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Abstract

A step toward a strategic foundation for rational expectations equilibrium is
taken by considering a double auction with n buyers and m sellers with interdepen-
dent values and affiliated private information. If there are sufficiently many buyers
and sellers, and their bids are restricted to a sufficiently fine discrete set of prices,
then, generically, there is an equilibrium in nondecreasing bidding functions that is
arbitrarily close to the unique fully revealing rational expectations equilibrium of
the limit market with unrestricted bids and a continuum of agents. In particular,
the large double auction equilibrium is almost efficient and almost fully aggregates
the agents’ information.

1. Introduction

The Rational Expectations Equilibrium (REE) concept has had a profound effect on
economic theory. However, there is widespread agreement that an adequate foundation
has yet to be provided. This is evidenced by the various paradoxes that accompany
virtually any presentation of the idea.

The desire to provide a foundation for REE is not new. Hellwig (1980) notes that the
rational expectations hypothesis typically requires traders to act rationally with respect
to information, yet fail to recognize their influence on the price. Hellwig presents a
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model with both competitive traders and noise traders. Competitive traders do not
take into account their effect on the price, but do take into account the information
conveyed by the price. On the other hand, noise traders’ demands are exogenous,
random, and independent of fundamentals. Their presence is required to keep the
market from collapsing. In an attempt to justify his assumption that agents are price-
takers, Hellwig considers a sequence of economies in which the number of competitive
and noise traders grow. He shows that the market equilibrium converges to an REE.
However, due to the presence of noise traders this equilibrium is neither fully revealing
nor efficient. While this impressive result marked an important step, explaining rational
expectations through the presence of irrational noise traders and nonstrategic price-
taking competitive traders would not be the end of the story.!

Building upon Wilson’s (1977) striking information aggregation result in a bidding
model, Milgrom (1981) provides a seminal contribution toward a foundation for REE.
This remarkable paper initiates what might be called the strategic bidding approach
to REE. Milgrom demonstrates that a strategic bidding model, with its explicit price
formation process and well-defined order of moves, is capable of resolving all of the para-
doxes typically associated with REE. On the other hand, Milgrom shows that obtaining
a fully-revealing REE in his model requires strong assumptions, even as the number of
bidders grows.? In general, Milgrom’s limiting equilibrium is an REE, but it typically
fails to be fully revealing, thereby resulting in an inefficient outcome.

In an important recent contribution, Pesendorfer and Swinkels (1997) reveal why
the limiting equilibria in Milgrom (1981) often fail to be fully revealing. Pesendorfer
and Swinkels note that Milgrom’s limit result focuses on a market with an arbitrarily
large number of bidders but with a fized finite number of units of the good for sale. In
contrast, they demonstrate that when both the number of bidders and the number of
units for sale grow large, the unknown state of nature typically is eventually revealed by
the equilibrium price. That is, a fully-revealing REE typically does arise in Milgrom’s
model when there are sufficiently many bidders and sufficiently many units for sale.?

LA strategic version of Hellwig’s model is considered in Kyle (1989), where the competitive traders,
but not the noise traders, take into account their effect on the price. Still, without noise traders
the market breaks down. Consequently, as in Hellwig (1980), the limiting equilibrium is necessarily
a nonfully-revealing, inefficient REE. A related analysis, but with two-dimensional uncertainty and a
continuum of (price-taking) traders, can be found in Messner and Vives (2001). Their multi-dimensional
uncertainty precludes the one-dimensional price from acheiving a fully revealing REE, a possibility that
is consistent with the work of Allen (1981).

2These assumptions are built into Wilson’s model.

#The Cournot literature provides a related model with strategic agents (sellers) on just one side of
the market. This literature too contains both positive (Palfrey (1985)) and negative (Vives (1988))
results on information aggregation. On the other hand, this literature is not precisely in the same
vein as the auction literature because submitting a bid in an auction, given single-unit demands, is
equivalent to submitting a demand schedule. In contrast, the Cournot literature permits multi-unit
supplies but firms are restricted to submitting quantities, not supply schedules. For the same reason,



The bidding models employed in both Milgrom (1981) and Pesendorfer and Swinkels
(1997) are Vickrey-type auctions in which, on the one hand, buyers behave strategically
based on their private information. On the other hand, the sellers are passive, simply
showing up at auction with a fixed number of units available for sale at any nonnegative
price. One can view these sellers as playing a role similar to that played by the noise
traders in the models of Hellwig and Kyle. Not only does their presence serve to
ensure that trade takes place, but their number must grow without limit to ensure
that information is aggregated.

Thus, while all of the above models have produced important insights, they share
the undesirable feature that their markets would collapse were it not for the presence
of uninformed or irrational or nonstrategic agents.

A fully satisfactory foundation for REE should permit all traders, buyers and sellers,
to be informed, rational, and strategic. It is the purpose of the present paper to move in
this direction. The natural bidding model with which to study the resulting two-sided
market is a double auction.

Wilson (1985) introduces the many-buyer/many-seller double-auction model and
shows that it is incentive-efficient in large markets with strategic traders.? This pi-
oneering and significant work focuses on settings in which traders have independent
private values.>’ Our analysis covers the independent private value setting as well as
settings in which the good’s value is partially common and partially private and where
the agents possess affiliated private information. For our purposes, the inclusion of
a common value component is critical, since this is the hallmark of environments in
which rational expectations are required. On the other hand, we do not cover the pure

common value case.”

the Cournot literature is not directy related to the literature on rational expectations, wherein consumers
are imagined to submit excess demand schedules to a Walrasian auctioneer.

*Chaterjee and Samuelson (1983) introduced the one-buyer/one-seller double auction in their work
on bargaining with two-sided incomplete information.

5For the buyer’s-bid double-auction, Satterthwaite and Williams (1989) establish a 1/n rate of conver-
gence to price-taking behavior. In addition to this but in a k-double auction, Rustichini, Satterthwaite
and Williams (1994) establish a 1/n® rate of convergence to efficiency. In both cases, n is the equal
number of buyers and sellers.

SWhen values are private, double auction equilibria have been shown to be nearly efficient under quite
general distributional assumptions, so long as the market is sufficiently large. For example, Swinkels
(2001) considers the case in which value distributions are independent but not identical, while Cripps and
Swinkels (2002) and Fudenberg et. al. (2003) permit value distributions that are neither independent
nor identical. Cripps and Swinkels allow mixed equilibria (relying on Jackson and Swinkels (2002) for
existence), while Fudenberg et. al. restrict attention to, but also prove the existence of, monotone pure
strategy equilibria in large markets.

"Indeed, our proof technique does not work under pure common values. Note however that given
the risk-neutrality of our agents, the pure common value case is not particularly interesting. This is
because every allocation is then ex-ante efficient and so Milgrom and Stokey’s (1982) no-trade theorem
applies.



The double-auction model possesses at least two important features. First, in con-
trast to the one-sided Vickrey auction models employed in Milgrom (1981) and Pe-
sendorfer and Swinkels (1997), rational traders in a double auction act strategically
to manipulate the market-clearing price in their favor. This leads to some efficient
trades going unrealized with positive probability. It is therefore possible to investi-
gate the extent to which such manipulation and inefficiency vanishes, and the extent
to which price-taking behavior approximates strategic behavior as the market becomes
large. Second, the double auction mimics the workings of actual markets in use. Specif-
ically, it operates like a call market which itself is used to conduct and price trades
in many financial markets, such as, for example, the overnight market on the NYSE.
Consequently, the analysis of double auctions with nonprivate values has the poten-
tial to provide insights into whether such financial markets are able to aggregate the
participants’ information and generate efficient outcomes.

We put together the two strands of the above literature — the one-sided (buyer-
only) markets with interdependent-values and the two-sided markets with private values
— by studying a single two-sided market in which ex-ante symmetric buyers and sellers
with single-unit demands and possibly interdependent values participate in a double
auction.

Our main result is as follows. Suppose bids and offers must be submitted in discrete
units from a sufficiently fine price grid. If the market contains sufficiently many buyers
and sellers, then generically in the agents’ value functions and the fineness of the grid, the
double auction possesses a nontrivial Bayes-Nash equilibrium in pure monotone bidding
functions.®*? Further, the equilibrium outcome is arbitrarily close to an efficient fully-
revealing REE, and equilibrium behavior is arbitrarily close to price-taking behavior.
Hence in this sense, for the very simple two-sided market studied here, we provide a
strategic foundation for fully-revealing REE.

Notably, we do not establish the existence of a nontrivial pure bidding equilibrium
when the market is small. Our proof technique is designed to take advantage of the
economics of large markets. The structure of our proof is as follows. We begin by
analyzing an idealized limit market with a continuum of buyers and sellers, and in
which each agent’s bid can be any nonnegative real number. The continuum of agents
precludes any single agent from affecting the price and the continuum of feasible bids
implies that, in equilibrium, ties in bids will not occur. Together these properties allow
us to construct, straightforwardly, a symmetric equilibrium of the double auction in pure
strictly increasing bidding functions. This limit market equilibrium is, furthermore, a
fully-revealing REE.

The heart of the proof establishes a continuity property for the fully-revealing double-

8Trivial “no trade” equilibria always exist.
9The genericity result alluded to here is unrelated to that in Allen (1981) since our limit economy
always possesses a fully-revealing REE.



auction equilibrium of the limit market. The “nearby” market with large but finite
numbers of buyers and sellers, and a sufficiently fine grid of bids, possesses a nearby
(and so almost efficient and almost fully-revealing) equilibrium. Demonstrating this is
not straightforward because, when there are finitely many traders, buyers and sellers
can each affect the price but wish to affect it in opposite directions. Hence, buyers and
sellers will bid differently. Furthermore, standard equilibrium existence proofs in bidding
models rely heavily on affiliation properties of order statistics, and these properties fail
here precisely because buyers and sellers employ distinct bidding functions.!”

Our main insight is that establishing the existence of a monotone equilibrium poses
serious difficulties only when individual agents can have a significant impact on the
price. In sufficiently large markets, where strategic price manipulation is negligible, we
demonstrate that a monotone pure strategy equilibrium generically exists. Our proof
technique also exploits the ex-ante symmetry, modulo endowments, of the agents in
our model. However, we believe that our existence result can be pushed through even
without symmetry. On the other hand, the symmetry of the agents is used here to
establish the efficiency of the limit equilibrium.

For technical reasons, our proof technique requires us to drop the somewhat un-
realistic, yet often very convenient, assumption that agents can submit bids from a
continuum. Instead, we assume that bids are restricted to a sufficiently fine discrete
grid of prices. This in turn forces us to deal head on with the issue of rationing, which
has received little attention in the literature.

Important avenues for future research include extending the present model to settings
with asymmetric and risk-averse agents, multi-unit demands, multiple markets, and
multi-dimensional private information. While each of these extensions is likely to present
non-trivial challenges, we are hopeful that each new result, including the present, will
provide a useful point from which to begin thinking about those that remain.

The remainder of the paper is organized as follows. Section 2 describes the basic
setup. In Section 3 the limit model with a continuum of agents and a continuum of
prices is studied. The finite agent model with a discrete grid of prices is described in
Section 4, and Section 5 illustrates the difficulties in obtaining monotone equilibria when
either the number of agents is small or the grid of prices is insufficiently fine. Section
6 contains the main result and a detailed sketch of the proof. The supplement to the
present paper, Reny and Perry (2006), contains the complete proof as well as additional
related material, and will henceforth be referred to as RP-s.

"Evidently, this is why in the strategic models cited above (Kyle (1989), Milgrom (1981), and Pe-
sendorfer and Swinkels (1997)) all strategic traders are symmetric.



