
Consistency and Asymptotic Normality of Instrumental
Variables Estimators

So far we have analyzed, under a variety of settings, the limiting distrib-

ution of T 1=2
�b� � �y� as well as Wald, Lagrange Multiplier and Likelihood

Ratio test for H0 : R�
y= r versus HA : R�y 6= r; under the asumption that

E
�
Xt

�
yt �X0

t�
y
��
= 0: Indeed, we can always �nd a �y such that E

�
Xt

�
yt �X0

t�
y
��
=

0: The issue is: are we really interested in conducting inference on �y?
Suppose we want to learn about the e¤ect on wages of an extra year of

education. Also, suppose that the "true" model is:

lnwi = �0;0 + �0;1educi + �0;2abili + �i

where wi denote the wage of individual i; and educi and abili the years of
education and the ability of individual i; i = 1; :::; n (i.e. we have a cross section
of individuals). We are interested in conductinfg inference on �0;1: The problem
is that individual ability is unobserved and is likely to be (positively) correlated
with education.
Now, we run a OLS regression of lnwi on a constant and educi;b�ols

=
1
n

Pn
i=1

�
lnwi � 1

n

Pn
i=1 lnwi

� �
educi � 1

n

Pn
i=1 educi

�
1
n

Pn
i=1

�
educi � 1

n

Pn
i=1 educi

�2
It is easy to see (do it!) that

b�ols a:s:! �y = �0;1 + �ab;ed�0;2;

where �ab;ed denotes the correlation between education and ability, and that

E
�
(yi �

�
�0;1 + �ab;ed�0;2

�
educi)educi

�
= 0:

Though, we are interested in making inference on �0;1 and not on �0;1 +
�ab;ed�0;2!!!!
In order to do that, we need to use a di¤erent estimator, known as Instrumen-

tal Variable (IV) estimators. Suppose the E(zieduci) 6= 0 and E(zi (�)i) = 0;
then b�iv = 1

n

Pn
i=1

�
lnwi � 1

n

Pn
i=1 lnwi

� �
zi � 1

n

Pn
i=1 zi

�
1
n

Pn
i=1

�
educi � 1

n

Pn
i=1 educi

� �
zi � 1

n

Pn
i=1 zi

�
and b�ols a:s:! �0;1:

Let�s generalize. Suppose yt = X0
t�
z + �t, where Xt is k � 1; and we want

an estimator consistent for �z: Now, E
�
Xt

�
yt �X0

t�
z
��
6= 0; but there are p

1



instruments Zt; p � k; such that E
�
Zt

�
yt �X0

t�
z
��

= 0 and E (ZtX0
t) is of

rank k uniformly in t:
Typically, this scenario appears in simultaneous equations systems, i.e.

y = X�z + �

X = Z�+ u

where y is T�1; X is T�k; � is k�1; Z is T�p; p � k;� p�k: If E (ut�t) 6= 0;
then E (Zt�t) 6= 0:
In this case, we want to use the IV estimator

b�T;IV
=

  
1

T

TX
t=1

XtZ
0
t

! bPzzT
 
1

T

TX
t=1

ZtX
0
t

!!�1
 
1

T

TX
t=1

XtZ
0
t

! bPzzT 1

T

TX
t=1

Ztyt;

where PzzT is p� p:1
Assumption IV-1:
(i) yt = X0

t�
z + �t and E

�
Zt

�
yt �X0

t�
z
��

= 0; with Xt k � 1 and Zt p � 1;
p � k:
(ii) 1

T

PT
t=1 ZtX

0
t�QT = op(1), where QT is O(1) and uniformly of full rank k;

(iii) bPzzT �PzzT = op(1) and PzzT is O(1) and uniformly positive de�nite.

(iv) V �1=2T
1

T 1=2

PT
t=1 Zt�t

d! N(0; Ip); with VT = var
�

1
T 1=2

PT
t=1 Zt�t

�
is uni-

formly positive de�nite.
Theorem IV-1
(a) Let Assumption IV-1(i)-(iii) hold, then

b�T;IV � �z p! 0

(b) Let Assumption IV-1(i)-(iv) hold, then

D
�1=2
T T 1=2

�b�T;IV � �z� d! N(0; Ik);

where
DT = (Q

0
TP

zz
T QT )

�1
Q0
TP

zz
T VTP

zz
T QT (Q

0
TP

zz
T QT )

�1

(c) Let Assumption IV-1(i)-(iv) hold, and there exists bVT such that bVT �VT =
op(1); then bD�1=2

T T 1=2
�b�T;IV � �z� d! N(0; Ik);

1When bPzzT =
�
1
T

PT
t=1 ZtZ

0
t

��1
; then b�T;IV is known as 2SLS (Two-Stage Least

Squares).
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where

bDT

=

  
1

T

TX
t=1

XtZ
0
t

! bPzzT
 
1

T

TX
t=1

ZtX
0
t

!!�1

�
 
1

T

TX
t=1

XtZ
0
t

! bPzzT bVT
bPzzT

 
1

T

TX
t=1

ZtX
0
t

!

�
  

1

T

TX
t=1

XtZ
0
t

! bPzzT
 
1

T

TX
t=1

ZtX
0
t

!!�1

Corollary IV-1
Let Assumption IV-1(i)-(iv) hold and assume there exists bVT such thatbVT �VT = op(1). If PzzT = V�1

T ; then

bD�1=2
0;T T 1=2

�b�T;IV � �z� d! N(0; Ik);

where

bD0;T =

  
1

T

TX
t=1

XtZ
0
t

! bPzzT
 
1

T

TX
t=1

ZtX
0
t

!!�1
:

Proof of Theorem IV-1:
(a) Given A-IV1(i)-(iii) and recalling that the inversion of a uniformly positive
de�nite matrix is a continuous operation, and recallling Property PR1,

b�T;IV � �z
=

  
1

T

TX
t=1

XtZ
0
t

! bPzzT
 
1

T

TX
t=1

ZtX
0
t

!!�1
 
1

T

TX
t=1

XtZ
0
t

! bPzzT 1

T

TX
t=1

Zt�t

p! (Q0
TP

zz
T QT )

�1
Q0
TP

zz
T � 0

(b) Let

D
�1=2
T T 1=2

�b�T;IV � �z�
= D

�1=2
T (Q0

TP
zz
T QT )

�1
Q0
TP

zz
T V

1=2
T V

�1=2
T

1

T 1=2

TX
t=1

Zt�t

+oP (1) (1)
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where the op(1) terms comes from the product rule, as 1
T 1=2

PT
t=1 Zt�t = Op(1);

as it converges in distribution, and
�
1
T

PT
t=1 ZtX

0
t �QT

�
= oP (1),

�bPzzT �PzzT
�
=

op(1) becasuse of A-IV1(ii)(iii). Now, given the de�nition of DT ; the �rst term
on the RHS of (1) converges in distribution to N(0; Ik): The result then follows
from the asymptotic equivalence lemma.
(c) By the same argument as in Part (c) of Theorem OLS-1, given that bDT �
DT = op(1):

Hypothesis testing can be performed along the same line outline for the
OLS case, simply replacing OLS estimators with IV estimators and using the
appropriate estimator for the covariance matrix.

Su¢ cient conditions for A-IV1(ii)-(iv) and the consistent estimation of var
�
T�1=2

PT
t=1 Zt�t

�
are obtained simply estending the moment and memory conditions to Zt too.

We have seen that instrument should satisfy two properties, i.e. they should
be uncorrelated with the error and they should be correlated with the regressors.
Provided p > k; we can test the null,

H0 : E
�
Zt

�
yt �X0

t�
z
��
= 0

versus
HA : E

�
Zt

�
yt �X0

t�
z
��
6= 0

Theorem IV-2 (Tests for overidentifying restrictions).
Let Assumption IV-1(i)-(iv) hold, and there exists bVT such that bVT �VT =

op(1): If PzzT = V�1
T ; then

d

JIV;T ! �2p�k

where

JIV;T

= T

 
1

T

TX
t=1

Zt

�
yt �X0

t
b�T;IV �

!0

bPzzT
 
1

T

TX
t=1

Zt

�
yt �X0

t
b�T;IV �

!

Proof: We shall derive it as a special case when doing GMM testing.

