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Abstract

I study games played on networks where the benefit accrued across any pairwise
relationship depends on the minimum effort made by either party. I show that the
actions of agents in the Pareto dominant equilibrium of this game are completely
characterised by the k-core decomposition of the network. In equilibrium, each agent
plays effort equal to their highest k-core number or coreness.

The Pareto dominant equilibrium is shown to be ‘knife edge’ for a subset of
networks and so vulnerable nodes in the network are identified. Using the potential
function of the game I also analyse the long-run stability of equilibria. I introduce the
density decomposition of a network and find that potential maximisers have a nested
structure which is based on this decomposition.

Applications of this model include investments in human capital, user engage-

ment in online social networks and technology adoption.
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1 Introduction

Strategic complementarity plays an important role in almost every area of eco-
nomics. Actions are strategic complements if an increased level of activity from
one party raises the returns from that activity for others. For example, the more
a firm’s competitor invests in advertising, the more the firm itself needs to invest
in order to compete; the more effort our friends or co-workers make to use a new
piece of software, the more it pays for us to do the same; the more savers with-
draw from a potentially failing bank, the more it benefits us to also withdraw;
and so on.

In some of these situations, high levels of effort by one party can be an im-
perfect substitute for another party’s lack of effort. In other situations, such as in
the classic Stag Hunt game, the joint benefits will hinge on those who contribute
least. If one party refuses to expend effort then it makes no difference what the
other party does. For example, the benefit gained from socialising with friends
or co-workers is limited by the socialising efforts of other individuals with whom
you interact.

When actions are not substitutable and the returns from activity depend heav-
ily on the concurrent activity of others, this can lead to coordination failures
where parties become trapped in Pareto dominated equilibria (Cooper and John,
1988). If only a small number of individuals are involved, communication and
joint action between parties can help to mitigate such coordination problems and
attain Pareto dominant outcomes. Yet, this potential solution becomes less plaus-
ible when we shift focus from small numbers interactions towards interactions
which take place in large and perhaps fragmented societies.

To analyse this issue further I construct a stylised model where individuals
must invest in a continuous ‘effort’ variable which is privately costly but provides
benefits if their neighbours also invest. To capture the non-substitutability of
efforts, I assume that the benefit accrued across any pairwise relationship will
depend on the minimum effort made by either party.1 Furthermore, I allow for

1Previous authors have studied group minimum effort games (e.g. Bryant (1983)), often un-
der the alternative name of ‘weakest link’ public goods games (Hirshleifer, 1983). My model is
distinguished from previous work by focusing on pairwise interactions.
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agents to vary in terms of their prominence by embedding them in a network. As
was highlighted first by Schelling (1973) and later developed by Ellison (1993),
the pattern of social interaction can have significant influence on both the levels
and stability of equilibrium effort.

This model can be used to shed light on the role of network structure in tech-
nology adoption or the use of network goods. For example, situations where indi-
viduals spend time using a social networking product or invest effort in learning
a new piece of software, with the hope of others using it. Another example of a
possible application is to human capital investments made within firms. For firms
in knowledge-intensive industries such as consulting, software development or
R&D contracting, the principle input is the expertise of its employees. Invest-
ment in developing such skills is privately costly but may bring private bene-
fits. Moreover, the effectiveness of knowledge sharing and collaboration between
employees, which often involves highly specialised and technical information, is
limited by the agent with the minimal level of expertise in any pairwise relation-
ship. Empirical studies have shown that network structure (in particular cohe-
sion) seems to play an important role in such settings (see Reagans and McEvily
(2003)).2

As we shall later see, it is indeed network cohesion which plays a central
role in determining equilibrium effort levels. An individual’s effort in the Pareto
dominant equilibrium will turn out to be completely characterised by their k-core
number or coreness, which is a well-known measure of the extent to which an in-
dividual is a member of a cohesive core of the network. I will also analyse the
stability properties of this equilibrium, characterising networks where it is ‘knife
edge’, in addition to highlighting potentially vulnerable nodes in the network.

Previous authors such as Young (1998) and Jackson and Watts (2002) have
focused on the effect of the network’s structure on stochastically stable equilibria
of similar discrete action ‘Stag Hunt’ games. In a close analogue to this analysis, I
show that an individual’s effort in the potential maximising equilibrium is always
positive and also determined by the extent to which they inhabit a dense core of
the network.

2See also Cremer et al. (2007) and Sobel (2012), who examine similar phenomena using a dif-
ferent approach.

3



Sections 3 and 4 contain these main results and Section 5 analyses the problem
from a social planner’s perspective. I will now discuss the relationship between
this paper and the rest of the literature.

2 Related Literature

The games on networks literature has grown significantly in recent years and has
been applied to study a diverse range of phenomena.3 Many researchers in this
literature have sought to establish relationships between equilibrium actions in
simple games and both an individual’s position in the network and the network
structure as a whole. A foundational contribution is by Ballester et al. (2006)
who examine a model with continuous action spaces and quadratic cost func-
tions. Agents in their model have linear best responses and equilibrium efforts
are shown to be related to their Bonacich centrality in the network. More recently
Bramoullé et al. (2014) have examined such linear-quadratic games on networks
in a framework which embeds both Ballester et al. (2006) and the earlier model
of Bramoullé and Kranton (2007). As in the present paper, Bramoullé et al. (2014)
make use of the potential function of the game to study the stability properties of
equilibria. They highlight a relationship between the ‘bipartiteness’ of a network
and equilibrium stability.4

A second strand of the literature on games on networks is associated with
‘threshold games’. A typical setting is one similar to that described by Granovet-
ter (1978) where a group of individuals face a collective action problem in the
form of a binary choice (e.g. either to strike or not to strike) but prefer only to
take a more risky action if at least some threshold percentage of the group do
the same. Differences in thresholds can lead to cascading behaviours, where if
one individual switches strategy this forces others to switch, leading to yet more
switching until a new equilibrium is reached.

3The early work on games on networks has been surveyed by Jackson (2008), more recent
surveys are presented by Jackson and Zenou (2014) and Bramoulle and Kranton (2015).

4Although I consider only fixed exogenous networks which are common knowledge, games
where networks evolve over time (König et al., 2014) or are imperfectly known by agents (Galeotti
et al., 2010) have also been studied.
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Chwe (2000) examines how the communication structure of a society might
enable individuals with heterogeneous thresholds to more easily coordinate on
their preferred equilibrium in such a setting. His model shows that optimal net-
works can be formed from a series of interlocking cliques which allow all agents
to take the more risky action by making all locally important thresholds common
knowledge.

This is also closely related to the model of Morris (2000) who studies the role
of network structure in a binary decision threshold game when the modeller is
concerned about robustness of equilibria with respect to contagion. Morris shows
that only sufficiently inward looking groups of nodes can be resilient to an invad-
ing cascade of switching. Another closely related contribution is by Young (1998)
who is similarly concerned with the conditions on network structure which en-
able different regimes of play in different areas of the network.

Young (1998) however also highlights a negative result with regard to the abil-
ity of any network structure to prevent a risk-dominant equilibrium from prevail-
ing as the unique stochastically stable state of play. This builds on the insights of
the Ellison (1993) model, which has also been extended by Jackson and Watts
(2002) to a setting where the network is endogenous. In their paper, Jackson and
Watts (2002) find that stochastically stable equilibria may arise which are neither
risk-dominant nor Pareto-dominant, if agents can select who they are linked to.

