, and we use Z; as instruments for X;. I want to estimate
3. In this case,

T
Gr (B) = 7 32 %0 (v — 9(X. )
t=1

and one choice of weighting matrix can be SAZT = % Zle Z:Z}, which is p X p,
with p > k.

Ezample 2: Estimation of Stochastic Differential Equations (Square Root Model)
The model below is often used for describing the dynamic of short term
rates.
dX(t) = k(n— X () dt +nX ()/2dW (t)

where X (¢) denotes the process in continuous time, with ¢ € RT, and W(t)
denotes a standard Brownian motion (i.e. a process whose increments W (t) —
W (s), s < t, are independent normal with variance ¢ — s). We want to estimate
K, w and 7 from discretely sampled observations X7, ..., X1 (i.e. X} is the process
X (t) sampled at time t = 1,2, ..., T'). The explicit form of the first two moments
of the first two autocorrelation is known, in fact

E(X:) =p
Var(Xy) = %22 (exp(—k) + Kk —1)

2 1— 2
Con(X,, X,y) = 2 (L= o))



2 _ _ 2
Cov(Xt,Xt,Q):%exp( K) (22 exp(k))

Thus, in this case can define G (3) as the vector containing the difference
between sample moments and model implied moments.

Gr (B)

% Zf:l Xt
% Zf:l(Xt - % ZZ:l Xt)2
I (X = 2 X)) (X — £, X))
(X — X)) (X2 — 5 Y0, X0
)
1 (exp(—k) + K — 1)
un? (1—exg(n))2

K k
pn® exp(=r)(1—exp(x))?
%2

2Kk

When the moment conditions are nonlinear in 3, typically we can no longer
define Br gprpy in a closed form. In the nonlinear case, we need also two ad-
ditional conditions, known as unique identifiability and uniform law of large
numbers.

In the GMM case, we constrain our attention to the stationary case.

Define,

Brin = Argmitt Goo(8)' Ve Goc (8),

where G () is the almost sure limit of Gr(3), i.e. Gr(8) “3 G (B), and
Or 2 Q.. ,BEMM is said to be uniquely identifiable if

Goo(BEnrar) Qe Goo (Blpras) < Goo(B) Qe Goc(B)

for all B # B
Note that in the OLS and IV case ,BT and ,B}V are always uniquely identified

ols
as in that case Goo(8) Qo Goo (B) is convex, and thus it has a unique minimum.

Note, that by the first order conditions:

vﬁGOO(BTGMM)/QooGoo(IBEMM) =0

Consider the owveridentifed case, p > k. If the moment conditions are true,
then GOO(BEMM) = 0; otherwise VgGoo(ﬂEMM)’QOOGOQ(,BEMM) = 0 but
G (BLMM) # 0. On the other hand, in the ezactly identified case, V3G (,BLMM)’QOO
is an invertible matrix, and thus VgGoo(ﬁEMM)’QOOGOO(,BEMM) =0 is equiv-
alent to GOO(BLMM) = 0. As we shall see below, the limiting distribution of
GMM is driven by VTG (8L ;1) Now, in the case of mispecified overidentified

models, Goo(ﬂgMM) # 0 and so ﬁGT(ﬁEMM) cannot satisfy a CLT as it’s a
non-zero mean, and it will diverge to either plus or minus infinity. Threrefore,

10



exactly identified GMM can be used to estimate misspecified models, but overi-
dentified GMM cannot (see Hall and Inoue, Journal of Econometrics 2003). The
issue is that typically exactly identified GMM do not perform well. For overi-
dentified misspecified case, a possibility is Generalized Empirical Likelihood
(Schennach, 2008, Annals of Statistics).

As we’ll see below, before using overidentified GMM it is better to run a so
called J-test to test for the validity of the overidentifying restrictions.

Uniform (Strong) Law of Large Numbers.

We say that Gr (3) satisfies a uniform strong law of large numbers, if

sup |Gr (8) — Goo (B)] =50
BeB

Instead, we say that G (3) satisfies a uniform weak law of large numbers, if

sup |Gr (8) — G (B)] 2 0.
BeEB

Uniform convergence means that

Gr (B) — Goo (B) = 0p(1)

and the 0,(1) term does not depend on 3.
Assumption GMM-1:

A-GMM-1(i): supgep |G (B) — G (B)| P20 and Q7 25 Q., with B be a
compact set in R* (uniform LLN)

A-GMM-1(ii):  Goo(Bhsar) Qo0CGoo (Bhnins) < Goo(B) Q200G oo(B) Unique
identifiability

A-GMM-1(iii): Goo(BL ) =0

A-GMM-1(iv): Gr (B) is differentiable in the interior of B, ,@T,GMM and
,BEMM are in the interior of B.

A-GMM-1(v): V3G (8)—Du (8) % 0 uniformly for all 3 in a neighborhood
of ,BTG v and Do (8) has full rank & and is uniformly continuous in 3 all 8
in a neighborhood of BEMM (uniform LLN in a neighborhood of ETGMM)
A-GMM-1(vi): VTV G (Blapar) - N(O, 1), with Vi = var (VIGr (Bl ) )
and trVpr < oo and Vr is positive definite.

A-GMDM-1(i) is a uniform law of large numbers, as well as A-GMM-1(v),
the full rank conditions is the counterpart of the "relevance of instruments"
condition in IV. We'll see which additional conditions we need to pass from a
pointwise LLN to a uniform LLN.
As we mentioned already, A-GMM-1(iii) is trivially satisfied when p = k,
but for p > k is equivalent to correctness of the moment conditions. As we’ll
see it can be tested.
A-GMDM-1(ii) is a primitive assumptions. In certain case, when G (BTGMM)’QOOGOO(BEMM)
is convex, then it is trivially satisfied.

11



A-GMM-1(vi) requires that /TG (,BTGMM) satisfies a CLT. Note that in
the OLS case, VT Grp (ﬁTGMM) = X'e/T"/? and the IV case VTG (BEMM> =
Z'e/T'/?. Thus, VTGr (,BEMM> satisfies a CLT if the data do not display too

much memory and/or heterogeneity. We need nothing new here, just require
that the observations satisfy one of the CLT we have seen.