2. The Basic Setup

There are N agents, each of whom desires at most one unit of a single indivisible good.
The “state of the good” is a random variable, @, taking values in [0, 1]. The realization,
w, of @ is unknown to all agents.!! The density from which & is drawn is g(w), defined
on [0, 1]. Conditional on the realization of the state of the good, w, each agent i receives
an ii.d. signal, Z;, taking values in [0, 1] according to the density f(z|w), defined on
[0,1]2. We make the following assumptions.

A.1 On their domains, g is C' and f is C? and both are strictly positive.
A.2 9’In f(x|w)/0zdw > 0 for all (z,w) € [0,1]%.

Assumption A.2 captures the idea that a high signal is good news about the state
of the good by requiring f(x|w) to satisfy the strict monotone likelihood ratio property.
Equivalently, for each ¢, agent i’s signal, Z;, and the state of the good, @, are strictly
affiliated. Because the N signals Z1,...,Zn are i.i.d. conditional on @, this implies that
the NV + 1 random variables Z1,...Z v, @ are strictly affiliated as well.

When his signal is z € [0,1] and the state of the good is w € [0, 1], an agent’s von
Neumann-Morgenstern utility is v(z,w) - x — p, where x = 0 if he ends up with zero
units of the good, x = 1 if he ends up with at least one unit of the good, and p € R is
the price paid. Hence, each agent wants at most one unit of the good. We make the
following assumptions on v(-, ).

A.3 On [0,1)%, v(-,-) > 0is CL, vy(-,-) > 0, and v, (-,-) > 0.12
A.4 v,(z,0) = v,(x,1) =0 for every z € [0, 1].

Assumption A.3 says that each agent’s value is nonnegative, weakly increases if w
increases, and strictly increases if & increases; so there is a strictly positive, although
perhaps arbitrarily small, private value component. Thus, while our model includes the
pure private value model as a special case, the pure common value model is excluded.
Assumption A.4 says that values are almost private when the state is extreme. Its essen-
tially technical role is explained in Remark 2 below. Note that any function satisfying
A.3 but not A.4 can be approximated arbitrarily closely by one that satisfies both A.3
and A.4.13

HTetters with tildes denote random variables, while letters without tildes represent their realizations.

12Qubscripts denote partial derivatives.

B For example, fix € € (0,1) and let A. : [0,1] — [0,1] be any nondecreasing differentiable function
that is 0 at w = 0 and 1 at w = € (hence A.(w) = 0 for w > ¢). If v(z,w) satisfies A.3, then 9(z,w) =
(1 =2Ae())v(z,0) + Ae(W)Ae (1 —w)v(z,w) + (1 — Ae(1l — w))v(z, 1) satisfies A.3 and A.4 and converges
uniformly to v(z,w) as € — 0.




Our main result (Theorem 6.1) will be shown to hold for a generic subset of the
space of value functions satisfying A.3 and A.4. But because this space is not finite
dimensional, we cannot define “generic” in terms of Lebesgue measure. We therefore
adopt a standard topological approach.

Let V denote the subset of functions, v(x,w), satisfying A.3 and A.4, and define a
norm on V by |v|| = max,, v(z,w), thereby inducing a topology on V.}* Genericity in
V' can now be defined in terms of so-called residual sets.

Definition 2.1. A subset of a topological space is residual if it contains a countable
intersection of open dense sets.'

A standard interpretation is that if a property holds on a residual set, then the property
holds “generically.” We will demonstrate that our main result holds on a residual set of
value functions satisfying A.3 and A.4.16

Up to this point, all agents are ex-ante symmetric. We now break this symmetry by
endowing m < N agents with one unit of the good. Because each agent desires at most
one unit, these agents, should they trade, will necessarily give up their units. Hence,
we shall refer to these m agents as sellers. The remaining n = N — m agents will be
referred to as buyers. That is, there are n buyers and m sellers.

We now provide an example that is consistent with assumptions A.1-A.3.17 In the
example, an agent’s income is a private signal that influences the expected value of the
good in two ways: directly through its effect on private incentives (providing a private
value component) and indirectly via an informational effect (providing a common value
component).

Example. There are three periods. At date zero there is a market for an
indivisible asset. The asset’s expected value depends on an unknown state of
the economy, @, distributed uniformly on [0, 1]. For simplicity assume that,
given w, the asset’s expected value is 1+ w. An agent’s income, &, is strictly
affiliated with the state of the economy. In particular, Z has density f(z|w)
satisfying assumption A.2. Hence, both A.1 and A.2 are satisfied.

4 Any topology on V that is at least this strong and for which linear combinations of elements of V
are continuous in the coefficients will do.

5Recall that a set is dense if arbitrarily close to every point not in the set is a point in the set.

16In RP-s it is shown that the main result of the present paper also holds when one adopts the measure-
motivated approach of Christensen (1974) or Hunt Sauer and York (1996) for infinite-dimensional spaces.
In their approach, a set, A, is “generic” if there exists a probability measure, p, on the ambient space
such that p(A°+ ) = 0 for every = in the ambient space. When the ambient space is R", this implies
that A° has Lebesgue measure zero, which is an attractive feature of this approach.

17 As mentioned above, it is always possible to perburb such an example so that the technical assump-
tion A.4 also holds.



Agents participate in the date-zero market after learning their own in-
come. The asset’s return is realized at date one but is available at date two.
At date one, each agent is liquidity constrained with probability ¢(z), and,
if he owns the asset, he will find it optimal to collect the return early at a
cost of ¢ > 0.

The higher is the agent’s income, the less likely it is that he will be liquid-
ity constrained. Hence, ¢’ () is strictly negative. Therefore, conditional on w
and z, the expected value of the asset at date zero is v(z,w) = 1+w —q(z)c.
If ¢/(x) is continuous and ¢ < 1, then v(-,-) is C! and non negative and so
assumption A.3 is satisfied.

Our main interest lies in studying the outcome of strategic bidding behavior among
the n buyers and m sellers in a double-auction market when n and m are large. But
before doing so, we first analyze the double auction in a setting in which no agent can
affect the price. This limit market is relevant because it’s unique fully-revealing REE
will turn out to be approximated arbitrarily well by an equilibrium of a double-auction
market with sufficiently many buyer and sellers.

3. The Limit Model

Let us alter the basic setup by supposing that there are a continuum of buyers and
sellers. Specifically, suppose that there is a unit mass of agents, of whom « € (0,1) are
buyers and 1 — « are sellers. Consequently, if the state of the good is w, then for every
x € [0, 1], the mass of agents with signals below z is F'(z|w). Let £(a, v, f, g) denote this
continuum economy.'®

We now analyze this continuum economy from two perspectives. First, we view the
situation as a pure exchange economy and compute a fully-revealing rational expecta-
tions equilibrium. It will be shown to be unique among fully-revealing REE. Second, we
study the agents’ behavior in this continuum setting when they participate in a double
auction. A Bayes—Nash equilibrium in bidding strategies will be constructed, and we
will demonstrate that it induces, for every state of the good, the same price of the good
and the same allocation of the units among the agents as the unique fully-revealing

8 There is no need to appeal to a continuum version of the law of large numbers. The continuum-
economy equilibrium price function and bidding strategies we derive here are equilibria given the de-
finitions of the continuum-economy payoff functions we employ. The payoff functions as well as the
equilibria are significant because, as we will show, they are the limits of payoffs, equilibrium price func-
tions and equilibrium bidding strategies in double auctions when the finite number of agents grows
arbitrarily large. Put somewhat differently, our convergence results in large finite double auctions pro-
vide the justification for carrying out computations in the continuum economy in the manner that we
do here.



REE. Proposition 3.1 below gives a general statement of this result, but its essence can
be conveyed through an example, which we now provide.

Suppose that half the agents are buyers and half are sellers. Suppose further that
given a signal, x, and the state w, an agent’s value for the good is v(z,w) = = + w.
Finally, suppose that @ is uniform on [0, 1], and that, given & = w, each agent’s signal
is drawn uniformly from [0, w].1%2Y

Let us first view this as a pure exchange economy and attempt to find a fully-
revealing REE. Since the only relevant uncertainty is the state of the good, @, a fully-
revealing REE is a one-to-one map, P : [0,1] — R, from the state of the good into the
price of the good.?!

If P(.) is fully revealing, then all agents can infer the state, w, when deciding whether
to buy or sell at price P(w). Consequently, an agent with signal z will wish to leave the
market with a unit if z + w > P(w) and will wish to leave the market without a unit if
z +w < P(w). Because there are half as many units as agents, market clearing requires
exactly half the agents to have a signal £ > P(w) — w. Now, because each agent’s signal
is independently drawn uniformly from [0, w], exactly half the agents have a signal above
w/2. Consequently, we must have P(w) — w = w/2, that is, P(w) = 3w/2. Evidently,
this is the only fully-revealing REE.

Given this REE, one might ask, “How does an agent’s information get into the
price?” As Milgrom (1981) does for finite one-sided markets using a uniform-price Vick-
rey auction, we provide an answer to this question by considering next the strategic
bidding behavior of the agents in the continuum economy when they participate in a
double auction.

So, put aside, for the moment, the above REE. Recall that in a double auction, the
order of moves is as follows. Agents receive their signals, then simultaneously submit
bids to the auctioneer. Each buyer submits a sealed bid indicating the maximum price
he is willing to pay for the (single) unit he desires and each seller submits a sealed offer
indicating the minimum price at which he is willing to sell the (single) unit he owns.

19This conditional density does not satisfy our full support and differentiability assumptions, nor does
the value function satisfy assumption A.4. But these are not substantive issues. The particular value
function and densities in this example merely permit a simple illustration of this section’s main ideas.

?0The value function and signal density employed here are taken from Milgrom (1981), who takes
advantage of their special features to show that the price in a single-unit second-price auction can,
for the winning bidder, be a sufficient statistic for the private information held by all competitors. In
contrast, we employ these particular value and density functions for simplicity of calculation only. For
our results, a sufficient statistic is unnecessary, and this example is representative of the general case.

*!One might instead reserve the term “fully-revealing” for an REE that reveals not only w but also
reveals the distribution of signals accross agents. (Note that w alone is enough to infer the distribution
from which signals are drawn, but it is not enough to determine which signal any particular agent
receives.) However, once w is revealed, such additional information is redundant (as the argument below
shows), and so our definition of a fully-revealing REE as one that reveals w is the natural definition in
this context.



The auctioneer then chooses a market-clearing price, p, and an agent leaves the market
with one unit if his bid is above p, and leaves the market with zero units if his bid is
below p, where all trade occurs at the price p.?> Note that each agent submits a bid
based solely on his private information. The market-clearing price is determined only
after the bids have been submitted, at which time it is too late to change one’s bid.
Consequently, agents cannot condition their bids directly on the market price. On the
other hand, in equilibrium, they are aware of the others’ bidding strategies and take
them into account.

We claim that it is a Bayesian—Nash equilibrium for all buyers to employ the bidding
strategy, b(x), and all sellers to employ the bidding strategy, s(x), where b(x) = s(x) =
3z. That is, every agent submits a bid equal to three times the signal he receives.?3

To see this, suppose that all agents do indeed employ the above bidding strategy.
Now, because there are half as many units as agents, the double-auction market-clearing
price, P(w), in state w will be determined by the median bid. Because all agents
employ the same strictly increasing bidding function, the median bid is submitted by
the agent with the median signal, namely, z = w/2 (recall that signals are uniform on
[0,w]). The median bid is therefore 3w/2, because all agents bid three times their signal.
Consequently, P(w) = 3w/2 is the resulting double-auction price in state w given the
strategies b(z) = s(z) = 3xz. So, in every state w, the market price is the same as that
in the fully-revealing REE.

