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Abstract

We propose a new procedure for testing optimal monetary policy relying on set-identification.
The identified set is characterized by means of moment inequality conditions nesting optimal
policy under commitment and discretion. The approach is based on the derivation of bounds for
inflation that are consistent with both forms of optimal policy and provide set identification of
the economy’s structural parameters. We derive testable implications that allow for specification
tests and discrimination between the two alternative policy regimes. The methodology allows
us to study the level of commitment exhibited by the United States monetary authority, and to
set-identify the economy’s structural parameters such that the target variables of the monetary
authority (inflation and welfare relevant output gap) are consistent with optimal monetary
policy.
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1 Introduction

This paper derives new results regarding the structural evaluation of monetary policy in the frame-
work set by the New Keynesian model. Since the work of Kydland and Prescott (1977), the theory
of optimal monetary policy is aware of the time inconsistency problem. An optimal state contin-
gent plan announced ex-ante by the monetary authority fails to steer private sector expectations
because, ex-post, past commitments are ignored. The theoretical literature has considered two
alternative characterizations of optimal monetary policy: the commitment solution, whereby the
optimal plan is history-dependent and the time-inconsistency problem is ignored; and the discretion
solution, whereby the optimal policy is markov-perfect and the monetary authority re-optimizes
each period. We describe a method for estimating and testing a model of optimal monetary policy
without requiring an explicit choice of the relevant equilibrium concept. Our procedure considers a
general specification of optimal monetary policy, nesting the commitment and the markov-perfect
characterizations of optimal policy. The approach is based on the derivation of bounds for in-
flation that are consistent with both forms of optimal policy and yield set identification of the
economy’s structural parameters. We derive testable implications that allow for specification tests
and discrimination between the monetary authority’s modes of behavior.

In a discretionary regime the inflation rate on average exceeds the level that would be optimal
if commitment to history dependent policy rules was feasible. This is the celebrated Barro and
Gordon (1983) inflationary bias result, arising in the presence of distortions that imply a subop-
timal natural output rate. In addition to this deterministic inflation-bias, under discretion there
is a state-contingent inflation bias resulting from the fact that the monetary authority sets policy
independently of the history of shocks. The upshot of this state-contingent bias is that when the
output gap is negative, the inflation rate under discretion in the following period is higher than
what it would be if the monetary authority was able to commit to history-dependent plans. This
state-contingent inflationary bias allows for the derivation of an inflation lower-bound (obtained
under commitment) and an upper-bound (obtained under discretion) based on the first order con-
ditions that characterize optimal monetary policy under each policy regime. Our framework relies
on these inflation bounds, which can be used to derive moment inequality conditions associated
with optimal monetary policy, and identify the set of structural parameters for which the moment
inequalities hold, i.e. the identified set. We estimate the identified set implied by optimal monetary
policy and construct confidence regions that cover the identified set with a pre-specified probability
using inference methods developed in Chernozhukov, Hong, and Tamer (2007) (CHT).

If the identified set is nonempty, we test whether the moment restrictions implied by a specific
policy regime are satisfied. Assuming either discretion or commitment allows for point identification
of the underlying structural parameters. Hence, parameters can be consistently estimated and it
is possible to perform standard tests for overidentifying restrictions (Hansen, 1982). However, if
our objective is to test for discretion or commitment under the maintained assumption of optimal
monetary policy, the standard Hansen’s J-test does not make use of all the available information.
Instead, we propose a test for discretion and a test for commitment based on the null hypothesis
that the structural parameters are contained in the identified set under discretion and commitment
respectively. Thus, our approach explores the additional information obtained from the moment
inequality conditions associated with the inflation bounds implied by optimal monetary policy.
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Formally, the test is implemented using the criterion function approach of CHT and an extension
of the Generalized Moment Selection method of Andrews and Soares (2010) that takes into account
the contribution of parameter estimation error on the relevant covariance matrix.

We apply our testing procedure to investigate whether the time series of inflation and out-
put gap in the United States are consistent with the New Keynesian model of optimal monetary
policy that has been widely used in recent studies of monetary policy, following Rotemberg and
Woodford (1997), Clarida, Gaĺı and Gertler (1999), and Woodford (2003). The paper establishes
the following three results: (i) the estimated identified set is nonempty and, therefore, the time
series of inflation and output gap are consistent with optimal monetary policy; (ii) the estimated
identified set under discretion is nonempty and contains the parameter vector estimated by GMM
under discretion, providing evidence in favor of discretion; (iii) the estimated identified set under
commitment is degenerate, allowing to formally reject the null hypothesis of commitment.

Moreover, our framework provides an estimated identified set for the parameters of the first or-
der conditions describing the joint behavior of the monetary authority’s target variables (inflation
and welfare relevant output gap) under a very general characterization of optimal monetary policy.
In particular, the estimated identified set is valid under a specification that nests a continuum of
monetary policy rules characterized by differing degrees of commitment, and in which full commit-
ment and discretion are the two extreme cases. This is the quasi-commitment model proposed by
Schaumburg and Tambalotti (2007). Under quasi-commitment, the monetary authority deviates
from commitment-based optimal plans with a fixed, exogenous probability, known to the public.
The inflation bounds that we derive are compatible with periodic switches between commitment
and discretion. Therefore, the moment inequality conditions used for partial identification of the
economy’s structural parameters are valid also under quasi-commitment.

The importance of being able to discriminate between different policy regimes on the basis of
the observed time series of inflation and output is well recognized. In an early contribution, Bax-
ter (1988) calls for the development of methods to analyze policy making in a maximizing frame-
work, and suggests that “what is required is the derivation of appropriate econometric specifications
for the models, and the use of established statistical procedures for choosing between alternative, hy-
pothesized models of policymaking”.1 This paper seeks to provide such an econometric specification.
Our paper is also related to work by Ireland (1999), that tests and fails to reject the hypothesis
that inflation and unemployment form a cointegrating relation, as implied by the Barro and Gor-
don model when the natural unemployment rate is non-stationary. Ruge-Murcia (2003) estimates
a model that allows for asymmetric preferences, nesting the Barro and Gordon specification as a
special case, and fails to reject the model of discretionary optimal monetary policy. Both these
papers assume one equilibrium concept (discretion), and test whether some time series implications
of discretionary policies, are rejected or not by the data. Our framework instead derives a general
specification of optimal monetary policy, nesting the commitment and the discretion solutions as
two special cases.

Using a full-information maximum-likelihood approach, Givens (2010) estimates a New Keyne-
sian model for the US economy in which the monetary authority conducts optimal monetary policy.
The model is estimated separately under the two alternatives of commitment and discretion, using
quarterly data over the Volcker–Greenspan–Bernanke era; a comparison of the log-likelihood of the

1Baxter, 1988 (p.145).
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two alternative models based on a Bayesian information criterion (to overcome the fact that the two
models are non-nested) strongly favors discretion over commitment. A similar Bayesian approach
has been used by Kirsanova and le Roux (2011), who also find evidence in favor of discretion for
both monetary and fiscal policy in the UK. The partial identification framework we propose in this
paper permits, instead, a general econometric specification that nests commitment and discretion
as two special cases. Unlike full-information methods, our approach does not require a complete
representation of the economy, nor strong assumptions about the nature of the forcing variables.

Simple monetary policy rules are often prescribed as useful guides for the conduct of monetary
policy. For instance, a commitment to a Taylor rule (after Taylor, 1993)—according to which the
short-term policy rate responds to fluctuations in inflation and some measure of the output gap—
incorporates several features of an optimal monetary policy, from the standpoint of at least one
simple class of optimizing models. Woodford (2001) shows that the response prescribed by these
rules to fluctuations in inflation or the output gap tends to stabilize those variables, and stabilization
of both variables is an appropriate goal, as long as the output gap is properly defined. Furthermore,
the prescribed response to these variables guarantees determinate rational expectations equilibrium,
and so prevents instability due to self-fulfilling expectations. Under certain simple conditions, a
feedback rule that establishes a time-invariant relation between the path of inflation and of the
output gap and the level of nominal interest rates can bring about an optimal pattern of equilibrium
responses to real disturbances. Woodford and Gianonni (2010) show that it is possible to find simple
target criteria that are fully optimal across a wide range of specifications of the economy stochastic
disturbance processes. To the extent that the systematic behavior implied by simple rules takes
into account private sector expectations, commitment-like behavior may be a good representation
of monetary policy. Therefore, as Mcallumn (1999) forcefully argues, neither of the two modes of
central bank behavior has as yet been established as empirically relevant. Our framework develops
a new test procedure for null hypotheses concerning these two alternative policy regimes.

This paper also contributes to a growing literature proposing partial identification methods
to overcome lack of information about the economic environment. For instance, Manski and
Tamer (2002) examine inference on regressions with interval outcomes. In the industrial organiza-
tion literature, Haile and Tamer (2003) use partial identification to construct bounds on valuation
distributions in second price auctions. Blundell, Browning and Crawford (2008) derive bounds that
allow to set-identify predicted demand responses in the study of consumer behavior. Ciliberto and
Tamer (2009) study inference in entry games without requiring equilibrium selection assumptions.
Galichon and Henry (2010) derive set-identifying restrictions for games with multiple equilibria in
pure and mixed strategies.

The rest of the paper is organized as follows. Section 2 describes the theoretical model for
the economy. Section 3 characterizes optimal monetary policy. Section 4 derives the bounds
for inflation implied by the structural model of optimal monetary policy. Section 5 outlines the
inference procedure. Section 6 describes how to test optimal monetary policy under discretion
and under commitment. Finally, Section 7 reports the empirical findings, and Section 8 concludes.
Appendix A cointains details about the theoretical model and Appendix B collects all proofs.
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2 The Structural Model

The framework is that of the New Keynesian forward-looking model with monopolistic competi-
tion and Calvo price-setting exposed in Woodford (2010). The representative household seeks to
maximize the following utility function

E0

∞∑
t=0

βt
{
u (Ct; ξt)−

∫ 1

0
v (Ht (j) ; ξt) dj

}
,

where β is a discount factor, Ht (j) is the quantity of labor of type j supplied, and ξt is a vector
of exogenous disturbances that includes shocks to preferences; for each value of ξt, u is an increas-
ing, concave function, and v is an increasing, convex function. The argument Ct is a Dixit and
Stiglitz (1977) index of purchases of all the differentiated commodities

Ct =

[∫ 1

0
ct (i)(ϑ−1)/ϑdi

]ϑ/(ϑ−1)

where ct (i) is the quantity purchased of commodity i. The parameter ϑ > 1 is the elasticity of sub-
stitution between goods. Each differentiated commodity i is supplied by a single monopolistically
competitive producer. In each industry j, there are assumed to be many commodities. An industry
j is a set of producers that use the same type of labor and always change their price contempo-
raneously. Thus, all producers from industry j produce the same quantity yjt . The representative
household supplies all types of labor and consumes all varieties of goods. The optimal supply of
labor of type j by the representative household is such that the following condition is satisfied

vh (Ht (j) ; ξt)

uc (Ct; ξt)
χt = wt (j) , (1)

where wt (j) is the real wage of labor of type j in period t and χt ≥ 1 is a time-varying labor wedge,
common to all labor markets and capturing the effect of taxes and labor market imperfections.