Theorem GMM-1:
(a) Let A-GMM-1(i)-(ii) hold. Then,

~ pr oot
ﬂ:nGMM = Bemm

(b) Let A-GMM-1(i)-(vi) hold. Then,
o— ~ d
ZTl/Q\/T (IBT,GMM - ﬁgMM) — N(0, Iy)
where
Yp = <V/3GT (IBT,GMM> QrVsGr (ﬂT,GMM))
~ I ~ ~
xVgGr (BT,GJMM) QrVrQrVeGr (BT,GMM)
~ I ~ -
X (VBGT (BT,GMM) QrVsGr (ﬂT,GMM))
c) Let A- -1(i)-(vi) hold. 0 = V7, where V = limp_,, Vi, then,
Let A-GMM hold. If © V-1, where V =1 Vr, th
S ~ d
ETl/Zﬁ (IBT,GMM - ﬁgMJM> — N(0, Ix)
where
~ —~ PN ~ -
Yp = (VﬁGT (/BT,GMM) QTVBGT (ﬂT,GMM))

Remark: When Q. = V!, with V = lim Var (\/TGT (ggMM)), we say
that Q. is the optimal weighting matriz. In this case, primitive sufficient con-

ditions for (AZT 2L Qo follow by the same argument used to show the consistency
of the variance of the score in the OLS case.

Proof:
(a) Given A-GMM1(i), by the uniform law of large numbers,

Gr (;3)/ QrGr (B) - GOO(ﬁ)/QooGOO(IB) =op(1)

with the op(1) term independent of 3. As the argmin is a continuous function,
by Property PRI,

arg min G (B) QrGr (B) & arg min Gog (8) Qe Goo (8)

12



But, given the definition of ,BT’GMM and ETGMM7 and given A-GMM1(ii), unique
identifiability, this means that

~ + or
Br.agym — Baarar — 0

(b) By the first order conditions,

VsGr (BT,GMM)/ QrGr (BT,GMM) =0.

Recalling the intermediate value theorem, via a expansion of the last term in
the LHS above, around ,BLMM, we have

0 = VsGr (Braan) G (B )
+ <V5GT (BT,GMM)I QrVsGr (IBT,GMM)> (BT,GMM - ﬁTGMM)
where Br.canas € (B, By ) - Thus,
T2 (Branins — Bl )
- <V5GT (Broan) rVsGr (ﬂT,GMM)) h
xVsGr (Bras) 0aTGr (Blau
We now need to show that,
V561 (Br.aaa) = Doo (Blarar) = 0p(1) (6)
Now,
VsGr (BT,GMM) — Do (ﬁEMM)
(956 (Bronn) - D (Broms)
+ (D (Broan) = Do (Bbaiwr))
As Br.gara is in the interior of B, given A-GMMI(v), V4Gr (BT,GMM) -
Do (Br.carar) = 0p(1), also given the uniform continuity Do () in 8 in a

neighborhood of 8, given that ,@TGMM - ,BEVMM L 0, and recalling Property
PR1, it follows that D (BTGMM) ~Da (BEMM) = 0,(1). Thus, (6) follows.

As, BT,GMM € (//B\T,GMMvﬁE'MM) )
VsGr (Br.eum) — Do (ﬁTGMM) = 0,(1)

13



by the same argument. Recalling, A-GMM-1(i), because of the product rule, by
a similar argument as that used in the proof of Theorem IV-1(b),

T2 (Br.cnins — Bliaar )
— (D (Bhaiae) 2D (Bl )
%Dec (Blapar) TG (Blgar) +0p(1)
Thus, by the asymptotic equivalence lemma,
STV (Brgaras — Blarn ) > N(O,T),
where
e = (D (Bhan) 22D (B)) D (Blr) 0

-1

VDo (Brnr) (Do (Blasar) 2D (i) )
Now, given (6) and given A-GMM1(i),
S — Soo = 0p(1).
Thus, because of the product rule,
i;l/le/z (BT,GJ\IM - 52‘MM>
ST (Z\aT,GMIM - ﬁgMM)
+ (i;l/z - 2501/2> T2 (BT,GMM - ﬁTGMM)
= n /T2 (BT,GMM - 52‘MM> +op(1)

and the statement follows by the asymptotic equivalence lemma.
(c) Immediate, by noting that when Q.. = V=1, then

Yo = <Doo (IBE‘MM)IQOODOO (ﬁgMM)>_

14



Testing for Overidentifying Restrictions-J-test

One of the main advantage of GMM in the overidentified case, is that it can
lead to a test for the validity of the moment conditions. For example, suppose we
have a sample of iid observations X;. We want to test whether X; is normally
distributed N(u,0?). In this case we know that E(X;) = pu, Var(X;) = o2,

BE((X; — u)? = 0, and E((X; — u))* = 3 (02)*. Thus,

Gr (B)
- % 23:1 XtT_ H
% Zt%l(Xt - % Zt%l Xi)? - o®
%th:Q(Xt B %Tz:t:l Xt)3 -0
% D=3 (Xt — % D1 Xe)t =3 (‘72)
We estimate 3 by GMM, and then we want to use these estimate for testing the
null hypothesis Ho : Goo (Bl ,1,) = 0 versus Ha : Goo(BL,,1,) # 0. Now, in the
case of p = k (exact identification), by FOC Gr ([A?TGMM) = 0. On the other

2

~ PN ~
hand, in the overidentified case, by the FOC G (ﬁT,GMM) OrGr (ﬁTGMM) -

0, but G (BT,GMM) is NOT identically zero. Though if null is true G (BT,GMM)

will approach zero in probability, while if alternative is true it will approach a
probability limit different from zero. Thus, we want to construct a statistics

based on T'/2Gr (aT,GMM) ; intuitively under Hy it will converge in distribu-

tion, under the alternative, it will diverge.
Hereafter, let

Hy : Gm(,@EMM) =0
Hy: GDO(ﬁI}MM) #0

Now, construct the following statistic (often known as J-test),
~ ’ —
Jr =TGr (BT,GM]\/I) V:FlGT (/@T,GMM)
where Vi = var (T1/2GT(,BLMM)) and

BT,GMM = arg fﬁneig Gr (B) ‘77:1GT (B)

The test has been computed using a GMM estimator based on the optimal
weighting matrix, i.e. using as weighting matrix a consistent estimator of the
inverse of the variance of the scaled moment conditions.