To complete the Bayes—Nash equilibrium argument, consider an agent, say a buyer,
whose signal is x. We must argue that this agent can do no better than to submit the
bid b(z) = 3z, given that all other agents bid three times their signals. Now, while this
buyer does not know the state, w, he can reason as follows. If the state were w, then,
given the others’ strategies, the median bid would be 3w/2 regardless of this buyer’s
bid (given the continuum of agents). Hence, as above, the double-auction price will be
P(w) = 3w/2. Now, by bidding 3z, this buyer will be allocated a unit at price 3w/2 if
and only if his bid is above that price, or equivalently, if and only if x > w/2. But this
is equivalent to  + w > w/2 + w, which itself is equivalent to v(z,w) > P(w). That is,
by bidding 3z, this buyer, regardless of the state of the good w, will end up purchasing
a unit at price P(w) if and only if his ex-post value, v(z,w), exceeds P(w). Clearly, this
buyer cannot possibly improve upon this. A similar argument for sellers establishes the
desired result. No agent can improve his payoff by bidding other than three times his
signal.

Hence, the strategies b(x) = s(z) = 3z form a Bayes—Nash equilibrium of the double
auction and the resulting price, in every state w, coincides with the price in the fully-
revealing REE. Finally, observe that the Bayes—Nash allocation of units also corresponds

22We postpone consideration of bids that are equal to the price set by the auctioneer. Such bids will
arise with probability zero in the present context and so, for now, we may safely ignore them.
ZThere are other equivalent equilibria. See Remark 1 below.

10



to the efficient outcome of the fully-revealing REE. This is because, in this equilibrium
of the double auction, the units are allocated to the agents with the highest signals, and
hence to the agents with the highest values. Therefore, the above bidding equilibrium
of the double auction is the strategic equivalent of the fully-revealing REE.

The above Bayes-Nash equilibrium is symmetric in that buyers and sellers employ
the same bidding function. This is to be expected, because, in the present continuum
agent setting, no single agent’s bid can affect the price. Consequently, the only asym-
metry in buyer and seller preferences, namely that buyers prefer lower prices and sellers
prefer higher prices, is irrelevant insofar as their optimal bidding behavior is concerned.
Consequently, buyers and sellers have identical preferences over bids.?*

The example generalizes. To prepare for the general result, define the ath percentile
of F(-lw) as that signal, z, satisfying F(z|w) = «, and denote it by z(w). Let w(z)
denote the state of the good, w, in which the ath percentile of F(-|w) is closest to x.
Hence, w(z(wp)) = wo for all wy € [0,1], and if z < 2(0) or z > z(1), then w(x) =0 or
1, respectively.

Proposition 3.1. Given a € (0,1), suppose that the continuum economy &(a,v, f,g),
with o buyers and 1 — « sellers, satisfies A.1-A.3 Then,

(i) there is a unique fully-revealing and efficient REE, namely P(w) = v(z(w),w), and

(ii) the double auction possesses a Bayes—Nash equilibrium in symmetric, nondecreasing
bidding strategies. In this equilibrium, each agent, buyer or seller, with signal x, submits
a bid equal to v(x,w(zx)). This Bayes—Nash equilibrium induces, in every state w € [0, 1],
the same price and allocation as in the unique fully-revealing REE.?

The proof of Proposition 3.1 proceeds as in the example above and is omitted.

Remark 1. It can be shown that, among fully-revealing Bayes—Nash equilibria, the
equilibrium displayed in Proposition 3.1 is essentially unique. In particular, the strate-
gies are uniquely determined over the range of signals, x € [z(0), z(1)]. All nondecreasing
functions that agree with v(xz,w(x)) on this range also form a Bayes—Nash equilibrium,

24To see this, note that because an agent’s bid has no effect on the price, a buyer’s bidding incentives
would be unchanged if he were forced to buy the good, regardless of the market-clearing price, and his
bid were treated as if he were a seller. Hence, a buyer with signal x prefers one bid over another if and
only if a seller with signal x does.

25Tt is interesting to note that the proposition remains valid even in the pure common value case
that is ruled out by our assumptions. Indeed, if v(z,w) = v(w) and v'(w) > 0, then P(w) = v(w) is
a fully revealing and efficient REE, and it is supported by the Bayes-Nash equilibrium b(z) = v(w(z))
of the double auction. Indeed, given this bidding behavior, in any state w a fraction «a of all bids
are below b(z(w)) and the remaining fraction are above. Hence, the equilibrium price in state w is
P(w) = b(z(w)) = v(w). Consequently, all bidders are indifferent between winning and losing and these
bidding strategies therefore constitute an equilibrium.
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are interchangeable,?S and lead to the same price and allocation in every state of the
good. For instance, the equilibrium, b(z) = s(z) = 3z, given in the above example
is simply one among the set of equilibria: b(xz) = s(x) = 3z, for z € [0,1/2), and
b(z),s(x) > 3/2 for x € [1/2,1].

Remark 2. We can now offer some insight into the role of assumption A.4. Although
the equilibrium of the continuum economy is essentially arbitrary outside the interval
[(0), 2(1)], our analysis of the finite economy draws particular attention to the contin-
uum economy equilibrium in which b(xz) = v(z,0) for z < x(0), b(z) = v(z,w(zx)) for
z € [2(0),z(1)], and b(x) = v(x,1) for x > x(1). Indeed, the equilibrium whose exis-
tence we ultimately establish for large finite double-auctions converges to this particular
equilibrium, b(-), of the continuum economy, and our existence proof, which is partly
constructive, makes use of the differentiability of b(-) at x(0) and z(1). Assumption A.4
ensures that b(-) is differentiable at these points independently of the density f which
determines them. Loosely, differentiability at x(0) is helpful because it permits us to
employ knowledge of the rate at which equilibrium bids rise to the right of x(0) in the
continuum economy, where the equilibrium is uniquely determined, to construct the
equilibrium to the left of x(0) in the large finite economy; and similarly for z(1). See,
in particular, Lemma 1.8 in RP-s and its use in the proof of Theorem 1.25 there.

Thus, the fully-revealing REE of this idealized market can be supported by a Bayes—
Nash equilibrium in bidding functions. As we shall show, the double auction in the finite
economy with sufficiently many agents and a sufficiently fine grid of prices generically
possesses a Bayes-Nash equilibrium that approximates arbitrarily well the Bayes-Nash
equilibrium described in Proposition 3.1. Consequently, this Bayes-Nash equilibrium
for the finite economy will be arbitrarily close to a fully-revealing and efficient REE.

4. The Finite Economy with a Grid of Prices

We now return to the finite agent setting described in Section 2 in which there are n
buyers and m sellers. The n + m agents participate in a double auction. From now on,
unless noted otherwise, we restrict the agents’ bids/offers to the discrete set of prices,
P ={0,A,2A, ..., }, where A > 0 is the fineness of the grid. We now fully describe the

double-auction rules.

4.1. Double Auction Rules

As described in Section 3, each buyer submits a bid indicating the maximum he is
willing to pay for the good and each seller submits an offer indicating the minimum he

20That is, any combination of them are in equilibrium.
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is willing to accept for the good. The auctioneer then sets a market-clearing price, P.
However, because bids and offers must be chosen from the discrete grid of prices, P, the
market-clearing price will often coincide with one or more agent’s bid. Hence, unlike
Section 3, we must now specify precisely how the market clears in this case.

Given the n+m bids and offers, let us first discuss carefully the choice of the market-
clearing price. Because there are m units of the good in all, the market-clearing price
must ensure that exactly m agents end up with one unit of the good. Since any agent
with a bid or offer above the price leaves the market with one unit, and any agent with
a bid or offer below the price leaves the market with zero units, a price can clear the
market only if it lies between the mth and (m + 1)st highest among all bids and offers.

Hereafter, it will be more convenient to refer to the sellers’ offers as “bids.” Conse-
quently, each agent, whether a buyer or a seller, submits a bid to the auctioneer. Let
by denote the kth highest among all n + m bids. Hence, by > ... > bpim, and the
market-clearing price, P, must lie between b, and by, 1.

When b,,11 < by, the auction rules must specify which of the continuum of prices
in [by+1,bm] is the market-clearing price. For our purposes, the particular choice is
unimportant. The market-clearing price, P, can be determined by any prespecified
nondecreasing function p : R™*? — R, 27 such that for all vectors of bids, by > ... >

bm—l—m

bm+1 < p(bh ---:bm+n) < bm

Note that we do not require, although we permit, the range of the price function, p(-),
to be restricted to the grid of prices P. Thus, given [ € [0, 1], the [+double-auction
pricing rule, P = (b, + (1 — [)by41, is a special case of our general formulation. From
now on, we assume that some prespecified measurable function p(-) satisfying the above
inequality is employed to determine the market-clearing price.

Having taken care of the market-clearing price, we now fully describe the trading
rules. As already mentioned, agents with bids above the market-clearing price, P,
end up with the good and agents with bids below P do not. Among the remaining
agents with bids equal to P, precisely that number of them required to clear the market
(i.e., (#goods)—(#bids above P)) are randomly (uniformly) chosen to end up with the
good.?® All trades are conducted at the market-clearing price P. This completes the

*"The nondecreasing requirement permits us to place an upper bound, namely v(1,1) + A, on bids
when searching for an equilibrium.

28 According to this rationing rule, all agents, buyers and sellers, who bid the market price are treated
symmetrically. This differs from the rationing rule described in Wilson (1985) and Rustichini, Sat-
terthwaite and Williams (1994), where only the long side of the market is rationed equiprobably. The
latter rule maximizes trade, but introduces an asymmetry. For example, when there are twice as many
buyers as sellers, buyers are more likely to be rationed than sellers if all agents employ the same bidding
function.
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description of the double-auction rules.

Note, finally, that agents can affect the market price. For example, if for some
vector of bids, by 41 < p(b1, ..oy bntn) < b, then a buyer who bid by, or higher can, by
lowering his bid to just below p(b1, ..., by4n), decrease the price at which he buys the
unit and, similarly, a seller who bid b,,+1 or lower can, by raising his bid to just above
p, increase the price at which he sells his unit. Consequently, it is in the interest of
buyers to “underbid,” and of sellers to “overbid,” in an attempt to affect the price to
their advantage. As a result, some efficient trades may go unrealized. Our main result
implies that such inefficiencies disappear as the number of agents grows and as the price
grid becomes sufficiently fine.

4.2. Equilibrium

Let E(n,m,v, f, g, A) denote the finite economy with n buyers and m sellers described
in Section 2, but where the price grid is now P = {0, A,2A,...} instead of R;. The
value function v(z,w) and density functions f(z|w) and g(w) are as in Section 2, and
should henceforth be assumed to satisfy assumptions A.1-A.4.

Suppose that b : [0,1] — P and s : [0,1] — P are nondecreasing bidding functions.
Let u”(p, z|b(-), s(-)) denote the double-auction expected payoff of a buyer whose signal
is x, when he bids the price p € P, and all other n—1 buyers employ the bidding function
b(-), and all m sellers employ the bidding function s(-). Similarly, let u?(p, z|b(-), s(-))
denote the double-auction expected payoff of a seller whose signal is x, when he bids
the price p € P, and all n buyers employ b(-) and all other m — 1 sellers employ s(-).2?