3 Model

A finite set of agents N = {1, . . . , n} inhabit a network given by the pair (N, g)
with g denoting a set of unordered pairs known as edges or links. The network is
undirected and so a single link ij ∈ g implies that agent i is connected to agent j
and vice versa. Where convenient I will simply refer to the network as g and may
use g + ij to denote a network g′ which is formed from g plus the addition of an
undirected link between nodes i and j. The neighbourhood of an agent i in g will
be denoted by Ni (g) = {j | ij ∈ g} and each agent’s degree will be denoted by
di (g) = |Ni (g)|.

Agents will interact with their neighbours by selecting a level of effort xi from
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[0, x̄], where x̄ > maxi∈Ndi (g).5 This effort incurs a private cost which is as-
sumed to be quadratic in xi. In order to highlight the role of network structure in
determining equilibrium effort, I assume that utility functions take the following
simple form:

ui (xi, x−i) = ∑
j∈Ni

min
{

xi, xj
}
− 1

2
x2

i

The simplicity of this utility function is mainly for ease of presentation and
Appendix B contains an extension of the model to the case of weighted networks
where agents also have heterogeneous private benefits and costs. Although the
utility function is strictly concave and continuous in xi, it is not continuously
differentiable. In order to characterise best responses we use the left and right
derivatives of ui.

First consider the right derivative of ui and let di (xi, x−i) :=
∣∣{j ∈ Ni | xj > xi

}∣∣.
The right derivative of ui is given by

∂+ui

∂xi
= di (xi, x−i)− xi.

The gross marginal benefit from raising xi increases linearly with the number of
agents exerting strictly higher effort, yet the marginal cost of effort is xi. This
means that in any equilibrium all efforts satisfy

xi ≥ di (xi, x−i) . (1)

If xi < di (x) then an agent could marginally raise their effort and increase their
utility along di (x) links at a marginal cost of only xi.

Consider now the left derivative of ui and let di (x) :=
∣∣{j ∈ Ni | xj ≥ xi

}∣∣.
The left derivative of ui is

∂−ui

∂xi
= di (xi, x−i)− xi.

5The upper bound to the effort level plays only a minor technical role and can be assumed to
be arbitrarily large.
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Therefore in any equilibrium all efforts satisfy

xi ≤ di (xi, x−i) . (2)

If xi > di (x) then decreasing xi would lower utility linearly along di (x) links but
lower cost at rate xi.

Conditions (1) and (2) are necessary and jointly sufficient for xi to be a best
response to x−i.6 Since Xi is bounded and ui(xi, x−i) is strictly concave and con-
tinuous in xi, a unique best response satisfying (1) and (2) always exists:

Lemma 1. For any agent i ∈ N, the unique best response to profile x−i is given by

BRi (x−i) = max{xi | xi ≤ di (xi, x−i)} = min{xi | xi ≥ di (xi, x−i)}

Proof. All proofs are contained in the Appendix.

The absolute number of neighbours playing a given action will therefore de-
termine our optimal response. The pairwise minimum effort game is a ‘threshold
game’ played on a network as in Morris (2000) and Young (1998).7

Moreover, for a given agent to sustain a high xi in equilibrium we will require
that they have a large number of neighbours with high xj. This implies not only
that di must be large, but also that dj must be large for j ∈ Ni, and similarly for
j′ ∈ Nj, and so on. As we shall later see, dense and cohesive subgroups of the
network will find it easier to sustain higher levels of effort in equilibrium.

3.1 Cohesive Subgroups

Notions of group cohesiveness in social networks have long been studied in the
sociology literature and many such concepts are defined in standard texts such
as Wasserman and Faust (1994). A variant which has been used in the economics

6This clearly holds if the best response is interior. If BRi (x−i) = 0 then xj = 0 for all j ∈ Ni and
(1) and (2) are both satisfied. Since x̄ > maxi∈Ndi (g) due to the assumption on x̄, BRi (x−i) = x̄
can never satisfy (2).

7The main technical differences between this paper and Morris (2000) or Young (1998) are
firstly that effort is a continuous rather than binary variable, and secondly, that optimal efforts
depend on the number of neighbours playing a weakly higher effort (rather than a proportion)
since the effort cost is split across all neighbours.
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literature is the notion of a p-cohesive subset, defined in Morris (2000). Formally,
a subset of nodes S is said to be p-cohesive if every node in S has (at least) a
proportion p of their neighbours in S. A related idea is also found in Young (1998)
where a subset of nodes is called r-close-knit if for every S′ ⊆ S the proportion of
links originating in S′ and ending in S is at least r. Therefore, p-cohesiveness is a
condition on the degrees of nodes, whereas r-close-knittedness is a condition on
links within a subgroup and therefore a p-cohesive subgroup is p/2-close-knit.

This paper will employ a particularly useful concept originally defined by
Seidman (1983) known as a k-core. Seidman (1983) considers subgraphs gk ⊆
g which can be induced by repeatedly pruning nodes of low degrees from the
network in order uncover groups of densely connected individuals. The graph
which is obtained by iteratively removing all nodes of degree less than k is known
as a core of order k, or a k-core.8 For any subgraph gk ⊆ g I will use Nk to denote
the set of agents who have positive degree in that subgraph. A precise definition
of a k-core of a graph g now follows:

Definition 1. A k-core of a graph g is a subgraph gk ⊆ g such that di (gk) ≥ k for
each i ∈ Nk.

A k-core is therefore a subgraph of g where every agent with positive degree
in that subgraph has at least degree k.9 I will say that a group of nodes ‘form’ a
k-core when the subgraph consisting of these nodes and links between them is a
k-core. If an agent i is contained within a k-core then this implies that they have
at least k neighbours of degree k or greater.10

Every connected graph trivially contains a 1-core, whilst the 2-core which can
be formed using the least possible number of edges is the ring network. Also note
that the definition implies that nodes belonging to k-cores of high orders are also
members of some core of a lower order. If we focus on the union of cores of each

8Seidman (1983) in fact refers to the k-core as maximal subgraph which can be obtained by
iteratively removing nodes of lower degree. I follow Wasserman and Faust (1994) and the more
recent literature by referring to any core of order k as a k-core.

9This concept has been used in a recent working paper by (Gagnon and Goyal, 2015), although
they focus on a single maximal core of a given order q and refer to this as the q-core.

10Applications of the concept outside of economics include the analysis of protein networks
(Bader and Hogue, 2003) and the visualisation of large complex networks (Baur et al., 2004).
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1-core 2-core 3-core

Figure 1: The k-cores of a network

order this permits a nested k-core decomposition of any given network. Figure 1
shows such a k-core decomposition of a graph for 1 ≤ k ≤ 3.

Since cores of successive orders are nested within the previous core we can
define a coreness value for each i ∈ N:

Definition 2. A node i ∈ N has coreness ci(g) = k if it is contained in a core of
order k but not in a core of order k′ for k′ > k.

The coreness of a node can be interpreted as a coarse measure of its centrality.
We can view coreness as a condition on a node’s degree and the degree of other
nodes in their neighbourhood. Nodes with high coreness may have important
roles in the network since they have neighbours with high degrees (who in turn
have neighbours with high degrees, etc). High coreness can often indicate that
a given node is a member of a dense and cohesive subset of the network, since
cliques of size n immediately form an (n− 1)-core. The vector of coreness for all
agents i ∈ N will be denoted by c(g) = (c1(g), . . . , cn(g)).11

As can be seen in the example in Figure 2, the coreness of individual nodes
can depend on structural characteristics of the network which are relatively ‘far
away’. In this example, the addition of a single link between the remaining pair
of nodes with degree 2 would raise the coreness of all nodes to 3. Adding links
to a network cannot decrease coreness and it follows that ci (g′) ≥ ci (g) for any

11In what follows I refer to each agent’s coreness in the network g as simply ci. I will indicate
by using ci(g′) when considering subgraphs of g.
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Figure 2: Coreness profile of a bridge network

g′ ⊇ g. Moreover, the following lemma shows that the coreness of any given
node can only decrease by 1 following link removal.