Note that the test we have performed for the exogeneity of the instruments
was indeed a J-test.

Theorem J-test
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Let Assumption A-GMM1(i)-(ii) and A-GMM1(iv)-(v) hold. Also, assume that
A-GMM1(vi) hold with Q. = VZ!, where Vio = limp_oc Var <T1/2GT (ggMM)) .
(a) If Vi — Vo = 0p(1) and if p > k, then under Hy,

Jr % X

(b) Under Hg4, Jr diverges to infinity at rate 7.
Proof: R
(a) Under the assumptions above, B g —ﬁTGMM, by part (a) of Theorem

GMM-1. Via a mean value expansion around ﬁTG MM

T'2Gr (BT,GMM)

T1/2GT <ﬁgMM) + vﬁGT (BT,GMM) T1/2 (BT,GMM - ﬁgMM)

where BT,GMM € (,@T,GMM, ,BEMM) . By the same argument used in the proof
of Theorem GMM-1 part (b), we have that

T/ (BT,GMM - IBE‘MM)
= - (DOo (BEMM)/ Ve'Doo (ﬂTGMM))

D (BTGMM), VTV Gy (IBTGMM)
+op(1)

-1

Furthermore, recall that VgGr (,@TGMM) — Do (,BEMM) = 0,(1). For nota-
tion brevity, let Du (ﬁTGMM) — D...Thus,

TV2Gp (BT,GMM)
_ (Ip ~ D, (QTGMM) (Doo (ﬁEMM)/V;}DOO (ﬂgMM))

D (IBTGMM)/V;}) T'?Gr (ﬁgMM) +0p(1)

-1

For notation brevity, hereafter, let D, (,BTG M M) = D4..Thus,

lim TY/2G (BT,G]WM) 4 N(0,%)
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where

(I = Do (D'VZ' Do) ' DL VL)

V. <1p -D. (DOO (ﬁgMM)/ngDoo>

— (Vi - D (DL V' Do) ' DL VS 2)

1
D/ V_l>

x (VA2 = D (DLVis' Do)~ DLV H?)
and thus, TV/2V /Gy (BT,GMM) 4 N(0, Vi ? 200 Vi /?). Now,

V(:Ol/QZooV(:Ol/Q
= (Ir = VI*Do (DL V' Do) ' DL VE )
x (Ip = VI/?D (DL V' D) T DLVL?)

= (Ip - VD (DLVL' Do) DLV

as (Ip ~V/’Dy (Dfx)VOngoo)f1 D/, 021/2) is idempotent. Given that
V! is consistent for V!, T2V /2 G (BT’GMM) 4 N0,V ?S 0 Via/?) . As
(Ip ~-Vi/*D,, (D VD) DLV 2) has rank p — k, it follows that
Jr < X}%,k.

There are cases in which the optimal weighting matrix depend on the para-
meters, that is Qo = Qo (B) . In this case, we proceed in three steps.

Step 1: We use an arbitrary positive definite weighting matrix, e.g. an
identity, ans we get a first estimator B¢ garar- Now, B garay is inefficient but

consistent. _
Step 2: We use Br g to construct a consistent estimator of the optimal

weighting matrix, say ﬁT (BT,GMM> .

Step 3: We use Qr (ET7GMM> in order to find an efficient estimator ,@TGMM.

An alternative is to keep iterating, using as weighting matrix the covariance
estimator obtained at the first step. Then, sto when the difference between
estimators is below a given tolerance level. GMM, 2-Step Iterative GMM can
be estimated by optimization procedures build in GAUSS, Matlab.

GMM tends to have a substantial small sample bias, specially when there are
many monent conditions. An alternative estimator it the Countinuous Updating
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Estimator (CUE) of Hansen, Eaton and Yaron (Journal of Business Economics
and Statistics 1996), where

R 1 X ! 1 Z
IBT,CUE = arg g}elg (T ;91: (5)) VT_1 (B) (T ;gt (ﬁ))

arg min G (8) V™ (8) Gr ()

where Vr (8) = var (ﬁ Zthl gt (,8)) . The first order conditions now are

VBG/T (BCUE) Vfl (BCUE) VsGr (BCUE)

—N (BCUE) vt (BCUE> Gr (BCUE> vt (BCUE) Gr (BCUE)
= 0

where A (5CUE) = % Zthl 9:VpGr (»BCUE) Vg (5CUE) :

The difference with 2-step GMM is the second term in the first order con-
dition, which is set to zero in usual case. The effect of this extra term is to
recenter the first order condition, and reduce the bias. Big inconvenience, com-
putationally quite cumbersone, cannot do with standard Newton-Raphson etc
algorithm.

18



Uniform Law of Large Numbers

Assumptions A-GMM!1-(i) require that G7(8) = = Zle g+ (B) converge to
Goo(B) uniformly in 8 (A-GMM-(v) requires the weaker condition of uniform
convergence only in a neighborhood of BTG mar. Uniform law of large numbers
are generally required when performing nonlinear estimation, when the closed
form of the estimator is no longer available.

We shall see that a (Strong) Weak Uniform of Large Numbers requires a
pointwise (strong) weak law of large numbers (i.e. a law of large numbers for
any 3 € B, plus a condition known as (strong) stochastic equicontinuity.

We outline the case of Weak Uniform Law of Large Numbers (as if we are in-
terested in hypothesis testing suffices). Though, keep in mind that the "strong"
counterpart exists.

What below is taken from Andrews, Econometric Theory, 1992.