The aggregate resource constraint is given by

Ct +Gt ≤
[∫ 1

0
yt (i)(ϑ−1)/ϑdi

]ϑ/(ϑ−1)

≡ Yt (2)

where yt (i) is the quantity produced of commodity i and Gt (which is included in the vector
of exogenous disturbances ξt) represents the government’s expenditure on an exogenously given
quantity of the same basket of commodities that is purchased by the households. In equilibrium
condition (2) holds with equality.

Except for the fact that labor is immobile across industries, there is a common technology for
the production of all goods: the commodity i is produced according to the production function

yt (i) = f (ht (i)) ,

where ht (i) is the quantity of labor employed by producer i and f is an increasing and concave
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function. Thus, for each producer i the relationship between the real marginal cost st (i) and the
quantity supplied is given by

st (i) = s
(
yt (i) , Yt; ξ̃t

)
,

where the real marginal cost function is defined by

s
(
y, Y ; ξ̃

)
= χ

vh
(
f−1 (y) ; ξ

)
uc (Y −G; ξ)

[
f ′
(
f−1 (y)

)]−1
, (3)

and ξ̃t augments the vector ξt with the the labor wedge χt. It follows that, if prices were fully
flexible, each supplier would charge a relative price satisfying

pt (i)

Pt
= µs

(
yt (i) , Yt; ξ̃t

)
,

where the aggregate price index Pt is defined by

Pt =

[∫ 1

0
pt (i)1−ϑ di

]1/(1−ϑ)

,

and µ = ϑ (ϑ− 1)−1 > 1, is the producers’ markup. Moreover, in the flexible price equilibrium all
producers charge the same price and produce the same quantity Y n

t , so that

1

µ
= s

(
Y n
t , Y

n
t ; ξ̃t

)
,

where Y n
t is the natural rate of output, which corresponds to the equilibrium level of output under

flexible prices. Nonetheless, it is assumed prices are sticky, so that the output of each commodity
i differs. A log-linear approximation to the marginal cost function (3) around the deterministic
equilibrium under flexible prices yields the condition

ŝt (i) = ωŷt (i) + σ−1Ŷt −
(
ω + σ−1

)
Ŷ n
t .

where X̂ denotes the log deviation from steady state of X; ω > 0 is the elasticity of a firm’s real
marginal cost with respect to its own output level, and σ > 0 is the intertemporal elasticity of
substitution of private expenditure. Averaging this condition over all goods i yields

ŝt =
(
ω + σ−1

) (
Ŷt − Ŷ n

t

)
,

where ŝt is the logarithm of the average real marginal cost. Thus the welfare relevant measure of
the output gap is related to variations in the economy-wide real marginal cost.

Definition 1 The welfare relevant output gap xt ≡
(
Ŷt − Ŷ n

t

)
is the difference between the log of

output and the log of natural output (the level of output that would arise if prices were fully flexible).
The output gap xt is proportional to the average real marginal cost in percentage deviation from
steady state, and is given by xt =

(
ω + σ−1

)−1
ŝt.
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To model the behavior of prices, we employ the probabilistic model due to Calvo (1983).2 In
any period each industry j has a fixed probability 1 − α that it may adjust its price during that
period. Else, with probability α, the producers in that industry must keep their price unchanged.
The resulting behavior of the price level is represented by the following two equations

logPt = α logPt−1 + (1− α) log p?t (4)

and
∞∑
s=t

(αβ)s−tEt [log p?t − logPs − ζxs] = 0 (5)

where ζ =
(
ω + σ−1

)
/ (1 + ωϑ) and p?t is the price chosen by the reoptimizing firms in period t.

Combining equations (4) and (5) yields the New Keynesian Phillips Curve (NKPC), given by

πt = βEtπt+1 + κxt, (6)

where κ = (1− α) (1− αβ) (ζ/α).

3 Optimal Monetary Policy

The efficient level of output satisfies the condition

s
(
Y ?
t , Y

?
t , ξ̃t

)
= χt, (7)

and corresponds to the level of output under flexible prices and without distortions resulting from
firm’s market power and the labor wedge. Thus, from equations (2) and (7), we derive the following
relationship

log Y n
t − log Y ?

t =
(
ω + σ−1

)−1
δt

where δt = − log (µχt) < 0 is an exogenous stochastic shock resulting from time-varying distortions.
If the distortions δt are small, the discounted sum of utility of the representative agent involving
small fluctuations around the steady state can be approximated by a second-order Taylor expansion
around the stable equilibrium associated with zero inflation, as follows

W = E0

∞∑
t=0

−β
t

2

{
π2
t +

κ

ϑ

[
xt +

(
ω + σ−1

)−1
δt

]2
}
. (8)

The derivation of (8) is given in Woodford (2003, chapter 6).
The model of optimal monetary policy under commitment is based on the assumption that

the monetary authority maximizes (8) subject to the constraint imposed by the Phillips curve
equation (6). If the monetary authority is able to commit to a state contingent path for inflation
and the output gap, the conditions solving the monetary authority’s problem at some given period s

2See Appendix A for a complete description of the model.
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are

κ

ϑ

[
xt +

(
ω + σ−1

)−1
δt

]
+ κλt = 0, t = s, s+ 1, . . .

πt + λt−1 − λt = 0, t = s, s+ 1 . . .

βEtπt+1 = πt − κxt,

where λt is the Lagrangian multiplier associated with equation (6). The resulting joint path for
inflation and output gap, assuming that the system has been initialized in period s = 0 and that
λ−1 = 0, is given by

πt = − 1

ϑ

[
xt +

(
ω + σ−1

)−1
δt

]
+

1

ϑ

[
xt−1 +

(
ω + σ−1

)−1
δt−1

]
. (9)

However, the commitment solution is time inconsistent in the Kydland and Prescott (1977)
sense: each period t, the monetary authority is tempted to behave as if λt−1 = 0, ignoring the
impact of its current actions on the private sector expectations. When the monetary authority
lacks a commitment technology, it must set policy sequentially. Under discretion, optimal monetary
policy satisfies the markov property in the sense that the policy is chosen independently of past
choices of the monetary authority. Thus, the policymaker acts as if λt−1 = 0 and the resulting joint
path for inflation and output gap is

πt = − 1

ϑ

[
xt +

(
ω + σ−1

)−1
δt

]
(10)

There are several challenges to the empirical estimation of the parameters of the structural
model of optimal monetary policy. First of all, the welfare relevant output gap xt is not directly
observable and there is no reason to believe that it can be proxied by the deviation of output from
a smooth statistical trend. Sbordone (2002) and Gali and Gertler (1999) notice that the most
direct way to measure time variation in the output gap is based on the variation in the production
costs. This is indeed the case in our framework, as it can be seen from Definition 1. It follows
that equations (9) and (10) can be expressed in terms of the economy-wide marginal cost, ŝt. We

define π
(c)
t , the inflation in period t under commitment, and π

(d)
t , the inflation in period t under

discretion, as follows

π
(c)
t = −φ−1 (ŝt + δt) + φ−1 (ŝt−1 + δt−1) , (11)

π
(d)
t = −φ−1 (ŝt + δt) , (12)

where φ =
(
ω + σ−1

)
ϑ. The main empirical challenge is that modeling optimal monetary policy

requires a decision about whether the monetary authority is endowed with a commitment technology
or, instead, engages in discretionary monetary policy.

How does one decide whether the behavior of the monetary authority should be classified as
discretionary or commitment-like? We propose a general characterization of optimal monetary
policy that nests the commitment and the markov-perfect characterizations of optimal policy. This
approach is based on the derivation of bounds for the inflation rate under the maintained assumption
that the monetary authority implements optimal monetary policy.
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4 Bounds for Inflation

Under a specific equilibrium concept, commitment or discretion, it is in principle possible to iden-
tify φ from observed data for inflation and output gap using equations (11) and (12). Thus, lack
of knowledge about the equilibrium concept is what prevents exact identification. A general spec-
ification for optimal monetary policy, nesting the two alternative characterizations of optimality
follows from the next simple result

Lemma 1 Let δt ≤ 0 for all t almost surely. It follows that, Pr
(
π

(d)
t ≥ π

(c)
t

∣∣∣ŝt−1 ≤ 0
)

= 1, and

optimal monetary policy implies that Pr
(
π

(c)
t ≤ πt ≤ π

(d)
t

∣∣∣ŝt−1 ≤ 0
)

= 1.

The bounds for inflation in Lemma 1 are derived from equations (11) and (12). Since δt ≤ 0
for all t, it follows that

Pr
(
ŝt−1 + δt−1 ≤ 0

∣∣∣ŝt−1 ≤ 0
)

= 1,

which implies that π
(d)
t ≥ π

(c)
t almost surely. The upshot is that we are able to find moment

inequalities consistent with optimal monetary policy.
In the sequel we assume that the observed inflation rate differs from the actual inflation rate

chosen by the monetary authority only through the presence of a zero mean measurement error.

Assumption 1 Let πt be the actual inflation rate in period t. The observed inflation rate, Πt, is
given by the sum of the actual rate of inflation and a zero mean exogenous measurement error vt
with finite variance.

Notice that Assumption 1 does not require the measurement error to be independently dis-
tributed, on the contrary it can exhibit some time dependence. From Lemma 1 and Assumption 1,
it follows that

Pr
(
π

(c)
t + vt ≤ Πt ≤ π(d)

t + vt

∣∣∣ŝt−1 ≤ 0
)

= 1, (13)

which establishes a lower bound and an upper bound for the observed inflation rate, Πt. Thus we
can establish the following result

Lemma 2 Let δt a random disturbance with support in R−. Under Assumption 1, it follows that

Pr
(
−φ−1 (∆ŝt + ∆δt) + vt ≤ Πt ≤ −φ−1 (ŝt + δt) + vt

∣∣∣ŝt−1 ≤ 0
)

= 1.

Denoting by 1 (ŝt−1 ≤ 0) an indicator function taking value 1 if ŝt−1 ≤ 0 and using Lemma 2
we derive moment inequalities that are implied by optimal monetary policy, as follows

Proposition 1 Let φ ≡
(
ω + σ−1

)
ϑ be a striclty positive parameter. Under Assumption 1, the

following moment inequalities

− E [(φΠt + ŝt + δt − φvt) 1 (ŝt−1 ≤ 0)] ≥ 0, (14)

E [(φΠt + ∆ŝt + ∆δt − φvt) 1 (ŝt−1 ≤ 0)] ≥ 0, (15)
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are consistent with optimal monetary policy under commitment or discretion.

Proposition 1 follows immediately from Lemma 2 noticing that the bounds on inflation are
valid any time ŝt−1 ≤ 0 and, therefore, they also hold when multiplied by 1 (ŝt−1 ≤ 0). The only
variables which are not observed by the econometrician are the measurement error vt and the
exogenous disturbance δt. We define the following set of instruments

Assumption 2 Let Zt denote a p-dimensional vector of instruments, p > 2 such that

1. Zt is strictly positive;

2. E [vt 1 (ŝt−1 ≤ 0) Zt] = 0;

3. E [δt−r 1 (ŝt−1 ≤ 0)Zt] = δrE [Zt], for r = 0, 1, and where δr ≡ E [δt−r 1 (ŝt−1 ≤ 0)] < 0;

4. E [ΠtZt] 6= 0, E [ŝt 1 (ŝt−1 ≤ 0)Zt] 6= 0 and E [∆ŝt 1 (ŝt−1 ≤ 0)t Zt] 6= 0.

The instrumental variables are assumed to be uncorrelated with the unobserved disturbance δt−r
and with δt−r 1 (ŝt−1 ≤ 0) for r = 0, 1. In particular, Assumption 2.3 implies that

E [(∆δt) 1 (ŝt ≤ 0)Zt] = E [(∆δt) 1 (ŝt ≤ 0)] E [Zt] .