Lemma 2. For all l ∈ N and ∀ij ∈ g, cl (g− ij) ≥ cl (g)− 1

Although the removal of one link cannot lower the coreness of any agent by
more than 1, it can have a cascading effect which influences all nodes (e.g the
transition from a ring to a line network). I will return to this stability issue in
Section 4 but first I discuss the properties of equilibrium actions.

3.2 The Pareto Dominant Equilibrium

With the notion of coreness defined, I can now solve the model for action profiles
x ∈ X = [0, x̄]n which constitute a Nash equilibrium of the game Γ = 〈N, X, u〉.
The game will have multiple equilibria, so in this section I focus on the Pareto
dominant Nash equilibrium. The game Γ is a supermodular game12 so the res-
ults of Milgrom and Roberts (1990) imply that a greatest and least equilibrium
must exist. Moreover, Milgrom and Roberts (1990) also show that if x and x′ are
equilibria of Γ where x > x′ then x Pareto dominates x′. Since the set of equilibria
of a supermodular game forms a complete lattice (Zhou, 1994), this implies that
there exists a greatest equilibrium which Pareto dominates all others. With the
existence of a Pareto dominant equilibrium established, we can now characterise
this equilibrium in terms of the coreness of agents.

12Firstly, the strategy set X = [0, x̄]n is a complete lattice under the usual partial order x > x′

if xk ≥ x′k for all k = 1, . . . , n. By the definition of Milgrom and Roberts (1990), the game is
supermodular since ui has increasing differences in (xi, x−i), ui is supermodular in xi for fixed
x−i, and ui is upper semi-continuous in Xi and order continuous in X−i with a finite upper bound.
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Theorem 1. The Pareto dominant Nash equilibrium is x∗ = c(g)

Intuitively, a coreness of ci for agent i guarantees that they have at least ci

neighbours, who have at least ci neighbours, etc, who could feasibly play ci in
equilibrium. Furthermore, having coreness ci implies that xi > ci can never
be played in equilibrium as there is an insufficient number of supporting nodes
along paths from i. Supermodularity allows us to infer that the equilibrium where
x∗ = c is Pareto dominant since it is maximal in terms of investment. We can
also use the supermodularity property to verify that beginning with action pro-
file x̄ = (x̄, . . . , x̄) and iterating the best responses of agents we arrive at xi = ci

for all i, implying that x∗ = c(g) is the maximal equilibrium (see Milgrom and
Roberts (1990)).

3.3 Other Nash Equilibria

The extreme complementarity of actions in this model can result in multiple Nash
equilibria. For example, the profile (0, 0, . . . , 0) is always an equilibrium in any
network. In fact, the game will have infinitely many Nash equilibria for any non-
empty network.13

This result is a consequence of the perfect complementarity assumption. The
fact that each agent’s effort cannot be used as an imperfect substitute for another
agent’s lack of effort leads to inertia for a large number of action profiles. Figure 3
illustrates three equilibria for the network presented earlier in Figure 1. The first
panel shows the Pareto best equilibrium which corresponds to the coreness pro-
file, whereas the final panel shows a Pareto inferior equilibrium. We can observe
that there exist equilibria where those with lower coreness play strictly higher
actions in equilibrium.

This multiplicity leads naturally on to the question of the relative stability of
each equilibrium. For example, the equilibrium profile (0, 0, . . . , 0) requires only
one node to deviate upwards to instigate a cascade of increases, whereas this is

13To show this, pick any equilibrium x > 0 and consider the subset of agents playing the highest
effort in that equilibrium. Reducing xi by a sufficiently small ε for each agent in this subset must
also be a Nash equilibrium as conditions (1) and (2) must still hold. Similarly, if x = 0 then
increasing the effort of all agents by a sufficiently small ε is also an equilibrium.
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Figure 3: Some equilibria for the network in Figure 1

not the case for equilibrium profile (1, 1, . . . , 1). Moreover, the Pareto dominant
equilibrium in Figure 3 is also unstable with respect to a downward shock to any
of the nodes with ci = 3.

This discussion highlights the fact that some equilibria may be more stable
than others in the face of random shocks. This motivates a closer look at the
stability of the Pareto dominant equilibrium with respect to random shocks to
effort.

4 Stable Equilibria

The focus so far on the Pareto dominant equilibrium x∗ can be justified when con-
sidering environments which allow some degree of pre-play communication or
third party mediation. Since actions are complements, it is in the best interests of
all agents to coordinate on the Pareto dominant equilibrium. However, without
communication or mediation it may seem unlikely that individuals could tacitly
coordinate on the Pareto dominant equilibrium, especially if n is large.

Furthermore, if tacit coordination is somehow achieved, then the question of
the stability of x∗ with respect to random shocks to effort is raised. As discussed
previously, the failure of a single node can create a cascade of falling actions for
all nodes in the network.

Consider the example in Figure 4. The coreness of all nodes in the network
is ci = 2 but even a temporary drop in the effort of any node would lead, via a
sequence of best responses, to a new equilibrium where xi = 1 for all i. A Pareto
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dominant equilibrium such as the one displayed in Figure 4 could not reasonably
be considered stable in an environment where efforts may be subject to infrequent
random shocks.

To study the stability properties of equilibria in this game I now examine two
environments. First I focus on the properties of networks where the Pareto dom-
inant equilibrium is stable with respect to small and isolated shocks to individual
efforts. Following this, I examine the stability of equilibria in the presence of
persistent random shocks. I order to do this, I will apply a common refinement
technique for minimum effort games which uses the potential function to select
equilibria which are most likely to be observed in the long run.

4.1 Stability of the Pareto Dominant Equilibrium

I now present a notion of equilibrium stability based on a small one period shock
to the effort level of a single agent. Since this notion of stability is extremely
weak, equilibria which do not satisfy this criterion should be considered to be
very fragile.

A shock to equilibrium profile x is a profile x̂ ∈ X such that x̂i = xi + ε for
exactly one agent i and x̂j = xj for all other agents j. Since I am focusing on small
isolated shocks to actions I will assume that |ε| ≤ 1 . Following this shock, play
will evolve over discrete time periods t = {0, 1, 2, . . . }. Define the myopic best re-
sponse dynamic as a sequence

{
xt} in X such that xt+1

i = argmaxxi∈Xi
ui
(
xi, xt

−i
)

for each i ∈ N .
An equilibrium profile x∗ will be considered knife edge if, for an arbitrarily

small shock, efforts do not return to x via the sequence of myopic best responses.
This notion of stability is similar to that used in Bramoullé and Kranton (2007),
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although slightly weaker as I restrict the shock to one individual node.
Focusing on the Pareto dominant equilibrium x∗, we can ignore positive shocks

as supermodularity will guarantee that best responses converge back to the largest
equilibrium x∗. However, an arbitrarily small negative shock has the potential to
instigate a cascade of falling actions amongst neighbours (see Figure 4).

Recall that gk denotes a subgraph of g such that di(gk) ≥ k for all i ∈ Nk. For
a given j ∈ N with coreness cj(g) = k, let Gj be the intersection of all subgraphs
gk ⊆ g such that cj(gk) = k. A useful definition and lemma now follow:

Definition 3. For any i ∈ N and j ∈ Ni where ci = cj and ij ∈ Gj we say that i is
critical for j, written i→ j.