Stochastic Equicontinuity. {Gr(8) : T > 1} is stochastically equicontinuous
on B if, Ve > 0, 36 > 0, such that?

lim sup P | sup sup |GT (,3’) —Gr (,8)| <e
T—o0 BEB B'€S(B,5)
where S(f3,0) denote a ball of radius § around 3.1
In word, for any 8 € B, we take a ball of radius §, now for the worst possible
B in the §—ball around the worst possible 3, the convergence has to occur.

Uniform Law of Large Numbers. If
(i) B is a totally bounded set (i.e. it can be covered by a finite numbers of
balls).’
(ii) VB € B, Gr (8) — E(G7 (B)) 2 0 (pointwise weak law of large numbers)
(iii) {Gr(B) : T > 1} is stochastically equicontinuous.
Then:

s |G (B) — E(Gr (B))| = op(1).

3The "prime" has nothing to do with transpose, 3,8’ are two elements of B.
4Given a sequence by,
lim sup by = inf sup b,
T T m>T
while
liminf by = sup inf b
T T Tp e m
Thus,

liminf by < lim by < limsup by
T T

SRecall a compact set is totally bounded and closed. Sometime we are interesting in
thesting say Ho : 87 < 1 versus H4 : 87 > 1. In this case we want to have a open parameter
space.
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We know already how to get a pointwise law of large numbers for any fixed
(3, the parameters space assumption is very mild, thus it remains to find some
primitive conditions for stochastic equicontinuity.

Here we outline the Lipschitz Conditions of Andrews (there are several vari-
ant and other approaches, but this is one of the more comprehensible and most
used). Hereafter: Gr(8) = + Zthl gt (we, B) . where w, simply denotes the de-
pendence of g; on the data, e.g. in the nonlinear-IV GMM case, g: (wy, ) =
(10 — (X, 8))Z.

Assumption Weak Lipschitz

WL1: |9t(’wta5/) - gt('wtaﬁ)| < Ci(wi)h (d (ﬁaﬂ/)) for all 8,5" € B

where d (ﬂ, B') is a metric, e.g. the Euclidean norm, h a deterministic function
such that h — 0 as d (8, 8") — 0, and Cy(w;) is a measurable function.

WL2: LS50 (Ci(wi) — E(Cy(wy))) 2 0.

If Assumption Weak Lipschitz hold, then G (f) is stochastic equicontinuous
and E(g:(8)) is continuous on B.

Consider the example above, g; (wy, 8) = (y: — $(X,, 8))Z; and suppose that

¢ is a bounded function with bounded first derivative. Also, for simplicity of
notation, suppose that X;, Z, and so /3 are scalar. Then, for say 3 < (3’

|ge(wy, B') — gt(wt,ﬁ)‘ <

stgp ng)(Xt,ﬂ)' (5 — 5/) | Z|

IN

A (B =52
Now, under very mild conditions % S (12| — E(|1Z4))) ro.

Some simpler conditions apply for the iid case and stationary ergodic (see
attached leaflet).
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Introduction to the Bootstrap

So far we have studied asymptotic normality of various estimators, OLS, IV,
GMM and several related hypothesis testing. Inference on parameters is based
on asymptotic critical values. But, how good is the normal approximations?
Can we get some improvement over that? We shall see that bootstrap criti-
cal values can provide refinements over asymptotic critical value under various
circumstances.

First, we want to outline the logic underlying the bootstrap, and then we
see how the use of bootstrap can lead to more accurate inference.

We begin by consider a very simple situation. We have a sample of T iid
observations, Xy, ..., X7 and we want to test the null hypothesis:

Hy:E(Xy)=pversus Hy: E(X1) # p

note that given the identical distribution assumption, E(X;) = E(X3) = ... =
E(XT).
Consider the t-statistic

T
ﬁ Zt:l (Xt —p)
ox

t,u,T = )

2
where 6% = %Zle (Xt - Zthl Xt) . Provided, var(X;) < oo, we know

that under Hy, t, 4, N(0,1). Thus, we compare t,, with 2.5% and 97.5% critical
values of a standard normal, and we reject at 5% if we ¢, 7 < —1.96 or t, r >
1.96.

The idea underlying the bootstrap is to pretend that the sample is the pop-
ulation, and so we can draw from the sample as many (bootstrap) samples as
we want and we construct many bootstrap statistic.

The simplest form of bootstrap is the iid nonparametric bootstrap, which is
suitable for iid observations.

Imagine we put all our T" observations in an urn, and then we make 7" draws
with replacement (i.e. we make one draw, get one observation, put it back
in the urn, get another one, put it back in the urn, and so on, for T times).
Let X7{,X5,..., X7 be the resampled observations, and note that X; = X,
t = 1,...,T with probability 1/T. In order words, X7, X3,..., X5 is equal to
X5,,X5,,.., X1, where for ¢« = 1,...,7 I; is a random variable taking values
1,2,...,T with equal probability 1/T. X}, X3, ..., X7 form a boostrap sample.
Needless to say, we can repeat the same operation and get a second bootstrap
sample, and so on. Note that, given the original sample, the probability law
governing the resample is nothing else that the probability law of I;, i =1, ..., T.
As I; are iid discrete uniform on [1,7], X} are also iid, conditional on the
sample. Now, let E* and Var* denotes the mean and the variance of the
resampled series, conditional on sample (note that E* and Var* are mean and
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variance operators in terms of the law governing the bootstrap, i.e. in terms of

L,i=1,..T).
Now, given the identical distribution, E*(X;) = E*(X35) = ... = E*(X}),
and
E*(XP) = X1t 4 Xod ot Xy
1) = Mg 2 o TT
1
= T2X
t=1
Also,

T

* 1 * *

E (TZXt> E*(X}) = ZXt

t=1

Thus, the boostrap mean is equal to the sample mean.
Given that X7, ..., X7 are independent,

1 T
Var* <T1/2 Z X;)

T
Z Var(X}) = Var*(Xy)

= EY(X7?) - (B(X7))?