Hausman Test
H0 : E

�
Xt

�
yt �X0

t�
z
��
= 0

versus
HA : E

�
Xt

�
yt �X0

t�
z
��
6= 0

4



De�ne,

HT = T
�b�T;IV � b�T;ols�0 dV ar �T 1=2 �b�T;IV � b�T;ols���b�T;IV � b�T;ols� (2)

where dV ar �T 1=2 �b�T;IV � b�T;ols�� is an estimator of var �T 1=2 �b�T;IV � b�T;ols�� :
var

�
T 1=2

�b�T;IV � b�T;ols��
= var

�
T 1=2

�b�T;IV � �y��
+var

�
T 1=2

�b�T;ols � �y��
�2cov

�
T 1=2

�b�T;IV � �y� ; T 1=2 �b�T;ols � �y�� (3)

The di¢ cult part is to provide an estimator for the last term of (3). We have
already see the two variance terms, it remains to see the covariance term. Con-
sider the case in which PzzT = V�1

T : Recall from (1) that,

T 1=2
�b�T;IV � �z�

= (Q0
TP

zz
T QT )

�1
Q0
TP

zz
T

1

T 1=2

TX
t=1

Zt�t + oP (1)

and from (??) that

T 1=2
�b�T;ols � �y�

= M�1
T

1

T 1=2

TX
t=1

Xt�t + oP (1)

MT = T�1
P
E (XtX

0
t) : Under the null of E(Xt�t) = 0; note that �z = �y:

Thus,

cov
�
T 1=2

�b�T;IV � �y� ; T 1=2 �b�T;ols � �y��
= (Q0

TP
zz
T QT )

�1
Q0
TP

zz
T

1

T

TX
t=1

TX
s=1

E (Zt�t�sX
0s)M�1

T

If E
�
ZtZ

0
t�
2
t

�
= �2�E (ZtZ

0
t) ; E

�
XtX

0
t�
2
t

�
= �2�E (XtX

0
t) ; and if E (Zt�t�sX

0s) =

0 for all t 6= s; and if E
�
ZtX

0
t�
2
t

�
= QT ; then

cov
�
T 1=2

�b�T;IV � �y� ; T 1=2 �b�T;ols � �y��
= var

�
T 1=2

�b�T;ols � �y�� = �2�E (XtX
0
t)

5



Thus, in this case

var
�
T 1=2

�b�T;IV � b�T;ols��
= var

�
T 1=2

�b�T;IV � �z��
�var

�
T 1=2

�b�T;ols � �z��
and nothing that PzzT =

�
1
T

PT
t=1E(Z

0
tZt)�

2
�

��1
\

var
�
T 1=2

�b�T;IV � b�T;ols��
=

�bQ0
T
bPzzT bQT

��1
� b�2�T�1XE (XtX

0
t)

Theorem IV3 (Hausman Test)
Let Assumption IV-1(i)-(iv) hold, and assume that

dV ar �T 1=2 �b�T;IV � b�T;ols��
= V ar

�
T 1=2

�b�T;IV � b�T;ols��+ op(1)
Then, under H0; HT

d! �2k and under HA; HT diverges to in�nity.
Proof: Under H0;

T 1=2
�b�T;IV � b�T;ols�

= T 1=2
�b�T;IV � �y�� T�1=2 �b�T;ols � �y�

The statement then follows by the same type of argument used in the proof of
the Wald test.
Under HA;

T 1=2
�b�T;IV � b�T;ols�

= T 1=2
�b�T;IV � �z�� T�1=2 �b�T;ols � �y�

+T 1=2
�
�z � �y

�
and note that T 1=2

�
�z � �y

�
diverges.
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Weak Instruments

In this section we assume that all data are iid; and we have conditional
homoskedasticity. There is almost nothing in the literature about weak instru-
ments dealing with dependence and heterogeneity or even allowing for condi-
tional heteroskedasticity.

We have seen how to test for instruments exogeneity in the overidenti�ed
case. Though, good instruments has to be correlated with the regressors. Con-
sider again,

y = X�z + � (4)

X = Z�+ u (5)

we need that � be of full rank k: Note that, as E(Ztut) is zero,

� = (E (X0X))
�1
E (X0Z)

If � is of rank less than k; then we have what we the so called weak instruments
problem.2

We proceed in two stages. First, we analyze how to test for the null of NO
weak instruments versus the alternative of weak instruments. For the case of
k = 1; can just do an F test for the null � = 0: For the case of k > 1; think are
more complex.
Hall, Rudebusch and Wilcox (International Economic Review 1996) suggest

the following approach. Note that they assume that observations are not only
iid but also jointly normal.
Compute the k canonical correlation r1; :::; rk; between X and Z as the k

non-negative solutions to the determinant equations:

det
�
X0(r2IT � Z(Z0Z)�1Z0)X

�
= 0

Note that r2i are estimated canonical correlations. Order them so that r
2
i � r2i+1

As the canonical correlations are strictly linked with the k eigenvalues of
(X0X)

1
(X0Z)(Z

0
Z)

�1
(Z0X); the full rank condition is equivalent to the fact

that the smallest canonical correlation is strictly positive. Let �1 � :::�k � 0;
be the "population" canonical correlations.
Construct the statistic:

�T ln
�
1� r2k

�
Under the null H0 : �k = 0; �T ln

�
1� r2k

� d! �(p�(k�1)); where p is the number
of instruments.

2Sometime the case of � of rank smaller than k is termed irrelevant instruments, while
the case of Z0X=T ' CT�1=2 is indeed called weak instruments (e.g. Staiger and Stock
Econometrica 1997).
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The statistic above assume iid normal (note that is very similar to Johansenn
test for rank of cointegrating vector...).

If the full rank condition fails, then b�IV;T is no longer consistent for �z:
Thus, means that we can no longer performs inference on �z; based on Wald, LM
and LR tests. Inference with chi-squared limiting distribution can be performed
using the Anderson and Rubin (AR) statistic (Annals of Mathematical Statistics
1949), which does not use the IV estimators. Suppose, we want to test

H0 : �
y = �0 vs HA : �

y 6= �0

where �0 is a k � 1 vector of given "numbers". In terms of the system (4) and
(5),

ART (�0)

=

1
p (y �X�0)

0
�
Z(Z

0
Z)

�1
Z
�
(y �X�0)

0

1
T�p (y �X�0)

0
�
IT � Z(Z0Z)�1Z

�
(y �X�0)

If errors are iid normal then ART (�0) is distributed as F (p; T � p); otherwise
if we drop normality p�1ART

d! �2p; regardless failure of full rank conditions.
Again, this is because the AR statistics does not make use of the IV estimators!
Thus, we can test hypotheses even if in the presence of weak instruments.
Though, we now want to see what are the con�dence set in the presence of

weak identi�cation. Let�s c0:05 be the 5% percent critical values of a �2(p�(k�1)):
We take a grid of values to test under the null, :::�01; �02; :::; �0;m::: We say
that �0;i belongs to the 95%�con�dence interval if the P-value associated to
ART (�0) is larger than 0:05: In the case of failure of the rank conditions
the con�dence set may be unbounded. For example, suppose k = p = 1 and
E(XtZt) = 0; in this case the con�dence set is all the real line.

More Recent Developments
(1) The Anderson and Rubin statistic is characterized by a limiting distribu-

tion with degree of freedom equal to the number of instruments. This creates a
problem whenever we have a large number of instruments. Kleibergen (Econo-
metrica 2002), proposes a modi�cation of the AR statistics which has a limiting
distribution equal to the number of parameters to be estimated, provided that
the number of instruments grows at a rate slower than T; i.e. p = pT = o(T ):

(2) If the number of instruments grows with the sample size, but not too
fast, then it is possible to obtain consistent IV estimator even in the case of
weak instrments (Chao and Swanson, Econometrica 2005).
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Generalized Method of Moment Estimator

Let gt (�) = g (yt;Xt;Zt;�) where � 2 Rk; and g is Rp�valued, with p � k:
De�ne, the GMM estimators as:

b�T;GMM = argmin
�2B

 
1

T

TX
t=1

gt (�)

!0 b
T  1
T

TX
t=1

gt (�)

!
= argmin

�2B
GT (�)

0 b
TGT (�)
with 
T be p� p:When p = k we have exactly identi�ed GMM, when p > k we
have overidenti�ed GMM. b
T is called estimated weighting matrix.
Note that OLS is GMMwithGT (�) = 1

T

PT
t=1Xt (yt �X0

t�) ; and b
T = Ik:
Also, note that IV is GMM with GT (�) = 1

T

PT
t=1 Zt (yt �X0

t�) ; and b
T =bPzzT :
Example 1: Nonlinear IV

yt = �(Xt;�)+�t

and Xt is endogeneous, and we use Zt as instruments for Xt. I want to estimate
�: In this case,

GT (�) =
1

T

TX
t=1

Zt (yt � �(Xt;�))

and one choice of weighting matrix can be b
T = 1
T

PT
t=1 ZtZ

0
t; which is p � p;

with p � k:

Example 2: Estimation of Stochastic Di¤erential Equations (Square Root Model)
The model below is often used for describing the dynamic of short term

rates.
dX(t) = � (��X(t)) dt+ �X(t)1=2dW (t)

where X(t) denotes the process in continuous time, with t 2 R+; and W (t)
denotes a standard Brownian motion (i.e. a process whose increments W (t) �
W (s); s < t; are independent normal with variance t� s): We want to estimate
�; � and � from discretely sampled observationsX1; :::; XT (i.e. Xt is the process
X(t) sampled at time t = 1; 2; :::; T ): The explicit form of the �rst two moments
of the �rst two autocorrelation is known, in fact

E(Xt) = �

V ar(Xt) =
��2

�3
(exp(��) + �� 1)

Cov(Xt; Xt�1) =
��2

2�

(1� exp(�))2

k2
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Cov(Xt; Xt�2) =
��2

2�

exp(��) (1� exp(�))2

k2

Thus, in this case can de�ne GT (�) as the vector containing the di¤erence
between sample moments and model implied moments.