The pair of nondecreasing bidding functions, (b(-), §(-)), constitutes a double-auction
equilibrium of &(n,m,v, f, g, A) if for every x € [0, 1],

b(z) solves max u®(p, z|b(-), 5(-)),
pEP
and
$(x) solves maxu’(p, z|b(-), 8(+)).
pEP
Hence, we restrict attention to equilibria in which all buyers employ the same bidding
function and all sellers employ the same bidding function. A double-auction equilibrium
is nontrivial if trade occurs with strictly positive probability.3°

29The dependence of the payoff functions upon n and m is suppressed.
39There always exists a trivial no-trade equilibrium in which, for example, buyers always bid zero and
sellers always bid v(1,1) + 1.
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5. The Failure of Monotone Best Replies

The double-auction equilibrium whose existence we ultimately establish is pure and
nondecreasing. Standard existence results (e.g., Athey (2001)) do not apply because, in
the present setting, agents need not possess monotone best replies when all other agents
employ monotone strategies. There are two underlying reasons for this. The first is
that, owing to the finite grid, an agent might be rationed with positive probability. The
second is related to the fact that, in a finite economy, buyers and sellers are asymmetric:
each can affect the price but wish to affect it in opposite directions. We now discuss
these in more detail, beginning with the effect of rationing.

5.1. The Rationing/Grid-Size Effect

The reason that rationing can lead to the nonexistence of monotone best replies can be
understood through a simple example. To isolate the effect of rationing, suppose that
there are a continuum of agents, half of whom are buyers. This implies that no agent
can affect the price and hence that buyers and sellers are symmetric. Consequently, the
second effect mentioned above is not present.

Suppose the agents have private values. That is, suppose v(z,w) = v(z). Consider
a nondecreasing bidding function such that b(x) = p; when z < 1/2 and b(z) = p2 > p1
when x > 1/2. Suppose that all agents employ b(-), that p; and ps are consecutive
grid-prices, and that p; < v(x) < py for = € (z,Z).

Whenever a buyer’s signal is in the interval (z, Z), he strictly prefers to trade when
the price is p; and strictly prefers not to trade when the price is p2. Because w and x
are affiliated, it can happen that, when the buyer’s signal is low (i.e., just above z), the
state is also low and so it may be very likely that the median signal is less than 1/2.
Hence, it is very likely that the market-price will be p1, and very unlikely that it will be
p2. In this event, if the buyer bids p; he will be rationed with positive probability and
consequently he strictly prefers to bid ps since this guarantees that he trades when the
price is p; while it is very unlikely that he will have to trade at po.

On the other hand, when his signal increases to just below Z, it may be very likely
that the state is high and so very likely that the median signal is above 1/2, and
consequently that the market-price will be ps. The buyer will then strictly prefer to bid
p1 to avoid trading at po. Hence, the buyer’s best reply is nonmonotone.?!

The key feature of the example is that the steps of the bid function employed by
all but the one agent are large. In Section 6 we show that when there are a continuum
of agents and the grid of prices is sufficiently fine, this difficulty can be overcome.
The idea is to first restrict the agents to monotone bidding functions and show that

31Tt should be noted that the rationing effect described here is present even when there are finitely
many agents. The example demonstrates that this effect does not disappear in large markets.
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an equilibrium bidding function in this restricted setting must have sufficiently narrow
steps due to the fineness of the grid. When these steps are sufficiently narrow, an
agent’s signal has almost no effect on his assessment of the relative probability of one
price versus an adjacent one. Hence, the negative effect of increasing one’s signal, as
described above, is outweighed by the positive effect of the increase in one’s value; it is
here where our assumption A.3, that there is a private value component to preferences,
is crucial. Consequently, agents do in fact possess a monotone best reply and so the
restriction to monotone bidding functions is ultimately not binding.

5.2. The Strategic/Small-Numbers Effect

For fixed bidding functions of the others, an agent’s optimal bid for a given signal
depends upon his assessment of the resulting distribution of the market-clearing price,
which must lie between the mth and m + 1st highest bid. Hence, when an agent’s signal
increases, the change in his optimal bid will depend upon how this increase affects his
assessment of the distribution of the order statistics of the others’ bids.

In general, one cannot guarantee that an agent will increase his bid in response to
an increase in his signal. A standard method used to obtain the desired monotonicity
is to first establish that an agent’s signal is affiliated with the order statistics of the
others’ bids, since these help to determine the price. Now, if the other agents employ
nondecreasing bidding functions, then because all the agents’ signals are affiliated, the
others’ bids will be affiliated with any one agent’s signal.?> Based upon this, it would
be entirely reasonable to conjecture the following.

(%) Fach agent’s signal is affiliated with the order statistics of the others’ bids.

In fact, (*) always holds in one-sided markets with symmetric buyers and symmetric
affiliated signals (as in the models of Milgrom (1981), Milgrom and Weber (1982),
and Pesendorfer and Swinkels (1997)), regardless of the market’s size. This is because
symmetric buyers can, in equilibrium, employ the same nondecreasing bidding function
and hence, by results from Milgrom and Weber (1982), their bids will be symmetric and
affiliated and so the order statistics of their bids will be affiliated with their signals, as
required.

However, in our two-sided market, when there are finitely many agents, even though
their signals are symmetrically distributed, buyers and sellers have different incentives
and so will typically employ distinct bidding functions. Consequently, standard results
do not apply and one cannot, in general, conclude that the order statistics of their bids
will be affiliated with their signals. Indeed, as we now show, this need not hold (i.e.,
(¥) can fail).3

32See Milgrom and Weber (1982).
33We thank Jeroen Swinkels for helping us develop a closely related example.
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Figure 5.1: Failure of Affiliation

Consider a market with two buyers and one seller. The state of the good, @, is
uniform on [0,1]. If ® = w < 1/2, the agents’ signals are independent and uniform on
[0,2/3], while if & = w > 1/2 their signals are independent and uniform on [1/3,1].3*

Figure 5.1 depicts two nondecreasing bidding functions, b(-) for buyer 1 who receives
the signal Z;, and s(-) for the seller, whose signal is Z3. The remaining “undecided”
buyer receives the signal Z3, and is considering his bid given the strategies of the other
two agents.

Consider two possible signals for the undecided buyer, z; € (0,1/3) and z3 €
(2/3,1), shown in Figure 5.1. Note that when Z3 = z3, the undecided buyer knows
that the others’ signals are uniform on [0, 2/3], while when 3 = Z3 he knows that their
signals are uniform on [1/3, 1].

We now show that, even though both agents employ nondecreasing bidding func-
tions, the undecided buyer’s signal, Z3, is not affiliated with the first order statistic (i.e.,
the maximum) of their bids. Hence, (x) fails.

Let Z = max(b(&;), s(Z2)). Affiliation requires, in particular, that the ratio

PI‘(Z = P2 | 553 = :E3)

PI‘(Z = D1 | .’I?g = .’133)

34The implied conditional density of & given w is not strictly positive as required by A.1, and sat-
isfies the MLRP weakly, but not strictly as in A.2. This is for simplicity only. This density can be
approximated by one statisfying A.1 and A.2 while preserving the essential features of the example.
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be nondecreasing in x3. However, it is easy to see that

Pr(Z =pa | T3 = x3)

= — —+1 ase—0,
Pr(Z =p1 | 3 = z3)

while

Pr(Z:p2|:i'3:333)_>0 ase — 0

PI‘(Z =m | T3 = 533)
So, for € small enough, the undecided buyer’s signal is not affiliated with the first order
statistic of the others’ bids.

The lesson here is that in two-sided markets, wherein buyers and sellers should
be expected to employ distinct strategies, the key affiliation condition, (x), does not
generally hold. Because of this, and because each agent can affect the price, one can
construct examples in which the rationing effect described above is not present, and yet
the only best reply for an agent against the monotone bidding functions of his opponents
is nonmonotone.?>

Fortunately, our interest lies primarily with large markets, i.e., those in which both
the number of buyers, n, and the number of sellers, m, is large. As the market grows,
the difference between the other agents’ m — 1st and m + 1st highest bids converges
to zero almost surely, and with it the strategic incentive to manipulate the price also
converges to zero for both buyers and sellers. Thus, the strategic effect that is required
for the present failure of monotone best replies vanishes.

6. The Main Result: Existence, Information Aggregation, Efficiency,
and Price-Taking Behavior

Recall from Section 3 that z(w) is the ath percentile of F(:|w), and that w(x) is the
state, w, in which the ath percentile of F'(-|w) is closest to z. Also, recall that V' denotes
the set of value functions satisfying A.3 and A.4. Finally, observe that if a property
holds on a residual subset of a topological space (see Definition 2.1), the property is
commonly interpreted as holding generically. Our main result is as follows.?¢

Theorem 6.1. Fix any « € (0,1). For every v in a residual subset of V' and for every
e > 0, there exists A > 0 such that, for all A in a residual subset of (0,A) and for

35Such an example involving two buyers and seven sellers is available from the authors upon request.
The strategies in the example do not constitute an equilibrium. Whether there is an equilibrium in
which at least one agent’s best reply must be non-monotone is an interesting open question. We wish
to thank Oren Rigbi for carrying out the necessary programming.

30The topology on the space of value functions is defined in Section 2, and the reals are endowed with
their usual topology.
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all np,m, —, oo such that n,/(n, + m,) —, «, there is a sequence of buyer-seller
nondecreasing bidding functions, {(b,(-), s7(+))}r, such that for all large enough r,

(1) (br(-),sr(+)) is a nontrivial double-auction equilibrium of €(n,, my,v, f, g, A),
(2) |br(z) —v(z,w(z))| < e and |s,(z) — v(z,w(x))| < &, for all z € [0,1],
(3) Pr(|P, — v(z(®),®)| <€) >1—¢, and

(4) Pr(B, <e)>1—c¢,

where P, is the random market-clearing price and BT is the random fraction of agents
who inefficiently end up with the good given the buyer-seller bidding functions (b (-), s,(+)).

A detailed sketch of the proof is provided below. The complete proof can be found
in Reny and Perry (2005).

Remark 3. The existence result is provided by (1). The inequalities in (2) express a
price-taking result, namely, that the strategic bidding behavior of the agents in these
double-auction equilibria is approximated arbitrarily well by the rational price-taking
behavior of the agents in the continuum economy of Section 3 (see Proposition 3.1
(ii)). The limit in (3) is an information aggregation result. It says that for almost
every sufficiently fine grid of prices, and whenever the market is sufficiently large, the
double auction possesses an equilibrium in which the market-clearing price is, with
probability arbitrarily close to one, arbitrarily close to the fully-revealing REE price,
P(w) = v(z(w),w), of the continuum economy of Section 3 (see Proposition 3.1 (i)). The
limit in (4) is an efficiency result. It says that such equilibria also have the property
that the fraction of agents inefficiently ending up with the good is arbitrarily close to
zero with probability arbitrarily close to one.

Remark 4. The order of limits is important. The size of the market must grow faster
than the grid size shrinks to zero. This is because our demonstration that bidders
possess monotone best replies to monotone bidding functions relies upon a key single-
crossing property which we can establish for sufficiently large markets only when the
price grid is sufficiently fine.