1« 1 &\
_ 2 _ | =
- gy (3x)
t=1 t=1
1 & e ’
p— 2 —_—
SN C RN 3
t=1 t=1
Thus, the boostrap variance is equal to the sample variance.
2
Let 532 = 27 (Xt* iy Xt*) Given that X7, ..., X are iid with
mean and variance equal to the sample mean and sample variance,
T " T
Tll/z Zt:l (Xt - % Zt:l Xt)

o~k
Ox

* p—
tu,T -

L N0, 1),

where d* denotes convergence in distribution according to the bootstrap prob-

ability measure, conditional on the sample. IMPORTANT: ¢ - LN N(0,1), re-
gardless whether the null hypothesis is true or not. Thus, under the null ¢,, 7 and

¢ have the same limiting distribution; under the alternative t7, 1 4N (0,1)
whlle t,,r diverges (to Foo).
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This suggest to proceed in the following manner. We construct B (B large)

bootstrap statistics, say t, (1) e tu(B) We sort from the smallest to the largest.
Suppose B = 1000, then the 25th bootstrap statistic gives the 2.5% critical
values, say zT7245% and the 975-th boot statistics the 97.5% critical values, say
27 97 5% If B is large enough, then to reject Ho if £, 1 < 235 50, OF b7 > 27 g7 59
and do not reject if 21959 < tur < Zp g7 5y 8ives a test with asymptotic (as
T — o0) size equal to 5% and asymptotic unit power.

It is important to note, that the boostrap higher moments also are equal to
the sample moment. In fact, given independence,

1 « ’
" <T1/2 ZX:>

1 1 T
= mpl (X rfg

and so on for the fourth etc.

Question: is inference based on z}’2.5% and z}’97'5% more accurate than
inference based on standard normal approximation (i.e. on £1.96)?

Answer YES. Why?

Edgeworth Ezpansion

(nothing to do with Edgeworth box!)

Under mild assumptions (satisfied for the sample mean in the iid case pro-
vided there are enough finite moments), we can express the distribution of the
t-statistic as a leading term, which is the CDF of a standard normal, plus other
terms capturing deviation from normality. We have,

P(tyr < ) = ®(x)+ T~ pi(2)d(2) + T~ pa(2)d () + T~ *ps(2)é(2)... (7)

where ®(x) and ¢(z) are the cumulative distribution function and the density
of a standard normal evaluated at x, p;(x) is a polynomial in = depending on
the central third moment, py(z) is a polynomial in = depending on the fourth
moment minus 3, etc. Therefore, p;(x) captures deviation from normality in the
form of skewness, pa(x) captures deviation from normality in the sense of excess
kurtosis. The successive terms captures more complex deviations and higher
order effect. From (7) we see that the order of approximation of the normal
distribution is 7-1/2.
Analogously, we can write the Edgeworth expansion for ¢}, 1, i.e.f

P* (1 < @) = (@) + T *pr(2)d(2) + T~ ' Pa(a)p(a) + T~ *p3(x)p().. (8)

where p1(z) is a polynomial in 2 depending on the sample central third moment,
p2(x) is a polynomial in x depending on the sample fourth moment minus 3,
etc. Therefore, as sample moments converge to population moments, and under

6Recall that the boostrap moments are the sample moments.
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mild assumption the convergence is at rate T~'/2, we have that p;(z) —py(z) =
O,(T712), pa(x) — pa(z) = O,(T~1/2), etc. Recall that Pr (tZ’T < x) depends
on the sample, and so it’s a random variable, while Pr (t, 7 < z) it’s a number
(between 0 and 1!) depending on T
Thus,
Pr(t,r <z)—Pr (t;T <z)=0p(T™"),

while
Pr(t,r <z)— ®(x) = O(T~?).

Thus, if we approximate P (¢, < ) with a standard normal CDF we have
an error of order O(T~'/2), while if we approximate Pr(t, r < x) with the
bootstrap distribution P* (tZ,T < ﬂc) we have an error of order Op(7T~!). Thus,
the bootstrap distribution provides a more accurate approximation than the
normal CDF.

In practice, we do not compare P (¢, r < x) with ®(z), but instead we com-
pare t, 7 with z,. Let 27, be defined as below,

P(tu,T S ZT,Q) =

and analogously, define z7. , as

P* (t:’T < z}a) =«

Cornish Ezxpansion
Whenever we have an Edgeworth expansion, we can always obtain a Cornish
expansion by inversion.

2Ta = Zo + T*1/2q1(a) + Tflqg(a) + T*3/2q3(a)... (9)

where ¢1(a), g2(a) are again polynomial in « capturing skewness and kurtosis,
and
20 = 2o + TG (a) + T 0(a) + T3/ %G5 ().

where ¢1(a), @2(c) are again polynomial in « capturing sample skewness and
sample kurtosis. Now,

q1(a) = Gi(e) = Op(T~1/?)

¢2(e) — Gao(er) = Op(T71/?)

Thus,
20— 2T = or)

while
ZT.a — Za = OP(T71/2).

Therefore, we say that inference based on bootstrap critical values is more ac-
curate than that based on asymptotic normal critical values.
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Bootstrap for Time Series

The iid nonparametric bootstrap does not work with dependent observa-
tion. The reason is that the resampled observations are iid, while the actual
observations are not.

In the case of dependent observations things are more complicated. On one
side we want to draw ”blocks” of data long enough to preserve the dependence
structure present in the original sample, on the other side we want to have a large
enough number of blocks independent each other. The most used resampling
methods for time series data is the block bootstrap (Kunsch, Annals of Statistics
1989).

Block Bootstrap: Let T' = bl, where b denotes the number of blocks and [
denotes the length of each block.

