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Abstract

We study an alternating offers bargaining model in which the set of possible utility pairs

evolves through time in a non-stationary, but smooth manner. In general, there exists a

multiplicity of subgame perfect equilibria. However, we show that in the limit as the time

interval between two consecutive offers becomes arbitrarily small, there exists a unique

subgame perfect equilibrium. Furthermore, we derive a powerful characterization of the

unique (limiting) subgame perfect equilibrium payoffs. We then explore the circumstances

under which Nash’s bargaining solution implements this bargaining equilibrium. Finally, we

extend our results to the case when the players have time-varying inside options.

r 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

This paper studies Rubinstein’s alternating offers bargaining game [15] in a non-
stationary setting. Binmore [1, Section 6] considers this case and shows through an
example that for any positive time interval, D; between two consecutive offers, a
continuum of subgame perfect equilibria (SPE) is possible. We adopt the same
assumptions, but also assume that the Pareto frontier evolves smoothly through
time. Although multiple SPE are possible for any D40; we show that as D-0; the
set of SPE converges to a unique (limiting) SPE. Moreover the limiting SPE is
described by a simple differential equation, whose solution has a clear geometric
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interpretation and which is tractable for dynamic applications. We also identify
conditions under which the Nash bargaining solution (with appropriate threat-
points) implements this solution.

There is a large matching literature where equilibrium is determined by
bargaining. Typically that literature adopts the static Nash bargaining approach
(see for example [14]). Binmore [1] and Binmore et al. [2] show this can be reasonable
in steady-state situations where payoffs do not change over time. However, more
recently the matching literature has considered non-steady-state equilibria (see for
example [5,7,10,17]) and bargaining situations where agents have time-varying
payoffs (for example, a worker’s unemployment benefit entitlement may be about to
expire, or a worker’s job skills may decline while unemployed, e.g. [4,8,14]). In such
environments, the strategic bargaining approach determines the equilibrium terms of
trade in a way which is consistent with how payoffs are expected to evolve over time.
In contrast, determining the terms of trade using the static Nash bargaining
approach may be restrictive. For example, Coles and Wright [5] demonstrate that the
two bargaining approaches can support qualitatively different matching equilibria;
in the context of a monetary economy they show that equilibria with strategic
bargaining can exhibit trading cycles, while the application of the static Nash
bargaining approach rules out such equilibria.

Coles and Wright [5] consider the non-stationary bargaining problem studied here.
This paper supplements their results in three ways. First, Coles and Wright [5] do not
establish that their ‘differential equation’ describes the limiting equilibrium to the
bargaining game as D-0: They simply assume it to be the case. This is not obvious
given Binmore’s continuum example. Second, Coles and Wright [5] provide a
uniqueness argument which applies only to a special case; that agents use Markov
strategies, that payoffs are additively separable (i.e., are of the form uiðxÞ þ viðtÞ)
and that the viðtÞ converge to some limit as t-N:1 We do not impose these
restrictions, especially as the latter would require that the underlying market
equilibrium converges to a steady state (which is formally inconsistent with their
limit cycle example, and to extended models which allow for say endogenous growth
and/or technology shocks). Third, our paper provides a nice geometric interpretation
for the limiting equilibrium which shows how the strategic bargaining approach and
the Nash bargaining approach are properly related.

Other related work includes Merlo and Wilson [9] and Cripps [6]. Those papers
assume that two agents negotiate over some pie ðx1; x2Þ satisfying x1 þ x2pMt;
where agreement at time t implies that agent i’s payoff is e�rtuiðxiÞ: If Mt evolves
deterministically, then that preference structure is a special case of those considered
in this paper—it describes a one-shot bargaining game where given agreement, the
traders then exit the market for good. In essence that bargaining structure describes
an optimal tree-felling problem where Mt evolves according to an (exogenous,

1 In the context of their monetary economy, uiðxÞ is the instantaneous payoff to agent i from obtaining x

units of a ‘‘pie’’, while viðtÞ is the expected payoff to an unmatched agent i at time t in a market

equilibrium.
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stationary) Markov process. The frameworks are different and, in general, one is not
a subset of the other.

The rest of this paper is organized as follows. Section 2 describes the model
and Section 3 considers its SPE. Section 4 considers the relationship between the
unique (limiting) SPE and the Nash bargaining approach. Section 5 provides an
illustrative example in which agents have time-varying discount rates. Section 6
extends the analysis to time-varying inside options.

2. The model

Two players, A and B, bargain according to an alternating-offers procedure,
where the set OðtÞ of possible utility pairs available at time t is a non-empty subset of

R2: Bargaining begins at time s; where the players negotiate according to the
following procedure. At time s þ nD (where nAN � f0; 1; 2;yg; and D40), player i

makes an offer to player j ðjaiÞ; where i ¼ A if n is even (i.e., n ¼ 0; 2; 4; 6;y) and
i ¼ B if n is odd (i.e., n ¼ 1; 3; 5;y). An offer at time s þ nD is a utility pair ðuA; uBÞ
from the set Oðs þ nDÞ: Player j then decides whether to accept or reject the proposed
offer. If she accepts the offer, then the bargaining game ends. Otherwise, D time units
later, at time s þ ðn þ 1ÞD; player j makes a counteroffer to player i:

The payoffs are as follows. If the players reach agreement at time s þ nD (where
nAN) on ðuA; uBÞAOðs þ nDÞ; then player i’s ði ¼ A;BÞ payoff is ui: On the other
hand, if the players perpetually disagree (i.e., each player always rejects any offer
made to her), then each player obtains a payoff of zero.

Let OPðtÞ denote the Pareto frontier at time t—that is, the set of Pareto efficient

utility pairs available at time t: We assume that OPðtÞ is a connected set.