Lemma 3. If i→ j then cj (g− ij) = cj (g)− 1

It is then possible to construct a directed graph ĝ where ij ∈ ĝ if and only if
i → j. The directed graph ĝ identifies the possible transmission paths of small
shocks which may propagate through the network. As this graph is directed, it
becomes necessary to define in-degrees and out-degrees for each node. I therefore
use d−i (ĝ) to denote the in-degree of a node in ĝ, and d+i (ĝ) to denote their out-
degree, with respective neighbourhoods N−i (ĝ) and N+

i (ĝ).
We can also define a directed graph of supporting links denoted by ǧ, where

ij ∈ ǧ if and only j ∈ Ni and cj ≥ ci but ij /∈ Gj. Graph ǧ identifies neighbours of
i who help to support x∗i as an equilibrium action but are not affected by a shock
xi − ε. If agent i has a high out-degree in ǧ and a low out-degree in ĝ then the
effect of shock xi − ε on the local neighbourhood is minimal. I now formalise this
intuition in the following proposition:

Proposition 1. The equilibrium x∗ = c(g) is knife edge if and only if there exists i ∈ N
such that d+i (ǧ) < ci(g).

Proposition 1 states that if there is a core whose members mutually support
each other following a shock then this core is stable. It is a high out degree in ĝ
which prevents a shock from converging back to x∗, as i’s lower effort simultan-
eously causes the efforts of many neighbours to fall, preventing i from reverting
back to x∗i in later periods.
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g ĝ ǧ

Figure 5: A network with a stable equilibrium

An alternative interpretation of Proposition 1 is that if we wish to improve the
stability of equilibrium x∗ by adding links then we should target agents where
d+i (ǧ) < ci(g).14 Links should be added between these nodes and nodes playing
the highest effort in the network in order to minimise the effect of shocks.

Another implication is that subsidising or protecting critical nodes will min-
imise the effect of cascading failures when shocks are small. If agents potentially
face larger shocks where |ε| > 1 then we must broaden the definition of node
criticality so that a node i is considered critical for j if ci ≥ cj and ij ∈ Gj. Unlike
our original definition, there is always at least one such node in any network,
since dj(g) = cj(g) for some j ∈ N, all i ∈ Nj are critical for j. Since only crit-
ical nodes can instigate cascades, protecting them from shocks will ensure that
the equilibrium cannot be influenced by small and isolated shocks to individual
agents.

4.2 The Potential Maximising Equilibrium

The previous subsection assumed that shocks are rare and idiosyncratic, so the is-
sue of persistent randomness in actions has yet to be addressed. I now discuss an
equilibrium refinement which has been successful in the experimental econom-
ics literature for similar ‘minimum effort’ games. This refinement also takes into
account some notion of persistent shocks to actions.

14Note that this may change the coreness profile of the network and hence the Pareto dominant
equilibrium.

15



Experimental studies in Van Huyck et al. (1990), Goeree and Holt (2005), Chen
and Chen (2011) and others15 have identified the remarkable effectiveness of the
potential function as a tool for equilibrium selection in ‘minimum effort’ coordin-
ation games. Despite the infinite number of equilibria, these studies demonstrate
that the Nash equilibria which maximise the potential function of the game tend
to be observed experimentally for a variety of parameters. Crawford (1991) puts
forward an evolutionary explanation for these results, which is further strengthened
by Anderson et al. (2001), who show that the distribution of strategies in the logit
equilibrium maximises their stochastic potential function.

For games with discrete action sets Blume (1993) has shown that action pro-
files which are global maximisers of the potential function are stochastically stable
equilibria under the logit best response dynamic. As suggested by Goeree and
Holt (2005), one can view the potential maximising equilibria as being a close ana-
logue of the stochastically stable equilibria in the case of continuous action sets.
Beyond evolutionary arguments for the use of the potential function as a selection
device, Carbonell-Nicolau and McLean (2014) have shown that unique potential
maximisers are also trembling-hand perfect and strategically stable equilibria. I
therefore single out the potential maximising equilibrium as being particularly
robust and stable.

Monderer and Shapley (1996) define an exact potential function of a game as
a function ρ : X → R such that ∀xi, x′i ∈ Xi, ∀x−i ∈ X−i and ∀i ∈ N

ρ (xi, x−i)− ρ
(
x′i, x−i

)
= ui (xi, x−i)− ui

(
x′i, x−i

)
.

An exact potential function for this game is given by

ρ (x) = ∑
ij∈g

min
{

xi, xj
}
− 1

2 ∑
i∈N

x2
i (3)

By construction, any action profile which maximises ρ in each coordinate dir-
ection is also a Nash equilibrium and so the set of profiles which globally max-
imise ρ are a non-empty subset of these equilibria. The potential function in (3)
inherits the properties of the utility functions ui (e.g. it has increasing differences

15See Appendix F of Chen and Chen (2011) for details.
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in xi). The following lemma shows that it is also supermodular and strictly con-
cave on X.

Lemma 4. The potential function ρ is:
(a) Supermodular on X
(b) Strictly concave on X

This lemma establishes that a maximiser of ρ exists and is unique. I now use
the potential function as a tool for equilibrium refinement, as first suggested by
Monderer and Shapley (1996) in their original article. I will later provide some
further motivation for this choice by showing that the maximiser of ρ on X is
an arbitrarily close approximation to the maximiser of ρ on a finely discretised
version of X.

In order to find the potential maximising equilibrium I will take advantage
of the hierarchical nature of equilibrium profiles. The optimal actions of those
playing the highest xi in any equilibrium cannot be influenced by the actions of
those playing strictly lower efforts. This fact can be exploited to find the Nash
equilibrium which maximises ρ by first partitioning the set of agents according
to their actions in the potential maximising equilibrium x̃. To do so I first must
introduce some new notation and the concept of a density decomposition.

4.2.1 The Density Decomposition

Although there are various definitions of network cohesion, an overriding theme
is that cohesive subgraphs have a large number of links between nodes in that
subgraph relative to the rest of the network. As an absolute measure of a sub-
graph’s cohesiveness, subgraph density is amongst one of the simplest. Given a
subgraph ḡ ⊆ g we define its density as |ḡ||N̄| where N̄ is the set of agents with pos-
itive degree in that subgraph. A subgraph’s density is the ratio of the number of
internal edges to the number of nodes and therefore is half the average internal
degree.

In a similar manner to a k-core of g, we can also let ḡk ⊆ g denote the largest
subgraph of g such that |ḡk|

|N̄k|
≥ k for some k ≥ 0.16 Whereas a k-core orders sub-

16To require that ḡk must the ‘largest’ such subgraph means that ḡk is the union over all sub-
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Figure 6: The density decompositions of two networks

graphs based on a restriction to their minimum degree, we now place a restric-
tion on the average degree of nodes in that subgraph. Like the k-core decomposition
from Section 3.1 we can also construct a density decomposition of g, since all such
ḡk are nested within maximal subgraphs of lower densities.17

To construct a corresponding node-level statistic we can let δi be the largest
k such that i ∈ N̄k for some ḡk ⊆ g. Now define a density decomposition of g as
follows:

Definition 4. A density decomposition of a graph g is a partitionD = {D1, . . . , DK}
of N such that i ∈ Dk and j ∈ Dk if and only if δi = δj.

Like the k-core decomposition, the density decomposition allows us to construct
a nested hierarchy of the nodes based on their density values δi. However, un-
like the k-core decomposition, it does not seem that there exists a corresponding
‘pruning’ algorithm which allows us to uncover this nested structure in linear
time.18

graphs ḡ′k ⊆ g such that |ḡ
′
k|
|N̄′k|
≥ k. Such a union always preserves the property |ḡk |

|N̄k |
≥ k.

17To see why k′ > k must imply that ḡk′ ⊆ ḡk we can assume to the contrary and observe that
h = ḡk ∪ ḡk′ would be a subgraph with density which exceeds k, yet ḡk ⊂ h which contradicts
the assumption that ḡk is largest.

