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Abstract. This article presents the main principles of bargaining
theory, along with some examples to illustrate the potential appli-
cability of this theory to a variety of real-life bargaining situations.
The roles of various key factors on the outcome of bargaining will
be discussed and explored in the context of various canonical mod-
els of bargaining. It will be shown that such models can be adapted,
extended and modified in order to explore other issues concerning
bargaining situations.

1. Introduction

Bargaining is ubiquitous. Married couples negotiate over a variety
of matters such as who will do which domestic chores. Government
policy is typically the outcome of negotiations amongst cabinet min-
isters. Whether or not a particular piece of legislation meets with
the legislature’s approval may depend on the outcome of negotiations
amongst the dominant political parties. National governments are of-
ten engaged in a variety of international negotiations on matters rang-
ing from economic issues (such as the removal of trade restrictions)
to global security (such as the reduction in the stockpiles of conven-
tional armaments, and nuclear non-proliferation and test ban), and
environmental and related issues (such as carbon emissions trading,
bio-diversity conservation and intellectual property rights). Much eco-
nomic interaction involves negotiations on a variety of issues. Wages,
and prices of other commodities (such as oil, gas and computer chips)
are often the outcome of negotiations amongst the concerned parties.
Mergers and acquisitions require negotiations over, amongst other is-
sues, the price at which such transactions are to take place.
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What variables (or factors) determine the outcome of negotiations
such as those mentioned above? What are the sources of bargaining
power? What strategies can help improve one’s bargaining power?
What variables determine whether parties to a territorial dispute will
reach a negotiated settlement, or engage in military war? How can
one enhance the likelihood that parties in such negotiations will strike
an agreement quickly so as to minimise the loss of life through war?
What strategies should one adopt to maximise the negotiated sale price
of one’s house? How can one negotiate a better deal (such as a wage
increase) from ones employers?

Bargaining theory seeks to address the above and many similar real-
life questions concerning bargaining situations.

1.1. Bargaining Situations and Bargaining. Consider the follow-
ing situation. An individual, called Aruna, owns a house that she is
willing to sell at a minimum price of £50,000; that is, she ‘values’
her house at £50,000. Another individual, called Mohan, is willing to
pay up to £70,000 for Aruna’s house; that is, he values her house at
£70,000. If trade occurs — that is, if Aruna sells the house to Mohan
— at a price that lies between £50,000 and £70,000, then both Aruna
(the ‘seller’) and Mohan (the ‘buyer’) would become better off. This
means that in this situation these two individuals have a common in-
terest to trade. At the same time, however, they have conflicting (or
divergent) interests over the price at which to trade: Aruna, the seller,
would like to trade at a high price, while Mohan, the buyer, would like
to trade at a low price.

Any exchange situation, such as the one just described, in which a
pair of individuals (or organisations) can engage in mutually beneficial
trade but have conflicting interests over the terms of trade is a bar-
gaining situation. Stated in general terms, a bargaining situation is a
situation in which two or more players1 have a common interest to co-
operate, but have conflicting interests over exactly how to co-operate.

There are two main reasons for being interested in bargaining situa-
tions. The first, practical reason is that many important and interesting
human (economic, social and political) interactions are bargaining sit-
uations. As mentioned above, exchange situations (which characterise
much of human economic interaction) are bargaining situations. In
the arena of social interaction, a married couple, for example, is in-
volved in many bargaining situations throughout the relationship. In
the political arena, a bargaining situation exists, for example, when no

1A ‘player’ can be either an individual, or an organisation (such as a firm, a
political party or a country).
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single political party on its own can form a government (such as when
there is a hung parliament); the party that has obtained the most votes
will typically find itself in a bargaining situation with one or more of
the other parties. The second, theoretical reason for being interested
in bargaining situations is that understanding such situations is fun-
damental to the development of an understanding of the workings of
markets and the appropriateness, or otherwise, of prevailing monetary
and fiscal policies.

The main issue that confronts the players in a bargaining situation
is the need to reach agreement over exactly how to co-operate. Each
player would like to reach some agreement rather than to disagree and
not reach any agreement, but each player would also like to reach an
agreement that is as favourable to her as possible. It is thus possible
that the players will strike an agreement only after some costly delay,
or indeed fail to reach any agreement — as is witnessed by the history
of disagreements and costly delayed agreements in many real-life situ-
ations (as exemplified by the occurrences of trade wars, military wars,
strikes and divorce).

Bargaining is any process through which the players try to reach
an agreement. This process is typically time consuming, and involves
the players making offers and counteroffers to each other. A main
focus of any theory of bargaining is on the efficiency and distribution
properties of the outcome of bargaining. The former property relates
to the possibility that the players fail to reach an agreement, or that
they reach an agreement after some costly delay. Examples of costly
delayed agreements include: when a wage agreement is reached after
lost production due to a long strike, and when a peace settlement is
negotiated after the loss of life through war. The distribution property
relates to the issue of exactly how the gains from co-operation are
divided between the players.