Furthermore, there exists %ut
A40 and %ut

B40 such that ð0; %ut
BÞAOPðtÞ and

ð %ut
A; 0ÞAOPðtÞ: For convenience, we describe this frontier by a function f where

uB ¼ fðuA; tÞ if and only if ðuA; uBÞAOPðtÞ; where the assumptions above imply f is
strictly decreasing in uA for all uAA½0; %ut

A
: The following two assumptions are

standard in the literature:

Assumption 1 (Concave Pareto frontiers). For each tX0; fð:; tÞ is concave in uA on
the interval ½0; %ut

A
:

Assumption 2 (Shrinking and vanishing Pareto frontiers). (i) For any tX0 and
uAA½0; %ut

A
; fðuA; t0Þ4fðuA; tÞ for all t0ot; and (ii) for any e40 there exists a T40

such that %ut
Aoe and %ut

Boe for all t4T :

Our third assumption replaces the (standard) stationarity assumption—we only
require that the Pareto frontier evolves smoothly over time:

Assumption 3 (Smoothly evolving Pareto frontiers). f is continuously differentiable
in t and uA:
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As Assumption 1 implies that (for any t) f is differentiable in uA almost

everywhere, the main role of Assumption 3 is that it ensures that the time derivative
exists—the Pareto frontier evolves smoothly over time. This plays no role when
D40; but is important in the limit as D-0:

3. Characterizing equilibria

Using Assumptions 1–3, our objective here is to characterize the set of equilibria in
the limit as D-0:2 In Section 3.1, we first characterize the set of Markov SPE, and
establish their existence. Then, in Section 3.2, we define our candidate limiting

equilibrium. Section 3.3 establishes our convergence results: Theorem 1 establishes
that in the limit as D-0; any Markov SPE converges to the candidate limiting
equilibrium, and then Theorem 2 establishes that in this limit any non-Markov SPE
also converges to this limiting equilibrium.

Before restricting attention to Markov SPE, note that in any SPE of any subgame
beginning at any time t; player i’s ði ¼ A;BÞ equilibrium payoff lies between zero
and %ut

i :

3.1. Markov equilibria: characterization and existence

For any D40 (fixed), we first consider the set of all Markov SPE. Let Gi ði ¼ A;BÞ
denote the set of times at which player i makes an offer, i.e.

GA ¼ fs; s þ 2D; s þ 4D;yg and GB ¼ fs þ D; s þ 3D; s þ 5D;yg;

and define G ¼ GA,GB:
Now consider an arbitrary Markov SPE. For each tAG; let vðtÞ ¼ ðvAðtÞ; vBðtÞÞ

(where vðtÞAOðtÞ) denote the equilibrium offer made at time t: It is straightforward
to show that Assumption 2(i) (shrinking pie) and the restriction to Markov strategies
imply there is no delay to trade in equilibrium, i.e. for any tAG; the equilibrium
offer vðtÞ is accepted. This implies that at any time tAGi ði ¼ A;BÞ; in equilibrium
player j ðjaiÞ accepts an offer ðuA; uBÞAOðtÞ if and only if ujXvjðt þ DÞ: It thus

follows that the equilibrium offer vðtÞ at time tAGi satisfies two standard properties,
which are formally stated below in (1) and (2). Eq. (1) states that in equilibrium
player j is indifferent between accepting and rejecting player i’s equilibrium offer
vðtÞ made at time tAGi; and Eq. (2) states that the equilibrium offer vðtÞ lies on the
Pareto frontier:

vjðtÞ ¼ vjðt þ DÞ for tAGi ðjaiÞ; ð1Þ

vBðtÞ ¼ fðvAðtÞ; tÞ: ð2Þ

2See for example, Binmore [1, Section 8] and Muthoo [11, Section 3.2.4] who argue that the limiting SPE

is the most interesting case.
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For tAGA; these equations imply that the sequence /vAðtÞStAGA
must satisfy the

following recursive equation:

fðvAðtÞ; tÞ ¼ fðvAðt þ 2DÞ; t þ DÞ: ð3Þ

Furthermore, as was noted above, it must also satisfy

vAðtÞA½0; %ut
A
 for all tAGA: ð4Þ

This argument implies the following proposition.

Proposition 1 (Characterization of Markov SPE). Fix D40: Given any sequence

/vAðtÞStAGA
satisfying (3) and (4), there corresponds a unique Markov SPE, with the

following pair of strategies:

* At time tAGA player A offers ðvAðtÞ;fðvAðtÞ; tÞÞ; and at times tAGB she accepts an

offer uAOðtÞ if and only if uAXvAðt þ DÞ:
* At times tAGB player B offers ðvAðt þ DÞ;fðvAðt þ DÞ; tÞÞ; and at times tAGA she

accepts an offer uAOðtÞ if and only if uBXfðvAðt þ 2DÞ; t þ DÞ:
There exists no other Markov SPE.

This proposition implies that a Markov SPE exists if and only if a sequence
/vAðtÞStAGA

satisfying (3) and (4) exists. By slightly amending the arguments used in

[1], it is straightforward to establish that such a sequence always exists, and, hence,
that a Markov SPE exists.3

Proposition 2 (Existence of Markov SPE). For any D40 there exists a Markov SPE.

As Binmore [1] demonstrates, given any D40; multiple solutions to (3) and (4)
may exist. However, we now focus on the set of Markov SPE in the limit as D-0:

3.2. A candidate limiting equilibrium

Using Assumption 3, a first-order Taylor expansion of Eq. (3) implies

fðvAðt þ 2DÞ; t þ DÞ ¼fðvAðtÞ; tÞ þ ½vAðt þ 2DÞ � vAðtÞ
fuðvAðtÞ; tÞ

þ DftðvAðtÞ; tÞ þ R; ð5Þ

where fu and ft denote the first-order derivatives of f w.r.t. uA and t; respectively,
and R is the remainder term. Using (3) to substitute for fðvAðt þ 2DÞ; t þ DÞ in (5),
rearranging and dividing by 2D; it follows that

vAðt þ 2DÞ � vAðtÞ
2D

¼ �1

2

ftðvAðtÞ; tÞ
fuðvAðtÞ; tÞ �

R

2D
: ð6Þ

3A proof is available upon request.
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This equation motivates our candidate for the limiting equilibrium. If we could argue
that the ratio of the remainder term to D disappears in the limit as D-0; we might
interpret (6) as a differential equation describing how player A’s equilibrium payoff
changes over time in the limiting equilibrium. We define such a solution as our
candidate limiting equilibrium.