GT (�)

=

0BBB@
1
T

PT
t=1Xt

1
T

PT
t=1(Xt � 1

T

PT
t=1Xt)

2

1
T

PT
t=2(Xt � 1

T

PT
t=1Xt)(Xt�1 � 1

T

PT
t=1Xt)

1
T

PT
t=3(Xt � 1

T

PT
t=1Xt)(Xt�2 � 1

T

PT
t=1Xt)

1CCCA

�

0BBB@
�

��2

�3 (exp(��) + �� 1)
��2

2�
(1�exp(�))2

k2

��2

2�
exp(��)(1�exp(�))2

k2

1CCCA
When the moment conditions are nonlinear in �; typically we can no longer

de�ne b�T;GMM in a closed form. In the nonlinear case, we need also two ad-
ditional conditions, known as unique identi�ability and uniform law of large
numbers.
In the GMM case, we constrain our attention to the stationary case.
De�ne,

�yGMM = argmin
�2B

G1(�)
0
1G1(�);

where G1(�) is the almost sure limit of GT (�); i.e. GT (�)
a:s:! G1(�); andb
T pr! 
1: �

y
GMM is said to be uniquely identi�able if

G1(�
y
GMM )

0
1G1(�
y
GMM ) < G1(�)

0
1G1(�)

for all � 6= �yGMM :

Note that in the OLS and IV case �yols and �
y
IV are always uniquely identi�ed

as in that case G1(�)0
1G1(�) is convex, and thus it has a unique minimum.
Note, that by the �rst order conditions:

r�G1(�yGMM )
0
1G1(�

y
GMM ) = 0

Consider the overidentifed case, p > k: If the moment conditions are true,
then G1(�

y
GMM ) = 0; otherwise r�G1(�yGMM )

0
1G1(�
y
GMM ) = 0 but

G1(�
y
GMM ) 6= 0:On the other hand, in the exactly identi�ed case,r�G1(�

y
GMM )

0
1
is an invertible matrix, and thus r�G1(�yGMM )

0
1G1(�
y
GMM ) = 0 is equiv-

alent to G1(�
y
GMM ) = 0: As we shall see below, the limiting distribution of

GMM is driven by
p
TGT (�

y
GMM ): Now, in the case of mispeci�ed overidenti�ed

models, G1(�
y
GMM ) 6= 0 and so

p
TGT (�

y
GMM ) cannot satisfy a CLT as it�s a

non-zero mean, and it will diverge to either plus or minus in�nity. Threrefore,
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exactly identi�ed GMM can be used to estimate misspeci�ed models, but overi-
denti�ed GMM cannot (see Hall and Inoue, Journal of Econometrics 2003). The
issue is that typically exactly identi�ed GMM do not perform well. For overi-
denti�ed misspeci�ed case, a possibility is Generalized Empirical Likelihood
(Schennach, 2008, Annals of Statistics).
As we�ll see below, before using overidenti�ed GMM it is better to run a so

called J-test to test for the validity of the overidentifying restrictions.
Uniform (Strong) Law of Large Numbers.
We say that GT (�) satis�es a uniform strong law of large numbers, if

sup
�2B

jGT (�)�G1 (�)j
a:s:! 0

Instead, we say that GT (�) satis�es a uniform weak law of large numbers, if

sup
�2B

jGT (�)�G1 (�)j
pr! 0:

Uniform convergence means that

GT (�)�G1 (�) = op(1)

and the op(1) term does not depend on �:
Assumption GMM-1:
A-GMM-1(i): sup�2B jGT (�)�G1 (�)j

pr! 0 and b
T pr! 
1; with B be a
compact set in Rk (uniform LLN)
A-GMM-1(ii): G1(�

y
GMM )

0
1G1(�
y
GMM ) < G1(�)

0
1G1(�) Unique
identi�ability
A-GMM-1(iii): G1(�

y
GMM ) = 0

A-GMM-1(iv): GT (�) is di¤erentiable in the interior of B; b�T;GMM and

�yGMM are in the interior of B:
A-GMM-1(v): r�GT (�)�D1 (�)

pr! 0 uniformly for all � in a neighborhood
of �yGMM ; and D1 (�) has full rank k and is uniformly continuous in � all �
in a neighborhood of �yGMM (uniform LLN in a neighborhood of �yGMM )

A-GMM-1(vi):
p
TV

�1=2
T GT

�
�yGMM

�
d! N(0; Ip); with VT = var

�p
TGT

�
�yGMM

��
and trVT <1 and VT is positive de�nite.

A-GMM-1(i) is a uniform law of large numbers, as well as A-GMM-1(v),
the full rank conditions is the counterpart of the "relevance of instruments"
condition in IV. We�ll see which additional conditions we need to pass from a
pointwise LLN to a uniform LLN.
As we mentioned already, A-GMM-1(iii) is trivially satis�ed when p = k;

but for p > k is equivalent to correctness of the moment conditions. As we�ll
see it can be tested.
A-GMM-1(ii) is a primitive assumptions. In certain case, whenG1(�

y
GMM )

0
1G1(�
y
GMM )

is convex, then it is trivially satis�ed.

11



A-GMM-1(vi) requires that
p
TGT

�
�yGMM

�
satis�es a CLT. Note that in

the OLS case,
p
TGT

�
�yGMM

�
= X0�=T 1=2 and the IV case

p
TGT

�
�yGMM

�
=

Z0�=T 1=2: Thus,
p
TGT

�
�yGMM

�
satis�es a CLT if the data do not display too

much memory and/or heterogeneity. We need nothing new here, just require
that the observations satisfy one of the CLT we have seen.

Theorem GMM-1:
(a) Let A-GMM-1(i)-(ii) hold. Then,

b�T;GMM
pr! �yGMM

(b) Let A-GMM-1(i)-(vi) hold. Then,

b��1=2T

p
T
�b�T;GMM � �yGMM

�
d! N(0; Ik)

where

b�T =

�
r�GT

�b�T;GMM

�0 b
Tr�GT �b�T;GMM

���1
�r�GT

�b�T;GMM

�0 b
TVT b
Tr�GT �b�T;GMM

�
�
�
r�GT

�b�T;GMM

�0 b
Tr�GT �b�T;GMM

���1
(c) Let A-GMM-1(i)-(vi) hold. If 
1 = V �1; where V = limT!1 VT ; then,

e��1=2T

p
T
�b�T;GMM � �yGMM

�
d! N(0; Ik)

where e�T = �r�GT �b�T;GMM

�0 b
Tr�GT �b�T;GMM

���1
Remark: When 
1 = V �1; with V = limV ar

�p
TGT

�
�yGMM

��
; we say

that 
1 is the optimal weighting matrix. In this case, primitive su¢ cient con-
ditions for b
T pr! 
1 follow by the same argument used to show the consistency
of the variance of the score in the OLS case.

Proof:
(a) Given A-GMM1(i), by the uniform law of large numbers,

GT (�)
0

TGT (�)�G1(�)0
1G1(�) = oP (1)

with the oP (1) term independent of �: As the argmin is a continuous function,
by Property PR1,

argmin
�
GT (�)

0

TGT (�)

pr! argmin
�
G1(�)

0
1G1(�)

12



But, given the de�nition of b�T;GMM and �yGMM ; and given A-GMM1(ii), unique
identi�ability, this means that

b�T;GMM � �yGMM

pr! 0:

(b) By the �rst order conditions,

r�GT
�b�T;GMM

�0 b
TGT �b�T;GMM

�
= 0:

Recalling the intermediate value theorem, via a expansion of the last term in
the LHS above, around �yGMM ; we have

0 = r�GT
�b�T;GMM

�0 b
TGT ��yGMM

�
+

�
r�GT

�b�T;GMM

�0 b
Tr�GT ��T;GMM

���b�T;GMM � �yGMM

�
where �T;GMM 2

�b�T;GMM ;�
y
GMM

�
: Thus,

T 1=2
�b�T;GMM � �yGMM

�
=

�
r�GT

�b�T;GMM

�0 b
Tr�GT ��T;GMM

���1
�r�GT

�b�T;GMM

�0 b
TT 1=2GT ��yGMM

�
We now need to show that,

r�GT
�b�T;GMM

�
�D1

�
�yGMM

�
= op(1) (6)

Now,

r�GT
�b�T;GMM

�
�D1

�
�yGMM

�
=

�
r�GT

�b�T;GMM

�
�D1

�b�T;GMM

��
+
�
D1

�b�T;GMM

�
�D1

�
�yGMM

��
As b�T;GMM is in the interior of B; given A-GMM1(v), r�GT

�b�T;GMM

�
�

D1

�b�T;GMM

�
= op(1), also given the uniform continuity D1 (�) in � in a

neighborhood of �y; given that b�T;GMM � �yGMM

pr! 0; and recalling Property

PR1, it follows that D1

�b�T;GMM

�
�D1

�
�yGMM

�
= op(1): Thus, (6) follows.

