
Instrumental Variables Estimators (IV) in Simple
Model

Consider the following simple model:

yi = �1 + �2x2;i + ui (1)

and suppose that Cov(x2;iui) 6= 0: Now, suppose there is a random variable zi;
such that

Cov(zi; ui) = 0 (2)

and
Cov(zi; x2;i) 6= 0 (3)

Then, zi is called an instrumental variable for x2;i: Thus, an instrument for x2;i
is a random variable which is correlated with x2;i but is uncorrelated with the
error.
The �rst requirement Cov(zi; ui) = 0 cannot be tested, as ui is not observ-

able. The second requirement, non zero correlation between x2;i and zi can
instead be tested. Consider the auxiliary model,

x2;i = �1 + �2z2;i + �i; (4)

we can then test the null hypothesis H0 : �2 = 0 vs H1 : �2 6= 0: If we do not
reject the null, then zi is uncorrelated with x2;i and so it CANNOT be used as
an instrument. If we reject the null, then we know that zi is correlated with
x2;i:
Write model (1) in terms of deviations from mean, i.e.:

yi � �y = �2
�
x2;i � �x2

�
+ ui: (5)

where �y = E(yi) and �x2 = E(x2;i): Now, multiply both sides by (zi � �z);

(zi � �z)
�
yi � �y

�
= �2

�
x2;i � �x2

�
(zi � �z) + ui(zi � �z)

and take the expectation (mean) of both sides, recalling that E
�
(zi � �z)

�
yi � �y

��
=

Cov(z; y);
Cov(z; y) = �2Cov(z; x2) + Cov(u; z):

Thus, if Cov(u; z) = 0 and Cov(z; x) 6= 0; i.e. if zi is a valid instrument,

�2 =
Cov(z; y)

Cov(z; x2)

We now de�ne the instrumental variable IV estimator b�2;IV as the sample analog
of the right hand side above, that is:

b�2;IV =
dCov(z; y)dCov(z; x2)

=

Pn
i=1

�
(zi � b�z) �yi � b�y��Pn

i=1

�
(zi � b�z) �x2;i � b�x2�� :
1



Thus, if zi satis�es conditions (2) and (3), then

p lim b�2;IV =
p limn�1

Pn
i=1

�
(zi � b�z) �yi � b�y��

p limn�1
Pn

i=1

�
(zi � b�z) �x2;i � b�x2��

=
Cov(z; y)

Cov(z; x2)
= �2;

where b�z = n�1
Pn

i=1 zi; b�y = n�1
Pn

i=1 yi and b�x2 = n�1
Pn

i=1 x2;i: Thus,b�2;IV is consistent for �2:
Incidentally, in the case of error uncorrelated with regressors, by multypling

both sides of (5) by
�
x2;i � �x2

�
and take the expectation, we have (as well

known...)

�2 =
Cov(x2; y)

V ar(x2)

and so

�2 =
Cov(x2; y)

V ar(x2)
=
Cov(z; y)

Cov(z; x2)
:

Thus, it follows that OLS, when error are uncorrelated with regressors, and IV
converge towards the same probability limit �2: We see later that in this case
is better to use OLS instead of IV, as it is more e¢ cient. In fact,

b�2;IV =

Pn
i=1

�
(zi � b�z) �yi � b�y��Pn

i=1

�
(zi � b�z) �x2;i � b�x2��

=

Pn
i=1(zi � b�z) ��2 �x2;i � b�x2�+ ui�Pn

i=1

�
(zi � b�z) �x2;i � b�x2��

= �2 +

Pn
i=1(zi � b�z)uiPn

i=1

�
(zi � b�z) �x2;i � b�x2��

Thus,

n1=2
�b�2;IV � �2�

=
n�1=2

Pn
i=1(zi � b�z)ui

n�1
Pn

i=1

�
(zi � b�z) �x2;i � b�x2��

' n�1=2
Pn

i=1(zi � b�z)ui
Cov(z; x2)

;

given that p limn�1
Pn

i=1

�
(zi � b�z) �x2;i � b�x2�� = Cov(z; x2): Now, in the IV

setting, the assumption of conditional homoskedasticity writes as E(u2i jzi) = �2u;

V ar

 
n�1=2

nX
i=1

(zi � b�z)ui
!