Definition 1 (CLE). A candidate limiting equilibrium (CLE) is a pair of functions

ðvnAð:Þ; vnBð:ÞÞ such that

for all sX0; vnBðsÞ ¼ fðvnAðsÞ; sÞ; ð7Þ

where vnAð:Þ is a solution to the differential equation

dvA

ds
¼ �1

2

ftðvA; sÞ
fuðvA; sÞ ð8Þ

subject to vAðsÞAð0; %us
AÞ for all sX0: ð9Þ

Notice that the CLE describes a path ðvnAðsÞ; vnBðsÞÞ for all s; while in the previous

section s was fixed, but arbitrary. Also note the boundary condition (9) reflects two
facts—that a SPE requires vAðsÞA½0; %us

A
 for all s; and that Assumption 2(i)

(shrinking pie) implies that a proposer can always obtain some surplus (so that
viðsÞ ¼ 0 cannot be an equilibrium outcome). We now establish that such a CLE
exists and is unique.

Lemma 1 (Uniqueness). If a CLE exists, then it is unique.

Proof. By contradiction—suppose at least two CLE exist. Let xn
1 ; xn

2 denote two

different solutions to the differential equation (8) satisfying (9), and let yn
i ðsÞ ¼

fðxn
i ðsÞ; sÞ (which is well defined as xn

i satisfies (9)). Note that Assumption 2(ii)

(vanishing Pareto frontiers) implies %us
A-0 as s-N; and so lims-N ðxn

i ðsÞ; yn
i ðsÞÞ ¼

ð0; 0Þ; i.e. both paths converge asymptotically to ð0; 0Þ:
For each s; define the distance between the two trajectories as

CðsÞ ¼ �½xn

1ðsÞ � xn

2ðsÞ
½yn

1ðsÞ � yn

2ðsÞ
:

Note that xn
1ðsÞaxn

2ðsÞ implies CðsÞ40: Differentiating C with respect to s; using (8)

and rearranging gives

C0ðsÞ ¼ 1

2

½xn
1ðsÞ � xn

2ðsÞ
ftðxn
1ðsÞ; sÞ

fuðxn
1ðsÞ; sÞ

yn
1ðsÞ � yn

2ðsÞ
xn
1ðsÞ � xn

2ðsÞ
� fuðxn

1ðsÞ; sÞ
� �

� 1

2

½xn
1ðsÞ � xn

2ðsÞ
ftðxn
2ðsÞ; sÞ

fuðxn
2ðsÞ; sÞ

yn
1ðsÞ � yn

2ðsÞ
xn
1ðsÞ � xn

2ðsÞ
� fuðxn

2ðsÞ; sÞ
� �

:

Concavity of f (Assumption 1) and f decreasing in t (Assumption 2) implyC0ðsÞX0:
Hence, since xn

1ðs0Þaxn
2ðs0Þ for some s0X0; it follows that lims-N CðsÞX� ½xn

1ðs0Þ �
xn
2ðs0Þ
½yn

1ðs0Þ � yn
2ðs0Þ
40; which contradicts lims-N ðxn

i ðsÞ; yn
i ðsÞÞ ¼ ð0; 0Þ: &
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The proof reflects a simple geometric property of the CLE. Differentiating (7) with
respect to s and using (8) to substitute out ft implies

dvnBðsÞ=ds

dvnAðsÞ=ds
¼ �fuðvnAðsÞ; sÞ: ð10Þ

The right-hand side of (10) is the marginal rate of utility substitution along the
Pareto frontier at the equilibrium outcome. The left-hand side is the ratio of the
agents’ rate of utility loss by delay at the equilibrium outcome. Strategic bargaining
implies these two margins are the same. Geometrically, it says that the slope of the

CLE ðvnAðsÞ; vnBðsÞÞ at time s equals the absolute value of the slope of the Pareto

frontier OPðsÞ at that point. As drawn in Fig. 1 (which is in the appendix), concavity

of OP implies that any two trajectories satisfying (10) will tend to diverge (where a
larger value of vA implies a steeper trajectory).

An interesting feature of the uniqueness proof is that it uses a Liapunov-type
function whose structure is closely related to that of the Nash-product (which, recall,
is a key object in the definition of the Nash bargaining solution). Indeed, the proof of
the Convergence Theorem stated below relies on the same construction. However,
before doing that, we next establish existence of a CLE.

Lemma 2 (Existence). A CLE exists.

Proof. In the appendix.

Having established the existence and uniqueness of the CLE, we now establish our
main convergence results.

3.3. The unique limiting subgame perfect equilibrium

To emphasize the dependence of the set of Markov SPE on D; it is helpful to define
the following sets. For each D40; let FðDÞ denote the set of all sequences
/vAðtÞStAGA

which satisfy (3) and (4).4 Moreover, for each D40; let GðDÞ denote the
set of all Markov SPE payoffs to player A. Formally,

GðDÞ ¼ fuA: there exists a sequence/vAðtÞStAGA
AFðDÞ s:t: vAðsÞ ¼ uAg:

Of course as D changes, the set GðDÞ changes. Theorem 1 below establishes that GðDÞ
converges to a single point, namely vnAðsÞ; as D-0:

Theorem 1 (The Convergence theorem). Fix an arbitrary s: For any e40 there exists
%D such that for all Do %D

max
uAAGðDÞ

juA � vnAðsÞjoe:

4Where Proposition 1 implies FðDÞ essentially defines the set of Markov SPE (given D), and

Proposition 2 establishes this set is non-empty.
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Proof. In the appendix.

Theorem 1 implies that the Hausdorff distance between the set GðDÞ and fvnAðsÞg
converges to zero as D-0: The proof uses the distance measure CðtÞ defined above

but with xn
1ðtÞ ¼ vAðtÞ where /vAðtÞStAGA

AFðDÞ describes an equilibrium sequence

of payoffs given D40; and xn
2ðtÞ � vnAðtÞ: The intuition is that if the distance between

vnAðsÞ and vAðsÞ does not become small as D-0; then for D small enough, the

resulting trajectories /vAðtÞStAGA
and /vnAðtÞStAGA

necessarily diverge as t-N

(which contradicts their respective boundary conditions—that they both asymptote
to zero).