6.1. Sketch of the Proof

A complete proof of Theorem 6.1 can be found in RP-s. We shall provide here a detailed
sketch only, beginning with a broad outline.
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6.1.1. Overview

A main ingredient of the proof is the use of a discrete grid of prices. Its purpose is to
permit the application of a fixed point technique developed by Athey (2001), in which
the jump points of the agents’ monotone best-reply step-functions play an important
role. But there is a major difficulty here. Even though players are symmetric in terms
of information and values, they are necessarily asymmetric by virtue of their role as
either a buyer or a seller. This, together with the ability of agents to manipulate the
price, can preclude the existence of monotone best replies (see Section 5), rendering
Athey’s techniques inapplicable. The essence of the proof is to show that, when there
are sufficiently many agents, the ability of any single agent to affect the price becomes
weak, and, in combination with a sufficiently fine grid of prices, the monotone best
reply property is restored. Once monotonicity is established, existence of equilibrium,
information aggregation, and efficiency follow relatively easily.

The proof is broken into four parts, A-D. Part A shows that the continuum economy
with a sufficiently fine grid of prices possesses a symmetric equilibrium in which all
agents employ the same monotone step function (RP-s Proposition 1.3), that the steps
grow narrow as the grid size, A, shrinks (RP-s Lemma 1.2), and that as A shrinks,
the outcome converges to a fully revealing rational expectations equilibrium outcome
(RP-s Proposition 1.7). It is here (see the proof of Lemma 1.1 of RP-s) where we make
substantive use of the private value component of the agents’ preferences.

Part B establishes an important property of symmetric equilibria of the continuum
economy. Generically, except for bids that win with probability zero or one, all nonequi-
librium bids are strictly suboptimal for all signals. This result is established by carefully
considering the incentives of an agent whose signal makes him indifferent between one
bid and another.

Part C establishes a symmetry property of equilibria for the continuum economy.
Except for no-trade equilibria, the continuum economy has no monotone equilibria in
which buyers and sellers employ distinct bidding functions.

Finally, part D considers the large but finite economy for a sufficiently small A. Here,
we focus upon buyer-seller bidding functions that are fixed points of the convex-hull of
a correspondence derived from the double-auction, but where buyers and sellers are
restricted to monotone step function strategies that are forced to be near one another.
The objective is to show that neither of these restrictions (monotonicity and closeness)
is binding when there are sufficiently many buyers and sellers. The fixed points are then
equilibria of the double auction.

Part D considers the limit of the above fixed points as the number of agents grows
and the economy tends to the continuum economy. The effect of the limit is to eliminate
the asymmetry between buyers and sellers and also to eliminate any agent’s strategic
effect on the price. The limit of the fixed points is shown to be an equilibrium, possibly
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asymmetric, of the continuum economy. But note that because the step functions of
buyers and sellers are sufficiently close, they induce trade with probability bounded away
from zero. Consequently, as shown in part C, the limit equilibrium involves buyers and
sellers employing the same bidding function. Hence, far enough along the sequence, the
restriction that strategies are sufficiently close ceases to be binding. Further, once the
strategies are sufficiently close, the results from parts A-C show that the single-crossing
condition holds and so the restriction to increasing strategies also ceases to bind. (A
key part of this argument involves part B as follows. Because prices that are unused
at the limit are strictly suboptimal, they remain strictly suboptimal far enough along
the sequence. Consequently, no equilibrium price has a positive but vanishingly small
probability of occurring as the number of agents grows. Such prices could be problematic
because, conditional upon them, an agent’s ability to affect the price need not vanish,
and so the effective asymmetry between buyers and sellers also need not vanish. When
both of these effects are present, single-crossing and monotonicity might fail.) Thus, far
enough along the sequence, neither the restriction that buyer and seller strategies must
be monotone nor the restriction that they must be close is binding, and so the fixed
points along the sequence constitute an equilibrium of the double auction when there
are sufficiently many buyers and sellers. This completes the overview of the proof. We
next provide a detailed sketch.

6.1.2. Detailed Sketch

We begin by studying the limit economy, denoted by £(«, v, f,g,A), in which there are
a continuum of agents, a of whom are buyers, 1 — a of whom are sellers, and where the
grid of prices is P = {0,A,2A,...}. As in Section 3, buyers and sellers have identical
preferences here owing to the continuum of agents. One way to see this is to note that
it is equivalent for a seller to submit a bid of b and sell when the market-clearing price is
above b, or to first commit to selling his unit at the (currently unknown) market-clearing
price, and submit the bid b as if he were a buyer, whereupon he would buy back his unit
when the market-clearing price is below his bid. Buyers and sellers thus have the same
preferences over bids.3” Only the presence of the discrete grid of prices, P, differentiates
the present economy &(a, v, f, g, A) with the economy &(a, v, f,g) of Section 3.

Part A of the proof establishes the existence of a nondecreasing bidding function,
b:[0,1] — P, that constitutes a double-auction equilibrium for £(a,v, f,g,A) when
employed by all agents, so long as the grid of prices, A > 0, is sufficiently small.
All such equilibria are shown to be fixed points of a particular correspondence; this
correspondence will play a role later on in the proof. In addition, it is shown that as the

3TNote the reliance of this argument on the fact that, because of the continuum of agents, the seller’s
bid cannot affect the market-clearing price.
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grid size tends to zero, all such equilibria converge to the fully revealing and efficient
rational expectations equilibrium derived in Section 3.

Part A Recall that z(w) is the ath percentile of F(-|w). That is, F(z(w)lw) = «
for every w € [0,1]. If every agent employs the same nondecreasing bidding function,
b :[0,1] — P, then the market-clearing price in state w € [0,1] is P(w) = b(z(w)).
This holds even though b(-) will not be strictly increasing owing to the grid of prices.
The presence of the grid implies that ties in bids, and hence rationing, will occur with
positive probability. The rationing probabilities are spelled out in Section 1.1 of RP-s,
the precise details being unnecessary for this proof sketch.?®

We may restrict attention to the finite price grid P = {0, A,2A, ..., KA}, where
(K —1)A < v(1,1) < KA. Since our focus is on nondecreasing bidding functions and
the distribution of signals is atomless, it is without additional loss to suppose that
this bidding function is right continuous on [0, 1] and continuous at 1. Such nonde-
creasing functions taking values in the finite grid of prices P are characterized by their
jump points. Hence (following Athey (2001)), we may denote a bidding function by
a nondecreasing vector, x = (1, ...,xx) € [0,1]%, where the agent bids kA for every
x € [Tk, Tk11), and where zg = 0 and zx 1 = 1. Note that some of these intervals may
be empty and so not all prices in the grid need be employed.

For example, consider the step function depicted in Figure 6.1, including the dotted
steps (ignore the curved functions for the moment as well as the distinction between
solid and dotted steps). There, P = {0, p1, ..., p10}, where p;, = kA, and 2y, is the signal
at which the bid function jumps from pg_1 to pg. Because &g = &7, this function does
not assume the value pg. Suppose now that all agents employ this bidding function.
Because the ath percentile of the distribution of signals always lies between z(0) and
z(1), the market-clearing price, P(-) = bg(x(-)), will always lie between ps and pg.
Moreover, P(w) is never pg since no agent ever submits this bid. Thus, the range
of P(-) is {ps, p4, ps, p7,Ps, P9}, which is indicated by the solid line portion of the bid
function. The dotted line portion of the bidding function denotes bids that are made
with positive probability by each agent (and hence submitted by a positive fraction of
agents), but never occur as market-clearing prices. We will return to Figure 6.1 later
on.

Let Xk denote the nonempty, compact, convex set of nondecreasing vectors of jump
points x € [0,1]%, and let bx(-) denote the monotone bidding function uniquely de-
termined by x € Xg.* It will be convenient to sometimes refer to x as an agent’s

38 A useful feature of the tie-break rule we employ is that it renders buyers and sellers precisely
symmetric in this continuum-agent setting, whereas the standard tie-break rule, which maximizes the
number of trades, would not. Symmetry is useful in establishing the existence of an equilibrium, although
we suspect that, with some effort, it could be dispensed with.

39That is, by : [0,1] — P is the unique nondecreasing right-continuous function that is continuous at
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Figure 6.1: Continuum Economy Equilibrium

strategy.

For x € Xk, let u(p,z|x) denote the double-auction payoff of an agent (buyer or
seller) in &(a,v, f,g,A), when the agent’s signal is  and he bids the price p, and all
other agents employ the strategy x. Given X € X, the monotone bidding function bg(-)
is a double-auction equilibrium for £(a, v, f, g, A) when, for every = € [0, 1],

bg(x) solves max u(p, x|X).
peEP

A related and very useful maximization problem is the following.

1
max /O w(by (), 21x) () dz, (6.1)

yeXK

where f(x) = fol f(z|w)g(w)dw is the ex-ante density over the agent’s signal. In this
problem, the agent chooses his bidding function ex-ante, before finding out his signal.
Moreover, the agent is restricted to choosing a nondecreasing bidding function since
y € Xk produces the nondecreasing function by (-). Given x € X, let B(x) denote the
set of y € Xk solving (6.1).

z =1 and jumps from (k — 1)A to kA at z.
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Note that bg(-) is a double-auction equilibrium if %X is a fixed point of B(:) and if
restricting the agent’s ex-ante bidding function to be nondecreasing is not binding.

It is not difficult to show that B(-) is nonempty-valued and upper hemicontinuous,
but it need not be convex-valued. However, Kakutani’s theorem guarantees the existence
of a fixed point of the correspondence, coB(-), whose value for any x € X is the convex
hull, coB(x), of the set B(x).

The first important result from part A of the proof is the following.

RP-s Proposition 1.3. There exists A > 0 such that for all A < A, the following
statements are equivalent.

(a) bx(-) is a double-auction equilibrium for E(a,v, f, g, A).

(b) X € B(X).

(c) X € coB(%).

The proposition states that when the grid of prices is sufficiently fine, every fixed
point, X, of coB() is a fixed point of B(-) and bg(-) is a double-auction equilibrium. We
now sketch its proof.

Because the implications (a) = (b) = (c) are obvious, we need only argue that (c)
= (a). This follows from Lemmas 1.1 and 1.2 in RP-s. Recall that P(w) = bg(z(w)) is
the market-clearing price when the state is w and all agents employ bz (-). The lemmas
are as follows.

RP-s Lemma 1.1. There is a step-size, n > 0, such that for all K and all x € Xk, if
each step of P(-) = bx(z(-)) has length less than 7, then (i) B(x) is convex, and (ii) if
all other agents employ bx(-), then for some y € Xk the nondecreasing bidding function
by (-) maximizes the agent’s ex-ante (and interim) payoff among all measurable bidding
functions, nondecreasing or not.

RP-s Lemma 1.2. If A is sufficiently small and X € coB(X), the function P(-) =
bg(x(-)) has arbitrarily narrow steps.

Together, the lemmas yield (¢) = (a). To see this, note that for sufficiently small
A, Lemma 1.2 implies that P(-) = bg(z(-)) has arbitrarily narrow steps. Consequently,
by Lemma 1.1 (i), X € coB(x) implies X € B(X), so that bg(-) maximizes the agent’s
ex-ante payoff among nondecreasing bidding functions when all others employ bg(-). But
then bg(-) is an equilibrium because, by Lemma 1.1 (ii), such a nondecreasing function
is a best reply.

We now sketch the proofs of the lemmas.

Proof of RP-s Lemma 1.1 (sketch). By Athey (2001), to prove (i) and (ii) it suffices
to show that u(p, z|x) satisfies single crossing in (p, z).
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Because there are a continuum of agents, the strategic/small-numbers effect dis-
cussed in Section 5.1 is not present here. Hence, any failure of single crossing is due
to the first effect discussed in Section 5.1, namely, the rationing/grid-size effect. This
effect, we remind the reader, can lead to a failure of single-crossing as follows. Consider
a buyer with signal « for whom it is profitable to buy the good if the price is pg but not
if the price is the next higher grid-price, p;. If the likelihood that the market-clearing
price is p; versus pg is not too high, the buyer might be better off bidding p;, so as
to guarantee winning the good when the market-clearing price is pg, than bidding pg
and being rationed with positive probability. But if the likelihood that the price is py
increases when his signal increases, it might become better for him to bid the lower
price pg at the higher signal, violating single-crossing. As we now discuss, this difficulty
vanishes when the market-clearing price function, P(-), has sufficiently narrow steps.