In what follows, we assume that δ1 ≈ δ2 ≈ δ, so that the term E [(∆δt) 1 (ŝt ≤ 0)] ≈ 0. This
approximation is accurate provided that either δt or ŝt are sufficiently persistent.3 Finally, Assump-
tion 2.4 requires that the instruments are not weak. Given Assumption 2, the moment inequalities
in Proposition 1 can be written as

− E
[ (

(φΠt + ŝt) 1 (ŝt−1 ≤ 0) + δ
)
Zt

]
≥ 0, (16)

E
[

(φΠt + ∆ŝt) 1 (ŝt−1 ≤ 0)Zt

]
≥ 0. (17)

Notice that δ is a nuisance parameter to be estimated along with φ, the structural parameter of
interest.

Definition 2 Let θ =
(
φ, δ

)
∈ Θ ⊂ R+×R−. The identified set under optimal monetary policy is

given by
ΘI = {θ ∈ Θ : inequalities (16) and (17) hold} .

The moment conditions in (16)–(17) are linear in the parameters. Thus, as shown by Bontemps,
Magnac and Maurin (2007), the identified set is closed, convex and, under mild requirements,
bounded. Further, if the number of moment conditions is equal to the number of parameters, then
the identified set is trivially nonempty. This is not our case, as we have 2p moment conditions, with
p > 2. Note that the set of values φ for which the inequality condition (16) is satisfied increases

3 If we do not make the approximation E [(∆δt) 1 (ŝt ≤ 0)] ≈ 0, the problem is very similar but there is an
additional nuisance parameter to be estimated, corresponding to δ2 ≡ E [δt−1 1 (ŝt−1 ≤ 0)].
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Figure 1: Discretion inequality condition in the δ and φ space

linearly in −δ. In fact, since δ ≤ 0, the smaller δ, the larger the set of values of φ satisfying
the inequality constraint. Heuristically, the higher the level of distortions, the higher the level of
inflation under discretion and, hence, the larger the range of inflation rates consistent with optimal
monetary policy. This is illustrated graphically in Figure 1. The Figure represents the linear
relation between φ and δ under discretion and for Zt = 1. The area below the line represents, for
each value of δ, the set of φ compatible with optimal monetary policy.

Our first objective is to construct an estimator of ΘI and provided the latter is not empty, to
construct a confidence region, at a given level. If the identified set is nonempty, we have evidence
that the monetary authority is implementing optimal monetary policy.

Before proceeding, notice that one may be tempted to reduce the two moment inequalities
in (16)–(17) into a single moment equality condition, given by

E
{

[φΠt + (∆ŝt + ∆δt) + ψt (ŝt−1 + δt−1)] 1 (ŝt−1 ≤ 0)Zt

}
= 0,

where ψt ∈ {0, 1} is a random variable taking value 0 in the case of commitment and 1 in the case
of discretion. If ψt is degenerate, it may be treated as a fixed parameter ψ and the model can
be estimated by GMM, provided appropriate instruments are available. This is an application of
the conduct parameter method sometimes used in the industrial organization literature. However,
if we allow for soft-commitment, so that periodic switches between commitment and discretion
occur, ψt cannot be treated as a fixed parameter and this approach is no longer implementable (see
Corts, 1999 and Rosen, 2006). Instead, the inflation bounds that we derive are compatible with
a monetary authority that deviates from commitment-based optimal plans with some probability.
Therefore, the moment inequality conditions used for partial identification of the economy’s struc-
tural parameters are valid also under the quasi-commitment model proposed by Schaumburg and
Tambalotti (2007).
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5 Set Identification

In this section we describe how to estimate the identified set ΘI using a partial identification ap-
proach. The basic idea underlying the estimation strategy is to use the bounds for the observed
inflation rate derived from the theoretical model to generate a family of moment inequality condi-
tions that are consistent with optimal policy. These moment inequality conditions are then used to
construct a criterion function whose set of minimizers is the estimated identified set. Provided that
the estimated identified set is nonempty, we use the criterion function to construct a confidence re-
gion for the identified set using the Generalized Moment Selection procedure proposed by Andrews
and Soares (2010), and block-bootstrap. In what follows, we elaborate on each of the steps.

We define the following 2p vector of moment conditions associated with (16) and (17)

mt (θ) =


(
m1
d,t (θ) , . . . ,mp

d,t (θ)
)′

(
m1
c,t (θ) , . . . ,mp

c,t (θ)
)′
 ,

wheremi
d,t (θ) = −

[(
(φΠt + ŝt) 1 (ŝt−1 ≤ 0) + δ

)
Zit
]
, andmi

c,t (θ) =
[
(φΠt + ∆ŝt) 1 (ŝt−1 ≤ 0)Zit

]
.

The sample analogs of the vector of moment conditions is

mT (θ) =
(
m1
T (θ) , . . . ,m2p

T (θ)
)′
,

mi
T (θ) =

1

T

T∑
t=1

mi
t (θ) for i = 1, . . . , 2p,

where mi
t(θ) is the i-th element of mt(θ). Let V (θ) be the asymptotic variance of

√
TmT (θ) and

V̂T (θ) the corresponding heteroscedasticity and autocorrelation consistent (HAC) estimator.4 The
criterion function we use for the inferential procedure is

QT (θ) =

2p∑
i=1

[
mi
T (θ)

]2
−

v̂i,iT (θ)
, (18)

where [x]− = x 1 (x ≤ 0), and v̂i,iT (θ) be the i−th element of the diagonal of V̂T (θ). The probability
limit of QT (θ) is given by Q (θ) = p limT→∞QT (θ). The criterion function Q has the property that
Q(θ) ≥ 0 for all θ ∈ Θ and that Q(θ) = 0 if and only if θ ∈ ΘI , the identified set in Definition 2.

The estimator of the identified set Θ̂I
T can be obtained as

Θ̂I
T =

{
θ ∈ Θ s.t. TQT (θ) ≤ d2

T

}
, (19)

4V̂T (θ) is constructed as follows

V̂T (θ) =
1

T

sT∑
k=−sT

T−sT∑
t=sT

λk,T (mt (θ)−mT (θ)) (mt+k (θ)−mT (θ))′ ,

where λk,T = 1− k
sT+1

and sT is the lag truncation parameter, sT = o(T 1/2).
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where dT satisfies the conditions in Proposition 2.

Assumption 3 The following conditions are satisfied

1. Wt = (Πt, ŝt, Zt) is a strong mixing process with size −r/(r − 2), where r > 2;

2. E
(
|Wi,t|2r+ι

)
<∞, ι > 0 and i = 1, 2, 3;

3. plimT→∞ V̂T (θ) = V (θ) is positive definite for all θ ∈ Θ, where Θ is compact;

4. supθ∈ΘI
|∇θmT (θ)−D (θ)| pr→ 0 uniformly for all θ in ΘI , where D (θ) is full rank.

The following result establishes that, under Assumptions 1-3, the estimator Θ̂I is a consistent
estimator of the identified set.

Proposition 2 Let Assumptions 1-3 hold. If as T →∞,
√

ln lnT/dT → 0, and dT /
√
T → 0, then

P

(
lim
T→∞

inf
{

ΘI ⊆ Θ̂I
T

})
= 1,

and ρH

(
Θ̂I
T ,Θ

I
)

= Op

(
dT√
T

)
.5

It is easy to see that Proposition 2 holds e.g. for dT =
√

lnT .
To conduct inference in the moment inequality model, we construct a set C1−α

T that asymp-
totically contains the identified set ΘI with probability 1 − α. This constitutes the confidence
region.

Definition 3 The (1− α) confidence region for the identified set C1−α
T is given by

lim
T→∞

P
(
ΘI ⊆ C1−α

T

)
= 1− α,

where
C1−α
T = {θ ∈ Θ : TQT (θ) ≤ cα,T } ,

and cα,T is the (1− α)-percentile of the distribution of supθ∈ΘI TQT (θ).

To compute the critical value cα,T of the distribution of supθ∈ΘI TQT (θ), we replace the un-

known set ΘI by its consistent estimator Θ̂I
T , as shown in Proposition 2, and we use bootstrap

critical values.6 In order to reproduce the serial correlation of the moment conditions we rely on
block bootstrap. In particular, let T = bl, where b denotes the number of blocks and l denotes the

5The Hausdorff distance between two sets A and B, is defined as ρH (A,B) = max
[
supa∈A d(a,B), supb∈B d(A, b)

]
,

with d(a,B) = infb∈B ‖b− a‖ .
6Andrews and Soares (2010) and Bugni (2010) suggest the use of bootstrap percentiles over subsample based and

asymptotic percentiles.
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block length, and let W ∗t = (Π∗t , ŝ
∗
t , Z

∗
t ) denote the re-sampled observations. For each θ ∈ Θ̂I

T , we
construct

TQ∗T (θ) =

2p∑
i=1

(
√
T

[
mi∗
T (θ)−mi

T (θ)√
v̂i,i∗ (θ)

]
−

1

[
mi
T (θ) ≤

√
v̂i,i (θ)

√
2 ln lnT/T

])2

, (20)

where mi∗
T (θ) is the bootstrap analog of the sample moment conditions mi

T (θ), constructed using
the bootstrapped data (Π∗t , ŝ

∗
t , Z

∗
t ), and v̂i,i∗ (θ) is the i−th element in the diagonal of the bootstrap

analog of the variance of the moment conditions V ∗θ . The indicator function in (20) implements
the Generalized Moment Selection (GMS) procedure introduced by Andrews and Soares (2010),
using information about the slackness of the sample moment conditions to infer which population
moment conditions are binding, and thus enter into the limiting distribution. We perform B
bootstrap replications and construct the (1− α)-percentile c∗α,T,B. The following proposition can
be established

Proposition 3 Given Assumptions 1–3, and given Θ̂I
T defined as in (19), as T, l, b, B → ∞,

l2/T → 0

lim
T→∞

P
(

ΘI ⊆ Ĉ1−α
T

)
= 1− α,

where Ĉ1−α
T =

{
θ ∈ Θ : TQT (θ)) ≤ c∗α,T,B

}
.

Estimation and inference based on the criterion function in (18) do not require any shape
restriction on the identified set. For the case of convex and bounded identified set, sharper bounds
can be found either via the estimation of the support function, as in Bontemps, Magnac and
Maurin (2007) or via the set random variable approach of Beresteanu and Molinari (2008). The
choice of the criterion function in (18) is mainly due to its computational simplicity.

6 Discretion vs Commitment

The logical next step of our analysis is to test the model of optimal monetary policy imposing either
discretion or commitment. Heuristically, this implies testing whether there is a θ in the identified set,
for which the moment inequality conditions associated with either discretion or commitment hold
as equalities. If there is such a θ, then we have evidence in favor of discretion (commitment). Hence,
we can discriminate between two alternative equilibrium concepts, maintaining the assumption of
optimal monetary policy.
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6.1 Testing for discretion

If the monetary authority implements optimal policy under discretion, the joint path of actual
inflation and the economy-wide marginal cost is given by

E
[ (

(φΠt + ŝt) 1 (ŝt−1 ≤ 0) + δ
)
Zt

]
= 0, (21)

E
[

(φΠt + ∆ŝt) 1 (ŝt−1 ≤ 0)Zt

]
≥ 0, (22)

where the moment equality condition (21) follows from the assumption of discretion and the moment
inequality condition (22) imposes a lower bound to the observed inflation rate as implied by optimal
monetary policy. Notice that condition (21) point identifies both φ and the nuisance parameter δ.