Having established convergence for Markov SPE, we now establish it for any non-
Markov SPE.

Theorem 2 (Unique limiting SPE). In the limit as D-0; any SPE converges to the

CLE.

Proof. In the appendix.

4. The relationship with Nash’s bargaining solution

As is well known, the unique SPE of Rubinstein’s [15] bargaining model can be
described by the Nash [12] bargaining solution of an appropriately defined
bargaining problem (cf., for example, [11,13]). We now extend this result to non-
stationary environments.

Theorem 2 has established that in the limit as D-0; the non-stationary bargaining
game possesses a unique SPE. In this limiting SPE, agreement is always struck
immediately where if the players begin negotiations at time s; then player A’s

equilibrium payoff is vnAðsÞ; where vnAð:Þ satisfies the differential equation (8) subject

to (9), and player B’s equilibrium payoff is vnBðsÞ ¼ fðvnAðsÞ; sÞ:
In contrast, the Nash bargaining solution (NBS) is

ðvNAðsÞ; vNB ðsÞÞ ¼ arg max
ðuA;uBÞAOðsÞ

ðuA � dAðsÞÞðuB � dBðsÞÞ;

where ðdAðsÞ; dBðsÞÞ is the as yet unspecified disagreement point. If the disagreement

point ðdAðsÞ; dBðsÞÞ ¼ ð0; 0Þ then the NBS ðvNAðsÞ; vNB ðsÞÞ satisfies

vB ¼ fðvA; sÞ; ð11Þ

vB

vA
¼ �fuðvA; sÞ: ð12Þ

Note the NBS picks a point on the Pareto frontier where the absolute value of the
slope of the frontier at that point equals the slope of the line joining the disagreement
point ð0; 0Þ and the NBS. The following lemma establishes conditions under which
the NBS and the limiting SPE payoff pair coincide for all s:
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Lemma 3. The NBS ðvNAðsÞ; vNB ðsÞÞ with disagreement point ð0; 0Þ is identical to the

limiting SPE payoff pair ðvnAðsÞ; vnBðsÞÞ for all s if and only if fuðvnAðsÞ; sÞ is constant for

all s:

Proof. In the appendix.

If fuðvnAðsÞ; sÞ is constant for all s; (10) implies that the locus ðvnAðsÞ; vnBðsÞÞ
describes a straight line which, by (9), must pass through the origin. This
corresponds to the Nash bargaining solution—a ray out of the origin with slope
equal to the absolute value of the Pareto frontier.

The condition which guarantees that the strategic bargaining solution describes a
ray out of the origin is that the Pareto frontier shrinks homothetically, which
requires a Pareto frontier of the form

gðuA; uBÞ ¼ aðtÞ; ð13Þ

and g is a homogenous function. Note that homotheticity requires that the time
component affects the players equally over time.

Proposition 3 (Nash equivalence under homotheticity). If the Pareto frontier shrinks

homothetically, then the NBS with disagreement point (0,0) and the unique limiting

SPE payoff pair coincide for all s:

Proof. In the appendix.

In fact, assuming both agents are risk neutral and have a common discount rate
guarantees homotheticity. However, we defer discussion of this example to Section 6
where we also consider time-varying inside options.

5. A worked example

Suppose players A and B bargain over the partition of a unit size cake, where
negotiations begin at time s ¼ 0: Player i’s payoff from obtaining xiA½0; 1
 units of
the cake at time tX0 is ui ¼ xidiðtÞ; where

diðtÞ ¼ exp �
Z t

0

riðzÞ dz

� �

and riðzÞ40 denotes i’s instantaneous rate of time preference at time z: As xA þ xB ¼
1; this implies that the Pareto frontier is defined by the implicit function

uA

dAðtÞ
þ uB

dBðtÞ
¼ 1:

Assuming ri continuous and bounded away from zero, Assumptions 1–3 are satisfied
and hence Theorems 1 and 2 apply. Notice that unless rA ¼ rB almost everywhere,
the Pareto frontier does not shrink homothetically and so a Nash bargaining
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solution cannot be applied. Instead, we have to solve directly for the CLE. As the

Pareto frontier is described by f ¼ dBðtÞ½1� uA=dAðtÞ
; the CLE implies vnAðsÞ
satisfies

dvA

ds
¼ �1

2
vA½rAðsÞ � rBðsÞ
 þ rBðsÞdAðsÞ½ 
:

Given the boundary condition (9), it is straightforward to verify that

vnAðsÞ ¼ dAðsÞ
1

2
þ 1

4

Z
N

s

dAðtÞdBðtÞ
dAðsÞdBðsÞ

� �1=2
½rBðtÞ � rAðtÞ
 dt

" #

is the (unique, limiting) equilibrium outcome. Putting s ¼ 0 implies player A obtains
share

vnAð0Þ ¼
1

2
þ 1

4

Z
N

0

½dAðtÞdBðtÞ
1=2½rBðtÞ � rAðtÞ
 dt

which is a discounted weighting of the difference between the players’ discount rates
in the entire future. The more impatient player B is, the higher the payoff to player
A. If they have equal discount rates then the bargaining game is perfectly symmetric
and they split the pie evenly. This solution can also be written as5

vnAð0Þ ¼ 1�
Z

N

0

1

2
rAðtÞ

� �
½e�

R t

0

1
2
½rAðsÞþrBðsÞ
 ds
 dt;

which says that the share of the pie that player A ‘‘loses’’ depends on the weighted
average of his/her future discount rate. If A becomes arbitrarily patient ðrA-0Þ
while rB40; then A obtains the whole pie.

6. An extension to time-varying inside options

The previous sections assumed that the pie evolves over time in a non-stationary
way. But a different class of problems arise if the agents’ inside options are time
varying. For example, when bargaining with a striking union, the firm might sell out
of its inventory of finished goods where such sales reduce the cost of the strike to the
firm; see, for example, [3]. A different example is an unemployed worker who is
bargaining with a firm for a job and who receives duration dependent unemployment
insurance (UI) payments. The purpose of this section is to extend the previous results
for time-varying inside options and so demonstrate the robustness of this approach.