= n�1
nX
i=1

E
�
(zi � b�z)2u2i �

= E
�
(zi � b�z)2E(u2i jzi)� = V ar(z)�2u
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Thus,

avar
�
n1=2

�b�2;IV � �2�� = V ar(z)�2u
Cov(z; x2)2

First note that the avar of IV estimators crucially depends on the correlation
between x2;i and z;i; thus if the correlation is low (weak instrument problem),
the IV avar can be very large. As a consequence also IV standard error are very
large, and so inference based on IV can be not very reliable.
Compare the avar of IV with

avar
�
n1=2

�b�2;ols � �2�� = �2u
V ar(x2)

Now,

avar
�
n1=2

�b�2;IV � �2��
avar

�
n1=2

�b�2;ols � �2��
=

V ar(z)V ar(x2)

Cov(z; x2)2
=

1

�2x2;z
� 1

As �1 � �x2;z � 1; being �x2;z the coe¢ cient of correlation between x2 and z.
Do not worry, if E(u2i jzi) = h(zi) can use White SE also for IV!
Though, in the presence of conditional heteroskedasticity, OLS are not nece-

sarily more e¢ cient than IV.
Example
We want to study the return on education for married women. The issue

is that wages depend on the individual ability, which is not observed. Thus,
we have an omitted variable issue, and as ability is likely to be correlated with
education, chances are that OLS estimator are inconsistent. Need to �nd a good
instrument.
Model:

log(wagei) = �1 + �2educi + ui (6)

First consider OLS estimation:

dlog(wage)i = �:185(:185) + :109educi

so that according to the model estimated with OLS, an extra year of education
leads to 10:9% more in wages. As instrument, we try the father�s education,
fatheduc; the idea is that an educated father is more likely to have an educated
dauther; though the education of the father is in general uncorrelated with the
innate daughter ability. Thus, fatheduc is a good candidate for instrument. To
check wether fatheduc is correlated with educ; we run a OLS regression of educ
on fatheduc; deduci = 10:24(:28) + :269(:029)fatheduci
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Thus we can safely reject the hypothesis that fatheduc is uncorrelated with
educ: Now we estimate the wage equation for married women using IV and
using fatheduc as instrument. We have,

dlog(wagei) = �:441(:446) + :059(:035)educi

We note that the IV estimator for the coe¢ cient on education is 0:059 while the
OLS estimator is 0:109:::the two are quite far away apart. This is a clear signal
that the error in model (6) were correlated with the error. Here the issue is the
omission of the variable abili; whose coe¢ cient is positive. Also, as ability and
education are positively correlated, we expect the OLS estimator to be upward
biased.
Though, not that the SE on the IV estimator is much bigger than the SE of

OLS...To really see whether IV and OLS estimators converge to di¤erent plim
need a formal test. Be patient!
When the correlation between z and x2;i is low, we say that zi is a weak

instrument. We have see that

b�2;IV � �2 = n�1
Pn

i=1(zi � b�z)ui
n�1

Pn
i=1

�
(zi � b�z) �x2;i � b�x2��

Thus, even if for given sample size n the numerator is very tiny, if the instrument
is weak the denominator is very tiny too. As a result b�2;IV � �2 can be quite
far away from zero even for relatively large samples. In this cases, it is not clear
whether is better to use OLS or IV with weak instruments.
Example
We want to analyze the e¤ect of mother�s smoking on birth weight. Model:

log(bweight)i = �1 + �2packsi + ui

where packs indicates the number of packs smoked by the mother during preg-
nancy. We may suspect that packsi is correlated with other omitted variables,
related to health consciousness of mother. The average price of cigarettes per
state of residence is likely to be uncorrelated with the error. Economic theory
suggest a negative relationship between quantity demanded and price, so we try
price of cigarettes as an instrument for pack. We have:

dpacki = :067(:103) + :0003(:0008)cigpricei
where cigpricei is the average price per packet in the state in which mother i is
resident. It seems clear that packests and average price are uncorrelated, thus
cigprice is what we call a weak instrument. Let�s see what happens if we use it
as instrument for packet.