Therefore, under discretion, the model point identifies the parameter vector θd ≡
(
φd, δ

d
)

.

Definition 4 Let θd ≡
(
φd, δ

d
)
∈ Θ ⊂ R+ × R−. The identified set under discretion and optimal

monetary policy is a singleton and is given by

ΘI
d =

{
θd ∈ Θ : (21) and (22) hold

}
.

Let mi
d,t

(
θd
)

=
[((

φdΠt + ŝt
)

1 (ŝt−1 ≤ 0) + δ
d
)
Zit

]
be the moment condition associated with

discretion and mi
c,t(θ

d) =
[(
φdΠt + ∆ŝt

)
1 (ŝt−1 ≤ 0)Zit

]
the condition associated with the lower

bound for observed inflation. We denote the corresponding sample means by mi
d,T

(
θd
)

and

mi
c,T

(
θd
)
, respectively. The asymptotic variance of

√
T
[
md,T

(
θd
)
,mc,T

(
θd
)]

is V d
(
θd
)

and

V̂ d
T

(
θd
)

is the corresponding HAC estimator. To test for discretion, we base the inference pro-
cedure on the criterion function

TQdT

(
θd
)

= T

 p∑
i=1

mi
d,T

(
θd
)2

v̂i,iT
(
θd
) +

2p∑
i=p+1

[
mi
c,T

(
θd
)]2

−

v̂i,iT
(
θd
)

 , (23)

where v̂i,iT
(
θd
)

is i-th element on the diagonal of V̂ d
T

(
θd
)
. The estimated identified set under

discretion and optimal monetary policy Θ̂I
d,T and the estimated confidence region Ĉ1−α

d,T are obtained
using the criterion function (23) and the approach outlined in Section 5. Note that under discretion
ΘI
d is a singleton, thus Θ̂I

d,T is a set shrinking towards ΘI
d as T → ∞. Since the first p moment

conditions hold with equality, they all contribute to the asymptotic distribution of TQdT
(
θd
)
, thus

we apply the GMS procedure only to the inequality moment conditions.
If the estimated identified set Θ̂I

d,T is empty, we reject the model of optimal monetary policy
under discretion. If instead the estimated identified set is nonempty, we construct a test statistic
for the following null hypothesis

Hd
0 : ∃ θ ∈ ΘI

d
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against the alternative
Hd

1 : @ θ ∈ ΘI
d

where θ is the true structural parameter vector which, under the null hypothesis of discretion, is
point identified and can be consistently estimated using the Generalized Method of Moments (GMM)
estimator applied to the moment equality condition (21).

To construct the test statistic, we first estimate θ̂
d

T by two-step GMM under discretion and then

evaluate the criterion function (23) at the estimated parameter vector θ̂
d

T

TQdT

(
θ̂
d

T

)
= T

 p∑
i=1

mi
d,T

(
θ̂
d

T

)2

v̂i,iT

(
θ̂
d

T

) +

2p∑
i=p+1

[
mi
c,T

(
θ̂
d

T

)]2

−

v̂i,iT

(
θ̂
d

T

)
 , (24)

where v̂i,iT

(
θ̂
d

T

)
is the i-th diagonal element of V̂T

(
θ̂
d

T

)
, the HAC estimator of the asymptotic

variance of
√
T
[
md,T

(
θ̂
d

T

)
,mc,T

(
θ̂
d

T

)]
which takes into account the estimation error in θ̂

d

T (see

Appendix).7

Since our inference is based on bootstrap critical values c∗dT,B,α, we use a bootstrap procedure

that properly mimics the contribution of parameter estimation error.8

Proposition 4 Let Assumptions 1–3 hold. Then,

(i) under Hd
0 , limT,B→∞ Pr

(
TQdT

(
θ̂
d

T

)
> c∗dT,B,α

)
= α,

(ii) under Hd
1 , limT,B→∞ Pr

(
TQdT

(
θ̂
d

T

)
> c∗dT,B,α

)
= 1,

where B denotes the number of bootstrap replications.

6.2 Testing for commitment

If the monetary authority implements optimal policy under commitment, the joint path of actual
inflation and the economy-wide marginal cost is given by

− E
[ (

(φΠt + ŝt) 1 (ŝt−1 ≤ 0) + δ
)
Zt

]
≥ 0, (25)

E
[

(φΠt + ∆ŝt) 1 (ŝt−1 ≤ 0)Zt

]
= 0, (26)

where the moment equality condition (26) follows from the assumption of commitment and the mo-
ment inequality condition (25) imposes an upper bound to the observed inflation rate, as implied by

7Andrews and Soares (2010) studies the limiting distribution of the statistic in (24) evaluated at a fixed θ. Hence,

they do not take into account the variability of θ̂
d

T .
8See Appendix for details.
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optimal monetary policy. Notice that conditions (26)-(25) only set-identify δ = E [δt 1 (ŝt−1 ≤ 0)].
Therefore, the model under commitment set-identifies the parameter vector θc ≡

(
φc, δ

)
.

Definition 5 Let θc ≡
(
φc, δ

)
∈ Θ ⊂ R+ ×R−. The identified set under commitment and optimal

monetary policy is given by

ΘI
c = {θc ∈ Θ : (25) and (26) hold} .

Let mi
c,t (θc) =

[
(φcΠt + ∆ŝt) 1 (ŝt−1 ≤ 0)Zit

]
be the moment condition associated with commit-

ment and mi
d,t(θ

c) =
[(

(φcΠt + ŝt) 1 (ŝt−1 ≤ 0) + δ
)
Zit
]

the moment condition associated with the

upper bound for observed inflation. We denote the corresponding sample means by mi
c,T (θc) and

mi
d,T (θc), respectively. The asymptotic variance of

√
T [md,T (θc) ,mc,T (θc)] is V c (θc) and V̂ c

T (θc)
is the corresponding HAC estimator. The estimated identified set under commitment and opti-
mal monetary policy Θ̂I

c,T and the estimated confidence region Ĉ1−α
c,T are obtained using the same

methodology as the one described in Section 6.1.
Testing for optimal monetary policy under commitment involves a different null hypothesis

from the one used to test discretion. The reason is that, under the null of commitment, only the
first element of the parameter vector θ is point identified, while the identified set is defined in the
entire parameter space Θ. Intuitively, this happens because, under commitment, the average level
of distortions is irrelevant for the conduct of optimal monetary police since there is no inflationary
bias. Thus, we test for commitment as follows. If the estimated identified set Θ̂I

c,T is empty, we
reject the model of optimal monetary policy under commitment. If instead the estimated identified
set is nonempty, we construct a test statistic based on the following null hypothesis

Hc
0 : ∃ δ such that φ ∈ ΘI

c

(
δ
)

against the alternative
Hc

1 : @ δ such that φ ∈ ΘI
c

(
δ
)

where φ is the true structural parameter which, under the null hypothesis of commitment, is point
identified and can be consistently estimated using the GMM estimator applied to the moment
equality condition (26). For a fixed δ, we construct the test statistic

TQcT

(
φ̂
c
, δ
)

= T

 p∑
i=1

[
mi
d,T

(
φ̂
c
, δ
)]2

−

v̂i,iT

(
φ̂
c
, δ
) +

2p∑
i=p+1

mi
c,T

(
φ̂
c
, δ
)2

v̂i,iT

(
φ̂
c
, δ
)
 , (27)

and compute the corresponding critical value c∗cT,B,α
(
δ
)
, as discussed in Section 6.1.

Proposition 5 Let Assumptions 1–3 hold. Then,

(i) under Hc
0, limT,B→∞ Pr

(
TQcT

(
φ̂
c
, δ
)
> c∗cT,B,α

(
δ
))

= α,

(ii) under Hc
1, limT,B→∞ Pr

(
TQcT

(
φ̂
c
, δ
)
> c∗cT,B,α

(
δ
))

= 1,

where B denotes the number of bootstrap replications.
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Table 1: Unit Root Tests For Inflation

ADF test Phillips–Perron test
t-Statistic t-Statistic

1960:2 – 2008:3 −2.180 −2.933
(0.18) (0.04)

1970:1 – 2008:3 −2.428 −2.652
(0.14) (0.08)

1979:3 – 2008:3 −2.902 −3.482
(0.05) (0.01)

1983:1 – 2008:3 −5.313 −5.142
(0.00) (0.00)

p-value in parentheses.

Note: The ADF statistic is computed using the Schwarz informa-
tion criteria to select the lag length. The Phillips–Peron statistic,
is computed using Andrews’ (1991) method to select the value
for the lag truncation parameter q required to form the HAC
estimator. A constant is included in both test regressions.

7 Empirical Results

We apply our framework to test whether the behavior of the United States monetary authority
is consistent with optimal monetary policy. Furthermore, we estimate an identified set for the
economy’s structural parameters. We start with a preliminary analysis of the data.

7.1 Data and preliminary analysis

In our empirical analysis, we use quarterly time-series for the US economy. As explained earlier,
the theoretical output gap is not observable and there is no reason to believe that it can be proxied
by the deviation of output from a smooth statistical trend. Thus, following Sbordone (2002) and
Gali and Gertler (1999), we exploit the relationship between the theoretical output gap and the
cyclical component of the economy-wide real marginal cost, ŝt. In the theoretical economy, the
real marginal cost is proportional to the unit labor cost (see Proposition 1). Hence, we use the
cyclical component of the labor income share in the non-farm business sector (computed using the
HP-Filter) to measure ŝt.

Our measure of inflation is the annualized percentage change in the GDP deflator. The econo-
metric framework developed in this paper relies on a stationarity assumption (see Assumption 3).
Therefore, we begin by investigating whether the time series of US inflation is stationary. Our
results show that there is a change in the behavior of inflation from I (1) to I (0) after 1982. Ta-
ble 1 shows results from two alternative unit root tests, the augmented Dickey-Fuller (ADF) and
the Phillips-Peron test. The two test statistics broadly concur in the conclusion that US inflation
in non-stationary for samples beginning in 1960 and 1970. Turning to the sample period starting
from 1979:3, the start of the tenure of Paul Volcker as Federal Reserve Chairman, the test statistics
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Figure 2: Labor Share and Inflation in the US, 1983:1–2008:3.
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are less conclusive. The ADF test has a p-value of 5% while the Phillips–Perron test leads to the
rejection of the null hypothesis at conventional significance levels. Following the analysis in Clarida,
Gali and Gertler (2000), we have decided to study the sample starting from 1983:1, that removes
the first three years of the Volcker era.9 For the post–1982 data, both test statistics clearly reject
the null hypothesis of a unit root at the 1% confidence level. These findings are in line with the
study of Halunga, Osborn and Sensier (2009) showing that there is a change in inflation persistence
from I (1) to I (0) dated at June 1982. Thus, our empirical analysis focuses on the sample period
1983:1 to 2008:3, which spans the period starting after the disinflation and monetary policy shifts
that occurred in the early 1980s and extends until the period when the interest rate zero lower
bound becomes a binding constraint.10 Figure 2 plots the time series of the US cyclical component
of labor income share, ŝt, and inflation for the sample period 1983:1 to 2008:3.