Two players, A and B, bargain according to the alternating-offers procedure as
previously described. An offer at time t is a utility pair ðuA; uBÞ from the set OðtÞ;
where uB ¼ fðuA; tÞ describes the Pareto frontier. If the offer is rejected then over
the intervening period, player i obtains flow payoff fiðtÞDX0 (which is measured
in period zero utils, i.e., it is discounted back to time zero).6 Define

5As
R
N

0 zðtÞ exp½�
R t

0 zðsÞ ds
 dt ¼ 1 (when z40 is bounded away from zero).
6For example, if player i obtains UI payments bðtÞ; then his/her flow payoff during disagreement might

be described as fi ¼ e�rtuiðbðtÞÞ:
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diðtÞ ¼
R
N

t
fiðzÞ dzX0; which is player i’s discounted payoff at time t should they

perpetually disagree.

Assumption 10 (Concave Pareto frontiers). For each tX0; fð:; tÞ is concave in uA on
the interval ½dAðtÞ; %ut

A
:

Assumption 20 (Positive, shrinking and vanishing Pareto frontiers). (i) For any tX0;
dBðtÞofðdAðtÞ; tÞ; (ii) for any tX0 and uAA½dAðtÞ; %ut

A
; ftðuA; tÞ þ fBðtÞ �
fuðuA; tÞfAðtÞo0; and (iii) for any e40 there exists a T40 such that %ut

Aoe and

%ut
Boe for all t4T :

Assumption 30 (Smoothly evolving Pareto frontiers). f is continuously differenti-
able, and fA; fB are continuous.

Condition (i) in Assumption 20 implies that there is always some partition both
players would prefer to perpetual disagreement—a gain to trade always exists.7 This
implies 0pdiðtÞo %ut

i for all t and i ¼ A;B: Condition (ii) is the appropriate shrinking

pie condition. To see why, suppose rather than agree some (Pareto efficient) partition
ðuA; uBÞ at time t; the agreement is deferred to t þ dt: Player A is no worse off as long
as the partition (u0

A; u0
BÞ at time t þ dt satisfies fAðtÞ dt þ u0

AXuA: As player B’s

maximal payoff is fðu0
A; t þ dtÞ þ fBðtÞ dt; then the stated condition (ii) guarantees

delay makes player B strictly worse off.
Again consider an arbitrary Markov SPE where vðtÞ ¼ ðvAðtÞ; vBðtÞÞ denotes the

equilibrium offer made at time tAG: As before shrinking pie and Markov strategies
imply there is no delay in equilibrium. Hence the equilibrium offer vðtÞ at time tAGi

satisfies

vjðtÞ ¼ fjðtÞDþ vjðt þ DÞ for tAGi ðjaiÞ;

vBðtÞ ¼ fðvAðtÞ; tÞ;
where the first condition says the proposer extracts maximal rents from the
responder, and the second says the offer is Pareto efficient. For any tAGA; these
equations imply the difference equation

fðvAðtÞ; tÞ ¼ fBðtÞDþ fðfAðt þ DÞDþ vAðt þ 2DÞ; t þ DÞ:
As before, our main interest is characterising the limiting equilibria as D-0: A first
order Taylor expansion implies

0 ¼ fBðtÞDþ ½fAðt þ DÞDþ vAðt þ 2DÞ � vAðtÞ
fu þ Dft þ R:

Rearranging and taking the limit D-0 suggests that a candidate limiting equilibrium
(CLE) is a pair of functions ðvAð:Þ; vBð:ÞÞ such that for all sX0; vBðsÞ ¼ fðvAðsÞ; sÞ;

7This assumption is convenient rather than critical. If it does not hold, then shrinking pie implies a

(unique) T where dBðTÞ ¼ fðdAðTÞ;TÞ: A gain to trade then exists for toT ; but not for t4T : As

equilibrium implies no trade for tXT ; we would then use backward induction from t ¼ T with boundary

condition viðTÞ ¼ diðTÞ:
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where vAð:Þ is a solution to the differential equation

dvA

ds
¼ �1

2

½fBðsÞ þ fAðsÞfuðvA; sÞ þ ftðvA; sÞ

fuðvA; sÞ ;

subject to vAðsÞA½dAðsÞ;f�1ðdBðsÞ; sÞ
 for all sX0:

ð14Þ

There are several points worth noticing. First Assumption 20(ii) (shrinking pie) and
(14) imply dvA=ds þ fAðsÞo0; along the CLE, delay always makes player A worse
off. Also, using dvB=ds ¼ fuðvA; sÞ dvA=ds þ ftðvA; sÞ; it follows that dvB=ds þ
fBðsÞo0: Delay makes both players strictly worse off.

Given the corresponding solution for dvB=ds; (14) can be rewritten as

dvB=ds þ fBðsÞ
dvA=ds þ fAðsÞ

¼ �fuðvA; sÞ;

which implies the geometric interpretation obtained previously. dvB=ds þ fBðsÞ is the
(rate of) utility gain to player B through delay (which is negative). Strategic
bargaining implies the ratio of the agents’ rates of utility loss by delay at the
equilibrium outcome equals the marginal rate of utility substitution along the Pareto
frontier.

