LECTURE NOTES ON THE PRINCIPAL AGENT MODEL
SIMPLIFIED MODEL
SIMPLIFIED MODEL

The Set-Up Two players: a firm and a worker.
SIMPLIFIED MODEL

The Set-Up Two players: a firm and a worker.

The sequential move-structure of the game:

1. Firm proposes a wage contract.
SIMPLIFIED MODEL

The Set-Up Two players: a firm and a worker.

The sequential move-structure of the game:

1. Firm proposes a wage contract.

2. Worker decides between accepting or rejecting the wage contract offered. If the worker rejects it, game ends with each player receiving a payoff of zero. But if worker accepts wage contract, then game moves to next stage.
SIMPLIFIED MODEL

The Set-Up Two players: a firm and a worker.

The sequential move-structure of the game:

1. Firm proposes a wage contract.

2. Worker decides between accepting or rejecting the wage contract offered. If the worker rejects it, game ends with each player receiving a payoff of zero. But if worker accepts wage contract, then game moves to next stage.

3. Workers chooses effort level e.
SIMPLIFIED MODEL

The Set-Up Two players: a firm and a worker.

The sequential move-structure of the game:

1. Firm proposes a wage contract.

2. Worker decides between accepting or rejecting the wage contract offered. If the worker rejects it, game ends with each player receiving a payoff of zero. But if worker accepts wage contract, then game moves to next stage.

3. Workers chooses effort level e.

4. Output is realized, wage is paid to worker, and the game ends.
Given effort, e: with probability ηe, output is high and revenue associated with that is v. But with probability $1 - \eta e$, no output is produced and zero revenue obtained. The former is a case of the "project" on which worker works being a success, while the latter a failure.

So note that worker’s effort generates "random" output.
Given effort, e: with probability ηe, output is high and revenue associated with that is v. But with probability $1 - \eta e$, no output is produced and zero revenue obtained. The former is a case of the "project" on which worker works being a success, while the latter a failure.

So note that worker’s effort generates "random" output.

All players are risk neutral.
Given effort, \(e \): with probability \(\eta e \), output is high and revenue associated with that is \(v \). But with probability \(1 - \eta e \), no output is produced and zero revenue obtained. The former is a case of the "project" on which worker works being a success, while the latter a failure.

So note that worker’s effort generates "random" output.

All players are risk neutral.

Expected profit to firm is: \(E\pi = (\eta e)v - w \), where \(w \) is wage.
Given effort, e: with probability ηe, output is high and revenue associated with that is v. But with probability $1 - \eta e$, no output is produced and zero revenue obtained. The former is a case of the "project" on which worker works being a success, while the latter a failure.

So note that worker’s effort generates "random" output.

All players are risk neutral.

Expected profit to firm is: $E\pi = (\eta e)v - w$, where w is wage.

Expect Utility to worker is: $EU = w - \frac{ce^2}{3}$, where $c > 0$.
FIRST-BEST EFFORT LEVEL
FIRST-BEST EFFORT LEVEL

Maximize $E \pi$ such that $EU \geq \bar{u}$.
FIRST-BEST EFFORT LEVEL

Maximize $E\pi$ such that $EU \geq \bar{u}$.

That is, choose e to maximize social surplus:
FIRST-BEST EFFORT LEVEL

Maximize $E\pi$ such that $EU \geq \bar{u}$.

That is, choose e to maximize social surplus:

$$\max_e \eta ev - \frac{ce^2}{3}.$$
FIRST-BEST EFFORT LEVEL

Maximize $E\pi$ such that $EU \geq \bar{u}$.

That is, choose e to maximize social surplus:

$$\max_e \eta ev - \frac{ce^2}{3}.$$

First-Order condition:

$$\eta v = \frac{2ce}{3}.$$

FIRST-BEST EFFORT LEVEL

Maximize $E\pi$ such that $EU \geq \bar{u}$.

That is, choose e to maximize social surplus:

$$\max_e \eta v - \frac{ce^2}{3}.$$

First-Order condition:

$$\eta v = \frac{2ce}{3}.$$

Hence, **first-best effort level is**:

$$e^* = \frac{3\eta v}{2c}.$$
FIRM CANNOT OBSERVE EFFORT, BUT ONLY OUTPUT LEVEL.
FIRM CANNOT OBSERVE EFFORT, BUT ONLY OUTPUT LEVEL.

Hence, firm's wage contract cannot be conditioned on e.
FIRM CANNOT OBSERVE EFFORT, BUT ONLY OUTPUT LEVEL.

Hence, firm’s wage contract cannot be conditioned on e.

But instead, firm’s wage contract is conditioned on observable and verifiable output.
FIRM CANNOT OBSERVE EFFORT, BUT ONLY OUTPUT LEVEL.

Hence, firm’s wage contract cannot be conditioned on e.

But instead, firm’s wage contract is conditioned on observable and verifiable output.

So, wage contract is a pair: (w_S, w_F), where w_S is wage when output is high (ie., project is a success) and w_F is wage when output is low (zero – project is a failure).
FIRM CANNOT OBSERVE EFFORT, BUT ONLY OUTPUT LEVEL.

Hence, firm’s wage contract cannot be conditioned on e.

But instead, firm’s wage contract is conditioned on observable and verifiable output.