7.2 Instrumental variables

It is frequently assumed that movements in military purchases are exogenous; moreover, fluctuations
in military spending account for much of the variation in government purchases (see Hall 2009).
Thus, we use as instrument the variable ‘Military Spending’, given by the log of real government
expenditure in national defense detrended using the HP-Filter. As a second instrument, we use the
variable ‘Oil Price Change’, given by the log difference of the spot oil price. The instrumental vari-
ables are adjusted using the following transformation guaranteeing positiveness: Z+ = Z−min (Z).

9Clarida, Gali and Gertler (2000) offer two reasons for doing this. First, this period was characterized by a sudden
and permanent disinflation episode bringing inflation down from about 10 percent to 4 percent. Second, over the
period 1979:4-1982:4, the operating procedures of the Federal Reserve involved targeting non-borrowed reserves as
opposed to the Federal Funds rate.

10After 2008:3, the federal funds rate rapidly fell toward the lower bound, signaling a period of unconventional
monetary policy for which our econometric specification may be inadequate.
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Figure 3: The Labor Wedge
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The complete instrument list includes the variables ‘Military Spending’, ‘Oil Price Change’, and
the constant, yielding p = 3 instruments and 6 moment conditions overall.

From Assumption 2, the instrumental variables are required to satisfy the exclusion restrictions

E [vt 1 (ŝt−1 ≤ 0) Zt] = 0

E [δt−r 1 (ŝt−1 ≤ 0)Zt] = δ E [Zt] , for r = 0, 1.

The variable δt = − ln (µχt) is an unobserved disturbance related to the time-varying labor
wedge χt. However, it is possible to construct a theory-based series that proxies δt using data
on aggregate consumption, hours worked and wages. The upshot is that we are able to gain valu-
able insights about the validity of the exclusion restrictions. In particular, following the procedure
in Gali, Gertler and Lopez-Salido (2007) and Shimer (2009), we construct a measure of the labor
wedge in terms of observables, conditional on some conventional assumptions about preferences and
technology. By combining data on aggregate consumption, hours worked and wages, we construct
a time series for the marginal rate of substitution between consumption and leisure and the real
wage. As a result, we are able to obtain a time-series for the labor wedge χt, using equation (1) and
specifying a parameterization for the household preferences. Thus, we assume the representative
household has preferences given by

C
1−1/σ
t

1− 1/σ
−
∫ 1

0
exp (εt)

H (j)1+γ

1 + γ
dj.

where εt is an unobservable preferences shifter. Using equation (1), taking logs and averaging over
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Table 2: Exclusion Restrictions

Coefficient

Military Spending −0.091
(0.33)

Oil Price Change −0.001
(0.94)

R2 0.01
F-stat 0.72

(0.49)

p-value in parentheses.

Note: The dependent variable is δ̂t1 (ŝt−1 < 0), and the regres-
sion includes a constant term (not reported).

j yields the condition
δt = σ−1ct + γht − wt − lnµ+ εt, (28)

where the average real wage wt, the log of aggregate consumption ct, and the log of aggregate hours
ht, are all observed in the data. If the volatility of εt is negligible at business cycle frequencies,
we are able to identify the cyclical component of the labor wedge with the cyclical movements in
σ−1ct + γht − wt, computed using the HP-Filter. Figure 3 shows the time series for the estimated
cyclical component of the labor wedge δ̂t, and the state contingent variable δ̂t1 (ŝt−1 < 0), under
the assumption that σ and γ are both equal to unity.11

To obtain some insight about the validity of the exclusion restrictions, we regress the state
contingent variable δ̂t 1 (ŝt−1 < 0) on the proposed list of instruments: ‘Military Spending’ and ‘Oil
Price Change’ variable, including a constant term. The findings are shown in Table 2. None of
the regressors is significant, the R2 of the regression is only 1% and the F statistic for the joint
hypothesis that all the regression coefficients are zero cannot be rejected at conventional significance
levels. Overall, the evidence supports the exclusion restrictions.

7.3 Model specification tests

We begin by providing the estimation results for the identified set. For the implementation of the
estimator, we specify a truncation parameter for the computation of the HAC variance estimator
equal to four. The confidence sets are constructed using 1,000 block-bootstrap replications, also
with block size equal to four.12 In Figure 4, we show the estimated identified set implied by optimal
monetary policy Θ̂I

T , and the corresponding confidence region at 95% confidence level, Ĉ0.95
T . As

discussed earlier, the upper-bound of the identified set grows linearly in the level of distortions

11This parametrization corresponds to the log-log specification for preferences, that is a popular choice in the
business cycle literature as it implies balanced growth and a unit Frisch labor supply elasticity (see Cooley and
Prescott 1995).

12We have also tried a few different values for the block length. Overall, our findings are quite robust to variation
in the block length choice.
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Figure 4: Identified Set and Confidence Set under Optimal Monetary Policy
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Figure 5: Identified Set and Confidence Sets under Discretion
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Note: The shaded areas correspond to the estimated identified set. The
dashed lines denote the confidence set at 95% confidence level.
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Table 3: Model Specification Tests

Discretion Commitment

J−test 1.178 0.735

p-val (0.278) (0.693)

TQT 13.417 26.963

p-val∗ (0.164) (0.022)

Note: The upper panel shows results from the
Hansen test of overidentifying restriction based on
the GMM model under discretion or commitment.
The statistic p-val is the p-value for the J−test com-
puted from the χ2

1 distribution for discretion and
from the χ2

2 distribution for commitment. The lower
panel shows the results from the model specification
test based on the test statistic TQT , defined by equa-
tions (24) and (27), for commitment and discretion.
The statistic p-val∗, is the p value computed via the
bootstrapping procedure described in Section 6.1.

given by −δ. Since the identified set is not empty, we do not reject the hypothesis that the US
monetary authority has implemented optimal monetary policy over the sample period 1983:1 to
2008:3.

In Figure 5, we report the estimated identified set and the corresponding confidence region
imposing discretion and optimal monetary policy. As expected, the estimated identified set shrinks
considerably but it is not empty. Moreover, the 95% confidence region contains the parameter
vector estimated by GMM. This provides evidence in favor of discretion. Instead, the estimated
identified set imposing commitment and optimal monetary policy is empty providing evidence
against commitment. The following three results can, therefore, be established: (i) the identified set
implied by optimal monetary policy is nonempty and, therefore, inflation and the theoretical output
gap are consistent with optimal monetary policy; (ii) the identified set under discretion is nonempty
and contains the parameter vector estimated by GMM under discretion, providing evidence in favor
of discretion; (iii) the identified set under commitment is empty, providing evidence against the null
hypothesis of commitment. We next examine the formal test statistics developed in sections 6.1
and 6.2 to test for discretion and commitment. Notice that since the estimated identified set under
commitment is empty, the null of commitment and optimal monetary policy is already rejected.
Nonetheless, we construct the formal test statistic for each null hypothesis.

The test is based on a two-step procedure. In particular, to test discretion we first estimate the
parameter vector θd via GMM from condition (26); next, using the estimated vector we construct the

test statistic for discretion TQdT

(
θ̂
d

T

)
and compute bootstrap critical values. To test commitment,

we proceed in the same way, except that the moment condition (26) only permits identification
of the parameter φc. Therefore, after estimating this parameter by GMM, we construct the test

statistic TQcT

(
φ̂
c
; δ
)

and compute bootstrap critical values. In the case of commitment, these
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Table 4: Calibrated Parameters

Parameter Definition Value

α Share of firms keeping prices fixed 0.6600

β Discount factor 0.9914

ω Output elasticity of real marginal cost 0.4400

σ Intertemporal elasticity of substitution 6.2500

Note: Quarterly calibration. The parameters are calibrated following
Rotemberg and Woodford (1997).

critical values depend on the nuisance parameter δ, that needs to be fixed. Therefore, to test
commitment we consider the test statistic over a grid of values for δ.

Given that we are using a sufficient number of instrumental variables for overidentification, we
start by reporting results from the standard Hansen test statistic for overidentifying restrictions.
The results are reported on the upper panel of Table 3, for the null hypothesises of discretion (first
column), and commitment (second column).13 As can be seen, the standard J-test fails to reject
either model.14 Thus, by not making use of the full set of implications of optimal monetary policy,
we are unable to discriminate between the two alternative policy regimes. However, using the addi-
tional information implied by the maintained assumption of optimal monetary policy, we can test
the composite null hypothesis of optimal monetary policy and a specific policy regime—discretion
or commitment.

The test statistic is based on equation (24) for the case of discretion, and equation (27) for
the case of commitment. The results are shown in the lower panel of Table 3. For the case of
discretion, the p-value associated with the test statistic is 16.4 percent and, therefore, we fail to
reject the null hypothesis of discretion at all conventional levels. For the case of commitment, the
parameter δ is not identified by GMM and, therefore, needs to be fixed. We consider a dense grid
of values for δ, and the resulting p-value associated with the test statistic (27) ranges between 1.5
percent and 2.2 percent. Hence, even choosing the most conservative case, a p-value of 2.2 percent
allows for rejection of the null hypothesis of optimal policy under commitment at the 5% confidence
level. This is in line with the fact that the estimated identified set under commitment and optimal
monetary policy is empty.

7.4 Structural parameters estimated sets

The null hypothesis of commitment has been rejected and congruently, the identified set under
commitment is empty. However, the identified set under discretion provides useful information
about the economy’s structural parameters and in particular φ. The upper panel of Table 5 provides
estimated sets and 95% confidence regions for this parameter, for alternative values of δ. Notice

13The J–tests are constructed from the first order conditions in equations (12) and (11) respectively.
14Incidentally, the failure to reject either model using the standard test of overidentification provides evidence in

favor of the instrumental variables used.
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Table 5: Parameter Estimates and Confidence Regions

Interval estimate Bootstrap

δ for φ 95% c.i.

0.00%
[
0.70, 1.12

] [
0.42, 1.33

]
-0.21%a

[
1.26, 1.68

] [
1.05, 1.96

]
-0.50%

[
2.03, 2.59

] [
1.82, 3.08

]
Implied interval Bootstrap

δ estimate for κ 95% c.i.

0.00%
[
0.0611, 0.0737

] [
0.0563, 0.0854

]
-0.21%a

[
0.0498, 0.0578

] [
0.0456, 0.0629

]
-0.50%

[
0.0383, 0.0446

] [
0.0340, 0.0476

]
a GMM estimate for δ.

Note: The implied estimated for κ is obtained from the
estimated set for φ and using equation (29), and the cal-
ibration described in the main text. The confidence in-
tervals at the 95% are computed using the bootstrapping
procedure described in Section 6.1.

that under the null hypothesis of discretion, the parameter δ can actually be point-identified. The
GMM estimate of δ is -0.0021 percent, indicating that the monetary authority acts as if output is
0.21 percent beneath the efficient level. When δ = −0.0021, the implied 95% confidence region for
φ is [1.05, 1.96].

There is a close connection between the parameter φ and the parameter κ which controls the
response of inflation to changes in the output gap. In particular, the parameter κ is given by

κ =

[
(1− α)(1− αβ)

1 + ωφ/ (ω + σ−1)

] (
ω + σ−1

)
α

(29)

Our model does not identify uniquely all the structural parameters. However, by setting values for
the parameters (α, β, ω, σ), the confidence region for φ implies a corresponding confidence region
for the output gap elasticity of inflation κ, a parameter of considerable importance for monetary
policy. A similar approach is followed by Rotemberg and Woodford (1997). Thus, we calibrate the
parameter vector (α, β, ω, σ) using the parameter values suggested by these authors, as described
in Table 4, and consider the implied confidence region for κ.