Establishing existence of a CLE is straightforward. The key is to note that the
previous expression can also be written as

d
ds
ðvB � dBÞ

d
ds
ðvA � dAÞ

¼ �fuðvA; sÞ:

At each point in time, strategic bargaining shares the increase in surplus by reaching
agreement today rather than deferring another instant, where the ratio depends on
the slope of the Pareto frontier. By defining ‘‘surplus’’ variables x̃ � vA � dA; ỹ �
vB � dB; the proof of Lemma 2 can be applied to establish existence of a solution
where x̃; ỹ40 for all s (as required).8

To establish uniqueness, suppose there exist (at least) two solutions to (14) which
we denote x1ðsÞ; x2ðsÞ: Further, let yiðsÞ ¼ fðxiðsÞ; sÞ and define

CðsÞ ¼ �½x1 � x2
½y1 � y2
;

where xi ¼ xiðsÞ; yi ¼ yiðsÞ: Note that CðsÞ40 if x1ax2 and vanishing pie requires
CðsÞ-0 as s-N: But

C0ðsÞ ¼ �½x0
1 � x0

2
½y1 � y2
 � ½x1 � x2
½y0
1 � y0

2
;

and as the CLE implies y0
iðsÞ þ fB ¼ �fuðxi; sÞ½x0

iðsÞ þ fA
; we can substitute out the

y0
i and rearrange to get

C0ðsÞ ¼ ½x0
1 þ fA
½y2 � ½y1 þ ðx2 � x1Þfuðx1; sÞ



þ ½x0
2 þ fA
½y1 � ½y2 þ ðx1 � x2Þfuðx2; sÞ

:

8 In particular, define *fðx; sÞ � fðx þ dAðsÞ; sÞ � dBðsÞ: Then Pareto efficiency implies ỹ ¼ *fðx̃; sÞ; and
the CLE implies dỹ=ds

dx̃=ds
¼ � *fxðx̃; sÞ: Further, given f; di satisfy Assumptions 10–30; direct inspection shows

that *f satisfies Assumptions 1–3. Hence the proof of Lemma 2 implies a path exists where x̃; ỹ40 for all s:
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As an equilibrium solution implies x0ðsÞ þ fAo0 (see above), then concavity of f
with respect to u implies C0ðsÞX0 which is the required contradiction. In the same
way, we can adapt the limiting argument demonstrated in the proof of Theorem 1
and so establish the corresponding Convergence Theorem.

6.1. An important special case

There is one simple special case—that both players are risk neutral and have
common discount rate r40: Together these assumptions imply the Pareto frontier is
of the form

uB þ auA ¼ gðtÞ;

where a is a positive constant and g is a positive, decreasing function. As fu � �a;
the CLE above implies

dvA

ds
¼ 1

2a
½fBðsÞ � afAðsÞ þ g0ðsÞ
:

A vanishing frontier requires gðsÞ-0 as s-N and integration then gives

vnAðsÞ ¼ dAðsÞ þ
1

2a
½gðsÞ � adAðsÞ � dBðsÞ
;

where as previously defined, diðsÞ is player i’s expected discounted payoff from
perpetual disagreement. Hence we have established the following claim:

Claim. When both players are risk neutral, have a common discount rate r40; and

payoffs satisfy Assumptions 10–30; then the limiting strategic bargaining equilibrium

implies

ðvnAðsÞ; vnBðsÞÞ ¼ arg max
uA;uBAOðsÞ

½uA � dAðsÞ
½uB � dBðsÞ
;

i.e. it corresponds to the Nash bargaining solution with threatpoints dAðsÞ and dBðsÞ
being the players’ expected payoffs (as of time s) from perpetual disagreement.

7. Conclusion

This paper has extended the Rubinstein bargaining model to a non-stationary
environment. Although in general multiple equilibria are possible for D40; it has
been established that with an appropriate continuity assumption, equilibrium is
always unique in the limit as D-0: It has also been shown for a very special but
commonly used case—where all agents are risk neutral and have the same discount
rate—that the bargaining equilibrium corresponds to the Nash bargaining solution
with threatpoints being the agents’ expected payoffs from perpetual disagreement. If
the pie does not shrink homothetically then there is no simple relationship between
the two approaches. Nevertheless, as Coles and Wright [5] demonstrate, the strategic
bargaining approach may still be tractable in dynamic applications and identifies
dynamically consistent equilibria.

M.G. Coles, A. Muthoo / Journal of Economic Theory 109 (2003) 70–8982



Appendix

Proof of Lemma 2. To establish existence of a CLE, consider the initial value
problem:

dx

ds
¼ �1

2

ftðx; sÞ
fuðx; sÞ ðA:1Þ

subject to xð0Þ ¼ x0Að0; %u0
AÞ: ðA:2Þ

Conditional on x0; let x̂ðs; x0Þ denote the solution to this initial value problem and
define ŷðs; x0Þ ¼ fðx̂; sÞ: This defines a trajectory fx̂ðs; x0Þ; ŷðs; x0Þg in the ðx; yÞ
plane where ðx̂ðs; :Þ; ŷðs; :ÞÞAOPðsÞ (see Fig. 1).

Given Assumption 3 (f is continuously differentiable) and that fuðx; sÞo0 for all
xA½0; %us

A
 and for all sX0; the Fundamental Theorem of Differential Equations (cf.,

for example, [16, Section 24.4]) implies that a solution exists to this initial value
problem while x̂ðs; x0ÞAð0; %us

AÞ:
Note that while x̂ðs; x0ÞAð0; %us

AÞ; (A.1) and the definition of ŷ imply

[dŷ=ds
=½dx̂=ds
 ¼ �fu40; which implies that any trajectory fx̂ðs; x0Þ; ŷðs; x0Þg has
strictly positive slope in the ðx; yÞ plane. Hence as depicted in Fig. 1, any trajectory
fx̂; ŷg is either (i) always strictly in the positive quadrant, or (ii) meets the x-axis in
finite time, or (iii) meets the y-axis in finite time. Also note that the proof of Lemma 1
implies that trajectories cannot cross.

Fig. 1.
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Define Ux ¼ fx0A½0; %u0
A
 : there exists an SoN such that x̂ðS; x0Þ40 and

ŷðS; x0Þ ¼ 0g; i.e. Ux is the set of initial values whose trajectory fx̂ðs; x0Þ; ŷðs; x0Þg
reaches the x-axis in finite time. Similarly define Uy ¼ fx0A½0; %u0

A
: there exists an

SoN such that x̂ðS; x0Þ ¼ 0 and ŷðS; x0Þ40g; and Un ¼ fx0A½0; %u0
A
: for all sX0;

x̂ðs; x0Þ40 and ŷðs; x0Þ40g: Claim A.1 now shows that Un is non-empty. As such a
trajectory satisfies boundary condition (9), Claim A.1 establishes the lemma.

Claim A.1. U * is non-empty.