The principles of bargaining theory set out in this article determine
the roles of various key factors (or variables) on the bargaining outcome
(and its efficiency and distribution properties). As such, they determine
the sources of a player’s bargaining power.

1.2. An Outline of this Article. If the bargaining process is ‘fric-
tionless’ — by which I mean that neither player incurs any cost from
haggling — then each player may continuously demand that agreement
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be struck on terms that are most favourable to her.2 In such a circum-
stance the negotiations are likely to end up in an impasse (or deadlock),
since the negotiators would have no incentive to compromise and reach
an agreement. Indeed, if it did not matter when the negotiators agree,
then it would not matter whether they agreed at all. In most real-life
situations the bargaining process is not frictionless. A basic source of a
player’s cost from haggling comes from the twin facts that bargaining
is time consuming and that time is valuable to the player. In section
3 below, I shall discuss the role of the players’ degrees of impatience
on the outcome of bargaining. A key principle that will be discussed
is that a player’s bargaining power is higher the less impatient she is
relative to the other negotiator. For example, in the exchange situation
described above, the price at which Aruna sells her house will be higher
the less impatient she is relative to Mohan. Indeed, patience confers
bargaining power.

A person who has been unemployed for a long time is typically quite
desperate to find a job, and, may thus be willing to accept work at
almost any wage. The high degree of impatience of the long-term
unemployed can be exploited by potential employers, who may thus
obtain most of the gains from employment. As such, an important role
of minimum wage legislation would seem to be to strengthen the bar-
gaining power of the long-term unemployed. In general, since a player
who is poor is typically more eager to strike a deal in any negotiations,
poverty (by inducing a larger degree of impatience) adversely affects
bargaining power. No wonder, then, that the richer nations of the
world often obtain relatively better deals than the poorer nations in
international trade negotiations.

Another potential source of friction in the bargaining process comes
from the possibility that the negotiations might breakdown into dis-
agreement because of some exogenous and uncontrollable factors. Even
if the possibility of such an occurrence is small, it nevertheless may pro-
vide appropriate incentives to the players to compromise and reach an
agreement. The role of such a risk of breakdown on the bargaining
outcome is discussed in section 4.

In many bargaining situations the players may have access to ‘out-
side’ options and/or ‘inside’ options. For example, in the exchange
situation described above, Aruna may have a non-negotiable (fixed)
price offer on her house from another buyer; and, she may derive some

2For example, in the exchange situation described above, Aruna may contin-
uously demand that trade take place at the price of £69,000, while Mohan may
continuously demand that it take place at the price of £51,000.
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‘utility’ (or benefit) while she lives in it. The former is her outside op-
tion, while the latter her inside option. When, and if, Aruna exercises
her outside option, the negotiations between her and Mohan terminate
forever in disagreement. In contrast, her inside option is the utility
per day that she derives by living in her house while she temporarily
disagrees with Mohan over the price at which to trade. As another ex-
ample, consider a married couple who are bargaining over a variety of
issues. Their outside options are their payoffs from divorce, while their
inside options are their payoffs from remaining married but without
much co-operation within their marriage. The role of outside options
on the bargaining outcome is discussed in section 5, while the role of
inside options is discussed in section 6.

An important set of questions addressed in sections 3–6 are why,
when and how to apply Nash’s bargaining solution, where the latter
is described and studied in section 2. It is shown that under some
circumstances, when appropriately applied, Nash’s bargaining solution
describes the outcome of a variety of bargaining situations. These
results are especially important and useful in applications, since it is
often convenient for applied economic and political theorists to describe
the outcome of a bargaining situation — which may be one of many
ingredients of their economic models — in a simple (and tractable)
manner.

An important determinant of the outcome of bargaining is the extent
to which information about various variables (or factors) are known to
all the parties in the bargaining situation. For example, the outcome
of union-firm wage negotiations will typically be influenced by whether
or not the current level of the firm’s revenue is known to the union.
The role of such asymmetric information on the bargaining outcome is
studied in section 7.

