Pre-University Summer School

Game Theory (part 3)

We started today talking about optimal strategies (so called dominant strategies).

We then learnt about *Nash equilibrium* (a method to make predictions about what is likely to happen in a game).

- ▷ Is it always optimal for me to play a Nash equilibrium strategy?
- Does every game have a Nash equilibrium?

		Police		
		Monitor	Don't Monitor	
Driver	Speed	-50, 20	<mark>20,</mark> -10	
	Don't Speed	<mark>0</mark> , -5	<mark>0</mark> , 35	

Here there is no stable Nash equilibrium if:

- 1. Drivers can only pick either speed or don't speed.
- 2. Police and only pick either monitor or don't monitor.
- ▷ The problem here is that both players want to be *unpredictable*.

A Speeding Game

How often should the police monitor?

- ▷ Just enough to incentivise drivers not to speed.
- But not so much that we monitor unnecessarily.

How often do we monitor to make the drivers not want to speed all the time?

$$p(0) + (1-p)0 \ge p(-50) + (1-p)20$$
Driver payoff from Don't Speed
$$0 \ge 20 - 70p$$

$$70p \ge 20$$

$$p \ge 2/7$$

	Police			
	Monitor (p)	Don't Monitor (1-p)		
Speed	-50, 20	<mark>20,</mark> -10		
Don't Speed	<mark>0,</mark> -5	<mark>0,</mark> 35		

Monitor no less than 2 days per week.

▷ Payoff for police:
$$\left(\frac{2}{7}\right)5 + \left(\frac{5}{7}\right)35 = 26.43$$

Driver

Other Examples of Monitoring Games in Game Theory

- Employer-Employee monitoring: Employers may monitor productivity (or effort) to prevent time wastage.
- Environmental Agencies: Government agencies may monitor factories to ensure compliance with pollution regulations.
- Tax Authorities: Random audits may be conducted to encourage accurate reporting.
- Customs and Border Patrol: Randomised searches may help to discourage smuggling of illegal items.

Rock Paper Scissors

Rock, Paper, Scissors

Rules:

You will pick either 'Rock', 'Paper' or 'Scissors'

'Paper' beats 'Rock''Rock' beats 'Scissors''Scissors' beats 'Paper'

Suppose we each wager £1 to play this game. The winner therefore gains an extra £1 from winning and the loser will lose their £1.

	Rock	Paper	Scissors
Rock	0,0	-1,1	1,-1
Paper	1,-1	0,0	-1 , 1
Scissors	-1,1	1,-1	0,0

Side note: This is a special type of game called a 'zero sum' game.

Pre-University Summer School - Andrew Harkins, University of Warwick

Join at vevox.app

Or search Vevox in the app store

ID: 171-369-656

Pre-University Summer School

Join: vevox.app ID: 171-369-656

The Optimal Strategy?

According to the now defunct 'Rock-Paper-Scissors Society', Rock is the most popular strategy over the long history of tournaments they had until 2010.

Strategy	Frequency of Play (data from RPS tournaments)		Rock (35.4%)	Paper (29.6%)	Scissors (35.0%)	Total
Rock	35.4%	Rock				
Paper	29.6%	Paper				
Scissors	35.0%	Scissors				
					Expected wir	nings

- \triangleright If people play this way on average, then our best strategy is <u>Rock</u>.
- But if everyone else thinks this way, then our best strategy is <u>Paper</u>.
- And if everyone else thinks *this* way, then our best strategy is <u>Scissors</u>. \triangleright

The Optimal Strategy?

Is there a strategy which guarantees that we will always win money?

No. If one existed, then our opponent could copy it and we would always draw!

Is there a strategy which guarantees that we will never *lose* money?

<u>A 'mixed' strategy for RPS</u> Randomise between Rock, Paper and Scissors. Play each with 1/3 probability. Expected Winnings: If they play Rock = (1/3) 0 + (1/3) 1 + (1/3) - 1 = 0If they play Paper = (1/3) - 1 + (1/3) 0 + (1/3) 1 = 0If they play Scissors = (1/3) 1 + (1/3) - 1 + (1/3) 0 = 0

Key feature: We are unexploitable if the opponent's choice is as difficult as possible. *Preventing them from easily picking a winning strategy will prevent us from losing!*

A Penalty Shootout

- ▷ Kicker must shoot either Left or Right
- ▷ Goalkeeper must dive either Left or Right
- ▷ If the Kicker scores they get payoff 1, Goalkeeper gets payoff -1
- ▷ If the Goalkeeper saves they get payoff 1, Kicker gets payoff -1

Side note: This is another example of a 'zero sum' game.

Pre-University Summer School - Andrew Harkins, University of Warwick

A Penalty Shootout

- \triangleright The kicker wants to be unpredictable.
- \triangleright They do not want to give the goalkeeper a clear choice of what to do.
- What shooting strategy makes goalkeeper's decision as difficult as possible?
- ▷ What saving strategy makes the kicker's decision as difficult as possible?
- If they play like this then 50% of penalties are saved and 50% are scored.
 > (is this realistic?)

A Penalty Shootout (modified payoffs)

Now suppose the kicker has a strong right foot, so a shot to the left goes in 50% of the time even when the goalkeeper guesses correctly.

The payoffs of the game change to:

A Penalty Shootout (modified payoffs)

- ▷ Is it still optimal for the kicker/goalkeeper to randomise 50-50?
- ▷ 50-50 is no longer a stable equilibrium, in fact, both players wish to adjust their strategy.

New equilibrium is actually:

- ▷ Shoot Left 2/3^{rds} of the time and Right 1/3rd of the time.
- \triangleright Dive Left 2/3^{rds} of the time and Right 1/3rd of the time.

Now the kicker is guaranteed payoff of 1/3

(exercise: check this!)

Colonel Blotto is a game of *strategic mismatch*.

- \triangleright 2 Players have T 'troops' each.
- ▷ There are N 'fronts' which must have a number of troops allocated.
- Whoever has more troops on a given front wins that front (payoff +1)
- ▷ Whoever has less troops on a given front loses that front (payoff -1)

Applications:

- └ 'Troops' = Advertising expenditure / 'Fronts' = Different product markets
- > 'Troops' = R&D expenditure / 'Fronts' = Different product characteristics
- ▷ 'Troops' = Police vs. criminals / 'Fronts' = Areas of a city
- ▷ 'Troops' = Campaign spending / 'Fronts' = States in an election

Colonel Blotto Example

Suppose T=12 and N=3.

Any deterministic allocation of resources (troops) can be beaten by another!

Pre-University Summer School - Andrew Harkins, University of Warwick

Colonel Blotto

Main insights of the Colonel Blotto game:

- ▷ There is no deterministic strategy which cannot be exploited.
- ▷ Playing an unpredictable strategy is beneficial.
- \triangleright You do not always need all your troops to win.

If the game is not symmetric (e.g. one player has more troops) then it may be possible to guarantee a win.

▷ Weaker players can try to get around this by opening more 'fronts'

Game Theory (Part 3) - Summary

- ▷ To help make predictions in game theory we focus on stable outcomes.
- A Nash equilibrium is an outcome where each player picks their best strategy, given the strategy of the opponent.
- Sometimes these equilibrium strategies can involve randomisation.
- In a zero-sum game (if I win, you lose) we are best off picking a strategy which makes our opponent's decision as difficult as possible.