We first draw a discrete uniform random variable I;, that can take value
0,1,...,T—1 with probability 1/(T'—I4-1), the first block is given by X7, , ..., X1, 44,
we then draw another discrete uniform say I3, and the second block of length [
is X741,y X1,41, and we go ahead in the same manner, until we draw the
last discrete uniform say I, and so the last block is X, 11,..., X1,41. Let’s
call the X/ the resampled series, and note that X7, X5,..., X7 correspond to
X +1, X142, ..., X1, 41, thus conditionally on the sample, the only random el-
ement is the beginning of each block. In particular X7,..., X[, X[\, ..., X5,
XT 141> X7, conditionally on the sample, can be treated as b iid block of
discrete uniform. It can be shown that conditional on the sample and for all
sample but a set of measure approaching zero,

* 1 d * d

E (TX_:Xt> Z_: X, +05(1/T) (10)
1
77

T
= TZZ Xt——ZXt (Xeri - ZXt)

t=l i=—1

I\M‘ﬂ

+0p(I*/T) (11)

where E* and Var* denotes the expectation and the variance operator with
respect to P* (the probability law governing the resampled series, i.e. the
probability law governing the iid uniform, conditional on the sample). Op-(I/T)
(Op+(I?/T)) denotes a term converging in probability P* to zero if [/T — 0
(1?)T — 0).
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Sketch of proof of (10) and (11).

(1 ey
E <T2Xt> = E QZZXHJ‘

t=1 i=1 j=1
1 l
= E* 7 ZXHH , (12)

as I;, i = 1,...,b are independent uniform and so, conditionally on the sample,
blocks are independent and identically distributed (note that conditionally on
sample that only randomness is due to Iy, ..., I, that are 4id uniform). Thus (12)
can be rewritten as:

X0+ X o+ X)) Pr(l = 0)
1
7()(2 + X34+ ...+ X)) Pr(l; = 1)
+.. %@ﬁ4+XHT% -+ Xo) Pr(f =1)
+...+ 1(Xbl—l+1 + Xoi—r42 + o+ Xp) Pr(h =T — 1+ 1) (13)

o~

Now Pr(I; =0)=Pr(l =1)=..Pr(L =T -1) = T+l+1
Note that for I +1 <t < T — [ we have [ X; summands, while we have only
1 X; and Xy, 2 X5 and X1, and [ — 1 X; and Xp;_;. Thus summing up the

terms in (13) we have that E* (% 23:1 Xt*) is equal to

T—1
1
T 141 Z Xi+O0p(l/T) (14)
t=1+1
T
= Z X; +0p(1/T)

Now we want to sketch the proof of (11). As I;, i = 1,2,...,b are iid, and given
(14),

1 X
Var* (Tl/Q ZX;)
t=1
1 b 1
Var® 21172 Z Z XIitj

i=1 j=1

1 l
TZ Ii+j
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l
- ZZ Xk — X)X+ — X%)

k 1j=
+OP(Z /T)7

where X¢ = £ Zthl X;. The first term on the RHS above is in turn equal to

o~ =
ks

l l
D (Xir = X (X1 = X Pr(ls = 0)

l
(Xi42 = X)(Xjy2 — X)) Pr(l1 = 1)

Ly
l 1

1j

Lo
1 a
+7 ZZ (Xt (1) — X°)

1j=

(Xj—‘r(T ) — X )Pr(Il =T—-1— ].)

T
= 72 > (% —XY
t=1 j=—1
(Xerj — X +O0p(1/T)

Now Kunsch has shown that conditional on the sample, and for all sample
but a set of probability measure approaching zero, as [ — oo,

by =
717 i1 (X7 = E*(X7)) 4
trhy = 18 tfla*HAc L N(0, ). (15)
T

where

with X =T-'S7 X7 and I, ..., I are the draws from the discrete uniform
on [0,7 — I — 1], which we observe after resampling the date. Let

1 T
tHAC T/ Zt:1(Xt - y,)
- ~HAC ?

or

where UQTHAC is an HAC covariance estimator.Thus, if we use the block boot-

strap, we know that tH ?C and t*b have the same limiting distribution and so
bootstrap critical values are asymptotlcally valid.
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Though, while in the iid case (iid observations and iid bootstrap),

1 <& 1 &
E =YX ==X
()=

and
1 & 1 & 2
Var (Tl/zg:lxt):TtZl(Xt—X) )

In the case of the block boostrap and dependent observations (but the same will
be true if we use the block bootstrap and we have iid observations),

1 <& 1 < !
E <TZXZ‘>=T;Xt+OP (7)

T T—1 1
(Lo 1 — - 2
- <T1/2 i Xt) = poyoy 2 2 X DX =)+ 0 (T>

t=1 j=—1

As a consequence, it is no longer true that P (tﬁ?c <z) - P* (t/*f”T <z) =
Op(T™1).

Gotze and Hipp (Annals of Statistics 1996), for the case of stationary mixing
observations, have shown that if we choose the block length [ equal to the lag
truncation parameter used in the construction of the HAC variance estimator
(i.e. I =mr), then

P (,7¢ <) = P" (7 <)

= O0p(T™H)+0 (Z‘IT‘l/Q)

Thus, for [ = T4

P (tfAC <a) — P* (thp < 2) = Op(T~3/%).

"Note that while we need mp /Tl/4 — 0 for the case of possibly heterogeneous observations,
in the strict stationary case we can allow for mp = T1/4,
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Bootstrap Refinements for GMM estimators

(based on Andrews, Econometrica 2002).

Now, we outline how to bootstrapping GMM estimators, and we see how
bootstrap critical value can provide an improvement over asymptotic (normal)
critical values. Improvement over standard asymptotics are called higher order
refinements.