log(bweight)i = 4:45(:91) + 2:99(8:7)cigpricei

nonsense!!!! wrong sign, huge estimated coe¢ cient, and super huge SE!!!
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Instrumental Variables Estimators (IV) in Multiple
Regression Model

Variables correlated with the error are called endogeneous, while variables
uncorrelated with the error are called exogeneous. Consider the following model:

yi = �1 + �2x2;i + �3x3;i + ui (7)

and Cov(u; x2) 6= 0, while Cov(u; x3) = 0; so x2;i is endogeneous, while x3;i
is exogeneous. The idea is that both yi and x2;i are jointly determined via a
two-dimensional structural model (think at price and quantities, for example),
but here we are interested in estimating only the equation with yi as dependent
variable.
In terms of the familiar wage equation,

log(wage)i = �1 + �2educi + �3 exp eri + ui

we may think at educ as an endogeneous variable (correlated with the error)
and at exp er at an exogeneous variable, uncorrelated with the error.
If we estimate (7) by OLS, all estimators will be inconsistent, not only that

for the coe¢ cient of the endogeneous variable.
We proceed in the following manner. We choose an instrument for x2;i say

z2;i such that Cov(z2; y2) 6= 0 and Cov(z2; u) = 0; while as an instrument of
x3;i we use itself (if x3;i is uncorrelated with the error the instrument having
the highest correlation with x3;i is clearly z3;i itself). De�ne:

X =

0BBBB@
1 x2;1 x3;1
1 x2;2 x3;2
1 x2;3 x3;3
: : :
1 x2;n x3;n

1CCCCA

Z=

0BBBB@
1 z2;1 x3;1
1 z2;2 x3;2
1 z2;3 x3;3
: : :
1 z2;n x3;n

1CCCCA
and (as usual)

y =

0BB@
y1
y2
:
yn

1CCA
De�ne: b�IV = (Z0X)�1 Z0y

where in the present example Z in n� 3; X is n� 3; and y is n� 1:
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Note that,

b�IV = (Z0X)
�1
Z0 (X� + u)

= �+(Z0X)
�1
Z0u

If z2 is a valid instrument,

p lim b�IV = �+(p lim (Z0X))
�1
p lim (Z0u)

= �

Example
We have a sample of 3010 working men, and we want to explain their wage

using education (educ); experience, (exp er); the squared of experience (exp er2);
plus a dummy equal to 1 if they are black (black); a dummy equal to 1 if they
live in a metrpolitan area (SMSA); a dummy equal to 1 if they live in the south
(south). As usual, the issue is that education is correlated with the error. Card
(1995) suggest to use proximity to 4yrs college as instrument for education. Let
nearc4 be a dummy variable equal to 1 if the individual grew up within a given
distance from college. We expect nearc4 to be positively correlated to educ
(the student can go to college and live at home, saving on accomodation), but
clearly uncorrelated with the omitted variable ability, and so uncorrelated with
the error. We now regress educ on nearc4; and all other exogeneous variables.
We get

deduci = 16:6(:24) + :32(:088)nearc4i � :413(:034) exp eri + ::::
Thus, nearc4i is correlated with educi and thus is a valid instrument for edu-
cation to use.
OLS estimates:dlog(wagei)

= const+ :075(:003)educi + :085(:007) exp eri � 0:023(:0003) exp er2i
�:199(:018)blacki + :136(:020)SMSAi � :148(:026)southi

IV estimates:dlog(wagei)

= const+ :132(:055)educi + :108(:024) exp eri � 0:023(:0003) exp er2i
�:147(:054)blacki + :112(:032)SMSAi � :145(:027)southi

We note that:
(i) Not only the coe¢ cient on the endogeneous variable educ di¤er in the

OLS and IV case, but also all other coe¢ cients, but for exp er2 and south:
(ii) Contrary to the married women case and father education instrument,

now the IV estimated coe¢ cient on education is larger than the OLS. (this time
we have lots of variables, so even if the coe¤ on ability is positive and ability is
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positively correlated with education, this does not imply an upward bias of the
OLS coe¤, too many variables and correlation at play)
(iii) IV standard error are much much larger than OLS ones (often 5-6 times