For example, suppose Iy = [0 — ¢,&] and [} = [@, o + €| are adjacent intervals of
states and that P(w) = p; precisely on I; for i = 0 and 1. If the length of each I;, namely
e > 0, is sufficiently small, then given z, the relative likelihood of the event P(®) = p;
versus P(@) = pg, namely

[i f 1, [ (@|w)g(w)dw

ro (z|w)g(w)dw’

is virtually independent of the agent’s signal, x. Indeed, this ratio converges to unity
for every x as € tends to zero.*? Consequently, because the agent’s value has a strict
private value component, and because x and w are affiliated, an increase in the agent’s
signal leads to a strict increase in his value for the good conditional upon the occurrence
of either price, p1 or pg, and this strict increase outweighs the arbitrarily small negative
effect of the increased likelihood of the higher price. Hence, the difference in his payoff
from bidding p; versus pg strictly increases, implying that single crossing, and hence
also (i) and (ii), hold. W

Proof of RP-s Lemma 1.2 (sketch). If the lemma fails, then A can be arbitrarily
small and yet some price p® € [0,v(1,1) + A] is assumed by P2(-) = bga(z(-)) on
an interval of states whose length is bounded away from zero as A — 0. Since X2 €
coB(%?), %2 is the convex combination of finitely many members of B(%X*) and therefore
for some y® € B (iA) given positive weight in the convex combination, by (-) assumes
the value p® on an interval of signals, [yA,ng), whose length is bounded away from
Zero. -

Because y» € B(X?), there can be no nondecreasing bidding function that is strictly
better than bya (+). Consequently, (i) an agent must weakly prefer bidding p2 to bidding
the next higher grid-price pﬁ when his signal is §® and (ii) he must weakly prefer bidding

4Tn general, the rates at which the intervals shrink need not be the same. The complete proof in
RP-s takes this into account.
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p® to bidding the next lower grid-price p® when his signal is QA, where we shall employ
the convention that p2 = p® = 0 if p® = 0.

Now, if an agent bids pj‘_ instead of p® when his value is §2, there are two effects.
First, he now ends up with the good when the price is p® and he would have been
rationed had he bid p®. Second, he now ends up with the good when the price is pﬁ
and he is not rationed given his bid of pﬁ. In the first case his expected value of the
good is

E(v(y®,@)|P2(@) = p*, 5, and lose at p®) > E(v(g*,@)| P2 (@) = p*,5%), (6.2)

where the inequality follows because being rationed is good news about the state.*! In
the second case, his expected value of the good is

E(u(g®,®)|P2(@) = p},7°, and win at p3) > E(v(g>,@)|P2(@) = p~,5°), (6.3)

where the inequality follows because every state in which the price is pﬁ is higher than
every state in which the price is p®.

Now, if the the left-hand side of (6.2) is greater than p® and the left-hand side of
(6.3) is greater than pﬁ, then each of the two effects results in a net increase in the
agent’s payoff. In particular then, if E(v(g2,@)|P2(@) = p®,7>) > p4 the agent is
strictly better off bidding pj‘_ than p®, contradicting (i). Hence, an implication of (i) is,

E(u(5>,0)|P2(@) = p*,5%) < pf.
By a similar argument, an implication of (ii) is,

E(v(y®,@)| P2 (@) = p™,y°) > p2.

Since pﬁ and p? differ by at most two grid points, we obtain
E(u(y®,@)|PA(@) = p*,5%) < E(v(y®, )| PA(@) = p®,y°) + 24,

which is impossible for A sufficiently small since g2 — QA is positive and bounded away
from zero, and vg(+,-) > 0 and continuous. W

Recall from Section 3 that w(z) is the state, w, in which the ath percentile of F(-|w)
is closest to x. The second important result from part A of the proof is the following.

! Given the uniform rationing rule and conditional upon one’s bid being equal to the market-clearing
price, an agent is more likely to end up with a unit when the state is low than when it is high. Thus,
after observing the market price, an agent whose bid coincides with it increases his value assessment
upon finding out that he will not end up with the good, and reduces his value assessment upon finding
out that he will end up with the good. This is a form of the winner’s curse.
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RP-s Proposition 1.7. For each A > 0, let b>(:) be a double-auction equilibrium
for E(a,v, f,g,A). Then, as A — 0, b>(z) = v(z,w(x)) uniformly on (x(0),2(1)) and
P2(w) = v(z(w),w) uniformly on (0,1). Consequently, the market-clearing price func-
tion converges uniformly to the unique fully-revealing rational expectations equilibrium
of the limit economy &(a, v, f, g) with a continuum of agents and prices.

Thus, as the grid of prices becomes arbitrarily fine, limits of double-auction equilib-
ria for £(a, v, f, g, A) converge uniformly to the essentially unique fully-revealing and
efficient REE of the continuum economy with a continuum of prices from Section 3.
The logic behind this result is straightforward, as we now demonstrate.

Proof of RP-s Proposition 1.7 (sketch). Fix a signal z = z(w) for some @ € (0, 1).
For simplicity, we will argue only that

Jim b2 (z) = v(z,0),
leaving the uniformity of the convergence to RP-s.

Let p® = b2(Z). Because p = b2(z) = v*(2(w)) = PA(@) and @ € (0,1), the
interval of states, I®, on which PA(~) is p® is nonempty and contains @. As we have
seen above, I® shrinks to a point as A — 0. Since @ € I for all A, I® must shrink to
@.

Now, suppose, by way of contradiction, that lima .o b*(Z) < v(Z,®). Then, when
the agent’s signal is Z, his bid of p® = bA(a_:) loses whenever the market-clearing price is
above p®. But P?(w) is above p® only when w > @. Hence, the agent strictly prefers to
win when P2 (w) is between p® and v(Z,®). Moreover, because I* shrinks to @, for A
small the agent knows that the state must be very close to @ when P(w) = p2. Hence,
the agent strictly prefers to win when P(w) = p® as well. Consequently, increasing
his bid from p® to any price between p® and v(Z, ), strictly increases his payoff,
a contradiction. Hence, lima_,0b*(Z) > v(Z,®). A similar argument establishes the
opposite inequality. W

This concludes part A of the proof. However, to further clarify part A, and to prepare
for part B, it will be helpful to reconsider Figure 6.1. The step function depicted there,
bz(-), is a double-auction equilibrium for (o, v, f, g, A). Also, P = {0, p1, ..., p10 }, where
pr = kA, and 2 is the signal at which the bid function jumps from pi_1 to pg. For
the moment, ignore the curved lines and focus only upon the step function. As we have
already observed, the range of P(-) is {ps, p4, ps, p7, Ps, P9 }, as indicated by the solid line
portion of the bid function.

Now, because P(-) is never below ps, any bid below ps is a losing bid in the sense
that the agent is sure to end up without the good. Similarly, any bid above pg is a
winning bid. Consequently, changing bs(-) by replacing any bid below ps with any
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other bid below p3 and replacing any bid above pg with any other bid above pg (even
bids above pjg) yields a distinct bidding function that is also an equilibrium. Indeed,
this new equilibrium is outcome equivalent to bg(-). Thus, the dotted portion of the
bidding function displayed in the figure is not uniquely determined. On the other hand,
as we will argue later, the dotted portion of the bidding function is significant because
it happens to be the limit of the sequence of large finite economy equilibria that will
eventually be shown to exist. Along this sequence of equilibria, the dotted line prices
arise as market-clearing prices with positive, but vanishingly small, probability. More
on this later.

The jump points, Zx, in the figure are signals at which the agent is indifferent between
bidding px_1 and pg. Given that all agents employ bg(+), it is important to understand
the effects on an agent’s payoff of increasing his bid from pg_1 to pg.

Fix an agent. For every p in the range of P(-) = bg(x(-)), let W}, denote the zero-one
random variable indicating whether the agent ends up with a unit of the good (i.e.,
W, = 1) conditional upon his bid being p and conditional upon the market-clearing
price also being p. Because rationing is uniform, Wp assumes both values, zero and one,
with positive probability for each p in the range of P(-).

Recall from the above sketch of the proof of RP-s Lemma 1.2, when an agent with
signal x increases his bid from p to p there are two changes to his payoff.

I. First, when P(w) = p, he now ends up with the good (i.e., wins) with probability
one instead of with probability strictly less than one. Hence, conditional on these
additional wins, the change in his payoff is

E(v(z,®)|P(®) = P, VV2 =0,2) — P (6.4)

IT. Second, when P(w) = p he now ends up with the good with positive probability
instead of with probability zero. Hence, conditional on these additional wins, the
change in his payoff is

E(v(z,®)|P(@) = p,Wp = 1,2) — p. (6.5)

The overall change in the agent’s payoff is a weighted sum of these two changes, where
the weights are the probabilities of the additional winning events given the agent’s signal,
x. Now, if this agent is indifferent between p and p, the overall change in his payoff,
(i.e., the weighted sum of (6.4) and (6.5)), must be zero. Consequently, (6.4) and (6.5)
must have opposite signs, as can be seen in Figure 6.1. (Let us ignore, for the moment,
the possibility that both are zero.)

For example, when p = p3, p = ps and & = 24, (6.4) is positive because (see the
figure)

E(U(.@4,&J)’P((IJ) = p37Wp3 - 071%4) > p3,
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and (6.5) is negative because

E(U("%‘l:‘;jﬂp(@) = p47Wp4 = 1;-'%4) < p4.

Hence, when the agent’s signal is &4, he strictly prefers to win when the price is ps and
strictly prefers to lose when the price is p4, but on balance he is indifferent between the
two bids. Note then that if there were an unused price (like pg) between ps and py, the
agent with signal z4 could strictly improve his payoff by submitting this bid rather than
p3 since he would then win when the price is p3, which strictly increases his payoff, and
he would still lose when the price is p4. The general conclusion is this:

When an equilibrium bid function jumps from p to p at signal = and (6.4)

. . . . _ - . 6.6
is positive and (6.5) is negative, p and p must be consecutive prices in P. (6.6)

On the other hand, when p = ps, p = py and x = &¢ = &7, (6.4) is negative and
(6.5) is positive (see the ﬁgurej. Hence, when the agent’s signal is Zg = Z7, he strictly
prefers to lose when the price is p5, and he strictly prefers to win when the price is py.
But again, on balance, he is just indifferent between the two bids. In this case, there
is an unused price, namely pg, between ps and p7. This is consistent with equilibrium
because, if the agent bids pg instead of ps, he would then win for sure when the price
is ps, strictly decreasing his payoff because (6.4) is negative, while he would still lose
when the price is p7. The general conclusion is this:

When an equilibrium bid function jumps from p to p at signal = and (6.4)
is negative and (6.5) is positive, any price strictly between p and p is (6.7)
strictly suboptimal.

Note that, by affiliation and the strict private value component, the functions of x
in (6.4) and (6.5) are strictly increasing. Consequently, the change in the agent’s payoff
from increasing his bid from p to p is a weighted sum of two strictly increasing functions
of his signal. But, as shown in part A of the proof, when the grid is sufficiently fine, the
relative weights on the two functions, which are essentially the relative weights of the
two prices p and p, are virtually independent of the agent’s signal. Hence, the difference
in the agent’s payoff from bidding high versus low is strictly increasing.