18 In fact, finding the density decomposition of the network is closely related to a problem
known in the computer science literature as the ‘densest subgraph’ problem. This was studied
first by Goldberg (1984), who shows that the problem of finding the densest subgraph which can
be induced using only k nodes can be solved by using a version of the celebrated max flow-min
cut theorem.
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I now use this notion to characterise the hierarchical nature of equilibrium
actions at the potential maximising equilibrium x̃.

4.2.2 The Potential Maximising Partition

Given a profile x̃ let {S̃1, . . . , S̃M} be a partition of N according to equilibrium
action such that i, j ∈ S̃m if and only if x̃i = x̃j. Index these subsets from 1 to M in
increasing order of their equilibrium action. Let g̃m denote the maximal subgraph
of g such that ij ∈ g̃m if and only if i ∈ S̃m and j ∈ S̃m′ for m′ ≥ m.

Focusing on the subset of agents who are in S̃M, their optimal decision cannot
depend on the actions of agents in N \ S̃M. The equilibrium actions of S̃M are
only pivotal along links to other members of S̃M, that is, along links ij ∈ g̃M.
Therefore, we may optimise for members of S̃M whilst ignoring the actions of
other subsets. Setting x̃i = x̃j = x̃M for all i, j ∈ S̃M the maximisation problem for
agents in S̃M is

max
xM
|g̃M| xM −

∣∣S̃M
∣∣ 1

2
x2

M

The solution to this maximisation problem is x̃M = |g̃M|
|S̃M| , which is the density

of the subgraph g̃M. Since an agent in S̃M−1 is pivotal along all links to others
S̃M−1 and those in S̃M, the subgraph g̃M−1 includes links between agents in S̃M−1

and from S̃M−1 to S̃M. In general for S̃m we have

x̃m =
|g̃m|∣∣S̃m
∣∣ (4)

Condition (4) is a condition which any maximiser x̃ must satisfy. By specifying a
partition {S̃1, . . . , S̃M} of N we therefore also specify an equilibrium action profile
via condition (4) and the implied subgraphs g̃1, . . . , g̃M. Using the concept of a
density decomposition I now characterise the Nash equilibrium profile which
maximises the potential function.

Theorem 2. The potential maximising partition of N is {S̃1, . . . , S̃M} = D where the
equilibrium action of each i ∈ S̃m is given by (4).

Whilst the Pareto dominant equilibrium partitioned nodes into nested sub-
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graphs based on minimum degree, the potential maximising equilibrium parti-
tions nodes into nested subgraphs based on average degree.

In the potential maximising equilibrium, agents in the densest subgraph of g
will play the highest action, followed by those remaining in the second densest
subgraph, followed by those remaining in the third, and so on. Since costs are in-
curred at nodes but benefits are received along edges, agents in subgraphs which
have a large number of edges spanned by a small number of nodes (i.e. high
density) play higher equilibrium actions.

Two examples of a potential maximising partitions are shown in Figure 6. The
densest subgraph of the network displayed in Figure 6 panel (a) is the subgraph
formed by nodes in A. This subgraph has an average internal degree of 3.25,
hence their equilibrium effort is x̃A = 13

8 = 1.625. The subgraph formed by nodes
in A ∪ B is the second most dense in g and so agents in B play x̃B = 9

6 = 1.5.
Finally, the network as a whole is the third most dense and so agents in C play
x̃C = 1. It is worth noting that agents with higher coreness do not necessarily
play higher actions in the potential maximising equilibrium. In Figure 6 (a) there
is a subset of agents in B with coreness 3 who play a lower action than the of
agents in A with coreness 2 (see also Figure 3).

Returning to my justification for using the potential function as an equilibrium
selection tool I conclude this section by showing that the maximiser of ρ on X is an
arbitrarily close approximation to the maximiser of ρ on a discretised version of
X. Let X (z) denote a discretisation of X with parameter z := 1

q for some q ∈ N+.
Let X(z) = ∏i Xi (z) where the set Xi (z) is such that xi ∈ Xi (z) if and only if
for some p ∈ N0 where p ≤ q we have that xi =

p
q x̄ . Taking z → 0 allows us

to approximate the continuous action game Γ by the discrete action game Γz =

〈N, X (z) , u〉. The following lemma demonstrates that the potential maximiser of
the continuous action game approximates that of the discrete game with arbitrary
precision by taking z small enough.

Lemma 5. For any discretised minimum effort game Γz we have that ‖x̃ (z)− x̃‖2 → 0
as z→ 0.

Appealing to previously mentioned results on the stochastic stability of poten-
tial maximisers, I therefore view x̃ as a close approximation to the stochastically
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stable outcome of a finely discretised minimum effort game on a network.19

5 Social Efficiency

I now consider the minimum effort game from a social planner’s perspective.
Focusing first on the case where a network designer can costlessly add edges
between nodes, it is worth noting that each utility function ui (xi, x−i) displays
increasing differences in di.20 Similarly, the potential function ρ (x, d) also exhib-
its increasing differences in the vector of degrees d.

An application of Theorem 2.8.1 from Topkis (1998) shows that if di (g) ≥
di (g′) for each i then x∗ (g) > x∗ (g′) and x̃ (g) > x̃ (g′). Although it is obvious
that the coreness of nodes cannot decrease by adding more links to a network,
the impact on the density decomposition is perhaps less clear. The application
of Topkis’ theorem therefore means that the complete network always permits
the highest action profile in either the Pareto dominant or potential maximising
equilibrium.

The next question one may ask is whether the Pareto dominant equilibrium
is also socially efficient. Defining a utilitarian social welfare function U (x) =

∑i∈N ui (x) we can examine the difference in welfare between the social optimum
and Pareto dominant Nash equilibrium x∗. As shown in Proposition 2 below, the
Pareto dominant Nash equilibrium only maximises social welfare in one special
case.

Proposition 2. The Pareto dominant Nash equilibrium maximises social welfare if and
only if the graph is regular.

When the network is regular (i.e. di (g) = dj (g) for all i and j) then a social
planner can implement the socially optimal level of effort in equilibrium without
transfers. However, the equilibrium x∗ in regular networks is unstable in the
sense of Proposition 1. A trade-off therefore exists between the social efficiency
of x∗ and the stability of the equilibrium.

19The proof of Lemma 4 uses some special properties of the minimum effort game and therefore
such approximations are not always valid.

20In other words, fixing the profile of others’ actions at x−i ∈ X−i, ui (xi, x−i, di) −
ui
(

x′i , x−i, di
)
≥ ui

(
xi, x−i, d′i

)
− ui

(
x′i , x−i, d′i

)
for xi > x′i and di > d′i
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To compute the socially optimal effort profile for any network, it is possible
to directly apply the ideas from Section 4.2, since U (x) has a near identical struc-
ture to ρ (x). It is straightforward to verify that the optimal solution will again
partition agents according to the density decomposition D and that efforts will
be such that xm = 2x̃m for each m ∈ {1, . . . , M}. Therefore, it is again dense
subgraphs which permit the highest possible action by nodes in the network.

A social planner may be interested in bounds on the divergence between the
Pareto dominant Nash equilibrium and socially optimal outcomes across differ-
ent types of networks. This issue is examined using a concept known as the price
of stability, which is defined as the ratio of the total utility surplus in the best Nash
equilibrium to the total surplus at the social planner’s optimum.21

As demonstrated in Proposition 2, the price of stability PoS := U (x∗) /maxx∈XU (x)
is only equal to 1 in the case of regular networks. However, it is possible to show
PoS is also bounded below by 3

4 .

Proposition 3. The price of stability lies in the interval (3
4 , 1].