OLS), and we have 3000 observations!!!
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Two Stage Least Squares Estimators

We have seen that several iunstruments can be used for the the variable
education in the wage equation. So far we have seen father education and
proximity to college, but many others have been used in the vast empirical
literature on wage equations: e.g. number of siblings (the more the children the
less the education), dummy for being born in �rst quarter (reach earlier the age
of compulsory age for schooling, in general 16, with less time at school), etc.
Thus, a question arises: why do not use more than one instrument for a

given endogenous regressors. Intuitively, if instruments are valid, the more we
use the better (at least in terms of e¢ ciency).
Consider again,

yi = �1 + �2x2;i + �3x3;i + ui

where x3;i is exogeneous and x2;i is endogeneous. Suppose, that we have
two valid instruments for x2;i; namely z2;i and z3;i; so that Cov(x2; z2) 6= 0,
Cov(x2; z3) 6= 0, and Cov(u; z2) = Cov(u; z3) = 0. Now, we regress x2;i on con-
stant, z2;i and z3;i and we obtain the predicted value bx2;i (note that at least one
of the coe¢ cients in the previous regression has to be signi�catively di¤erent
from zero). Now, we run the OLS regression

yi = yi = �1 + �2bx2;i + �3x3;i + ui:
The resulting estimator is called two-step least square estimators TSLS and
denoted b�2sls:
In general in one equation we may have more than one regressor which is

correlated with the error. Consider the model,

y = X� + u;

and you suspect that at least one regressors, but possibly more than one, is
correlated with the error. Suppose X is n � k and Z is n � p; p � k (Z in
another vector of variables that we call instruments). The condition p � k; i.e.
at least as many instruments as regressors, is called order condition. Of course,
as instrument for intercept we use a vector of ones and for exogeneous regressors
we use as instrument the regressor itself. We proceed as follows:
STEP 1: Regress X on Z; i.e. we estimate the following model,

X = Z�+ �;

where X is n � k; Z is n � P; � is p � k and � is n � k: When k > 1; this is
slightly di¤erent from the usual regression in which the dependent variable is a
scalar, but do not worry just proceed in the usual way. The OLS estimator for
�; call it b�; is b� = (Z0Z)

�1
Z0X; (8)

and note that b� is p� k: Equation (8) is known as reduced form equation. Now
we are ready for the second step.
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STEP 2: we estimate the following model,

y = (Z b�)� + v;
note that in the second stage we regress y on Z b�, which is the projection of X
on Z. The OLS estimator for � from the second stage is called 2SLS estimator
(which is an IV estimator). Note that

b�2sls = ( b�0Z0Z b�)�1 b�0Z0y

= (X0Z(Z
0
Z)

�1
Z0Z(Z

0
Z)

�1
Z0X)

�1
X0Z(Z

0
Z)

�1
Z0y

= (X0Z(Z
0
Z)

�1
Z0X)

�1
X0Z(Z

0
Z)

�1
Z0y

In the context of 2SLS, the equivalent condition of correlation between in-
struments and regressor is:

p lim (X0Z=n) = Qzx

where Qxz; which is is a k � p matrix, has rank k: This condition is known as
rank conditions.
Under the following assumptions:
IV1: linearity
IV2: (yi; Xi; Zi)

0 are identically and independently distributed (iid), with y
scalar and Xi 1� k, Zi 1� p; p � k:
IV3: E(X0

X=n) = QXX ; which is positive de�nite
IV4: E(Z0X=n) = QZX ; which is of rank k:
IV5: E(Z0�=n) = 0
IV6: E(��0jZ) = �2In

p lim b�2sls = �
and

n1=2(b�2sls � �) d! N(0; �2(QxzQ
�1
zz Qzx)

�1)

and �
s�2X0Z=n(Z

0
Z=n)

�1
Z0X=n)