The resulting estimated identified set and the 95% confidence region for κ are shown in the
lower panel of Table 5 for alternative values for δ. Results are in line with previous findings in
the literature (see Rotemberg and Woodford 1997), and suggest that the output gap elasticity of
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inflation is small. For a given duration of price stickiness a small value for κ indicates the existence
of large strategic complementarities in price-setting, sometimes interpreted as a high degree of real
rigidity (see Ball and Romer 1990).

8 Conclusion

This paper develops a method for estimating and testing a model of optimal monetary policy
without requiring an explicit choice of equilibrium concept. The procedure considers a general
specification of optimal monetary policy that nests discretion and commitment as two special
cases. The general specification is obtained deriving bounds for inflation that are consistent with
both forms of optimal policy and yield set identification of the economy’s structural parameters.
We propose a model specification test that makes use of the set of moment inequality and equality
conditions implied by optimal monetary policy under a specific policy regime, and that allows
testing the null hypothesises of discretion and commitment.

We apply our method to investigate whether the monetary policy in the United States is con-
sistent with the New Keynesian model of optimal monetary policy over the sample period running
from 1983:1 to 2008:3. The paper establishes the following three results: (i) the estimated iden-
tified set is nonempty and, therefore, the time series of inflation and output gap are consistent
with optimal monetary policy; (ii) the estimated identified set under discretion is nonempty and
contains the parameter vector estimated by GMM under discretion, providing evidence in favor of
discretion; (iii) the estimated identified set under commitment is empty, allowing to formally reject
the null hypothesis of commitment.

We also develop a formal test statistic that allows to test the null hypothesises of discretionary
optimal monetary policy and of optimal monetary policy under commitment. The test fails to reject
the null hypothesis of discretion but rejects the null hypothesis of commitment. In contrast, the
standard J-test of overidentifying restrictions fails to reject either policy regime. Thus, by making
use of the full set of implications of optimal monetary policy we are able to discriminate across
policy regimes, rejecting commitment but not discretion.

25



A Calvo Pricing

A producer that changes its price in period t, chooses the new price to maximize the discounted
flow of profits

Et

[ ∞∑
s=t

αs−tQt,sΠ
(
pt (i) , pjs, Ps;Ys, ξ̃s

)]
,

where Qt,s is the stochastic discount factor, given by

Qt,s = βs−t
uc

(
Ys −Gs; ξ̃t

)
uc

(
Yt −Gt; ξ̃t

) Pt
Ps

and the profit function is given by

Π
(
p, pj , P ;Y, ξ̃

)
= pY

( p
P

)−ϑ
− P

vh

(
f−1

(
Y
(
pj/P

)−ϑ)
; ξ̃
)

uc

(
Y −G; ξ̃

) χf−1

(
Y
( p
P

)−ϑ)
,

The profit function Π is homogeneous of degree one in its first three arguments. Moreover, the
price level evolves according to

Pt =
[
αP 1−ϑ

t−1 + (1− α) p?t
1−ϑ
]1/(1−ϑ)

. (30)

The optimal price chosen in period t by the updating sellers, p?t , satisfies the conditions

Et

[ ∞∑
s=t

(αβ)s−t Γ

(
p?t
Ps
, Ys, ξ̃s

)]
= 0, (31)

where the function Γ is given by

Γ

(
p?t
Ps
, Ys, ξ̃s

)
= uc

(
Ys −Gs; ξ̃t

) p?t
Ps

Π1

(
p?t
Ps
,
p?t
Ps
, 1;Ys, ξ̃s

)
= uc

(
Ys −Gs; ξ̃t

)
(1− ϑ)Ys

(
p?t
Ps

)−ϑ [ p?t
Ps
− µχts

(
Ys

(
p?t
Ps

)−ϑ
, Ys; ξ̃t

)]
.

By log-linearizing equations (30) and (31) around the deterministic steady state (under zero infla-
tion), we obtain the following two conditions

logPt = α logPt−1 + (1− α) log p?t (32)

and
∞∑
s=t

(αβ)s−tEt

[
log p?t − logPs − ζ

(
Ŷs − Ŷ n

s

)]
= 0 (33)
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where ζ =
(
ω + σ−1

)
/ (1 + ωϑ). Combining the equations (32) and (33) yields the New Keynesian

Phillips curve, given by
πt = βEtπt+1 + κxt,

where κ = (1− α) (1− αβ) (ζ/α) and the variable xt ≡
(
Ŷt − Ŷ n

t

)
is the relevant output gap, and

is proportional to the average real marginal cost.

B Proofs

Proof of Lemma 1: Immediate from the definition of π
(c)
t and π

(d)
t .

Proof of Lemma 2: Immediate by replacing (11) and (12) in the statement of Lemma 1 and
using Assumption 1.

Proof of Proposition 1: From Lemma 2, provided φ > 0,

Pr
(
−∆ŝt −∆δt + φvt ≤ φΠt ≤ −ŝt − δt + φvt

∣∣∣ŝt−1 ≤ 0
)

= 1,

which implies

Pr
(

(−∆ŝt −∆δt + φvt) 1 (ŝt−1 ≤ 0) ≤ φΠt 1 (ŝt−1 ≤ 0) ≤ (−ŝt − δt + φvt) 1 (ŝt−1 ≤ 0)
)

= 1,

thus

−E [(φΠt + ŝt + δt − φvt) 1 (ŝt−1 ≤ 0)] ≥ 0,

E [(φΠt + ∆ŝt + ∆δt − φvt) 1 (ŝt−1 ≤ 0)] ≥ 0,

as stated in the Proposition.

Proof of Proposition 2: The statement follows from Theorem 3.1 in Chernozhukov, Hong and
Tamer (2007), with ĉ = d2

T , aT = T , γ = 2, once we show that Assumptions 1–3 imply the
satisfaction of their Conditions 1 and 2. Condition 1(a) holds as θ =

(
φ, δ
)

lies in a compact set of
R+ × R−. Assumptions 1–2 allow to state the sample objective function as QT (θ) in (18). Given
Assumption 3, as a straightforward consequence of the uniform law of large numbers for strong
mixing processes, QT (θ) satisfies Condition 1(b)–(e) with bT =

√
T and aT = T . Finally, it is

immediate to see that QT (θ) in (18) satisfies Condition 2.

Proof of Proposition 3: The events
{

ΘI ⊆ C1−α
T

}
and {supθ∈ΘI TQT (θ) ≤ cα,T } are equivalent,

and thus

Pr
(
ΘI ⊆ CT (1− α)

)
= Pr

(
sup
θ∈ΘI

TQT (θ) ≤ cα,T

)
,
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where cα,T is the (1 − α)−percentile of the limiting distribution of supθ∈ΘI TQT (θ). Given As-
sumptions 1–3, by Theorem 1 of Andrews and Guggenberger (2009), for any θ ∈ ΘI ,

TQT (θ)
d→

2p∑
i=1

 2p∑
j=1

ωi,j (θ)Zi + hi (θ)


−

2

where Z = (Z1, . . . ,Z2p) ∼ N(0, I2p) and ωi,j is the generic element of the correlation matrix

Ω (θ) = D−1/2 (θ)V (θ)D−1/2 (θ) ,

with D (θ) = diag (V (θ)) and V (θ) = p limT→∞ V̂T (θ) , as defined in footnote 4. Finally, h (θ) =
(h1 (θ) , ..., h2p (θ))′ is a vector measuring the slackness of the moment conditions, given by

hi (θ) = lim
T→∞

√
T E

(
mi,T (θ) /

√
vi,i (θ)

)
.

Given the stochastic equicontinuity on ΘI of TQT (θ), because of Proposition 2, it also follows that

sup
θ∈Θ̂I

T

TQT (θ)
d→ sup
θ∈ΘI

2p∑
i=1

 2p∑
j=1

ωi,j (θ)Zi + hi (θ)


−

2

. (34)

We need to show that the (1− α)-percentile of the right-hand side of (34), cα,T , is accurately
approximated by the (1− α)-percentile of the bootstrap limiting distribution sup

θ∈Θ̂I
T
TQ∗T (θ) ,

c∗α,T , conditional on the sample. By the law of the iterated logarithm as T →∞ and for i = 1, ..., 2p,
we have that, almost surely,(

T

2 ln lnT

)1/2 mi,T (θ)√
vi,i (θ)

≤ 1 if mi (θ) = 0(
T

2 ln lnT

)1/2 mi,T (θ)√
vi,i (θ)

> 1 if mi (θ) > 0

As supθ∈ΘI

∣∣v̂i,i (θ)− vi,i (θ)
∣∣ = op (1) , it follows that

lim
T→∞

Pr

((
T

2 ln lnT

)1/2 mi,T (θ)√
vi,i (θ)

> 1

)
= 0 if mi (θ) = 0

lim
T→∞

Pr

((
T

2 ln lnT

)1/2 mi,T (θ)√
vi,i (θ)

> 1

)
= 1 if mi (θ) > 0.

Hence, as T gets large, only the moment conditions holding with equality contribute to the bootstrap
limiting distribution, and the probability of eliminating a non-slack moment condition approaches

zero. Further, given the block resampling scheme, for all i, E∗
(√

T
(
m∗i,T (θ)−mi,T (θ)

))
=
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Op (l/T ) and var∗
(√

T
(
m∗i,T (θ)

))
= v̂i,i (θ)+Op

(
l/
√
T
)
, where E∗ and var∗ denote the mean and

variance operator under the probability law governing the resampling scheme. Since l = o
(√

T
)
,

as T →∞, conditional on the sample,
(
m∗1,T (θ)−m1,T (θ)

)
√
v̂1,1

1 (θ)
, ...,

(
m∗2p,T (θ)−m2p,T (θ)

)
√
v̂2p,2p

1 (θ)

 ' N (0, Ω̂T (θ)
)
.

Hence, conditionally on the sample, and for all samples but a set of probability measures ap-
proaching zero, sup

θ∈Θ̂I
T
TQT (θ) and sup

θ∈Θ̂I
T
TQ∗T (θ) have the same limiting distribution, and so

c∗α,T − cα,T = op(1). The statement in the Proposition then follows.

Proof of Proposition 4: Letting θ =
(
φ, δ
)
, we construct the optimal GMM estimator

θ̂
d

T = arg min
θ
md,T (θ)′ Ω̂dd,T

(
θ̃
d

T

)−1

md,T (θ) ,

where θ̃
d

T = arg minθmd,T (θ)′md,T (θ), and Ω̂dd,T

(
θ̃
d

T

)
is the HAC sample variance of

√
Tmd,T

(
θ̃

(d)

T

)
.

If we knew θd =
(
φd, δd

)
, the statement would follow by a similar argument as in the proof of

Proposition 3, simply comparing TQdT
(
θd
)

with the (1−α)-percentile of the empirical distribution

of TQ∗dT
(
θd
)
. However, as we do not know θd, we replace it with the optimal GMM estimator, θ̂

d

T .