The value of the welfare function in the potential maximising equilibrium al-
ways places a lower bound on what can be achieved in x∗. As shown in the
proof of Proposition 3, this lower bound of 3

4 is approached in the limit for a star
network with a very large number of spokes. In contrast to regular networks,
the equilibrium in the star network is both least efficient from the social plan-
ner’s perspective and also knife edge, as the hub of the star is critical for all other
agents. The line network is another example where the lower bound of 3

4 is ap-
proached in the limit, yet the equilibrium in the line network can never be knife
edge.

We can conclude therefore that while Pareto dominant equilibria in regular
networks are socially efficient, they lie relatively ‘far away’ from the potential
maximising equilibria and are therefore unlikely to be stable in the long run. On
the other hand, while the Pareto dominant equilibria in the star and line networks
are socially inefficient, they coincide with the potential maximising equilibria and
are therefore likely to be more robust.

21See Nisan et al. (2007).
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With reference to the results on equilibrium stability in Section 4, although
adding links may increase the stability of x∗ in the face of small random shocks,
they also increase the PoS and so reduce the benefit from decentralising decisions
to individual agents. Therefore, a trade off exists from the perspective of a net-
work designer as redundant links bring stability but may be costly to maintain
(both in terms of a link cost and the PoS).

6 Conclusion

Strategic complementarity and the need for coordination are central features of
many economic decisions. Who we interact with in our social network and the
way in which these networks interlink has an impact on these decisions. Previous
research on games on networks has focused on the tractable ‘linear-quadratic’
case, yet very little is known about different (non-linear) functional forms. In this
paper I have examined the case where the interaction between a pair of agents is
given by the minimum effort between the two parties.

A major contribution has been to highlight the link between effort levels in
two salient equilibria of the game and the network’s cohesion and density. Both
equilibria allow us to construct a hierarchical and nested decomposition of the
nodes according to the extent of their presence in dense and cohesive subgraphs
of the network.

In the Pareto dominant equilibrium of the model, agents play actions equal to
their coreness, a well-known concept in the social networks literature. Coreness
can also be regarded as a coarse measure of centrality, and so I provide a micro-
foundation for this measure by showing that it arises naturally from a threshold
game played on a network.

I also look at equilibrium stability and show that the Pareto dominant equi-
librium can be ‘knife edge’ in some networks. A small and temporary shock to
the effort of one node can lead to a cascade of falling actions which prevents
agents from returning to this equilibrium. Another key contribution is therefore
my characterisation of networks which are robust to such shocks. I also identify
nodes who can be targeted in order to prevent unravelling of the Pareto dominant
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equilibrium.
In the course of investigating equilibrium stability, I introduce a new concept

known as the density decomposition. This decomposition characterises the poten-
tial maximising equilibrium, which I argue can be viewed as a close analogue of
the stochastically stable outcome. Agents who are members of the densest sub-
graph (in terms of average degree) will play the highest effort in this regime.

Future work may wish to consider the role of a social planner in targeting
nodes or links to subsidise. For example, a designer could pay a given node to
increase their effort, raising the actions of others in equilibrium. For nodes who
have coreness ci but are first to be removed in the iterative pruning process used
to uncover the ci + 1 core, we can provide transfers to these nodes in order to pre-
vent cascades of falling actions for neighbours j with dj > cj = ci. Alternatively,
a social planner could wish to identify particular links which, if added, would
bring the greatest increase to the coreness of agents. Related questions have been
examined in Bhawalkar et al. (2012) but remain an open area for study.
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Appendices

A Proofs

Proof of Lemma 1. Fix a profile x−i and define BRi := min {xi | xi ≥ di (xi, x−i)}
and BRi = max {xi | xi ≤ di (xi, x−i)}. By construction, it must be that BRi (x−i)

satisfies BRi ≤ BRi and BRi ≤ BRi.
Since BRi = BRi satisfies (1), this is also true for BR′i > BRi. Similarly, BR′′i <

BRi must also satisfy (2). However if BRi < BRi then at least two different profiles
jointly satisfy (1) and (2). This contradicts the known fact that BRi (x−i) is unique.
So we conclude that BRi = BRi = BRi (x−i).

Proof of Lemma 2. Take any agent l ∈ N with cl (g) = k and consider the sub-
graph gk which forms the largest k-core in g. Note firstly that the minimum de-
gree of nodes in gk is k and secondly that l ∈ Nk. By removing any single link
from gk the minimum degree of agents in gk − ij decreases at most by 1. In the
non-trivial case where dl (g) ≥ 2 then agent l must have positive degree in gk− ij
and according to Definition 1 gk − ij is at least a (k− 1)-core.

Proof of Theorem 1. To show that x∗ = c(g) is an equilibrium, partition the agents
into subsets {S1, S2, . . . , SK} such that ci = k for all i ∈ Sk. Consider the set of
agents SK and note that if xi = ci then condition (1) is satisfied for all i ∈ SK, since
no agents play higher efforts. The number of neighbours playing weakly higher
effort is ci = xi for i ∈ SK and so condition (2) also holds. Now consider SK−1 and
note again that xi′ ≥ di′ (x) for all i′ ∈ SK−1, otherwise these agents would have
K neighbours with coreness K. Furthermore di (xi, x−i) ≥ xi′ since i′ ∈ SK−1 are
linked to at least K − 1 neighbours with coreness K − 1, so (2) again holds. This
argument applies for all lower subsets and so the action profile x∗ = c (g) is a
Nash equilibrium.

To show that this equilibrium is maximal assume that there exists another
equilibrium vector of actions x′ such that x′ > x∗. Take any i ∈ N playing
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x′i > x∗i = ci in equilibrium. To be an equilibrium i must have at least dx′ie
neighbours playing x′j ≥ x′i. Moreover, these agents j must have at least dx′je
neighbours playing x′k ≥ x′j. Continuing with this reasoning contradicts the as-
sumption that the coreness of node i was ci < x′i since we can now construct a
subgraph containing i where each node has at least degree dx′ie within that sub-
graph.

Proof of Lemma 3 . The fact that i → j =⇒ cj (g− ij) = cj (g) − 1 follows
immediately from Definition 3 and Lemma 2, since there is no gk ⊆ g which
contains j but not i.

Proof of Proposition 1. I first prove that if d+i (ǧ) < ci(g) for some i ∈ N then
x∗ is knife edge. Pick any individual with d+i (ǧ) < ci(g) and lower their effort
to ci(g) − ε at t = 0. At period t = 1 i’s effort returns to ci but the efforts of
j ∈ N+

i (ĝ) fall to xj < cj. Since there are only d+i (ǧ) unaffected neighbours of i
at t = 1, i’s action again falls at period t = 2, causing the actions of j ∈ N+

i (ĝ) to
fall back to xj in period t = 3. The pattern of periods 2 and 3 then cycles and so
xt does not return to x∗.

To prove that if d+i (ǧ) ≥ ci(g) for all i ∈ N then x∗ is not knife edge I will
make use of two lemmas:

Lemma 6. If d+i (ǧ) ≥ ci(g) for all i ∈ N then ĝ is acyclic.

Proof. Assume to the contrary that a directed cycle i → j,. . . ,j′ → i in ĝ exists.
Since i → j we know that ij ∈ ĝ =⇒ ij /∈ ǧ and hence d+i (ǧ) ≥ ci(g) implies
that i is linked to at least ci + 1 agents with coreness ci or greater. However,
i → j means that j has exactly ci = cj neighbours of coreness ci or greater, since
cj(g− ij) = cj(g)− 1 by Lemma 3. Note that removing ij cannot indirectly lower
cj′ for j′ 6= j due to the fact that di > ci. Since i has strictly more neighbours of
coreness ci = cj than j, we reach a contradiction by iterating along the cycle.
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Lemma 7. If i→ j and i→ j′ then j′ /∈ Nj (g).