�1=2
n1=2(biv � �)

d! N(0; Ik)

with s2 = ee=n� k:
We have so far considered the general case in which p � k; in particular

when p > k (more instruments than random variables) we say that the model
is overidenti�ed, while when p = k (as many instruments as regressors) then we
say that the model is exactly identi�ed. The 2SLS estimator simpli�es in the
the exact identi�cation case, i.e. when p = k to

b�2sls2sls = (Z0X)�1Z0y
Choosing the Instruments
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We have seen that instruments should satisfy two properties (i) they have to
be highly correlated with the original regressors (ii) they have to be uncorrelated
with the errors.
Another issue is: how many instrument should we use? In principle, as many as
possible, as by increasing the number of instruments we make the IV estimator
more e¢ cient (i.e. having smaller variance). Why? Remember the logic of
2SLS: Suppose we start with the linear model, y = X� + u: In the �rst step we
regress X on Z and the resulting coe¢ cient is b� = (Z0Z)

�1
Z0X: In the second

step we regress y on Z b�; i.e. we estimate by OLS the following model,
y = Z b�� + (X� Z b�)� + u = Z b�� + v;

where v =(X� Z b�)� + u: Now,b�2sls = ( b�0Z0Z b�)�1 b�0Z0y

We now want to see two very important facts: (a) The variance of the 2SLS
estimator decreases as the number of instruments increases, (b) if the error are
indeed uncorrelated with the residuals the OLS estimator is more e¢ cient than
the 2SLS estimator, in the sense of having a smaller variance. About fact (a)
is easy to see:

E(v0v) =E(u0u)+E(�0(X� Z b�)0(X� Z b�)�);
as the covariance term is zero. Now the second term can only decreases as the
number of instruments increases, in fact the higher is the number of instruments
the smaller is the square error from the �rst stage. As for fact (b), we have shown
it for the simple model and only one instrument. Though, it is possible to show
that, under conditional homoskedasticity,

avar
�
n1=2(b�2sls � �)�� avar �n1=2(b�ols � �)�

is a positive de�nte matrix. Thus, OLS is more e¢ cient than 2SLS.
Thus given fact (a), we want to use as many instruments as we can, provided

they are all uncorrelated with the error, given fact (b), if the regressor are
uncorrelated with the error we want to use OLS and not 2SLS: The �rst issue
is: how many instrument should we use? In principle, as many as possible,
as by increasing the number of instruments we make the 2SLS estimator more
e¢ cient (i.e. having smaller variance). However, we should be sure that all the
instruments we are using satisfying the two properties above.
If k = p; i.e. we have as many instruments as original regressors, than WE

CANNOT estimate whether the instruments are uncorrelated with the errors
or not. Why? When p = k;

biv= (Z
0
X)

�1
Z0y

Now the IV residuals is

eiv= y �Xbiv= y �X(Z
0
X)

�1
Z0y
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Thus

Z0eiv = Z0y � Z0X(Z0X)�1Z0y
= Z0y � Z0y = 0

Thus by construction the the IV residuals are orthogonal of the instruments
whenever k = p: How can we proceed???
We can start running IV using as many instruments as the number of original

regressors. Let eiv be de�ned as above, we can then regress eiv on Z (where
Z is n � k) and on additional instruments say Z2; where Z2 is n � q. Take
the R2 from the regression of eiv on Z and Z2: Under the null hypothesis that

additional instrument Z2 are not correlated with the error, nR2
d! �2q: Thus,

if we get a value below the 95% percentile of a chi-square with q degree of
freedom we decide that the additional instruments are not correlated with the
errors, otherwise we decide to reject the null and conclude that (some of) the
additional instruments is correlated with the errors. IMPORTANT: if we do not
reject the null that the additional instruments are uncorrelated with the errors,
it may still be possible that the original k instruments were indeed correlated
with the errors. Thus in practice, it may be a good idea run this test rotating
the initial and additional instruments.

The Hausman-Wu Test

We have seen that error in variables, omitted variables, endogeneity induce
correlation between errors and regressors.
We have seen that if regressors and error are correlated, then the OLS esti-

mator is no longer consistent for the parameter of interest. However, if we can
�nd proper instruments (i.e. the instruments are correlated with the regresors
and uncorrelated with the errors), then IV (instrumental variable) estimators
are consistent and asymptotically normal. Thus, whenever we are uncertain
about whether errors and regressors are correlated, we may think it is always
a good idea to use IV. This is not the case, as, if E(X0

i�i) = 0; then OLS are
more e¢ cient than IV estimators, in the sense of having a smaller variance and
so they are more precise. Thus we are interested in testing