Thus, the parameter estimation error term,
√
T
(
θ̂
d

T − θd
)
, contributes to the limiting distribution

of the statistics, as it contributes to its variance. Hence, we need a bootstrap procedure which is
able to properly mimic that contribution. Now, via usual mean value expansion,

√
Tmd,T

(
θ̂
d

T

)
=
√
Tmd,T

(
θd
)

+Dd,T

(
θ
d
T

)√
T
(
θ̂
d

T − θd
)

(35)

√
Tmc,T

(
θ̂
d

T

)
=
√
Tmc,T

(
θd
)

+Dc,T

(
θ
d
T

)√
T
(
θ̂
d

T − θd
)

(36)

with θ
d
T ∈

(
θ̂
d

T , θ
d
)
, Dd,T (θ) = ∇θmd,T (θ) and Dc,T (θ) = ∇θmc,T (θ). From (35) it follows that

avar
(√

Tmd,T

(
θ̂
d

T

))
= avar

(√
Tmd,T

(
θd
))

+ avar
(
Dd,T

(
θ̂
d

T

)√
T
(
θ̂
d

T − θd
))

+

+2 acov
(√

Tmd,T

(
θd
)
, Dd,T

(
θ̂
d

T

)√
T
(
θ̂
d

T − θd
))

. (37)

The asymptotic variance of the moment conditions
√
TmT

(
θd
)

can be estimated by the HAC

sample variance of
[√

Tmd,T

(
θ̂
d

T

) √
Tmc,T

(
θ̂
d

T

)]

Ω̂T

(
θ̂
d

T

)
=

 Ω̂dd,T

(
θ̂
d

T

)
Ω̂dc,T

(
θ̂
d

T

)
Ω̂cd,T

(
θ̂
d

T

)
Ω̂cc,T

(
θ̂
d

T

)  .
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Via a mean value expansion of the GMM first order conditions around θd,

√
T
(
θ̂
d

T − θd
)

= −B̂d,TDd,T

(
θ̂
d

T

)′
Ω̂dd,T

(
θ̂
d

T

)−1√
Tmd,T

(
θd
)
. (38)

with

B̂d,T =

(
D′d,T

(
θ̂
d

T

)
Ω̂dd,T

(
θ̂
d

T

)−1

Dd,T

(
θ̂
d

T

))−1

,

hence, given Assumptions 1–3, B̂
−1/2
d,T

√
T
(
θ̂
d

T − θd
)

d→ N (0, I2) . We define the estimator of the

asymptotic variance of the moment conditions evaluated at the optimal GMM estimator
√
TmT

(
θ̂
d

T

)
as

V̂T

(
θ̂
d

T

)
=

 V̂dd,T

(
θ̂
d

T

)
V̂dc,T

(
θ̂
d

T

)
V̂cd,T

(
θ̂
d

T

)
V̂cc,T

(
θ̂
d

T

)  ,
where the first entry can be computed using (37) and and (38), i.e.

V̂dd,T

(
θ̂
d

T

)
= Ω̂dd,T

(
θ̂
d

T

)
−Dd,T

(
θ̂
d

T

)
B̂d,TD

′
d,T

(
θ̂
d

T

)
Also,

V̂cc,T

(
θ̂
d

T

)
= Ω̂cc,T

(
θ̂
d

T

)
+Dc,T

(
θ̂
d

T

)
B̂d,TD

′
c,T

(
θ̂
d

T

)
−Ω̂cd,T

(
θ̂
d

T

)
Ω̂dd,T

(
θ̂
d

T

)−1

Dd,T

(
θ̂
d

T

)
B̂d,TD

′
c,T

(
θ̂
d

T

)
−Dc,T

(
θ̂
d

T

)
B̂d,TD

′
d,T

(
θ̂
d

T

)
Ω̂dd,T

(
θ̂
d

T

)−1

Ω̂cd,T

(
θ̂
d

T

)
.

Note that, for the computation of statistic we need only an estimate of the diagonal element, hence

we do not need a closed-form expression for V̂dc,T

(
θ̂
d

T

)
. Let

Vdd

(
θd
)

= plimT→∞V̂dd,T

(
θ̂
d

T

)
, Vcc

(
θd
)

= plimT→∞V̂cc,T

(
θ̂
d

T

)
.

It is easy to see that Vdd
(
θd
)

is of rank p− 2, while Vcc
(
θd
)

is of full rank p, hence the asymptotic

variance covariance matrix V
(
θd
)

is of rank 2p− 2. However, this is not a problem, as we are only
concerned with the elements along the main diagonal.

We now outline how to construct bootstrap critical values. The bootstrap counterpart of TQdT

(
θ̂
d

T

)
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writes as:

TQ∗dT

(
θ̂
∗d
T

)
= T

p∑
i=1

mi∗
d,T

(
θ̂
∗d
T

)
−mi

d,T

(
θ̂
d

T

)
√
v̂i,i ∗

(
θ̂
∗d
T

)


2

+ T

2p∑
i=p+1

mi∗
c,T

(
θ̂
∗d
T

)
−mc,T

(
θ̂
d

T

)
√
v̂i,i∗

(
θ̂
∗d
T

)


2

−

1

[
mi
c,T

(
θ̂
d

T

)
≤
√
v̂i,i
(
θ̂
d

T

)√
2 ln lnT/T

]
,

where m∗T (θ) denote the moment conditions computed using the resampled observations. Moreover,

θ̂
∗d
T is the bootstrap analog of θ̂

d

T , given by

θ̂
∗d
T = arg min

θ

(
m∗d,T (θ)−md,T

(
θ̂
d

T

))′
Ω̂∗dd,T

(
θ̃
∗d
T

)−1 (
m∗d,T (θ)−md,T

(
θ̂
d

T

))
,

with θ̃
∗d
T = arg minθ

(
m∗d,T (θ)−md,T

(
θ̂
d

T

))′ (
m∗d,T (θ)−md,T

(
θ̂
d

T

))
, and

Ω̂∗dd,T

(
θ̃
∗d
T

)
=

1

T

b∑
k=1

l∑
j=1

l∑
i=1

(
md,Ik+i

(
θ̃
∗d
T

)
−md,T

(
θ̂
d

T

))(
md,Ik+j

(
θ̃
∗d
T

)
−md,T

(
θ̂
d

T

))′
, (39)

where Ii is an independent, identically distributed discrete uniform random variable on [0, T−l−1].

Finally, v̂i,i∗
(
θ̂
∗d
T

)
is the i−th element on the diagonal of of V̂ ∗T

(
θ̂
∗d
T

)
, the bootstrap counterpart

of V̂T

(
θ̂
d

T

)
, which is given by

V̂ ∗T

(
θ̂
∗(d)

T

)
=

 V̂ ∗dd,T

(
θ̂
∗d
T

)
V̂ ∗dc,T

(
θ̂
∗d
T

)
V̂ ∗cd,T

(
θ̂
∗d
T

)
V̂ ∗cc,T

(
θ̂
∗d
T

)  .

As for the computation of the bootstrap critical values, we need only the elements along the main

diagonal, below we report only the expressions for V̂ ∗dd,T

(
θ̂
∗d
T

)
and V̂ ∗cc,T

(
θ̂
∗d
T

)
, which are

V̂ ∗dd,T

(
θ̂
∗d
T

)
= Ω̂∗dd,T

(
θ̂
∗d
T

)
− D̂∗d,T

(
θ̂
∗d
T

)
B̂∗d,T D̂

∗′
d,T

(
θ̂
∗d
T

)
,

where

B̂∗d,T =

(
D̂∗′d,T

(
θ̂
∗d
T

)
Ω̂∗dd,T

(
θ̂
∗d
T

)−1

D̂∗d,T

(
θ̂
∗d
T

))−1

,

with D̂∗d,T

(
θ̂
∗d
T

)
= ∇θm∗d,T

(
θ̂
∗d
T

)
and where Ω̂∗dd,T

(
θ̂
∗d
T

)
is defined as in (39), but with θ̃

∗d
T replaced
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by θ̂
∗d
T , also

V̂ ∗cc,T

(
θ̂
∗d
T

)
= Ω̂∗cc,T

(
θ̂
∗d
T

)
+ D̂∗c,T

(
θ̂
∗d
T

)
B̂∗d,T D̂

∗′
c,T

(
θ̂
∗d
T

)
−Ω̂∗cd,T

(
θ̂
∗d
T

)
Ω̂∗dd,T

(
θ̂
∗d
T

)−1

D̂∗d,T

(
θ̂
∗d
T

)
B̂∗d,T D̂

∗′
c,T

(
θ̂
∗d
T

)
−D̂∗c,T

(
θ̂
∗d
T

)
B̂∗d,T D̂

∗′
d,T

(
θ̂
∗d
T

)
Ω̂∗dd,T

(
θ̂
∗d
T

)−1

Ω̂∗cd,T

(
θ̂
∗d
T

)
,

with D̂∗d,T

(
θ̂
∗d
T

)
= ∇θm∗c,T

(
θ̂
∗d
T

)
and

Ω̂∗cc,T

(
θ̂
∗d
T

)
=

1

T

b∑
k=1

l∑
j=1

l∑
i=1

(
mc,Ik+i

(
θ̂
∗d
T

)
−mc,T

(
θ̂
d

T

))(
mc,Ik+j

(
θ̂
∗d
T

)
−mc,T

(
θ̂
d

T

))′
,

Ω̂∗cd,T

(
θ̂
∗d
T

)
=

1

T

b∑
k=1

l∑
j=1

l∑
i=1

(
mc,Ik+i

(
θ̂
∗d
T

)
−mc,T

(
θ̂
d

T

))(
md,Ik+j

(
θ̂
∗d
T

)
−md,T

(
θ̂
d

T

))′
.

We compute B bootstrap replication of TQ∗dT

(
θ̂
∗d
T

)
, say TQ∗dT,1

(
θ̂
∗d
T

)
, ..., TQ∗dT,B

(
θ̂
∗d
T

)
, and com-

pute the (1−α)−th percentile of its empirical distribution, c∗dT,B,α

(
θ̂
∗d
T

)
. We now need to establish

the first order validity of the suggested bootstrap critical values. Broadly speaking, we need to

show that to (do not) reject Hd
0 whenever TQdT

(
θ̂
d

T

)
is larger than (smaller than or equal to)

c∗dT,B,α

(
θ̂
∗d
T

)
provides a test with asymptotic size α and unit asymptotic power. To this end, we

show that, under Hd
0 , TQ

∗d
T

(
θ̂
∗d
T

)
has the same limiting distribution as TQdT

(
θ̂
d

T

)
, conditionally on

the sample, and for all samples except a set of probability measure approaching zero. On the other

hand, under Hd
1 , TQ

∗d
T

(
θ̂
∗d
T

)
has same limiting distribution as under the null, while TQdT

(
θ̂
d

T

)
diverges to infinity.

Now, a mean value expansion of the bootstrap GMM first order conditions around θ̂
d

T , gives

√
T
(
θ̂
∗d
T − θ̂

d

T

)
= −B̂∗d,T D̂∗d,T

(
θ̂
∗d
T

)
Ω̂∗dd,T

(
θ̂
∗d
T

)√
T
(
m∗d,T

(
θ̂
d

T

)
−md,T

(
θ̂
d

T

))
and

√
T
(
m∗d,T

(
θ̂
∗d
T

)
−md,T

(
θ̂
d

T

))
=
√
T
(
m∗d,T

(
θ̂
d

T

)
−md,T

(
θ̂
d

T

))
+ D̂∗d,T

√
T
(
θ̂
∗d
T − θ̂

d

T

)
.