Consequently, assuming a sufficiently fine grid, apart from the indifference at jump
points, it should now be evident from the above discussion that in the equilibrium
of Figure 6.1, the agent is strictly optimizing by employing bg(x) for all signals = €
(Z3,210). Hence, except for the indeterminacy of bids for signals below &3 and above
210, the equilibrium bidding function is an essentially unique best reply against itself.
This uniqueness will be important later on.

Finally, we return to the presumption underlying the above discussion that (6.4) and
(6.5) are not zero. Part B of the proof establishes that, generically, (6.4) and (6.5) are
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indeed not zero, and so the equilibrium strategy, bx(-), is a unique best reply against
itself.

Part B Part B of the proof establishes that when the price grid is sufficiently fine,
the following statement holds generically.

(f) In every double-auction equilibrium bg(:) for (e, v, f,g,4), if p and p are in the
range of the market-clearing price function P(-), and bg(-) jumps up from p to p at the
signal z, then (6.4) and (6.5) have strictly opposite signs. In particular, neither can be
zero.

As we have already seen, Figure 6.1 has been drawn so that (f) holds true. Also,
note that in order for (1) to fail, both (6.4) and (6.5) would have to be zero because the
indifference of the agent whose signal is the jump point requires a positively weighted
sum of (6.4) and (6.5) to be zero. Part B of the proof establishes, using techniques
from differential topology (i.e., Sard’s theorem), that it would require an unlikely co-
incidence in the choice of the grid size, A, and the value function, v(z,w), in order for
an equilibrium to exhibit equality in both (6.4) and (6.5) at any one of its jump points.
In particular, were such a coincidence to occur, it would be possible to eliminate it by
perturbing A and v(-,-) ever so slightly. It is shown that such coincidences can occur
only on a non-generic set (i.e., the complement of a residual set) of grid sizes and value
functions.

Condition (}) is important because, together with the results of part C, it permits us
to establish the single-crossing property in a range of prices and for certain sequences of
buyer-seller bidding functions in large double-auctions. This will be explained in more
detail following part C.

Part C Given the symmetry of the agents in the continuum economy, up to now we
have focused on equilibria in which all agents, buyers and sellers, employ the same
bidding function. When there are finitely many agents, buyers and sellers are not
symmetric and so they will employ distinct equilibrium bidding functions. On the other
hand, when the finite number of agents is large we expect the difference in buyer and
seller strategies to be small.

Hence, we are led to reconsider the continuum economy, now allowing all buyers to
employ the same bidding function, b(-) say, and all sellers to employ the same bidding
function, s(-) say, but where b(-) and s(-) need not be the same. A pair of nondecreasing
buyer-seller bidding functions, (b(-), s(-)), is defined to be a double-auction equilibrium
for E(a,v, f,g,A) if when all buyers employ b(-) and all sellers employ s(-), each agent’s
strategy is a best reply against the induced market-clearing price function and given
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the double-auction rationing rule.*? Such equilibria are nontrivial if trade occurs with
positive probability. When (b(-), b(+)) is a double-auction equilibrium, we will sometimes
simply say that b(-) is a double-auction equilibrium, maintaining consistency with our
previous terminology. For emphasis, we may also say that b(-) is a symmetric double-
auction equilibrium.

Part C shows that permitting buyers and sellers to employ distinct strategies adds
essentially no new equilibria except those in which there is no trade. Part C establishes
that all nontrivial nondecreasing equilibria of the continuum economy are outcome-
equivalent to an equilibrium in which all agents employ the same bidding function. We
now provide a sketch of the details.

Observe that a pair of buyer-seller bidding functions will induce trade with proba-
bility zero only if for some pair of prices in the grid, Ak < AL’ say, the buyers never
bid above Ak and the sellers never bid below AL’. In terms of jump point vectors, this
implies that the kth coordinate of a buyer’s jump point vector is z; = 1, and the k'th
coordinate of a seller’s jump point vector is yir = 0. But because k < &/, this implies
that z;» = 1 and yr = 0. Hence, y; — 1 = ypr — xpr = 1. Therefore, trade occurs with
probability zero only if the distance between some coordinate of the buyer’s jump—point
vector and the same coordinate of the seller’s jump point vector is one. With this
in mind, let us say that two step functions are e-close when their jump-point vectors
are within € of one another coordinate by coordinate. Finally, note that if ¢ € [0, 1),
then the set of e-close pairs of buyer-seller bidding functions induce trade with positive
probability bounded away from zero.

Part C defines, for £ € [0,1), a continuum-economy best-response-like correspon-
dence, U.(-), from pairs of e-close buyer-seller bidding functions, (b(-), s(-)), into subsets
of them. The correspondence W, (-) has the property that if b(-) and s(-) are e-close and
(b(+), s(+)) is a double-auction equilibrium for the continuum economy &(a,v, f,g,A),
then (b(-),s(-)) is a fixed-point of W.(-). Part C demonstrates that, generically, and
when A is sufficiently small, every fixed point, (b(-),35(-)), of co®.(-) is such that both
(b(-),b(-)) and (5(-), 3(-)) are double-auction equilibria of £(a, v, f, g, A), i.e., that both
b(-) and 5(-) are equilibria. Further, these latter two equilibria are outcome-equivalent
in the sense that they induce the same market-clearing price function, and for every
price p in its range, the interval on which b(:) is p coincides with that on which 5(-)
is p. Hence, any double-auction equilibrium for £(«, v, f,g,A) for which trade occurs
with positive probability is outcome-equivalent to some symmetric equilibrium in which
buyers and sellers employ the same bidding function.

The intuition for this is as follows. When A is sufficiently small, the arguments
employed in Part A can also be employed here to show that fixed points, (b(-), 5(-)), of

2Part C of the proof in RP shows explicitly how such a pair of strategies induces a market-clearing
price function.
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¥, (-,-) are nontrivial double-auction equilibria for £(«, v, f, g, A). (Nontriviality follows
because b(-) and 5(-) are sufficiently close.) In fact, the reasoning from part A shows
that strict single-crossing must hold between any pair of prices having a market-clearing
price weakly between them. Consequently, if p is a market-clearing price and if I is the
nondegenerate interval on which b(-) say, is p, then p is strictly optimal for buyers for all
but perhaps one signal, x, in I. But because buyers and sellers have identical preferences
in the continuum economy this implies that §(-) must be p on I as well. It follows that,
except for finitely many signals, b(-) and 5(-) coincide on all market-clearing prices.
Also, by the genericity result from part B, every unused price between the highest and
lowest market-clearing price is strictly suboptimal. Hence, no such price can be in the
range of either b(-) or 5(-). We conclude that b(-) and 3(-) are outcome-equivalent. But
from this it follows easily that both b(-) and 3(-) are outcome-equivalent double-auction
equilibria for £(a, v, f, g, A).

The Import of Parts B and C We now discuss how parts B and C work together to
help establish single-crossing on a range of prices in large double-auctions and for certain
buyer-seller strategies. Call a strategy monotone-optimal if it is a best-reply subject to
the constraint that it is monotone. Consider then a sequence of double-auctions where
the number of agents converges to infinity, and consider also a corresponding sequence
of monotone-optimal buyer-seller bidding functions that converge to an equilibrium of
the continuum economy. By part C, the continuum-economy equilibrium is essentially
symmetric and so the results of part A apply. In particular, given a sufficiently fine price
grid, single-crossing holds at the continuum-economy equilibrium for prices between
the highest and lowest market-clearing price. Now, ideally, we would like to invoke a
continuity argument to conclude that single-crossing must also hold far enough along the
sequence of monotone-optimal buyer-seller bidding functions in the large finite double-
auctions. This would imply that the strategies are fully optimal far enough along the
sequence because monotone best replies exist when single-crossing holds. But there is
a potential problem with such a continuity argument.

For market-clearing prices that occur with probability bounded away from zero along
the sequence, continuity arguments (provided in part D of the formal proof) do permit
the application of the results from part A and single-crossing can be straightforwardly
established for such prices. However, in principle, as the market grows, there may be
market-clearing prices receiving positive, but vanishingly small, weight; the weight on
these market-clearing prices may vanish in the limit if the length of the intervals of
signals over which they are bid by any agent vanishes. Single-crossing may well fail to
hold for such prices because, conditional upon their occurrence, the number of agents
who submit them as bids can be small with high probability, even though there are
many agents altogether. Consequently, an agent’s incentives when contemplating any
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such bid are effectively the same as his incentives when there are a small number of
agents, where we have already seen that single-crossing can fail (see Section 5.2). One
way to solve this problem is to rule out the possibility that the weight on these prices
vanishes in the limit. As we shall eventually see, the weight on some prices necessarily
vanishes and for these prices we must face the problem head on; this is done in part D
of the proof. On the other hand, for an important range of prices, condition (f) from
part B ensures that their weight cannot vanish in the limit; their weight is eventually
either bounded away from zero or equal to zero.

To see this last point, suppose that the limit equilibrium is bg(-), and suppose that
(1) holds. Then, the situation depicted in Figure 6.1 is in effect. In particular, recalling
the conclusions reached in (6.6) and (6.7), every price between the highest and lowest
market-clearing price that is not in the range of bg(-) is strictly suboptimal regardless
of the agent’s signal. Consequently, by a continuity argument (also provided in part D
of the formal proof), such prices must eventually be strictly suboptimal in all nearby
strategies of large finite economies. But then such prices cannot be employed with
positive probability in any nearby monotone-optimal strategy, because one can remove
weight from the suboptimal price to an adjacent, utility-increasing, price without vio-
lating monotonicity. Hence, every price between the highest and lowest market-clearing
price that is not in the range of bg(-) is eventually employed with probability zero, while
all prices in the range of bg(-) are eventually employed with probability bounded away
from zero (otherwise they would not be in the range of bx(-)).

So, parts B and C (together with some limit results from part D) establish that, if
the number of agents increases in a double-auction, then far enough along a sequence
of monotone-optimal buyer-seller bidding functions, single-crossing holds for all prices
between the highest and lowest market-clearing price of the limit equilibrium of the
continuum economy.

This establishes single-crossing over an important range of prices and so goes a long
way toward establishing that the monotone-optimal strategies are in fact fully optimal
and hence in equilibrium for the large double-auction. The remaining work centers
around establishing single-crossing for prices that are below the lowest or above the
highest market-clearing price of the limit equilibrium (like the prices 0, pi1, p2, and pio,
indicated by the dotted lines in Figure 6.1). These prices are handled in part D.

Part D The final part of the proof considers sequences of large finite economies. Given
unbounded sequences of natural numbers {n,},{m,} such that n./(n, + m,) - a €
(0,1) as r — oo, consider the sequence of finite economies &E(n,, m,,v, f,g, A) with n,
buyers and m, sellers, and the price grid P = {0, A, 2A,...}.

Forx,y € Xk, let u? (p, z|x,y) denote the double-auction expected payoff of a buyer
in &(n,, my,v, f,g,A) whose signal is z, when he bids the price p and all other n, — 1
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buyers employ the bidding function bx(-) and all m, sellers employ the bidding function
by (+). Similarly, let uZ(p, z|x,y) denote the double-auction expected payoff of a seller
whose signal is z, when he bids the price p and all n, buyers employ bx(-) and all other
my — 1 sellers employ by (+).