H0 : E(X
0
i�i) = 0 versus HA : E(X

0
i�i) 6= 0

WARNING: do not even think to construct a statistic based on n�1
P
X0
iei,

where ei are OLS residuals, as this is NUMERICALLY EQUAL to ZERO. We
�rst begin with the easier case in which few of the regressor are correlated with
the errors, but the remaining are not correlated. We then proceed to the more
complex case in which all regressors can be potentially correlated with the errors.
Suppose that we suspect that only a subset of the X are correlated with the
errors, say we suspect that E(Xij�i) 6= 0; for say j = k1+1; : : : k: Often, common
sense and economic theory allow us to decide a priori whether certain regressors
are not correlated with the errors, while other may be instead correlated. If we
�know�that E(Xij�i) = 0 for i = 1; :::; k1 we can use X1; :::; Xk1 as instruments
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for themselves (these of course are the best instruments!). On the other hand
we need to choose r; r � (k � k1) instruments for Xk1+1 ; :::; Xk; call these
instruments Z1; :::; Zr: Summarizing the vector of instruments is given by

Zi = (1; X2i; : : : Xi;k1; Zi1; : : : Zir); p = k1 + r > k

i.e. r > k � k1: (Note that X1i is the intercept). The test described below is
know as Hausman-Wu test.
For notational simplicity let X�

i= (Xi;k1+1; : : : Xik)
0: We regress X� on Z

and the �tted value from such regression are then,

Z(Z
0
Z)

�1
Z0X�

Then we regress y on X and on Z(Z0Z)�1Z0X�; let b� be the OLS coe¢ cient
on Z(Z0Z)�1Z0X�, we can then perform a F test for the null that � = 0 versus
the alternative � 6= 0. Under the null, (k � k1)F is asymptotically distributed
as a �2k�k1 ; while under the alternative diverges to plus in�nity. If we reject
(do not reject) the null of � = 0; then we reject (do not reject) the null that
E(X0�) = 0:

Testing the e¤ect of Education on Earnings

The study on the e¤ect of education on earning has received lot of attention
over the last years. Stylized fact: the wage gap between educated and unedu-
cated or skilled and unskillied workers has been increased a lot in the 90s (while
for example the wage gap between genders has decreased). Thus it seems that
education has high impact on earnings. Also, for policy purposes (fees, students
loan, investment in education), it is important to know the returns of educa-
tion. A traditional model used in labour economics to study education is the
following:

yi = �1 + �2age+ �3age
2 + �4education

+�5Xi + error

where Xi includes set of dummy, like gender, industry, geographical area etc.
Typically education is measured as years of schooling. It is not di¢ cult to
image the years of schooling measures education only up to an error. Also, it
is possible that people who got a higher education is �smarter�. Second, and
more surprinsingly, it seems that the reported years of schooling is also subjected
to a serious measurement errors (incorrect self report years). All these reason
raises a serious doubt about the fact that errors and regressor (schooling) are
uncorrelated. Ashenfelter and Krueger (1994) had the idea of using data on
couple of twins. First twins tend to have same characteristic (same bckground,
same original income etc..) so that we can sort of control for omitting social
economic variables. Second, they use the sibling�s report of years of schooling
of the other sibling as an instrument for the latter. Let yij be the earning of
sibling j; j = 1; 2; in twins i and Sij(j) the self report of yers of schooling of
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sibling j in twins i: (The data set consists on observations of several couples of
twins). OLS

yij = �1 + 0:088agei � 0:087age2i + 0:084Sji(j)
+0:2sex� 0:41race+ residual

IV (as instrument for years of schooling of one sibling we use the years of
schooling for that schooling reported by the other sibling).

yij = �1 + 0:088agei � 0:087age2i + 0:116Sji(j)
+0:21sex� 0:42race+ residual

It is immediate to note, that the coe¢ cient on schooling from the IV estimator
is somewhat di¤erent from the OLS. Next time we shall study a formal test for
comparing IV and OLS estimator.