Recalling that l = o
(
T 1/2

)
, straigthforward arithmetics gives that

E∗
(√

T
(
m∗d,T

(
θ̂
∗d
T

)
−md,T

(
θ̂
d

T

)))
= Op

(
l√
T

)
= op(1),
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var∗
(√

T
(
m∗d,T

(
θ̂
∗d
T

)
−md,T

(
θ̂
d

T

)))
= V̂T

(
θ̂
d

T

)
+Op

(
l√
T

)
= V̂T

(
θ̂
d

T

)
+ op(1),

and
V̂ ∗T

(
θ̂
∗d
T

)
− V̂T

(
θ̂
d

T

)
= op∗ (1) .

Hence,
√
T
(
m∗d,T

(
θ̂
∗d
T

)
−md,T

(
θ̂
d

T

))
has the same limiting distribution under both hypotheses,

and such a limiting distribution coincides with that of TQdT

(
θ̂
d

T

)
under the null.

As for the moment conditions under commitment, note that they contribute to the limiting distribu-

tion only when mi
c,T

(
θ̂
d

T

)
≤
√
v̂i,i
(
θ̂
d

T

)√
2 ln lnT/T , and hence they properly mimic the limiting

distribution of

2p∑
i=p+1

[
mi
c,T

(
θ̂
d

T

)]2

−

v̂i,iT

(
θ̂
d

T

) .

The statement in the Proposition then follows.

Proof of Proposition 5: The moment equalities implied by commitment do not depend on δ,
and

φ̂
c

T = arg min
φ
mc,T (φ)′ Ω̂dd,T

(
φ̃
c

T

)−1
mc,T (φ) ,

where φ̃
c

T = arg minφmc,T (φ)′mc,T (φ) and Ω̂dd,T

(
φ̃
c

T

)
is the HAC sample variance of

√
Tmc,T

(
φ̃
c

T

)
.

Via mean value expansion

√
Tmd,T

(
φ̂
c

T , δ
)

=
√
Tmd,T

(
φc, δ

)
+Dd,T (φ, δ)

√
T
(
φ̂
c

T − φc
)

√
Tmc,T

(
φ̂
c

T

)
=
√
Tmc,T (φc) +Dc,T (φ)

√
T
(
φ̂
c

T − φc
)

where φ ∈ (φ̂
c

T , φ), Dd,T (φ, δ) = ∇φmd,T

(
φ, δ
)

and Dc,T (φ) = ∇φmc,T (φ). Expanding the GMM
fisrt order condition around φc

√
T
(
φ̂
c

T − φc
)

= −B̂c,TDc,T

(
φ̂
c

T

)′
Ω̂cc,T

(
φ̂
c

T

)−1√
Tmc,T (φc)

where

B̂c,T =

(
D̂′c,T

(
φ̂
c

T

)
Ω̂cc,T

(
φ̂
c

T

)−1
D̂c,T

(
φ̂
c

T

))−1

The asymptotic variance of the moment conditions
√
TmT

(
φc, δ

)
can be estimated by the HAC

sample variance of
[√

Tmd,T

(
φ̂
c

T , δ
) √

Tmc,T

(
φ̂
c

T

)]

Ω̂T

(
φ̂
c

T , δ
)

=

 Ω̂dd,T

(
φ̂
c

T , δ
)

Ω̂dc,T

(
φ̂
c

T , δ
)

Ω̂cd,T

(
φ̂
c

T , δ
)

Ω̂cc,T

(
φ̂
c

T

)  .
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Along the same lines as in the proof of Proposition 4, we define the estimator of the asymptotic
variance of the moment conditions evaluated at the optimal GMM estimator as

V̂T

(
φ̂
c

T , δ
)

=

 V̂dd,T

(
φ̂
c

T , δ
)

V̂dc,T

(
φ̂
c

T , δ
)

V̂cd,T

(
φ̂
c

T , δ
)

V̂cc,T

(
φ̂
c

T

)  ,

where
V̂cc,T

(
φ̂
c

T

)
= Ω̂cc,T

(
φ̂
c

T

)
− D̂c,T

(
φ̂
c

T

)
B̂c,T D̂

′
c,T

(
φ̂
c

T

)
.

Also,

V̂dd,T

(
φ̂
c

T , δ
)

= Ω̂dd,T

(
φ̂
c

T , δ
)

+ D̂d,T

(
φ̂
c

T , δ
)
B̂c,T D̂

′
d,T

(
φ̂
c

T , δ
)

−Ω̂cd,T

(
φ̂
c

T , δ
)

Ω̂cc,T

(
φ̂
c

T

)−1
D̂c,T

(
φ̂
c

T

)
B̂c,T D̂

′
d,T

(
φ̂
c

T , δ
)

−D̂d,T

(
φ̂
c

T , δ
)
B̂c,T D̂

′
c,T

(
φ̂
c

T

)
Ω̂cc,T

(
φ̂
c

T

)−1
Ω̂cd,T

(
φ̂
c

T , δ
)
.

Let
Vcc (φc) = plimT→∞V̂cc,T

(
φ̂
c

T

)
, Vdd

(
φc, δ

)
= plimT→∞V̂dd,T

(
φ̂
c

T , δ
)
.

Again, it is easy to see that Vcc (φc) is of rank p − 1, while Vdd
(
φc, δ

)
is of full rank p, hence the

asymptotic variance covariance matrix V̂T

(
φ̂
c

T , δ
)

is of rank p − 1. The bootstrap counterpart of

V̂T

(
φ̂
c

T , δ
)

is given by

V̂ ∗T

(
φ̂
∗c
T , δ

)
=

 V̂ ∗dd,T

(
φ̂
∗c
T , δ

)
V̂ ∗dc,T

(
φ̂
∗c
T , δ

)
V̂ ∗cd,T

(
φ̂
∗c
T , δ

)
V̂ ∗cc,T

(
φ̂
∗c
T

)  .

As for the computation of the bootstrap critical values, we need only the element among the main

diagonal, below we report only the expressions for V̂ ∗cc,T

(
φ̂
∗c
T

)
and V̂ ∗dd,T

(
φ̂
∗c
T , δ

)
, which are

V̂ ∗cc,T

(
φ̂
∗c
T

)
= Ω̂∗cc,T

(
φ̂
∗c
T

)
− D̂∗c,T

(
φ̂
∗c
T

)
B̂∗c,T D̂

∗′
c,T

(
φ̂
∗c
T

)
,

where

B̂∗c,T =

(
D̂∗′c,T

(
φ̂
∗c
T

)
Ω̂∗cc,T

(
φ̂
∗c
T

)−1
D̂∗c,T

(
φ̂
∗c
T

))−1

and where

Ω̂∗cc,T

(
θ̂
∗c
T

)
=

1

T

b∑
k=1

l∑
j=1

l∑
i=1

(
mc,Ik+i

(
φ̂
∗c
T

)
−mc,T

(
φ̂
c

T

))(
mc,Ik+j

(
φ̂
∗c
T

)
−mc,T

(
φ̂
c

T

))′
,
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and

V̂ ∗dd,T

(
φ̂
∗c
T , δ

)
= Ω̂∗dd,T

(
φ̂
∗c
T , δ

)
+ D̂∗d,T

(
φ̂
∗c
T , δ

)
B̂∗c,T D̂

∗′
d,T

(
φ̂
∗c
T , δ

)
−

Ω̂∗cd,T

(
φ̂
∗c
T , δ

)
Ω̂∗cc,T

(
φ̂
∗c
T

)−1
D̂∗c,T

(
φ̂
∗c
T

)
B̂∗c,T D̂

∗′
d,T

(
φ̂
∗c
T , δ

)
−D̂∗d,T

(
φ̂
∗c
T , δ

)
B̂∗c,T D̂

∗′
c,T

(
φ̂
∗c
T

)
Ω̂∗cc,T

(
φ̂
∗c
T

)−1
Ω̂∗cd,T

(
φ̂
∗c
T , δ

)
,

with

Ω̂∗dd,T

(
φ̂
∗c
T , δ

)
=

1

T

b∑
k=1

l∑
j=1

l∑
i=1

(
md,Ik+i

(
φ̂
∗c
T , δ

)
−md,T

(
φ̂
c

T , δ
))(

md,Ik+j

(
φ̂
∗c
T , δ

)
−md,T

(
φ̂
c

T , δ
))′

,

Ω̂∗cd,T

(
φ̂
∗c
T , δ

)
=

1

T

b∑
k=1

l∑
j=1

l∑
i=1

(
mc,Ik+i

(
φ̂
∗c
T

)
−mc,T

(
φ̂
c

T

))(
md,Ik+j

(
φ̂
∗c
T , δ

)
−md,T

(
φ̂
c

T , δ
))′

The rest of the proof then follows by the same argument used in the proof of Proposition 4.

35



References

Andrews, D.W.K. and P. Guggenberger (2009). Validity of Subsampling and “Plug-In Asymptotic”
Inference for Parameters Defined by Moment Inequalities. Econometric Theory, 25, 669-709.

Andrews, D.W.K. and G. Soares (2010). Inference for Parameters Defined by Moment Inequalities
Using Generalized Moment Selection. Econometrica, 78, 119-158.

Ball L. and D. Romer (1990). Real Rigidities and the Non-Neutrality of Money. Review of Economic
Studies, 57, 183-203.

Barro, R. and D. Gordon (1983). A Positive Theory of Monetary Policy in a Natural Rate Model.
Journal of Political Economy, 91, 589-610.

Baxter, M. (1988). Toward an Empirical Assessment of Game-Theoretic Models of Policy-Making.
Carnegie-Rochester Conference Series on Public Policy, 28, 141-152.

Benigno P. and M. Woodford (2010). Inflation Stabilization and Welfare: The Case of Distorted
Steady State. Journal of the European Economic Association, forthcoming.

Beresteanu, A. and F. Molinari (2008). Asymptotic Properties for a Class of Partially Identified
Models. Econometrica, 76, 763-814.

Blundell R., M. Browning and I. Crawford (2008). Best Nonparametric Bounds on Demand Re-
sponses. Econometrica, 76, 1227-1262

Bontemps, C., T. Magnac and E. Maurin (2007). Set Identified Linear Models. Working Paper.
University of Toulouse.

Bugni, F. (2010). Bootstrap Inference in Partially Identified Models. Econometrica, 78, 735-753.

Calvo, G. (1983). Staggered Prices in a Utility-Maximizing Framework, Journal of Monetary
Economics, 12, 383-98.

Chernozhukov, V., H. Hong and E. Tamer (2007). Estimation and Confidence Regions for Param-
eters Sets in Econometric Models. Econometrica, 75, 1243-1284.

Ciliberto, F., and E. Tamer (2009). Market Structure and Multiple Equilibria in Airline Markets.
Econometrica, 77, 1791-1828.

Clarida, R. J. Gali and M. Gertler (1999). The Science of Monetary Policy: A New Keynesian
Perspective. Journal of Economic Literature, 37, 1661-1707.

Clarida, R. J. Gali and M. Gertler (2000). Monetary Policy Rules and Macroeconomic Stability:
Evidence and some Theory. Quarterly Journal of Economics115, 147-180.

Cooley, T. F. and E. C. Prescott (1995). Economic Growth and Business Cycles., In Frontiers of
Business Cycle Research, edited by Thomas F. Cooley, 1-38. Princeton University Press.

Corts, K.S. (1999). Conduct parameters and the measurement of market power. Journal of Econo-
metrics, 88, 227–250.

Dixit, A.K. and J. Stiglitz (1977). Monopolistic Competition and Optimum Price Diversity. Amer-
ican Economic Review, 67, 297-308.
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