Hence, (bg(-),by(-)) constitutes a double-auction equilibrium for €(n,, m,,v, f,g, A)
when, for every z € [0, 1],

bg(x) solves max uf (p, z|X,¥),
peP
and
by (x) solves maxu; (p, z|X,¥).
peP

We shall place two restrictions upon buyer-seller jump-point vector pairs (x,y), and
consider equilibria subject to these restrictions. Most of the work then entails showing
that, generically, when the economy is sufficiently large and A is sufficiently small, these
restrictions are not binding.

The first restriction on (x,y) is designed to ensure that the equilibrium is nontrivial.
The vectors x and y will be required to be sufficiently close to one another, ensuring
that trade occurs with probability bounded away from zero.

The second restriction on (x,y) is related to the use of jump-points as strategies,
which implicitly restricts the bidding functions of buyers and sellers to be nondecreasing.
To ensure that this strategy restriction is not binding, we must establish the single-
crossing property. The second restriction on (x,y) is designed to establish the single-
crossing property over the range of prices for which the single-crossing argument from
parts B and C does not apply. Recall that the part B and C single-crossing argument
does not apply to prices that may arise as market-clearing prices with positive but
vanishing probability along a sequence of monotone-optimal buyer-seller strategies in
double-auctions whose finite number of agents converges to infinity. Let us refer to these
as “vanishing prices.”

Consider now the conditions under which vanishing prices can occur. As already
mentioned in part B above, a vanishing price can occur when the length of the intervals
of signals over which buyers and sellers bid this price shrinks to zero. But a price can
vanish even if the lengths of these intervals do not shrink to zero. For example, suppose
that there are n buyers and m = n sellers, each of whom employs the bidding function
bz(-) depicted in Figure 6.1.43 Then, for every n, every price, 0, p1,p2, ..., P10, in the
range of bg(-) occurs with positive probability as a market-clearing price of the double-
auction. However, in the limit as n — oo, the probabilities that the prices 0, p1, p2 and

#3In general, buyers and sellers will employ distinct bidding functions and this function will not be
independent of the number of agents. The use here of a common bidding function that does not depend
on the number of agents is for simplicity of exposition only.
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pio (the dotted bids in Figure 6.1) occur as market-clearing prices converge to zero,
even though the intervals of signals over which they are bid remain bounded away from
zero. To see why these prices vanish, note that with probability approaching one as
n — o0, it is the median bid (because n = m) that determines the market-clearing
price. Consequently, the market price is determined by the bid made at the median
signal. However, in the limit as the number of agents grows, the median signal will lie
between z(0) and x(1) with probability approaching one because x(0) (resp., z(1)) is
the median signal when the state w takes on its lowest (resp., highest) possible value.
Hence, in the limit, even though a positive and bounded away from zero fraction of
agents submit the bids 0,p;, p2 and pig, the median bid will lie strictly between po
and pjp with probability approaching one. The market-clearing prices 0, p1, p2 and pig
therefore vanish in the limit.

Establishing the single-crossing property for vanishing prices precludes the use of
straightforward continuity arguments based upon the law of large numbers. Our tech-
nique for dealing with these prices is to control, to some extent, the rates at which
the probabilities that they occur as market-clearing prices can vanish. We do this by
ensuring that the step sizes of the agents’ bid functions on these prices do not vanish.
Hence, as in the example discussed in the previous paragraph, the probability that such
prices clear the market can vanish only because, in the limit, the signals at which agents
submit them are either less than x(0) or above x(1).

More formally, the second restriction is as follows. We choose a small € > 0, and
restrict (x,y) so that the length of each interval on which the step functions bx(-) and
by(-) assume each grid price in (v(0,0) — A, v(z(0),0)) and (v(z(1),1),v(1,1) + A) is
at least .44 We repeat that, even with this restriction, the probability that such prices
arise as market-clearing prices can tend to zero as the economy grows since agents may
bid such prices only when their signal is less than (resp., greater than) the lowest (resp.,
highest) possible ath percentile, 2(0) (resp., z(1)). Let us refer to this as the € step-size
restriction on vanishing prices.

In part D of the proof, C? denotes the subset of joint strategies (x,y) € Xx x Xk
such that |z — y| < &2 for all k, and the ¢ step-size restriction on vanishing prices is
satisfied. The choice of €2 in the one place and ¢ in the other is helpful in establishing
certain bounds on probabilities involving order statistics. Some € > 0 and sufficiently
small is chosen and fixed.

Given buyer-seller strategies (x,y) € C?, consider the maximization problem

U 1
max [ ul(be@)alxy)f@de + [ b ()alxy) @] (69

(x',y")eC?

and let UZ(x,y) denote the set of solutions.

4 0ur proof ensires that vanishing prices cannot occur outside these sets.
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Note that if (bxr(-),byr(-)) is a double-auction equilibrium for &€(n,,m.,v, f,g, A)
and (x”,y") € C?, then (x",y") € UZ(x",y"). The opposite implication, however, need
not be true because of the two restrictions embodied in the constraint set C?. But there
is another reason as well. Recall the third restriction that is implicit in the formulation
of the above maximization problem. The agents are implicitly restricted to choosing
nondecreasing bidding functions. Hence, it must be shown that all three restrictions are
not binding when r, which indexes the size of the economy, is sufficiently large.

The objective function in (6.8) is continuous in x,x’,y,y’. Hence, ¥Z(-,-) is non-
empty valued and upper hemicontinuous, but it need not be convex valued. Of course,
Kakutani’s theorem guarantees the existence of (x",y") € co¥L(x",y"). We may as-
sume without loss that (x",y") — (X,¥) as r — oo. The remainder of the argument
establishes that, under the conditions stated above, (x",y") defines a double-auction
equilibrium when r is large enough.

Part D includes several limit results showing that an agent’s payoff in the finite econ-
omy converges to his payoff in the continuum economy. Consequently, upper hemicon-
tinuity arguments can be employed to show that (X, ¥) is a fixed point of the correspon-
dence defined in part C. Hence, as argued there, bg(-) and by(-) are outcome-equivalent
and each one is a double-auction equilibrium for the continuum economy &(a, v, f, g, A).

As we already know, the results from part B can then be employed to argue that,
generically, vanishing prices cannot occur for prices between the lowest and highest price
in the range of P(-) = bg(z(-)) = by(x(-)), and so strict single-crossing must hold for all
prices in the range of P(-) not only at the limit, but also far enough along the sequence
of finite economies. Hence, for prices in this range and for r sufficiently large, buyers
and sellers each have unique (but possibly distinct) best replies. We will eventually
show that the same holds true for the remaining prices as well.

We next wish to argue that X = §, i.e., that bg(-) = by (-). Suppose that bg(-) is as
shown in Figure 6.1. Now, the equality bg(x(-)) = bg(x(-)) established in the previous
paragraph implies that bgz(x) = by(x) for all z € [2(0),z(1)]. It remains to show that
bg(x) = by(x) for x < x(0) and > x(1). We shall be content to show this for the lower
interval z < z(0).

Referring to Figure 6.1, the lower dotted portion of the bidding function bg(-) is
determined as follows. The proof in RP-s ensures that the prices 0, p1,po2, and ps3 are
consecutive prices in the grid. The jump points Z; and Zs are then uniquely determined
by v(Z1,0) = p1 and v(&2,0) = pa.

Because bg(z) = by(x) for all z € [(0),z(1)] and (x",y") — (X,¥), we have that
bgr(z) and bgr(z) each converge to bg(x) = by(x) for each z € (x(0),z(1)) and so
the prices ps, ..., pg each occur as market-clearing prices with positive probability for
large enough r. Furthermore, the step-size restriction ensures that each of the prices
0, p1,p2, and pig occur as a market-clearing price with positive probability for each 7.
Consequently, for large enough r, any one of the prices 0, p1, ..., p1o is a market-clearing
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price with positive probability.

As r — 00, it becomes more and more likely that the ath percentile of the agents’
signals is between x(0) and z(1) and it is straightforward to show, using the law of large
numbers, that the relative likelihood that the market-clearing price is p2 versus ps tends
to zero. Slightly less obvious, but nonetheless true (and shown in Part D of RP-s), is
that the relative likelihood that the market-clearing price is p; versus ps or 0 versus
p1 both tend to zero, a result that hinges on our step-size restriction ensuring that the
lengths of the intervals on which pj,and ps are bid are bounded away from zero. Indeed,
establishing these relative likelihood limits is the role of the step-size restriction. We
now flesh out some of the implications.

We now claim that for sufficiently large r, buyers and sellers with signals below &3
optimize uniquely by employing bidding strategies near the dotted strategy in Figure
6.1. For example, consider a buyer with signal 2/ € (#1,22). By the definition of Z;
and Z9, p1 < v(z’,0) < pa. For large r, strict single-crossing holds for prices between
p3 and p1g. Hence, the buyer’s optimal bid is less than p3 because 2’ < Z3. To see that
p2 is not optimal, consider the difference in his payoff from bidding ps versus p;. This
difference depends only upon the events in which the market price is either ps or p;. But,
as we have already argued, the market price is infinitely more likely to be ps than p;.
Furthermore, conditional on a market-price of ps, the state of the good is almost surely
w = 0, since any higher state makes the already unlikely event that the market price is
po infinitely less likely. Hence, conditional on a market-price of p; or ps, a buyer with
signal 2’ is almost certain that his value is v(2’,0) < py and that the market-clearing
price is p2. Hence, bidding ps is strictly suboptimal. Similarly, bidding pg = 0 is strictly
suboptimal since he then runs the risk of being rationed when the market price is zero,
while bidding p; guarantees that he wins when the price is zero and gives him a chance
of winning when the price is p; < v(z’,0). Consequently, for a given =’ € (Z1,Z2) and
for all large enough 7, the buyer’s optimal bid is p1, as indicated by the dotted bidding
strategy in the figure.

But exactly the same argument applies to sellers and so in the limit both the buyers’
and the sellers’ strategies converge to the dotted bidding function for < z(0). A similar
argument for x > (1) therefore establishes that bg(x) = by (z) for all  and hence that
X=7y.

A further implication of the above argument is that agents with signals below Z3
behave almost as if they are certain that the state is w = 0 and so as if they have private
values. But then (as proven in RP-s) strict single-crossing holds and the agents have
unique best replies close to the dotted strategy in the figure. We conclude that best
replies are unique at the prices 0, p1, and pa; and similarly for p1g. Since we already know
that best replies are unique at the other prices, buyers and sellers each have unique best
replies against (x",y") for large r.

Note that because for large r a strategy close to the dotted one is optimal, the
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step-size constraint on an agent’s strategy is not binding. Further, because x" and
y" converge to the same vector X = ¥, the constraint that they must be close to one
another is eventually not binding. Finally, because single-crossing eventually holds, the
restriction to nondecreasing bidding functions is also eventually not binding. Hence,
for large 7, every member of WL(x",y") is an unconstrained best reply. But because
there is a unique best reply, ¥Z(x",y") must be a singleton. Hence, because (x",y") €
coVL(x",y") and UL(x",y") is a singleton, it must in fact be the case that (x",y") €
UI(x",y"), and so (x",y") is an unconstrained best reply to itself; it is an equilibrium.

Hence, for r large enough, (bx(-),byr(-)) is a double-auction equilibrium of
E(np,my,v, f,g,A). It is nontrivial because x" and y” were restricted so that this was
so. This completes the proof of (1) of Theorem 6.1.

Because by (-) and by (-) each converge uniformly to bz (-) = by(-), a double-auction
equilibrium of &(a,v, f,g,A), an appeal to Proposition 1.7 proves (2) of Theorem 6.1,
and several applications of the law of large numbers proves (3) and (4). RP-s contains
the details.
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