In the sequel, we need that F (gt (ﬂTGMM) Jt—k (521\41\4)) =0 for all £ >
k, where k is finite, that is the correlation between the moment condition is
zero after the k—th term. Currently, for the case of general nonlinear GMM
estimators, there are no results about bootstrap higher order refinements for
the general case, in which kK = kp with kp — 00 as T — 00.8

For generality, we consider the case in which the variance of the moment
conditions depend on the parameters, and therefore we use a two-step GMM
approach. In the first step, we use an arbitrary p x p weigthing matrix, say €2,
and we compute,

//@\T,GMM
1 X ! 1 X
= arggnei]ral (T ;gt (5)) Q (T ;gt (5))
= arg gleig Gr (8) QG (8). (16)

Given Br ¢arar, We compute the second step estimator

BT,GMM
= argmin Gr (8) Or (Br.awur) Gr (8). ()

where

)

~ -1

T (ﬁT,GMM)

1N /o - '

=7 th (ﬁT,GMM> gt (5T,GMM>
t=1

T =k
9 N - ’
Tr Z Z gt (/6T,G]VIM> gt—j (IBT,GM]M)

t=1 j=1
The two-step GMM covariance matrix estimator is given by:
~ ~ e ~ -1
~2
op = (DT (ﬂT,GMM) Qr (ﬂT,GMM) Dy (/GT,GMMD )

8Inoue and Shintani (Journal of Econometrics 2006) provide GMM refinements in the case
of k = Kk for linear IV overidentified estimators).
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where T
~ 1 0
Dr (/BT,GMM) = Z %gt |ﬁ =Br.oum’
t:l

Let 53in be the #—th element of 5a..
Suppose, g: (8) = g (yt, X+, Zt, B) , we resample b blocks of length I of (y¢, X3, Zy),
in order to obtain (y;, X/, Z;).

Let
9; (B)
= 9. X028 — B (9 (i X0 20 Broaur) ) - (18)
where
1 T
TZE* (g (y:aX:aZ:HBT,GMM))
1 )
= iﬁjﬁ:IE:WM(%thZuﬂncMM)
t=1
with
we=t/lt=1,..,1—1
w=1t=1,..T—1+1
T—t+1
w= P o T

l

The weigth w; is smaller than one for the first and last [ observations, as they
have less chances of being drawn.

Note, that in general g (yz‘,Xt*,Zt*,BT’GMM> has non-zero mean even if
g (yt7 Xy, Zs, BEMM) has zero mean; hence the need of recentering the bootstrap
moment conditions. In fact, E* (gt* <3T)GMM>) =0.

Now, we define the bootstrap counterpart of BT,G MM > B;G MM

~ %

Br.acmm

1 & 1 g
= arg gleig (T tzzlgf (ﬂ)) Q (T ;g; (ﬂ))
= arg }Bneig G (B) QG% (B),

where g; (8) is defined as in (18). Also, define the bootstrap counterpart of
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~ ~ %
IBT,GMMa IBT,GMM as

~ %

Br.arm
T ! T
= argmin lZg**(ﬂ) Q*T<B*TGMM) lZg**(ﬁ)
peB \ T &= ’ T
= argmin Gy (8) O (Br.aanr) O (8).
where

g (8)
9 X0, 25,8 = B (9 (vi X022 Braan ) ). (19)

and

T kK

2 Kk >* kK 5 !
T Z th (ﬂT7GMM) 9t—j (IBT,GMM)

t=1 j=1

+

Thus, (AZ} (B;GMM) is the bootstrap analog of (AZT (BTGMM) .
The bootstrap covariance matrix, is given by
-1
~2% ~ % ~ ~ % ~ %
or = (D} (ﬁT,GMM) Qr (ﬁT,GMM) D (ﬁT,GMM)) )
where

6B s
ﬁ:ﬁT,GMM

D* 32" _ 1 & 8 ok
T (ﬁT,GMM) =T ; %gt (B)

Now, let 5,7 be the ii — th element of 57"

We are interested in testing Hy : 8, = 6Z,GMM vs Hy : B; # BI’GMM.
Define the t-stastic as:

T/? (ﬂi,T,GMM - IBI,GMM)

04, T

tg, T =

The bootstrap analog of tg, 7 is:

1/2 (3* 3

- TV (ﬂi,T,GMM - 5i,T,GMM)
5.1 = = :
‘ 04,1
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Now, E?ZT is the bootstrap counterpart of G?i,p but it does not coincide with

~x ~
var*T/? (ﬂi,T,GMM - ﬂi,T,GMM) .
Why? The dependence in the sample moment conditions and in the bootstrap
moment conditions is not the same. This is due to the so called "joint problem".
Blocks are independent, conditional on the sample. So, the last observation of a
block and the first of the next block are uncorrelated. Though, this is not true
in the original sample. As there are b joint points (as many as the blocks), has
to be taken into account.
Summaring the issue is: 5?;1« properly mimics 5?1.7T (i.e. E* (5?{&) = 5?1-77«),
but 512:T is NOT var*T"/? (IB:,T,GMM - Bz’,T,GMM) .

We thus need a correction factor. Define
~2

04T
-1

)

= (DT (BT,GMM) T (BT,GMM) Dr (BT,GMM))
xDr (/BT,GMM) T (BT,GMM) QT (BT,GMM)_ QT (BT,GMM)

(DT (BT,GMM) QT (BT,GMM) Dr (BTGMM))_l ,

1

)

where
Or (Brau)

| I.T B B ,
E* (T Zzgf* (IBT,GMM) 95" (IBT,GMM> >

t=1 s=1
_ 1 — *% 7 sx [ 7 !
T T-1-1 YD 9t Brama ) 95 (Brioa ) -
t=0 j=1 i=1
~2 ~ ~
Note that ;; 7 = var*T1/? (61-7T7GMM — ,Bin’GMM) . The correction factor is
given by
044, T
T, T = = .
0ii,T

Now, consider the adjusted bootstrap statistic,

12 (3* 3
~ T (IBi,T,GMM - ﬁi,T,GMM)
ts, 7= == Tii, T
04i,T

which is given by the product of the bootstrap analog of the t-statistic time the
correction term.

Note that in the case of iid bootstrap, there is no join points issue, and therefore
there is no need for the adjustment factor.

32



Assumption A1 does not suffice for bootstrap refinements. While a complete
set of sufficient conditions is provided by Assumptions 1-5 in Andrews (2002),
below we just sketch which the type of assumptions we need in addition to Al
above.
Assumption A2
A2(i): E (gt (BT) Gt+j (6T>) =0forall j >k
A2(ii): (y:, Xy) is stationary and strong mixing with exponentially decaying
coefficient (see e.g. Assumption 1 in Andrews (2002) or in Hall and Horowitz
(1996)).
A2(iii): The t-statistic and its bootstrap counterpart admit an Edgeworth

expansion
A2(iv): Let

fi(B) = <9t (B),9:(B) gi—5 (B), ;ﬁ:gt B,
0" ) _
&Bigt (B)gi—5 (B), j < kandi> d1>

. The derivatives, up of order dy of f;(5) have all moments finite, and satisfy a
Lipschitz condition.