Proof. Since j has ci neighbours of coreness ci and ci = cj = cj′ this means that if
j′ ∈ Nj then j′ is one such agent of coreness ci, hence j′ → j. This is also true for j
meaning that j→ j′, which would create a cycle and therefore a contradiction.

I now show that d+i (ǧ) ≥ ci(g) for all i ∈ N implies that x∗ is not knife edge.
Assume that a node i lowers action to ci − ε at t = 0. Since d+i (ǧ) ≥ ci(g) and ĝ
is acyclic, this permits i to revert back to playing ci at t = 1. Agents j ∈ N+

i (ĝ)
decrease action to xj < cj at t = 1 but permanently return to cj from t = 2.
To see why, note first that j has exactly cj neighbours of coreness cj or greater.
Now consider k ∈ Nj such that ck = cj and observe that k → j. Yet, assuming
d+k (ǧ) ≥ ck(g) guarantees for any k in the neighbourhood of some j ∈ Ni that
k’s effort cannot be affected even if all such j ∈ Ni lower their efforts, since k
has a supporting core which does not include any of the affected agents j ∈ Ni.
Moreover, by Lemma 7 we know that k’s effort cannot be directly affected by i’s
shock.

Therefore, agents k ∈ Nj cannot be influenced by the shock and the cascade
stops after 1 period. Since i reverts at t = 1 and all j ∈ N+

i (ĝ) revert at t = 2,
efforts converge back to x∗ at t = 2.

Proof of Lemma 4. For (a) we need that ρ (x ∨ x′) + ρ (x ∧ x′) ≥ ρ (x) + ρ (x′) for
any x and x′. Applying (3) costs immediately cancel on both sides, resulting in

∑ij∈g

(
min

{
max{xi, x′i}, max{xj, x′j}

}
+ min

{
min{xi, x′i}, min{xj, x′j}

})
≥ ∑

ij∈g

(
min{xi, xj}+ min{x′i, x′j}

)
which clearly holds along each link.

Since −1
2 ∑i∈N x2

i is strictly concave in X, for part (b) of the lemma we must
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verify that ∑ij∈g min
{

xi, xj
}

is concave. We see that

λ min{xi, xj}+ (1− λ) min{x′i, x′j} ≤ min{λxi + (1− λ) x′i, λxj + (1− λ) x′j}

holds with equality when xi ≤ xj and x′i ≤ x′j. It is easily checked that when
xi ≤ xj but x′i ≥ x′j the above also inequality holds (strictly if xi < xj and x′i > x′j).
The inequality therefore holds when summing over all links. Since ρ is then the
sum of a concave and a strictly concave function we conclude that ρ is strictly
concave.

Proof of Theorem 2. Let {S̃1, . . . , S̃K} be the optimal partition of N where x̃i sat-
isfies (4) for all i ∈ N. To see that {S̃1, . . . , S̃K} = D note first that if S̃K 6= DK then
the subset of nodes DK can change their action to δK to increase ρ. Since (4) holds
at any potential maximum, x̃i ≤ δK for i ∈ N. Efforts must strictly increase for
some i ∈ DK, which must increase ρ due to supermodularity.

To show that S̃K−1 = DK−1 we can apply the same logic. Taking the actions
of S̃K = DK as given, if S̃K−1 6= DK−1 then DK−1 can optimally increase efforts,
which must increase ρ by the same argument as before. Noting that changes in xi

by nodes playing lower effort in equilibrium cannot influence incentives of those
above, we can continue this reasoning downwards for all other subsets in the
partition to complete the proof.

Proof of Lemma 5. Any maximiser of ρ has a hierarchical structure where the
group of agents exerting maximal effort x̃K do not depend on the effort levels of

those below. As ρK = |g̃K| x̃K −
|S̃K|

2 x̃2
K is a strictly concave function, x̃z,K satisfies

|x̃z,K − x̃K| ≤ z. A similar argument holds for all other agents exerting optimal
efforts x̃k for k ∈ {1, . . . , K− 1}. This implies that ‖x̃ (z) − x̃‖2 ≤

√
nz and the

result immediately follows.
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Proof of Proposition 2. To prove the ‘if’ direction we can note that for a d-regular
graph xi = xj for all i, j ∈ N at the social optimum. This follows from the fact
all actions are weak complements and all agents are identical. The problem then
becomes

max
x

2 |g| x− |N|2 x2

First order conditions imply that the socially optimal action is xi = 2 |g||N| = d = ci.
To prove the ‘only if’ direction I use a constrained optimisation formulation

of the problem with a vector of dummy variables y such that yij := min
{

xi, xj
}

max
x,y

2 ∑ij∈g yij − 1
2 ∑i∈N x2

i

subject to yij ≤ xi, yij ≤ xj

At least one of the constraints must bind with equality for each ij ∈ g. The
Lagrangian for the reformulated problem is

L = 2 ∑
ij∈g

yij −
1
2 ∑

i′∈N
(xi′)

2 − ∑
ij∈g

λij
(
yij − xi

)
− ∑

ij∈g
µij
(
yij − xj

)
Let λij be the Lagrange multiplier for constraint yij ≤ xi when i < j and vice
versa for µij. The first order conditions with respect to yij and xi are

∂L
∂yij

= 2− λij − µij = 0
∂L
∂xi′

= ∑ij∈g:i<j λij + ∑ij∈g:i>j µij − xi′ = 0

Rearranging and summing these over all edges and N respectively gives 2 |g| =
∑ij∈g

(
λij + µij

)
and ∑i′∈N xi′ = ∑ij∈g

(
λij + µij

)
and so ∑i xi = 2 |g| = ∑i di at

any social optimum. If the network is not regular then ci < di for some i ∈ N and
so there is too little effort relative to the social optimum.

Proof of Proposition 3. The proof proceeds in three steps:
(1) I first establish that PoS is bounded from below by the ratio of the surplus
generated in x̃ to surplus generated at the social optimum. Using the ideas of
Theorem 2 it is straightforward to see that if x is the action profile in the socially

29



efficient case, then x = 2x̃. Since the action in the Pareto dominant equilibrium
is weakly higher than x̃ we know that U (x̃) ≤ U (x∗) and a lower bound on the
price of stability is given by

PoS (g) ≥ U (x̃)
U
(
xopt

) =
∑ij∈g 2 min

{
x̃i, x̃j

}
−∑i

1
2 x̃2

i

∑ij∈g 4 min
{

x̃i, x̃j
}
−∑i 2x̃2

i
≡ PoS (g) (5)

(2) Using the approach in the proof of Proposition 2 we consider the maximisation
problem

max
x,y

∑ij∈g yij − 1
2 ∑i∈N x2

i

subject to yij ≤ xi, yij ≤ xj

This yields first order conditions

λij + µij = 1 ∀ij ∈ g (6)

∑
ij∈g:i<j

λij + ∑
ij∈g:i>j

µij = x̃i ∀i ∈ N (7)

Equation 6 and the complementary slackness condition together imply that yij =
λij x̃i + µij x̃j. Summing this over all edges gives

∑
ij∈g

yij = ∑
i∈N

x̃i

(
∑

ij∈g:i<j
λij + ∑

ij∈g:i>j
µij

)

and using (7) we see that ∑i∈N x̃2
i = ∑ij∈g yij.

We can also rearrange (5) to obtain

(PoS (g)− 1
4
) ∑

i∈N
x̃2

i = (2PoS (g)− 1) ∑
ij∈g

yij

and so PoS (g) ≥ PoS (g) = 3
4 .