Hausman Test
We have considered last time the Hausman-Wu test for the null hypothesis
that some (but not all!) of the regressors are uncorrelated with the errors,
against the alternative that they are instead correlated. However, the

Hausman-Wu test is valid under the maintained hypothesis that some of the
regressors are uncorrelated with the errors. As you see in the homework, we
CANNOT use the Hausman-Wu for testing the null that ALL regressor are
uncorrelated with the errors versus the alternative that at least one regressor
is instead correlated with the error. We now want to construct a test for,

H0 : E(X
0
i�i) = 0 versus HA : E(X

0
i�i) 6= 0

The idea underlying the Hausman test is the following: under the null hy-
pothesis, both the OLS and the IV (or 2SLS) estimators are consistent for the
true parameter, thus we expect that as the sample gets large the OLS and the
IV estimators will be close each other. On the other hand, under the alternative,
the OLS estimator is not consistent for the true parameters, while the IV (or
2SLS) it is. Therefore, we should expect that under the alternative, the two are
far away each other. The key ingredient for the Hausman test statistic is then
(biv � bols): Now,

(biv � bols) = (biv � �)� (bols � �)

and we know that under the null,

p lim
n!1

(biv � bols) = p lim
n!1

(biv � �)�

p lim
n!1

(bols � �) = 0� 0 = 0

on the other hand under the alternative

p lim
n!1

(biv � bols) = p lim
n!1

(biv � �)� p lim
n!1

(bols

��) = 0 + something di¤erent from 0
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Thus we can base our statistic on (biv � bols): However, if we want to have a
test with a given type I error and a type II error approaching zero as the sample
size gets large, we need to construct a statistic which has a well de�ned limiting
distribution (under the null), and diverges under the alternative. In order to
obtain that, we need to scale (biv � bols) by n1=2 and divide it by the proper
variance. Let�s consider,

(V ar(n1=2(biv � bols))�1=2n1=2((biv � bols)

Under the set of L1� L6 and IV 1� IV 7 assumptions,

(V ar(n1=2(biv � bols))�1=2n1=2((biv � bols)
d! N(0; Ik)

Thus we need to �nd the exact expression for V ar(n1=2(biv � bols)):

V ar(n1=2(biv � bols)) = V ar(n1=2((biv � �)� (bols � �)))

= V ar(n1=2(biv � �))+V ar(n1=2(bols � �))
�2Cov(n1=2(biv � �));n1=2(bols � �))

We have seen that

lim
n!1

V ar(n1=2(biv � �)) = �2(QXZQ
�1
ZZQZX)

�1

lim
n!1

V ar(n1=2(bols � �)) = �2Q�1
XX

where QXX = p limn!1
X0X
n ; QZZ = p limn!1

Z0Z
n ; QXZ = p limn!1

X0Z
n :

Now, the di¢ cult part is to compute the covariance between the two estimators
(don�t even hope it is zero!).

lim
n!1

Cov(n1=2(biv � �));n1=2(bols � �))

= (QXZQ
�1
ZZQZX)

�1QXZQ
�1
ZZE(�

2
iZ

0
iXi)Q

�1
XX

= �2(QXZQ
�1
ZZQZX)

�1QXZQ
�1
ZZQZXQ

�1
XX

= �2Q�1
XX = lim

n!1
V ar(n1=2(bols � �))

Thus,

V ar(n1=2(biv � bols)) = V ar(n1=2(biv � �))
�V ar(n1=2(bols � �))

More formally we can construct an Hausman test, where

H = n1=2(biv � bols)0(dV ar(n1=2(biv � bols))�1
�n1=2(biv � bols)
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where dV ar(n1=2(biv �bols)) is the estimated variance of n1=2(biv �bols): From
what we have seen above,

dV ar(n1=2(biv � bols)) =
s2((X0Z=n(Z

0
Z=n)

�1
Z0X=n)

�1 � (X0X=n)
�1
)

with s2 = e0e=n; where e are either the OLS or the IV residuals. Thus we can
rewrite H as:

H = n(biv � bols)0
�
s2((X0Z=n(Z

0
Z=n)

�1
Z0X=n)

�1

�(X0X=n)
�1
)
��1

(biv � bols)

We have that: (a) Under H0; H
d! �2k; and (b) under HA; H diverges to

plus in�nity.

15