We then have:
Theorem 2 (from Theorem 2 in Andrews (2002))
(a) Let Al and A2 hold, with d; > 5 and do > 4. Let [ &= T, suppose 0 < £ <
1/2 — v and € < 7, then

P (|t6i7T| < 5:},@/2) —a+0 (Tf(1+§)> ’

where 5;7(1/2 is such that Pr (fl’ng < 5;“,(1/2) = a/2, where tg. 1 and t~21T are
defined as in (??) and (?7?).

(b) Let Al and A2 hold, with d; > 4 and dy > 3. Let | = T, suppose 0 < £ <
1/2 — v and € < 7, then

P (tﬁivT < 75},(1/2 or tﬂivT > z'?,1—&/2)
= a+0 (T_1/2+5) .

The proof of Theorem 2 is based on the following steps. First, ¢g, v can be

approximated by a smooth function, say G, of f; (,BT), as defined in A2(iv), and
the bootstrap statistic without correction term ¢ , can be approximated by

G ( ft*(BT)> , where ff (BT) is defined as f; (,ET) but with the sample moment
conditions replaced by the bootstrap ones. Then, given A2(iii), G ( ft(,BT)>

and G ( ft*(BT)> admit an Edgeworth expansion, and, given the Lipschitz and

moment condition in A2(iv), the difference between the first two terms in the
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Edgeworth expansion of G ( f;(37)) and G ( f; B approach zero sufficiently
t \Pr

fast. Finally, if £ < ~, the correction term approaches one fast enough, thus
ensuring that also the Edgeworth expansions of the corrected bootstrap statistic
t5 o and that of £, r get closer and closer.

From Theorem 2 it is immediate to see that, if set v = 1/4, i.e. | = T4,
then ¢ can be made arbitrarily close to 1/4. Thus, the bootstrap improvement
in the error probability is of order T—¢, with 0 < & < 1/4. The condition & < =
ensures that as 1" — oo, the correction factor 7, 7 — 1. As mentioned already,
in the case of 7id observation there is no need for correction factor and so we do
no longer require £ < 7. Thus, one can set v = 0 (i.e. [ = 1), so that £ = 1/2,
thus leading to a improvement in the error in the rejection probability of order
T2,

If the moment conditions are a martingale difference sequence, as in the
case of dynamic correct specification, then x = 0. Though, we still need to use
a block size I, with [ — oco. This in order to capture dependence in the higher
(higher than second) moments.

When computing higher moments there is substantial difference between
mds and 7id. Example: If ¢ is iid, then

E(e€)) =E(e)E(€2) =0, forall t # s

Suppose €; is mds but not independent. Now, in the iid case, let s > t, F; =
o (€1, €1)

E (e€2) =E (E (62| 7)) = E (E (e62| 7)) = E (¢.E (€| 7)) .

Now, as E (e§|.7-"t) can be a measurable function ofF;, E (etE (6§|.7:t)) can be
different from zero.

How to Construct Bootstrap Critical Values.
(a) In practice, we do not know the bootstrap critical value 27, , . The

standard approach is to construct B bootstrap statistics, say tﬁ(j) j=1,...,B

and obtain z7. g /2 85 the (1 — «/2) percentile of the empirical dlstrlbutlon of

the (tg(l)T, tZ(BT)) The problem is how to choose B large enough, in order

to ensure that the inference based on zT )2 and on zT B2 lead to the same
higher order improvements. The issue of the optimal selection the number of
bootstrap replications B has been addressed by e.g. Davidson and MacKinnon
(2000) and Andrews and Buchinski (2000).

(b) The construction of the bootstrap statistic requires the choice of the block
length parameter . An adaptive procedure for choosing [ has been suggested by

Hall, Horowitz and Jing (1995).

(¢) The computation of the bootstrap estimator B; can be quite demanding,
as it involves the solution of B nonlinear optimization problems. Davidson and
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MacKinnon (1999) have suggested an alternative k—step estimator. Basically,
~%(0 ~ ~
one can set 5T( ) Br and take k step towards B*T7 via a Newtwon-Raphson

algorithm for example. Andrews (2002, Theorem 1) has shown that inference
~x(k
based on z7 a2 i.e. on the critical values based on BT( ) leads to the same

order of refinements as inference based on B;, for kK > 3 or k > 4, depending
whether we consider symmetrical or equally tailed tests.

Improved Refinements

The block-block bootstrap

As stated in Theorem 2, the block bootstrap provide refinements in the
error in rejection probability up to order T~¢, with ¢ < 1/4, while the iid
bootstrap provide refinements of order T-/2. One of the reason is the join
points problem mentioned above. Andrews (2004) suggests to construct block
statistics, so that the same join problem occurs in both the bootstrap and the
actual sample. In other words, the statistic is computed by deleting the 7l
observations immediately preceding the join points I 4+ 1,21+ 1,..., (b — 1)l + 1,
where as T — oo, @ — 0 and 7l — oo. As the underlying sample is strong
mixing, the [(1 — 7)-th and the [ + 1-th observations become independent as
ml — oo. Given that, there is no longer need for the correction term and then
we do no longer require v > ¢. Thus, we can choose v < 1/4, thus allowing for
& > 1/4. Nevertheless, we still need to choose a large enough block length, to
capture the dependence in the data.

The Markov Bootstrap

If the underlying generating process is Markov, or it can be well approx-
imated by a Markov process, then one could rely on the Markov Bootstrap
proposed by Horowitz (2003). Basically, sample observations are used to con-
struct a kernel estimator of the conditional density. Then, bootstrap samples are
drawn from the estimated conditional density. Under mild regularity conditions,
the Markov bootstrap leads to refinements in the error in rejection probability
of order T'/?=¢ with ¢ arbitrarily small.
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