As, �T;GMM 2
�b�T;GMM ;�

y
GMM

�
;

r�GT
�
�T;GMM

�
�D1

�
�yGMM

�
= op(1)

13



by the same argument. Recalling, A-GMM-1(i), because of the product rule, by
a similar argument as that used in the proof of Theorem IV-1(b),

T 1=2
�b�T;GMM � �yGMM

�
=

�
D1

�
�yGMM

�0

1D1

�
�yGMM

���1
�D1

�
�yGMM

�0

1T

1=2GT

�
�yGMM

�
+ op(1)

Thus, by the asymptotic equivalence lemma,

��1=21 T 1=2
�b�T;GMM � �yGMM

�
d! N(0; Ik);

where

�1 =

�
D1

�
�yGMM

�0

1D1

�
�yGMM

���1
D1

�
�yGMM

�0

1

V
1D1

�
�yGMM

��
D1

�
�yGMM

�0

1D1

�
�yGMM

���1
:

Now, given (6) and given A-GMM1(i),

b�T � �1 = oP (1):

Thus, because of the product rule,

b��1=2T T 1=2
�b�T;GMM � �yGMM

�
= ��1=21 T 1=2

�b�T;GMM � �yGMM

�
+
�b��1=2T � ��1=21

�
T 1=2

�b�T;GMM � �yGMM

�
= ��1=21 T 1=2

�b�T;GMM � �yGMM

�
+ oP (1)

and the statement follows by the asymptotic equivalence lemma.
(c) Immediate, by noting that when 
1 = V �1; then

�1 =

�
D1

�
�yGMM

�0

1D1

�
�yGMM

���1
:

14



Testing for Overidentifying Restrictions-J-test

One of the main advantage of GMM in the overidenti�ed case, is that it can
lead to a test for the validity of the moment conditions. For example, suppose we
have a sample of iid observations Xt: We want to test whether Xt is normally
distributed N(�; �2): In this case we know that E(Xt) = �; V ar(Xt) = �2;

E((Xt � �))3 = 0; and E((Xt � �))4 = 3
�
�2
�2
: Thus,

GT (�)

=

0BBB@
1
T

PT
t=1Xt � �

1
T

PT
t=1(Xt � 1

T

PT
t=1Xt)

2 � �2
1
T

PT
t=2(Xt � 1

T

PT
t=1Xt)

3 � 0
1
T

PT
t=3(Xt � 1

T

PT
t=1Xt)

4 � 3
�
�2
�2
1CCCA

We estimate � by GMM, and then we want to use these estimate for testing the
null hypothesisH0 : G1(�

y
GMM ) = 0 versusHA : G1(�

y
GMM ) 6= 0: Now, in the

case of p = k (exact identi�cation), by FOC GT
�b�T;GMM

�
= 0: On the other

hand, in the overidenti�ed case, by the FOCGT
�b�T;GMM

�0 b
TGT �b�T;GMM

�
=

0; butGT
�b�T;GMM

�
is NOT identically zero. Though if null is trueGT

�b�T;GMM

�
will approach zero in probability, while if alternative is true it will approach a
probability limit di¤erent from zero. Thus, we want to construct a statistics

based on T 1=2GT
�b�T;GMM

�
; intuitively under H0 it will converge in distribu-

tion, under the alternative, it will diverge.
Hereafter, let

H0 : G1(�
y
GMM ) = 0

HA : G1(�
y
GMM ) 6= 0

Now, construct the following statistic (often known as J-test),

JT = TGT

�b�T;GMM

�0 bV �1T GT

�b�T;GMM

�
where VT = var

�
T 1=2GT (�

y
GMM )

�
and

b�T;GMM = argmin
�2B

GT (�)
0 bV �1T GT (�)

The test has been computed using a GMM estimator based on the optimal
weighting matrix, i.e. using as weighting matrix a consistent estimator of the
inverse of the variance of the scaled moment conditions.
Note that the test we have performed for the exogeneity of the instruments

was indeed a J-test.

Theorem J-test
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Let Assumption A-GMM1(i)-(ii) and A-GMM1(iv)-(v) hold. Also, assume that

A-GMM1(vi) hold with 
1 = V �11 ; where V1 = limT!1 V ar
�
T 1=2GT

�
�yGMM

��
:

(a) If bVT � V1 = op(1) and if p > k; then under H0;

JT
d! �2p�k

(b) Under HA; JT diverges to in�nity at rate T:
Proof:
(a) Under the assumptions above, b�T;GMM��

y
GMM ; by part (a) of Theorem

GMM-1. Via a mean value expansion around �yGMM ;

T 1=2GT

�b�T;GMM

�
= T 1=2GT

�
�yGMM

�
+r�GT

�
�T;GMM

�
T 1=2

�b�T;GMM � �yGMM

�
where �T;GMM 2

�b�T;GMM ;�
y
GMM

�
: By the same argument used in the proof

of Theorem GMM-1 part (b), we have that

T 1=2
�b�T;GMM � �yGMM

�
= �

�
D1

�
�yGMM

�0
V �11 D1

�
�yGMM

���1
D1

�
�yGMM

�0
V �11 T 1=2GT

�
�yGMM

�
+op(1)

Furthermore, recall that r�GT
�b�T;GMM

�
�D1

�
�yGMM

�
= op(1): For nota-

tion brevity, let D1

�
�yGMM

�
= D1:Thus,

T 1=2GT

�b�T;GMM

�
=

 
Ip �D1

�
�yGMM

��
D1

�
�yGMM

�0
V�1
1 D1

�
�yGMM

���1
D1

�
�yGMM

�0
V�1
1

�
T 1=2GT

�
�yGMM

�
+ op(1)

For notation brevity, hereafter, let D1

�
�yGMM

�
= D1:Thus,

limT 1=2GT

�b�T;GMM

�
d! N(0;�1)
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where

�1

=
�
Ip �D1

�
D1

0V�1
1 D1

��1
D0
1V

�1
1

�
V1

 
Ip �D1

�
D1

�
�yGMM

�0
V�1
1 D1

��1
D0
1V

�1
1

!
=

�
V 1=21 �D1

�
D0
1V

�1
1 D1

��1
D0
1V

�1=2
1

�
�
�
V 1=21 �D1

�
D0
1V

�1
1 D1

��1
D0
1V

�1=2
1

�
and thus, T 1=2V�1=2

1 GT

�b�T;GMM

�
d! N(0;V

�1=2
1 �1V

�1=2
1 ): Now,

V�1=2
1 �1V

�1=2
1

=
�
IP �V�1=2

1 D1
�
D0
1V

�1
1 D1

��1
D0
1V

�1=2
1

�
�
�
IP �V�1=2

1 D1
�
D0
1V

�1
1 D1

��1
D0
1V

�1=2
1

�
=

�
IP �V�1=2

1 D1
�
D0
1V

�1
1 D1

��1
D0
1V

�1=2
1

�
as
�
IP �V�1=2

1 D1
�
D0
1V

�1
1 D1

��1
D0
1V

�1=2
1

�
is idempotent. Given thatbV�1

T is consistent forV�1
1 ; T 1=2 bV�1=2

T GT

�b�T;GMM

�
d! N(0;V

�1=2
1 �1V

�1=2
1 ):As�

IP �V�1=2
1 D1

�
D0
1V

�1
1 D1

��1
D0
1V

�1=2
1

�
has rank p � k; it follows that

JT
d! �2p�k:

There are cases in which the optimal weighting matrix depend on the para-
meters, that is 
1 = 
1 (�) : In this case, we proceed in three steps.
Step 1: We use an arbitrary positive de�nite weighting matrix, e.g. an

identity, ans we get a �rst estimator e�T;GMM : Now, e�T;GMM is ine¢ cient but
consistent.
Step 2: We use e�T;GMM to construct a consistent estimator of the optimal

weighting matrix, say b
T �e�T;GMM

�
:

Step 3: We use b
T �e�T;GMM

�
in order to �nd an e¢ cient estimator b�T;GMM :

An alternative is to keep iterating, using as weighting matrix the covariance
estimator obtained at the �rst step. Then, sto when the di¤erence between
estimators is below a given tolerance level. GMM, 2-Step Iterative GMM can
be estimated by optimization procedures build in GAUSS, Matlab.