So, wage contract is a pair: (w_S, w_F), where w_S is wage when output is high (ie., project is a success) and w_F is wage when output is low (zero – project is a failure).
Worker’s problem:

$$\max_e EU = (\eta e)w_S + (1 - \eta e)w_F - \frac{ce^2}{3}.$$
Worker’s problem:

\[
\max_e EU = (\eta e) w_S + (1 - \eta e) w_F - \frac{ce^2}{3}.
\]

FOC:

\[
\eta (w_S - w_F) = \frac{2ce}{3}.
\]
Worker’s problem:

\[
\max_e EU = (\eta e)w_S + (1 - \eta e)w_F - \frac{ce^2}{3}.
\]

FOC:

\[
\eta(w_S - w_F) = \frac{2ce}{3}.
\]

This implies that the subgame perfect equilibrium (SPE) effort level is:

\[
\hat{e} = \frac{3\eta(w_S - w_F)}{2c}.
\] (1)
RESULT 1:

If $w_S - w_F = v$, then $\hat{e} = e^*$. That is, in that case, SPE effort equals first-best effort level.
RESULT 1:

If $w_S - w_F = v$, then $\hat{e} = e^*$. That is, in that case, SPE effort equals first-best effort level.

Assume liquidity constrained.

That is: $w_S \geq 0$ and $w_F \geq 0$.
RESULT 1:

If $w_S - w_F = v$, then $\hat{e} = e^*$. That is, in that case, SPE effort equals first-best effort level.

Assume liquidity constrained.

That is: $w_S \geq 0$ and $w_F \geq 0$.

Proceeding backwards, we now choose wage contract (w_S, w_F) to maximize firms’ expected payoff subject to $e = \hat{e}$, as derived above in equation 1.
RESULT 1:

If \(w_S - w_F = v \), then \(\hat{e} = e^* \). That is, in that case, SPE effort equals first-best effort level.

Assume liquidity constrained.

That is: \(w_S \geq 0 \) and \(w_F \geq 0 \).

Proceeding backwards, we now choose wage contract \((w_S, w_F)\) to maximize firms’ expected payoff subject to \(e = \hat{e} \), as derived above in equation 1.

Thus:

\[
\max_{w_S, w_F} E\pi = \eta e(v - w_S) + (1 - \eta e)(0 - w_F),
\]

subject to \(e = \hat{e} \).
RESULT 1:

If $w_S - w_F = v$, then $\hat{e} = e^*$. That is, in that case, SPE effort equals first-best effort level.

Assume liquidity constrained.

That is: $w_S \geq 0$ and $w_F \geq 0$.

Proceeding backwards, we now choose wage contract (w_S, w_F) to maximize firms' expected payoff subject to $e = \hat{e}$, as derived above in equation 1.

Thus:

$$\max_{w_S, w_F} E\pi = \eta e(v - w_S) + (1 - \eta e)(0 - w_F),$$

subject to $e = \hat{e}$.
First, we claim that in the solution, $w_F = 0$. Argue by contradiction.
First, we claim that in the solution, $w_F = 0$. Argue by contradiction.

Suppose instead at the optimum, $w_F > 0$. Then one could decrease both w_S and w_F by same and small amounts, keeping \hat{e} constant (and hence satisfying equation 1), and in turn increase $E\pi$. Hence, a contradiction.
First, we claim that in the solution, $w_F = 0$. Argue by contradiction.

Suppose instead at the optimum, $w_F > 0$. Then one could decrease both w_S and w_F by same and small amounts, keeping \hat{e} constant (and hence satisfying equation 1), and in turn increase $E\pi$. Hence, a contradiction.

Substituting $w_F = 0$ into the maximand above, and also for $e = \hat{e}$, using equation 1, we need to now solve:

$$\max_{w_S} \frac{3\eta^2 w_S(v - w_S)}{2c}.$$
First, we claim that in the solution, $w_F = 0$. Argue by contradiction.

Suppose instead at the optimum, $w_F > 0$. Then one could decrease both w_S and w_F by same and small amounts, keeping \hat{e} constant (and hence satisfying equation 1), and in turn increase $E\pi$. Hence, a contradiction.

Substituting $w_F = 0$ into the maximand above, and also for $e = \hat{e}$, using equation 1, we need to now solve:

$$
\max_{w_S} \frac{3\eta^2 w_S(v - w_S)}{2c}.
$$
First Order Condition:

\[
\frac{3\eta^2 v}{2c} - \frac{3\eta^2 w_S}{c} = 0.
\]
First Order Condition:

\[
\frac{3\eta^2 v}{2c} - \frac{3\eta^2 w_S}{c} = 0.
\]

Solving for \(w_S \), we get \(w_S = \frac{v}{2} \).

Conclusion: In the unique SPE, the wage contract offered is \((w_S, w_F) = \left(\frac{v}{2}, 0 \right) \) and effort is \(\hat{e} = \frac{3\eta v}{4c} \).
First Order Condition:

\[
\frac{3\eta^2 v}{2c} - \frac{3\eta^2 w_s}{c} = 0.
\]

Solving for \(w_s \), we get \(w_s = \frac{v}{2} \).

Conclusion: In the unique SPE, the wage contract offered is \((w_s, w_F) = (\frac{v}{2}, 0) \) and effort is \(\hat{e} = \frac{3\eta v}{4c} \).

NOTE, the SPE effort is less than first-best effort.