(3) Finally, I show that PoS in a large star network approaches 3
4 as n→ ∞. Since

the coreness of all agents in any star network is ci = 1. As the star as a whole is the
densest subgraph of the network, the potential maximising equilibrium action in
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a star network with 1 hub and M spokes is given by

x̃i =
M

M + 1

So limM→∞ PoS (gstar) is therefore

lim
M→∞

2M · 1− 1
2(M + 1) · 12

4M
( M

M+1

)
− 2(M + 1)

( M
M+1

)2 = lim
M→∞

M + 1
M

− 1
4

(
M + 1

M

)2

=
3
4

B Private Benefits and Weighted Links

I now consider the general case where for each i ∈ N we assume that utility
functions are given by

ui = aiixi + ∑
j∈Ni

aij min
{

xi, xj
}
− γi

2
x2

i (8)

where aii ≥ 0 is the marginal private benefit from increasing xi and γi ≥ 0 is the
private cost parameter. The parameters aij are interpreted as the strength of the
externality between agent i and j. We could in principle allow the weights aij to
be negative, which would mean that ui = aiixi − ∑j∈Ni

∣∣aij
∣∣min

{
xi, xj

}
− γi

2 x2
i .

We could then rewrite this utility function as

ui =

(
aii + ∑

j∈N
aij

)
xi + ∑

j∈Ni

aijmax
{

0, xj − xi
}
− γi

2
x2

i .

With a suitable condition on aii we could then interpret this as a model of con-
spicuous consumption on networks, as studied by Immorlica et al. (2015), who
find a similar ‘stratified’ equilibrium which divides agents in to ‘classes’. Since
this is studied elsewhere I maintain the assumption that aij ≥ 0 and that agent’s
efforts exhibit positive externalities.

In order to extend Theorem 2 I will assume that aij = aji, although Theorem 1
could easily be extended to the case of directed networks. We may now think of
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individuals as therefore being connected by a weighted but undirected network.

B.1 Generalised Coreness

To characterise equilibria in this broader case, the concept of the coreness of a
node must be generalised to include properties other than their degree. Follow-
ing Batagelj and Zaveršnik (2011) I will define a ‘generalised coreness’ for each
node via the use of a node property function. For each subgraph h ⊆ g the node
property function will assign a value φi ∈ R to each node, as a function of the
link weights aii, aij and cost parameters γi. Letting H denote the set of possible

subgraphs of g, the node property function is a function φ : R
|g|
+ ×Rn

+×H → Rn.
I now define a generalised core of order k as follows:

Definition 5. A generalised core of order k is a subgraph h ⊆ g such that φi (ai, γi, h) ≥
k for each i ∈ N (h).

The notion of degree coreness which was studied earlier in the paper can be
considered a special case where we define the node property function to be φi =

di (h). Analogously to the case of degree coreness, we can find generalised cores by
repeatedly pruning nodes which have φi (a, h) < k from successive subgraphs of
g (see Theorem 1 of Batagelj and Zaveršnik (2011)). Agents will therefore have a
corresponding ‘φ-coreness’ denoted by cφ

i , which is the maximal k such that agent
i is in a generalised core of order k but not one of order k′ for k′ > k.

Definition 6. A node i ∈ N has φ-coreness cφ
i (g) = k if it is contained in a general-

ised core of order k but not one of order k′ for k′ > k.

To characterise the maximal equilibrium in the case of heterogeneous costs
and benefits the value assigned to each node by the node property function is
given by

φi (ai, γi, h) =
aii + ∑j∈Ni∩N(h) aij

γi

This specification of the node property function gives agent i’s marginal benefit
(relative to cost) from increasing effort when all other agents j ∈ N (h) have
strictly higher efforts.
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Proposition 4. The Pareto dominant Nash equilibrium profile in the generalised case is
x∗ = cφ.

Proof. Since (8) is still concave in xi given x−i we need only verify that marginal
changes in xi cannot increase utility in order to show that x∗ = cφ is an equilib-
rium. Suppose that any node i increases their effort at marginal cost γic

φ
i . The

gross marginal benefit is aii plus aij along every link to nodes with strictly higher
effort (and therefore generalised coreness). This can only increase i’s utility if this
gross marginal benefit exceeds γic

φ
i , yet this is a contradiction as there must then

exist a subgraph h′ ⊆ g where φi (a, h′) > cφ
i .

Decreasing xi below cφ
i must also be suboptimal since we could increase ui

by marginally raising xi. Letting hi denote the subgraph spanned by all nodes
j ∈ N such that cφ

j ≥ cφ
i we see that if xi < cφ

i then our gross marginal benefit

from increasing xi is aii + ∑j∈Ni∩N(hi)
aij = γic

φ
i > γixi. To show that it is the

maximal equilibrium of the game we can again repeat the argument of Theorem
1 by supposing it is not and then noting that this contradicts the definition of
φ-coreness.

Compared to the case in the main section of the paper, agents with higher aii

parameters need lower weighted degrees to sustain a given level of effort. In the
case where aii = a for all i ∈ N then weighted degree coreness will determine
differences in Pareto dominant equilibrium efforts.

B.2 Potential Maximising Equilibrium

In order to replicate the other main result of the paper (Theorem 2) we must
define a new potential function

P (x) = ∑
ij∈g

aij min
{

xi, xj
}
+ ∑

i∈N
(aiixi −

γi

2
x2

i )

We can then proceed to analyse the potential maximising equilibrium in this
more general case by constructing a weighted density decomposition of the network
in a similar vein to the density decomposition from Section 4.2. Where previously
ḡk ⊆ g denoted the largest subgraph such that |ḡk|

|N̄k|
≥ k for some k ≥ 0, let ḡ′k
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denote the largest subgraph such that

∑i∈N̄′k
aii + ∑ij∈ḡ′k

aij

∑i∈N̄′k
γi

≥ k

As with the density decomposition in Section 4.2, these subgraphs are nested. To
construct a corresponding node-level statistic we can let δ′i be the largest k such
that i ∈ N̄′k for some ḡ′k ⊆ g. We now have the following definition of a weighted
density decomposition:

Definition 7. A weighted density decomposition of a graph g is a partition D′ =
{D′1, . . . , D′K} of N such that i ∈ D′k and j ∈ D′k if and only if δ′i = δ′j

As in Section 4.2 the values of δ′i will partition the nodes by their equilibrium
efforts. In an identical manner to Section 4.2.2 we let {S̃′1, . . . , S̃′M} denote the
potential maximising partition in the general case and let g̃′m denote the maximal
subgraph of g such that ij ∈ g̃′m if and only if i ∈ S̃′m and j ∈ S̃′m′ for m′ ≥ m.
Given this partition, the corresponding optimal actions are

x̃m =
∑i∈S̃′m aii + ∑ij∈g̃′k

aij

∑i∈S̃′m γi
(9)

Proposition 5. The potential maximising partition of N is {S̃′1, . . . , S̃′M} = D′ where
the equilibrium action of each i ∈ S̃m is given by (9).

Proof. The proof is very similar to the proof of Theorem 2. We find the potential
maximising partition as a result of optimising subset by subset. By the previ-
ous proof we know that D′K must be the subset of agents exerting highest effort,
otherwise they could jointly deviate to δ′K to increase P . Iterating this argument
successive subsets of the partition in an identical manner to Theorem 2 we arrive
at the result.

If costs and private benefits were identical across agents such that aii = a
and γi = γ for all i ∈ N we see that the optimal partition of agents is based
on average internal weighted degree. Propositions 4 and 5 therefore show that
the main intuitions of the model extend to the case of agent heterogeneity and
weighted networks.
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