GMM tends to have a substantial small sample bias, specially when there are
many monent conditions. An alternative estimator it the Countinuous Updating
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Estimator (CUE) of Hansen, Eaton and Yaron (Journal of Business Economics
and Statistics 1996), where

b�T;CUE = argmin
�2B

 
1

T

TX
t=1

gt (�)

!0
V �1T (�)

 
1

T

TX
t=1

gt (�)

!
= argmin

�2B
G0T (�)V

�1
T (�)GT (�)

where VT (�) = var
�

1p
T

PT
t=1 gt (�)

�
: The �rst order conditions now are

r�G0T
�b�CUE�V �1T

�b�CUE�r�GT �b�CUE�
�b�0 �b�CUE�V �1T

�b�CUE�GT �b�CUE�V �1T

�b�CUE�GT �b�CUE�
= 0

where b��b�CUE� = 1
T

PT
t=1 gtr�G0T

�b�CUE�r�gt �b�CUE� :
The di¤erence with 2-step GMM is the second term in the �rst order con-

dition, which is set to zero in usual case. The e¤ect of this extra term is to
recenter the �rst order condition, and reduce the bias. Big inconvenience, com-
putationally quite cumbersone, cannot do with standard Newton-Raphson etc
algorithm.
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Uniform Law of Large Numbers

Assumptions A-GMM1-(i) require that GT (�) = 1
T

PT
t=1 gt (�) converge to

G1(�) uniformly in � (A-GMM-(v) requires the weaker condition of uniform
convergence only in a neighborhood of �yGMM: Uniform law of large numbers
are generally required when performing nonlinear estimation, when the closed
form of the estimator is no longer available.
We shall see that a (Strong) Weak Uniform of Large Numbers requires a

pointwise (strong) weak law of large numbers (i.e. a law of large numbers for
any � 2 B; plus a condition known as (strong) stochastic equicontinuity.
We outline the case of Weak Uniform Law of Large Numbers (as if we are in-

terested in hypothesis testing su¢ ces). Though, keep in mind that the "strong"
counterpart exists.
What below is taken from Andrews, Econometric Theory, 1992.

Stochastic Equicontinuity. fGT (�) : T � 1g is stochastically equicontinuous
on B if, 8" > 0; 9� > 0; such that3

lim sup
T!1

P

 
sup
�2B

sup
�02S(�;�)

��GT ��0��GT (�)��! < "
where S(�; �) denote a ball of radius � around �:4

In word, for any � 2 B; we take a ball of radius �; now for the worst possible
�0 in the ��ball around the worst possible �; the convergence has to occur.

Uniform Law of Large Numbers. If
(i) B is a totally bounded set (i.e. it can be covered by a �nite numbers of

balls).5

(ii) 8� 2 B; GT (�)�E(GT (�))
pr! 0 (pointwise weak law of large numbers)

(iii) fGT (�) : T � 1g is stochastically equicontinuous.
Then:

sup
�2B

jGT (�)� E(GT (�))j = oP (1):

3The "prime" has nothing to do with transpose, �; �0 are two elements of B:
4Given a sequence bT ;

lim sup
T
bT = inf

T
sup
m�T

bm

while
lim inf

T
bT = sup

T
inf
m�T

bm

Thus,
lim inf bT � lim

T
bT � lim sup

T
bT

5Recall a compact set is totally bounded and closed. Sometime we are interesting in
thesting say H0 : �y � 1 versus HA : �y > 1: In this case we want to have a open parameter
space.
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We know already how to get a pointwise law of large numbers for any �xed
�; the parameters space assumption is very mild, thus it remains to �nd some
primitive conditions for stochastic equicontinuity.
Here we outline the Lipschitz Conditions of Andrews (there are several vari-

ant and other approaches, but this is one of the more comprehensible and most
used). Hereafter: GT (�) = 1

T

PT
t=1 gt (wt; �) : where wt simply denotes the de-

pendence of gt on the data, e.g. in the nonlinear-IV GMM case, gt (wt; �) =
(yt � �(Xt; �))Zt:
Assumption Weak Lipschitz
WL1:

��gt(wt; �0)� gt(wt; �)�� � Ct(wt)h �d ��; �0�� for all �; �0 2 B
where d

�
�; �0

�
is a metric, e.g. the Euclidean norm, h a deterministic function

such that h! 0 as d
�
�; �0

�
! 0; and Ct(wt) is a measurable function.

WL2: 1
T

PT
t=1 (Ct(wt)� E(Ct(wt)))

pr! 0:

If Assumption Weak Lipschitz hold, then GT (�) is stochastic equicontinuous
and E(gt(�)) is continuous on B:

Consider the example above, gt (wt; �) = (yt��(Xt; �))Zt and suppose that
� is a bounded function with bounded �rst derivative. Also, for simplicity of
notation, suppose that Xt; Zt and so � are scalar. Then, for say � < �

0

��gt(wt; �0)� gt(wt; �)�� �
�����sup� r��(Xt; �)

����� �� � �0� jZtj
� �

�
� � �0

�
jZtj

Now, under very mild conditions 1
T

P
(jZtj � E(jZtj))

pr! 0:

Some simpler conditions apply for the iid case and stationary ergodic (see
attached lea�et).
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Introduction to the Bootstrap

So far we have studied asymptotic normality of various estimators, OLS, IV,
GMM and several related hypothesis testing. Inference on parameters is based
on asymptotic critical values. But, how good is the normal approximations?
Can we get some improvement over that? We shall see that bootstrap criti-
cal values can provide re�nements over asymptotic critical value under various
circumstances.
First, we want to outline the logic underlying the bootstrap, and then we

see how the use of bootstrap can lead to more accurate inference.
We begin by consider a very simple situation. We have a sample of T iid

observations, X1; :::; XT and we want to test the null hypothesis:

H0 : E(X1) = � versus HA : E(X1) 6= �

note that given the identical distribution assumption, E(X1) = E(X2) = ::: =
E(XT ):
Consider the t-statistic

t�;T =
1

T 1=2

PT
t=1 (Xt � �)b�X ;

where b�2X = 1
T

PT
t=1

�
Xt � 1

T

PT
t=1Xt

�2
: Provided, var(X1) < 1; we know

that under H0; t�
d! N(0; 1): Thus, we compare t� with 2:5% and 97:5% critical

values of a standard normal, and we reject at 5% if we t�;T < �1:96 or t�;T >
1:96:
The idea underlying the bootstrap is to pretend that the sample is the pop-

ulation, and so we can draw from the sample as many (bootstrap) samples as
we want and we construct many bootstrap statistic.
The simplest form of bootstrap is the iid nonparametric bootstrap, which is

suitable for iid observations.
Imagine we put all our T observations in an urn, and then we make T draws

with replacement (i.e. we make one draw, get one observation, put it back
in the urn, get another one, put it back in the urn, and so on, for T times).
Let X�

1 ; X
�
2 ; :::; X

�
T be the resampled observations, and note that X�

1 = Xt;
t = 1; :::; T with probability 1=T: In order words, X�

1 ; X
�
2 ; :::; X

�
T is equal to

XI1 ; XI2 ; :::; XIT ; where for i = 1; :::; T Ii is a random variable taking values
1; 2; :::; T with equal probability 1=T: X�

1 ; X
�
2 ; :::; X

�
T form a boostrap sample.

Needless to say, we can repeat the same operation and get a second bootstrap
sample, and so on. Note that, given the original sample, the probability law
governing the resample is nothing else that the probability law of Ii; i = 1; :::; T:
As Ii are iid discrete uniform on [1; T ]; X�

i are also iid; conditional on the
sample. Now, let E� and V ar� denotes the mean and the variance of the
resampled series, conditional on sample (note that E� and V ar� are mean and
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variance operators in terms of the law governing the bootstrap, i.e. in terms of
Ii; i = 1; :::; T ):
Now, given the identical distribution, E�(X1) = E�(X�

2 ) = ::: = E�(X�
T );

and

E�(X�
1 ) = X1

1

T
+X2

1

T
+ ::::+XT

1

T

=
1

T

TX
t=1

Xt

Also,

E�

 
1

T

TX
t=1

X�
t

!
= E�(X�

1 ) =
1

T

TX
t=1

Xt

Thus, the boostrap mean is equal to the sample mean.
Given that X�

1 ; :::; X
�
T are independent,

V ar�

 
1

T 1=2

TX
t=1

X�
t

!

=
1

T

TX
t=1

V ar(X�
t ) = V ar

�(X�
1 )

= E�(X�2
1 )� (E�(X�

1 ))
2

=
1

T

TX
t=1

X2
t �

 
1

T

TX
t=1

Xt

!2

=
1

T

TX
t=1

 
X2
t �

1

T

TX
t=1

Xt

!2
:

Thus, the boostrap variance is equal to the sample variance.