Proof. By contradiction—suppose Un is empty and so Ux and Uy form a complete

partition of ½0; %u0
A
: Since 0AUy and %u0

AAUx; these two sets are non-empty.

Furthermore, since trajectories do not cross, the respective supports of Ux and Uy

are connected. Hence, since Ux and Uy partition the interval ½0; %u0
A
; one of these two

sets is closed. Suppose, without loss of generality, that Ux is closed—that is, there

exists xcAð0; %u0
AÞ such that Ux ¼ ½xc; %u0

A
: Hence, there exists a corresponding SoN

such that x̂ðS; xcÞ ¼ %uS
A40 and ŷðS; xcÞ ¼ 0:

The contradiction is now obtained by backward induction. Consider the
alternative trajectory fx̃ðsÞ; ỹðsÞg where (i) x̃ðsÞ satisfies the boundary condition

x̃ðS þ 1Þ ¼ %uSþ1
A 40; (ii) x̃ðsÞ satisfies the differential equation (A.1) for spS þ 1;

and (iii) ỹðsÞ ¼ fðx̃ðsÞ; sÞ: This trajectory is obtained by iterating the differential

equation (A.1) backwards through time, starting at s ¼ S þ 1 with x̃ðS þ 1Þ ¼ %uSþ1
A :

As trajectories cannot cross then, as drawn in Fig. 2, backward induction implies a
trajectory fx̂ðs; x0

0Þ; ŷðs; x0
0Þg ¼ fx̃ðsÞ; ỹðsÞg exists where x0

0AUx and x0
0oxc; which is

the required contradiction. &

Proof of Theorem 1. Fix an arbitrary sequence /DnS such that Dn40 (for all nAN)
and Dn-0 as n-N: This defines a sequence /FnS where Fn � FðDnÞ: Now
define a sequence /xnS where for each nAN; xn is an arbitrary element of Fn: That
is, for each nAN; xn is an arbitrary sequence /xnðtÞStAGn

A
that satisfies

fðxnðtÞ; tÞ ¼ fðxnðt þ 2DnÞ; t þ DnÞ ðA:3Þ

and xnðtÞA½0; %ut
A
 for all tAGn

A; where Gn
A � GAðDnÞ ¼ fs; s þ 2Dn; s þ 4Dn;yg: We

have to show that the sequence /xnðsÞS converges to vnAðsÞ:
For each nAN and tAGn

A define

Cðn; tÞ ¼ �½vnAðtÞ � xnðtÞ
½vnBðtÞ � ynðtÞ
; ðA:4Þ

where ðvnA; vnBÞ is the unique CLE and ynðtÞ ¼ fðxnðtÞ; tÞ: One might interpret Cðn; tÞ
as a measure of the distance between the CLE ðvnAðtÞ; vnBðtÞÞ and the SPE payoff pair

ðxnðtÞ; ynðtÞÞ: In particular,Cðn; tÞ ¼ 0 if and only if xnðtÞ ¼ vnAðtÞ; andCðn; tÞ40 for

xnðtÞavnAðtÞ: Most importantly, by establishing that Cðn; sÞ-0 as n-N it follows

that xnðsÞ-vnAðsÞ in this limit. Hence we establish the theorem by proving that for

any E40 there always exists an N such that Cðn; sÞoE for all n4N:
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Fix an arbitrary E40: If %us
A %us

BpE=2; then Cðn; sÞp %us
A %us

BpE=2 (for all nAN), and

we are done. Now suppose that Eo2 %us
A %us

B: Define T such that %uT
A %uT

B ¼ E=2:
Assumptions 2 and 3 imply T exists, is unique and is strictly greater than s: Also

Cðn;TÞp %uT
A %uT

B ¼ E=2 for all nAN: Furthermore, define for each nAN;

Mn ¼ minfmAN: mXðT � sÞ=2Dng and Tn ¼ s þ 2MnDn:

Notice that TnAGn
A for all nAN: Further TnXT ; and Assumption 2 implies that

Cðn;TnÞp %u
Tn

A %u
Tn

B pE=2:
Now for any nAN;

Cðn; sÞ ¼ Cðn;TnÞ �
XMn�1

i¼0

½Cðn; s þ 2ði þ 1ÞDnÞ �Cðn; s þ 2iDnÞ
:

Claim A.2—which is stated below—implies

Cðn; sÞ ¼ Cðn;TnÞ �
XMn�1

i¼0

½Fðn; s þ 2iDnÞDn þ oðDnÞ
;

where oðDnÞ denotes a remainder term that is of order smaller than Dn (i.e. oðDnÞ=Dn

converges to zero as n-N). As Claim A.2 also implies Fðn; tÞX0 for all tAGn
A; this

now implies

Cðn; sÞpCðn;TnÞ �
XMn�1

i¼0

oðDnÞ:

Fig. 2.
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But Mn ¼ Oð1=DnÞ and so it follows that
PMn�1

i¼0 oðDnÞ converges to zero as n-N:

Hence there exists an N such that for any n4N; j
PMn�1

i¼0 oðDnÞjoE=2: As

Cðn;TnÞpE=2; this implies Cðn; sÞoE for all n4N (as required). &

Claim A.2. For any nAN and tAGn
A:

Cðn; t þ 2DnÞ �Cðn; tÞ ¼ Fðn; tÞDn þ oðDnÞ;
where Fðn; tÞ is defined by

Fðn; tÞ ¼ ½vnAðtÞ � xnðtÞ
ftðvnAðtÞ; tÞ
fuðvnAðtÞ; tÞ

vnBðtÞ � ynðtÞ
vnAðtÞ � xnðtÞ

� fuðvnAðtÞ; tÞ
� �

� ½vnAðtÞ � xnðtÞ
ftðxnðtÞ; tÞ
fuðxnðtÞ; tÞ

vnBðtÞ � ynðtÞ
vnAðtÞ � xnðtÞ

� fuðxnðtÞ; tÞ
� �

:

Furthermore, for any nAN and tAGn
A: Fðn; tÞX0:

Proof. As vnA : ½0;NÞ-R satisfies the differential equation in (8), then for any nAN

and tAGn
A;

vnAðt þ 2DnÞ � vnAðtÞ ¼ �ftðvnAðtÞ; tÞ
fuðvnAðtÞ; tÞ Dn þ oðDnÞ: ðA:5Þ

Further, Assumption 3 (differentiability) implies that we can consider a first-order

Taylor expansion of fðvnAðt þ 2DnÞ; t þ 2DnÞ around fðvnAðtÞ; tÞ; and (A.5) then

implies that for any nAN and tAGn
A:

fðvnAðt þ 2DnÞ; t þ 2DnÞ ¼fðvnAðtÞ; tÞ þ ½vnAðt þ 2DnÞ � vnAðtÞ
fuðvnAðtÞ; tÞ

þ 2DnftðvnAðtÞ; tÞ þ oðDnÞ: ðA:6Þ
Recalling that xnðtÞ satisfies (A.3), Assumption 3 (differentiability) implies that for
any nAN and tAGn

A:

xnðt þ 2DnÞ � xnðtÞ ¼ �ftðxnðtÞ; tÞ
fuðxnðtÞ; tÞDn þ oðDnÞ: ðA:7Þ

Now consider a first order Taylor expansion of fðxnðt þ 2DnÞ; t þ 2DnÞ around
fðxnðtÞ; tÞ: Eq. (A.7) then implies that for any nAN and tAGn

A:

fðxnðt þ 2DnÞ; t þ 2DnÞ ¼fðxnðtÞ; tÞ þ ½xnðt þ 2DnÞ � xnðtÞ
fuðxnðtÞ; tÞ

þ 2DnftðxnðtÞ; tÞ þ oðDnÞ: ðA:8Þ
Given the definition of C in (A.4), and using (A.5)–(A.8) to substitute out terms
dated at time t þ 2Dn; straightforward (but messy) algebra establishes the equations
stated in the claim. Fðn; tÞX0 follows from the concavity of f; and from fto0 and
fuo0: &

Proof of Theorem 2. To prove this theorem we first establish that both the sequence
of maximum SPE payoffs to player A and the sequence of minimum SPE payoffs to
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player A satisfy the same recursive equation (namely, Eq. (3)) which describes the
sequence of Markov SPE payoffs (to player A). The convergence argument given in
the proof of Theorem 1 then implies that in the limit as D-0; all non-Markov SPE
payoffs converge to the CLE.

Fix D40: For each i ¼ A;B and tAGi; let GiðtÞ denote the set of SPE payoffs to
player i in any subgame beginning at time t: Formally, GiðtÞ ¼ fgi: there exists an
SPE in any subgame beginning at time t (when player i makes an offer) that gives
player i a payoff of gig: Since GiðtÞ is bounded, we denote its supremum and infimum
by MiðtÞ and miðtÞ; respectively.

It follows from Claim A.3 below that both the sequence /MAðtÞStAGA
and

the sequence /mAðtÞStAGA
are elements of the set FðDÞ: Theorem 1 implies that

in the limit, as D-0; the set FðDÞ converges to a unique element. Hence,
it follows (by appealing to Claim A.3) that in the limit, as D-0; the set of
SPE payoffs to the players in any subgame are uniquely defined: in the limit as

D-0; any SPE in any subgame gives player A a payoff of vnAðsÞ and player

B a payoff of vnBðsÞ: This implies that in any limiting (as D-0) SPE, each player’s

offer (in any subgame when she has to make an offer) is accepted by her opponent.
Hence, it immediately follows that in the limit as D-0; any SPE converges to
the CLE. &

Claim A.3. Fix D40: 8tAGA; MAðtÞ ¼ f�1ðmBðt þ DÞ; tÞ and mAðtÞ ¼ f�1ðMBðt þ
DÞ; tÞ; and 8tAGB; MBðtÞ ¼ fðmAðt þ DÞ; tÞ and mBðtÞ ¼ fðMAðt þ DÞ; tÞ:

Proof. The proof—which is available upon request—follows from a straightforward
adaptation of standard arguments (which are, for example, presented in [13, Chapter
3; 11, Chapter 3]). &

Proof of Lemma 3. We first establish sufficiency. If fuðvnAðsÞ; sÞ is constant for all s;

then (10) implies that the locus fðvnAðsÞ; vnBðsÞÞ: sX0g is a straight line, being a ray

through the origin with slope equal to the absolute value of the slope of the frontier

OPðsÞ at ðvnAðsÞ; vnBðsÞÞ: Hence, for all s the NBS and the limiting SPE payoff pair are

identical. We now establish necessity. If vNAðsÞ ¼ vnAðsÞ for all s; then (10) and (12)

imply

dvnBðsÞ=ds

dvnAðsÞ=ds
¼ vNB ðsÞ

vNAðsÞ
for all s: ðA:9Þ

Suppose, to the contrary, that there exists s004s0 such that

fuðvnAðs00Þ; s00ÞafuðvnAðs0Þ; s0Þ: Then (10) and (A.9) imply

vNB ðs00Þ
vNAðs00Þ

a
vNB ðs0Þ
vNAðs0Þ

:
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But this implies that there exists sAðs0; s00Þ such that

dvnBðsÞ=ds

dvnAðsÞ=ds
a

vNB ðsÞ
vNAðsÞ

;

which contradicts (A.9). &

Proof of Proposition 3. Given (13), the Nash bargaining solution satisfies

gðvNAðtÞ; vNB ðtÞÞ ¼ aðtÞ; ðA:10Þ

vNB ðtÞ
vNAðtÞ

¼ gAðvNAðtÞ; vNB ðtÞÞ
gBðvNAðtÞ; vNB ðtÞÞ

; ðA:11Þ

where gi � @g=@ui: Homogeneity of g and (A.11) implies vNB ðtÞ ¼ lvNAðtÞ; where l is

defined by

l ¼ gAð1; lÞ
gBð1; lÞ

:

Assumptions 1–3 guarantee a solution exists and is unique.9 Given that solution,

vNAðtÞ is then uniquely determined by

gðvNAðtÞ; lvNAðtÞÞ ¼ aðtÞ:

Direct inspection shows that this solution also satisfies (10) and therefore satisfies the
FBE.
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