Let b��2X = 1
T

PT
t=1

�
X�
t � 1

T

PT
t=1X

�
t

�2
:Given that X�

1 ; :::; X
�
T are iid with

mean and variance equal to the sample mean and sample variance,

t��;T =

1
T 1=2

PT
t=1

�
X�
t � 1

T

PT
t=1Xt

�
b��X

d�! N(0; 1);

where d� denotes convergence in distribution according to the bootstrap prob-

ability measure, conditional on the sample. IMPORTANT: t��;T
d�! N(0; 1); re-

gardless whether the null hypothesis is true or not. Thus, under the null t�;T and

t��;T have the same limiting distribution; under the alternative t
�
�;T

d�! N(0; 1)
while t�;T diverges (to �1):
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This suggest to proceed in the following manner. We construct B (B large)
bootstrap statistics, say t�(1)�;T ; :::; t

�(B)
�;T :We sort from the smallest to the largest.

Suppose B = 1000; then the 25th bootstrap statistic gives the 2:5% critical
values, say z�T;2:5% and the 975-th boot statistics the 97:5% critical values, say
z�T;97:5%: If B is large enough, then to reject H0 if t�;T < z

�
2:5% or t�;T > z

�
T;97:5%

and do not reject if z�T;2:5% < t�;T < z
�
T;97:5% gives a test with asymptotic (as

T !1) size equal to 5% and asymptotic unit power.
It is important to note, that the boostrap higher moments also are equal to

the sample moment. In fact, given independence,

E�

 
1

T 1=2

TX
t=1

X�
t

!3

=
1

T 3=2
E�(X�3

1 ) =
1

T 1=2
1

T

TX
t=1

X3
t

and so on for the fourth etc.
Question: is inference based on z�T;2:5% and z�T;97:5% more accurate than

inference based on standard normal approximation (i.e. on �1:96)?
Answer YES. Why?

Edgeworth Expansion
(nothing to do with Edgeworth box!)
Under mild assumptions (satis�ed for the sample mean in the iid case pro-

vided there are enough �nite moments), we can express the distribution of the
t-statistic as a leading term, which is the CDF of a standard normal, plus other
terms capturing deviation from normality. We have,

P (t�;T � x) = �(x)+T�1=2p1(x)�(x)+T�1p2(x)�(x)+T�3=2p3(x)�(x)::: (7)

where �(x) and �(x) are the cumulative distribution function and the density
of a standard normal evaluated at x; p1(x) is a polynomial in x depending on
the central third moment, p2(x) is a polynomial in x depending on the fourth
moment minus 3, etc. Therefore, p1(x) captures deviation from normality in the
form of skewness, p2(x) captures deviation from normality in the sense of excess
kurtosis. The successive terms captures more complex deviations and higher
order e¤ect. From (7) we see that the order of approximation of the normal
distribution is T�1=2:
Analogously, we can write the Edgeworth expansion for t��;T ; i.e.

6

P �
�
t��;T � x

�
= �(x)+T�1=2bp1(x)�(x)+T�1bp2(x)�(x)+T�3=2bp3(x)�(x):: (8)

where bp1(x) is a polynomial in x depending on the sample central third moment,bp2(x) is a polynomial in x depending on the sample fourth moment minus 3,
etc. Therefore, as sample moments converge to population moments, and under

6Recall that the boostrap moments are the sample moments.
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mild assumption the convergence is at rate T�1=2; we have that bp1(x)�p1(x) =
Op(T

�1=2); bp2(x)� p2(x) = Op(T�1=2); etc. Recall that Pr �t��;T � x� depends
on the sample, and so it�s a random variable, while Pr (t�;T � x) it�s a number
(between 0 and 1!) depending on T:
Thus,

Pr (t�;T � x)� Pr
�
t��;T � x

�
= OP (T

�1);

while
Pr (t�;T � x)� �(x) = O(T�1=2):

Thus, if we approximate P (t�;T � x) with a standard normal CDF we have
an error of order O(T�1=2); while if we approximate Pr (t�;T � x) with the
bootstrap distribution P �

�
t��;T � x

�
we have an error of order OP (T�1): Thus,

the bootstrap distribution provides a more accurate approximation than the
normal CDF.
In practice, we do not compare P (t�;T � x) with �(x); but instead we com-

pare t�;T with z�: Let zT;� be de�ned as below,

P (t�;T � zT;�) = �

and analogously, de�ne z�T;� as

P �
�
t��;T � z�T;�

�
= �

Cornish Expansion
Whenever we have an Edgeworth expansion, we can always obtain a Cornish

expansion by inversion.

zT;� = z� + T
�1=2q1(�) + T

�1q2(�) + T
�3=2q3(�)::: (9)

where q1(�); q2(�) are again polynomial in � capturing skewness and kurtosis,
and

z�T;� = z� + T
�1=2bq1(�) + T�1bq2(�) + T�3=2bq3(�):::

where bq1(�); bq2(�) are again polynomial in � capturing sample skewness and
sample kurtosis. Now,

q1(�)� bq1(�) = OP (T�1=2)
q2(�)� bq2(�) = OP (T�1=2)

Thus,
zT;� � z�T;� = O(T�1)

while
zT;� � z� = OP (T�1=2):

Therefore, we say that inference based on bootstrap critical values is more ac-
curate than that based on asymptotic normal critical values.
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Bootstrap for Time Series

The iid nonparametric bootstrap does not work with dependent observa-
tion. The reason is that the resampled observations are iid, while the actual
observations are not.
In the case of dependent observations things are more complicated. On one

side we want to draw �blocks�of data long enough to preserve the dependence
structure present in the original sample, on the other side we want to have a large
enough number of blocks independent each other. The most used resampling
methods for time series data is the block bootstrap (Kunsch, Annals of Statistics
1989).

Block Bootstrap: Let T = bl; where b denotes the number of blocks and l
denotes the length of each block.
We �rst draw a discrete uniform random variable I1; that can take value

0; 1; :::; T�l with probability 1=(T�l+1); the �rst block is given byXI1+1 ; :::; XI1+l;
we then draw another discrete uniform say I2; and the second block of length l
is XI2+1; :::; XI2+l; and we go ahead in the same manner, until we draw the
last discrete uniform say Ib; and so the last block is XIb+1; :::; XIb+l: Let�s
call the X�

t the resampled series, and note that X
�
1 ; X

�
2 ; :::; X

�
T correspond to

XI1+1; XI1+2; :::; XIb+l; thus conditionally on the sample, the only random el-
ement is the beginning of each block. In particular X�

1 ; :::; X
�
l ; X

�
l+1; :::; X

�
2l;

X�
T�l+1; :::; X

�
T ; conditionally on the sample, can be treated as b iid block of

discrete uniform. It can be shown that conditional on the sample and for all
sample but a set of measure approaching zero,

E�

 
1

T

TX
t=1

X�
t

!
=
1

T

TX
t=1

Xt +O
�
P (l=T ) (10)

V ar�

 
1

T 1=2

TX
t=1

X�
t

!

=
1

T

T�lX
t=l

lX
i=�l

(Xt �
1

T

TX
t=1

Xt)(Xt+i �
1

T

TX
t=1

Xt)

+OP (l
2=T ) (11)

where E� and V ar� denotes the expectation and the variance operator with
respect to P � (the probability law governing the resampled series, i.e. the
probability law governing the iid uniform, conditional on the sample). OP�(l=T )
(OP�(l2=T )) denotes a term converging in probability P � to zero if l=T ! 0
(l2=T ! 0):
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Sketch of proof of (10) and (11).

E�

 
1

T

TX
t=1

X�
t

!
= E�

0@ 1
bl

bX
i=1

lX
j=1

XIi+j

1A
= E�

0@1
l

lX
j=1

XI1+j

1A ; (12)

as Ii; i = 1; :::; b are independent uniform and so, conditionally on the sample,
blocks are independent and identically distributed (note that conditionally on
sample that only randomness is due to I1; :::; Ib that are iid uniform). Thus (12)
can be rewritten as:

1

l
(X1 +X2 + :::+Xl) Pr(I1 = 0)

+
1

l
(X2 +X3 + :::+Xl+1) Pr(I1 = 1)

+:::+
1

l
(Xl+1 +Xl+2 + :::+X2l) Pr(I1 = l)

+:::+
1

l
(Xbl�l+1 +Xbl�l+2 + :::+Xbl) Pr(I1 = T � l + 1) (13)

Now Pr(I1 = 0) = Pr(I1 = 1) = :::Pr(I1 = T � l) = 1
T�l+1 :

Note that for l + 1 � t � T � l we have lXt summands, while we have only
1 X1 and Xbl; 2 X2 and Xbl�1; and l � 1 Xl and Xbl�l: Thus summing up the
terms in (13) we have that E�

�
1
T

PT
t=1X

�
t

�
is equal to

1

T � l + 1

T�lX
t=l+1

Xt +OP (l=T ) (14)

=
1

T

TX
t=1

Xt +OP (l=T )

Now we want to sketch the proof of (11). As Ii; i = 1; 2; :::; b are iid; and given
(14),

V ar�

 
1

T 1=2

TX
t=1

X�
t

!

= V ar�

0@ 1

b1=2l1=2

bX
i=1

lX
j=1

XIi+j

1A
= V ar�

0@ 1

l1=2

lX
j=1

XI1+j

1A
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= E�

0@1
l

lX
k=1

lX
j=1

(XI1+k �Xa)(XI1+j �Xa)

1A
+OP (l

2=T );

where Xa = 1
T

PT
t=1Xt: The �rst term on the RHS above is in turn equal to

1

l

lX
k=1

lX
j=1

(Xk+1 �Xa)(Xj+1 �Xa) Pr(I1 = 0)

+
1

l

lX
k=1

lX
j=1

(Xk+2 �Xa)(Xj+2 �Xa) Pr(I1 = 1)

+:::+
1

l

lX
k=1

lX
j=1

(Xk+(T�l) �Xa)

(Xj+(T�l) �Xa) Pr(I1 = T � l � 1)

=
1

T � l � 1

T�lX
t=l

lX
j=�l

(Xt �Xa)

(Xt+j �Xa) +OP (l
2=T )

Now Kunsch has shown that conditional on the sample, and for all sample
but a set of probability measure approaching zero, as l!1;

t�b�;T =

t�b�;T =
1

T 1=2

PT
t=1(X

�
t � E�(X�

t ))b��HACT

d�! N(0; I): (15)

where

b��HACT =
1

T

bX
k=1

lX
j=1

lX
i=1

�
XIk+i �X

���
XIk+i �X

��
;

with X
�
= T�1

PT
t=1X

�
t and I1; :::; Ib are the draws from the discrete uniform

on [0; T � l � 1]; which we observe after resampling the date. Let

tHAC�;T =
1

T 1=2

PT
t=1(Xt � �)b�HACT

;

where b�2;HACT is an HAC covariance estimator.Thus, if we use the block boot-
strap, we know that tHAC�;T and t�b�;T have the same limiting distribution and so
bootstrap critical values are asymptotically valid.
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Though, while in the iid case (iid observations and iid bootstrap),

E�

 
1

T

TX
t=1

X�
t

!
=
1

T

TX
t=1

Xt

and

V ar�

 
1

T 1=2

TX
t=1

X�
t

!
=
1

T

TX
t=1

�
Xt �X

�2
:

In the case of the block boostrap and dependent observations (but the same will
be true if we use the block bootstrap and we have iid observations),

E�

 
1

T

TX
t=1

X�
t

!
=
1

T

TX
t=1

Xt +OP

�
l

T

�

V ar�

 
1

T 1=2

TX
t=1

X�
t

!
=

1

T � l � 1

T�lX
t=l

lX
j=�l

(Xt �X)(Xt+j �X) +OP
�
l2

T

�
As a consequence, it is no longer true that P

�
tHAC�;T � x

�
� P �

�
t�b�;T � x

�
=

OP (T
�1):

Gotze and Hipp (Annals of Statistics 1996), for the case of stationary mixing
observations, have shown that if we choose the block length l equal to the lag
truncation parameter used in the construction of the HAC variance estimator
(i.e. l = mT ); then

P
�
tHAC�;T � x

�
� P �

�
t�b�;T � x

�
= OP (lT

�1) +O
�
l�1T�1=2

�
Thus, for l = T 1=4;7

P
�
tHAC�;T � x

�
� P �

�
t�b�;T � x

�
= OP (T

�3=4):

7Note that while we needmT =T
1=4 ! 0 for the case of possibly heterogeneous observations,

in the strict stationary case we can allow for mT = T
1=4:
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Bootstrap Re�nements for GMM estimators

(based on Andrews, Econometrica 2002).
Now, we outline how to bootstrapping GMM estimators, and we see how

bootstrap critical value can provide an improvement over asymptotic (normal)
critical values. Improvement over standard asymptotics are called higher order
re�nements.

In the sequel, we need that E
�
gt

�
�yGMM

�
gt�k

�
�yGMM

��
= 0 for all k >

�; where � is �nite, that is the correlation between the moment condition is
zero after the ��th term. Currently, for the case of general nonlinear GMM
estimators, there are no results about bootstrap higher order re�nements for
the general case, in which � = �T with �T !1 as T !1:8
For generality, we consider the case in which the variance of the moment

conditions depend on the parameters, and therefore we use a two-step GMM
approach. In the �rst step, we use an arbitrary p� p weigthing matrix, say 
;
and we compute, b�T;GMM

= argmin
�2B

 
1

T

TX
t=1

gt (�)

!0



 
1

T

TX
t=1

gt (�)

!
= argmin

�2B
GT (�)

0

GT (�) : (16)

Given b�T;GMM ; we compute the second step estimatore�T;GMM

= argmin
�2B

GT (�)
0 b
T �b�T;GMM

�
GT (�) ; (17)

where

b
T �b�T;GMM

��1
=

1

T

TX
t=1

gt

�b�T;GMM

�
gt

�b�T;GMM

�0
+
2

T

TX
t=1

�X
j=1

gt

�b�T;GMM

�
gt�j

�b�T;GMM

�0
The two-step GMM covariance matrix estimator is given by:

e�2T = �DT �e�T;GMM

� b
T �e�T;GMM

�
DT

�e�T;GMM

���1
;

8 Inoue and Shintani (Journal of Econometrics 2006) provide GMM re�nements in the case
of � = �T for linear IV overidenti�ed estimators).
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where

DT

�e�T;GMM

�
=
1

T

TX
t=1

@

@�
gt (�) j�=e�T;GMM

:

Let e�2ii;T be the ii�th element of e�2T :
Suppose, gt (�) = g (yt; Xt; Zt; �) ; we resample b blocks of length l of (yt; Xt; Zt);

in order to obtain (y�t ; X
�
t ; Z

�
t ):

Let

g�t (�)

= g (y�t ; X
�
t ; Z

�
t ; �)� E�

�
g
�
y�t ; X

�
t ; Z

�
t ;
b�T;GMM

��
; (18)

where

1

T

TX
t=1

E�
�
g
�
y�t ; X

�
t ; Z

�
t ;
b�T;GMM

��
=

1

T � l + 1

TX
t=1

wtg
�
yt; Xt; Zt; b�T;GMM

�
with

wt = t=l t = 1; :::; l � 1

wt = 1 t = l; :::; T � l + 1

wt =
T � t+ 1

l
; t = T � l + 2; :::; T

The weigth wt is smaller than one for the �rst and last l observations, as they
have less chances of being drawn.

Note, that in general g
�
y�t ; X

�
t ; Z

�
t ;
b�T;GMM

�
has non-zero mean even if

g
�
yt; Xt; Zt; �

y
GMM

�
has zero mean; hence the need of recentering the bootstrap

moment conditions. In fact, E�
�
g�t

�b�T;GMM

��
= 0:

Now, we de�ne the bootstrap counterpart of b�T;GMM ;
b��T;GMM

b��T;GMM

= argmin
�2B

 
1

T

TX
t=1

g�t (�)

!0



 
1

T

TX
t=1

g�t (�)

!
= argmin

�2B
G�T (�)

0

G�T (�) ;

where g�t (�) is de�ned as in (18). Also, de�ne the bootstrap counterpart of
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e�T;GMM ;
e��T;GMM as

e��T;GMM

= argmin
�2B

 
1

T

TX
t=1

g��t (�)

!0 b
�T �b��T;GMM

� 1
T

TX
t=1

g��t (�)

!
= argmin

�2B
G��T (�)

0 b
�T �b��T;GMM

�
G��T (�) ;

where

g��t (�)

= g (y�t ; X
�
t ; Z

�
t ; �)� E�

�
g
�
y�t ; X

�
t ; Z

�
t ;
e�T;GMM

��
; (19)

and

b
�T �b��T;GMM

��1
=

1

T

TX
t=1

g��t

�b��T;GMM

�
g��t

�b��T;GMM

�0
+
2

T

TX
t=1

�X
j=1

g��t

�b��T;GMM

�
g��t�j

�b��T;GMM

�0
Thus, b
�T �b��T;GMM

�
is the bootstrap analog of b
T �b�T;GMM

�
:

The bootstrap covariance matrix, is given by

e�2�T =
�
D�
T

�e��T;GMM

� b
�T �e��T;GMM

�
D�
T

�e��T;GMM

���1
;

where

D�
T

�e��T;GMM

�
=
1

T

TX
t=1

@

@�
g��t (�) j�=e��T;GMM

:

Now, let e�2�ii;T be the ii� th element of e�2�T :
We are interested in testing H0 : �i = �

y
i;GMM vs HA : �i 6= �

y
i;GMM :

De�ne the t-stastic as:

t�i;T =
T 1=2

�e�i;T;GMM � �yi;GMM

�
e�ii;T

The bootstrap analog of t�i;T is:

t��i;T =
T 1=2

�e��i;T;GMM � e�i;T;GMM

�
e��ii;T :
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Now, e�2�ii;T is the bootstrap counterpart of e�2ii;T ; but it does not coincide with
var�T 1=2

�e��i;T;GMM � e�i;T;GMM

�
:

Why? The dependence in the sample moment conditions and in the bootstrap
moment conditions is not the same. This is due to the so called "joint problem".
Blocks are independent, conditional on the sample. So, the last observation of a
block and the �rst of the next block are uncorrelated. Though, this is not true
in the original sample. As there are b joint points (as many as the blocks), has
to be taken into account.
Summaring the issue is: e�2�ii;T properly mimics e�2ii;T (i.e. E� �e�2�ii;T� = e�2ii;T );
but e�2�ii;T is NOT var�T 1=2 �e��i;T;GMM � e�i;T;GMM

�
:

We thus need a correction factor. De�ne

ee�2ii;T
=

�
DT

�e�T;GMM

� b
T �e�T;GMM

�
DT

�e�T;GMM

���1
�DT

�e�T;GMM

� b
T �e�T;GMM

� e
T �e�T;GMM

��1 b
T �e�T;GMM

�
�
DT

�e�T;GMM

� b
T �e�T;GMM

�
DT

�e�T;GMM

���1
;

where

e
T �e�T;GMM

��1
= E�

 
1

T

TX
t=1

TX
s=1

g��t

�e�T;GMM

�
g��s

�e�T;GMM

�0!

=
1

l(T � l � 1)

T�lX
t=0

lX
j=1

lX
i=1

g��t+j

�e�T;GMM

�
g��t+i

�e�T;GMM

�0
:

Note that ee�2ii;T = var�T 1=2 �e��i;T;GMM � e�i;T;GMM

�
: The correction factor is

given by

� ii;T =
e�ii;Tee�ii;T :

Now, consider the adjusted bootstrap statistic,

et��i;T = T 1=2
�e��i;T;GMM � e�i;T;GMM

�
e��ii;T � ii;T

which is given by the product of the bootstrap analog of the t-statistic time the
correction term.
Note that in the case of iid bootstrap, there is no join points issue, and therefore
there is no need for the adjustment factor.
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Assumption A1 does not su¢ ce for bootstrap re�nements. While a complete
set of su¢ cient conditions is provided by Assumptions 1-5 in Andrews (2002),
below we just sketch which the type of assumptions we need in addition to A1
above.
Assumption A2
A2(i): E

�
gt

�
�y
�
gt+j

�
�y
��
= 0 for all j > �

A2(ii): (yt; Xt) is stationary and strong mixing with exponentially decaying
coe¢ cient (see e.g. Assumption 1 in Andrews (2002) or in Hall and Horowitz
(1996)).
A2(iii): The t-statistic and its bootstrap counterpart admit an Edgeworth
expansion
A2(iv): Let

ft(�) =

�
gt (�) ; gt (�) gt�j (�) ;

@i

@�i
gt (�) ;

@i

@�i
gt (�) gt�j (�) ; j � � and i � d1

�
: The derivatives, up of order d2 of ft(�) have all moments �nite, and satisfy a
Lipschitz condition.
We then have:

Theorem 2 (from Theorem 2 in Andrews (2002))
(a) Let A1 and A2 hold, with d1 � 5 and d2 � 4: Let l � T  ; suppose 0 � � �
1=2�  and � < ; then

P
���t�i;T �� < ez�T;�=2� = �+O �T�(1+�)� ;

where ez�T;�=2 is such that Pr�et��i;T � ez�T;�=2� = �=2; where t�i;T and et��i;T are
de�ned as in (??) and (??).
(b) Let A1 and A2 hold, with d1 � 4 and d2 � 3: Let l = T  ; suppose 0 � � �
1=2�  and � < ; then

P
�
t�i;T < �ez�T;�=2 or t�i;T > ez�T;1��=2�

= �+O
�
T�1=2+�

�
:

The proof of Theorem 2 is based on the following steps. First, t�i;T can be
approximated by a smooth function, say G; of ft(�

y); as de�ned in A2(iv), and
the bootstrap statistic without correction term t��i;T can be approximated by

G
�
f�t (
b�T )� ; where f�t (b�T ) is de�ned as ft(b�T ) but with the sample moment

conditions replaced by the bootstrap ones. Then, given A2(iii), G
�
ft(�

y)
�

and G
�
f�t (
b�T )� admit an Edgeworth expansion, and, given the Lipschitz and

moment condition in A2(iv), the di¤erence between the �rst two terms in the
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Edgeworth expansion of G
�
ft(�

y)
�
and G

�
f�t (
b�T )� approach zero su¢ ciently

fast. Finally, if � < ; the correction term approaches one fast enough, thus
ensuring that also the Edgeworth expansions of the corrected bootstrap statisticet��i;T and that of t�i;T get closer and closer.
From Theorem 2 it is immediate to see that, if set  = 1=4; i.e. l = T 1=4;

then � can be made arbitrarily close to 1=4: Thus, the bootstrap improvement
in the error probability is of order T��; with 0 < � < 1=4: The condition � < 
ensures that as T !1; the correction factor � ii;T ! 1: As mentioned already,
in the case of iid observation there is no need for correction factor and so we do
no longer require � < : Thus, one can set  = 0 (i.e. l = 1), so that � = 1=2,
thus leading to a improvement in the error in the rejection probability of order
T�1=2:
If the moment conditions are a martingale di¤erence sequence, as in the

case of dynamic correct speci�cation, then � = 0: Though, we still need to use
a block size l; with l ! 1. This in order to capture dependence in the higher
(higher than second) moments.
When computing higher moments there is substantial di¤erence between

mds and iid: Example: If �t is iid; then

E
�
�t�

2
s

�
= E(�t) E

�
�2s
�
= 0; for all t 6= s

Suppose �t is mds but not independent. Now, in the iid case, let s > t; Ft =
� (�1; :::; �t)

E
�
�t�

2
s

�
= E

�
E
�
�t�

2
sjFt

��
= E

�
E
�
�t�

2
sjFt

��
= E

�
�tE

�
�2sjFt

��
.

Now, as E
�
�2sjFt

�
can be a measurable function ofFt; E

�
�tE

�
�2sjFt

��
can be

di¤erent from zero.

How to Construct Bootstrap Critical Values.
(a) In practice, we do not know the bootstrap critical value ez�T;�=2: The

standard approach is to construct B bootstrap statistics, say et�(j)�i;T
; j = 1; :::; B

and obtain ez�T;B;�=2 as the (1� �=2) percentile of the empirical distribution of
the (et�(1)�i;T

; :::;et�(B)�i;T
): The problem is how to choose B large enough, in order

to ensure that the inference based on ez�T;�=2 and on ez�T;B;�=2 lead to the same
higher order improvements. The issue of the optimal selection the number of
bootstrap replications B has been addressed by e.g. Davidson and MacKinnon
(2000) and Andrews and Buchinski (2000).

(b) The construction of the bootstrap statistic requires the choice of the block
length parameter l: An adaptive procedure for choosing l has been suggested by
Hall, Horowitz and Jing (1995).

(c) The computation of the bootstrap estimator b��T can be quite demanding,
as it involves the solution of B nonlinear optimization problems. Davidson and
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MacKinnon (1999) have suggested an alternative k�step estimator. Basically,
one can set b��(0)T = b�T and take k step towards b��T ; via a Newtwon-Raphson
algorithm for example. Andrews (2002, Theorem 1) has shown that inference

based on z�T;k;�=2; i.e. on the critical values based on
b��(k)T leads to the same

order of re�nements as inference based on b��T ; for k � 3 or k � 4; depending
whether we consider symmetrical or equally tailed tests.

Improved Re�nements

The block-block bootstrap
As stated in Theorem 2, the block bootstrap provide re�nements in the

error in rejection probability up to order T��; with � < 1=4; while the iid
bootstrap provide re�nements of order T�1=2: One of the reason is the join
points problem mentioned above. Andrews (2004) suggests to construct block
statistics, so that the same join problem occurs in both the bootstrap and the
actual sample. In other words, the statistic is computed by deleting the �l
observations immediately preceding the join points l + 1; 2l + 1; :::; (b� 1)l + 1;
where as T ! 1; � ! 0 and �l ! 1: As the underlying sample is strong
mixing, the l(1 � �)-th and the l + 1-th observations become independent as
�l ! 1: Given that, there is no longer need for the correction term and then
we do no longer require  > �: Thus, we can choose  < 1=4, thus allowing for
� > 1=4: Nevertheless, we still need to choose a large enough block length, to
capture the dependence in the data.

The Markov Bootstrap
If the underlying generating process is Markov, or it can be well approx-

imated by a Markov process, then one could rely on the Markov Bootstrap
proposed by Horowitz (2003). Basically, sample observations are used to con-
struct a kernel estimator of the conditional density. Then, bootstrap samples are
drawn from the estimated conditional density. Under mild regularity conditions,
the Markov bootstrap leads to re�nements in the error in rejection probability
of order T 1=2�"; with " arbitrarily small.
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