In the preceding chapters the focus is on ‘one-shot’ bargaining situa-
tions. In section 8 I study repeated bargaining situations in which the
players have the opportunity to be involved in a sequence of bargaining
situations. I conclude in section 9.3

3It may be noted that a bargaining situation is a game situation in the sense that
the outcome of bargaining depends on both players’ bargaining strategies: whether
or not an agreement is struck, and the terms of the agreement (if one is struck),
depends on both players’ actions during the bargaining process. It is therefore
natural to study bargaining situations using the methodology of game theory (see
Game Theory).
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2. The Nash Bargaining Solution

A bargaining solution may be interpreted as a formula that deter-
mines a unique outcome for each bargaining situation in some class of
bargaining situations. In this section I introduce the bargaining solu-
tion created by John Nash.4 The Nash bargaining solution is defined by
a fairly simple formula, and it is applicable to a large class of bargaining
situations — these features contribute to its attractiveness in applica-
tions. However, the most important of reasons for studying and ap-
plying the Nash bargaining solution is that it possesses sound strategic
foundations: several plausible (game-theoretic) models of bargaining
vindicate its use. These strategic bargaining models will be studied in
later sections where I shall address the issues of why, when and how to
use the Nash bargaining solution. A prime objective of the current sec-
tion, on the other hand, is to develop a thorough understanding of the
definition of the Nash bargaining solution, which should, in particular,
facilitate its characterization and use in any application.

Two players, A and B, bargain over the partition of a cake (or
surplus) of size π, where π > 0. The set of possible agreements is
X = {(xA, xB) : 0 ≤ xA ≤ π and xB = π − xA}, where xi is the share
of the cake to player i (i = A, B). For each xi ∈ [0, π], Ui(xi) is player
i’s utility from obtaining a share xi of the cake, where player i’s utility
function Ui : [0, π] → < is differentiable, strictly increasing and con-
cave. If the players fail to reach agreement, then player i obtains a
utility of di, where di ≥ Ui(0). There exists an agreement x ∈ X such
that UA(x) > dA and UB(x) > dB, which ensures that there exists a
mutually beneficial agreement.

The utility pair d = (dA, dB) is called the disagreement point. In
order to define the Nash bargaining solution of this bargaining situ-
ation, it is useful to first define the set Ω of possible utility pairs ob-
tainable through agreement. For the bargaining situation described
above, Ω = {(uA, uB) : there exists x ∈ X such that UA(xA) = uA and
UB(xB) = uB}.

Fix an arbitrary utility uA to player A, where uA ∈ [UA(0), UA(π)].
From the strict monotonicity of Ui, there exists a unique share xA ∈
[0, π] such that UA(xA) = uA; i.e., xA = U−1

A (uA), where U−1
A denotes

the inverse of UA. Hence

g(uA) ≡ UB(π − U−1
A (uA))

4Nash’s bargaining solution and the concept of a Nash equilibrium are unrelated
concepts, other than the fact that both concepts are the creations of the same
individual.
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is the utility player B obtains when player A obtains the utility uA. It
immediately follows that Ω = {(uA, uB) : UA(0) ≤ uA ≤ UA(π) and uB =
g(uA)}.

The Nash bargaining solution (NBS) of the bargaining situation de-
scribed above is the unique pair of utilities, denoted by (uN

A , uN
B ), that

solves the following maximization problem:

max
(uA,uB)∈Θ

(uA − dA)(uB − dB),

where Θ ≡ {(uA, uB) ∈ Ω : uA ≥ dA and uB ≥ dB} ≡ {(uA, uB) :
UA(0) ≤ uA ≤ UA(π), uB = g(uA), uA ≥ dA and uB ≥ dB}.

The maximization problem stated above has a unique solution, be-
cause the maximand (uA− dA)(uB − dB) — which is referred to as the
Nash product — is continuous and strictly quasiconcave, g is strictly
decreasing and concave, and the set Θ is non-empty.

Hence, the Nash bargaining solution is the unique solution to the
following pair of equations

(1) −g′(uA) =
uB − dB

uA − dA

and uB = g(uA),

where g′ denotes the derivative of g.

Example 1 (Split-The-Difference Rule). Suppose UA(xA) = xA for all
xA ∈ [0, π] and UB(xB) = xB for all xB ∈ [0, π]. This means that for
each uA ∈ [0, π], g(uA) = π − uA, and di ≥ 0 (i = A, B). It follows
from equation 1 that

uN
A = dA +

1

2

(
π − dA − dB

)
and uN

B = dB +
1

2

(
π − dA − dB

)
,

which may be given the following interpretation. The players agree first
of all to give player i (i = A, B) a share di of the cake (which gives her
a utility equal to the utility she obtains from not reaching agreement),
and then they split equally the remaining cake π−dA−dB. Notice that
player i’s share is strictly increasing in di and strictly decreasing in dj

(j 6= i).

Example 2 (Risk Aversion). Suppose UA(xA) = xγ
A for all xA ∈ [0, π],

where 0 < γ < 1, UB(xB) = xB for all xB ∈ [0, π] and dA = dB = 0.

This means that for each uA ∈ [0, π], g(uA) = π−u
1/γ
A . Using equation

1, it is easy to show that the shares xN
A and xN

B of the cake in the NBS
to players A and B respectively are as follows:

xN
A =

γπ

1 + γ
and xN

B =
π

1 + γ
.
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As γ decreases, xN
A decreases and xN

B increases. In the limit, as γ → 0,
xN

A → 0 and xN
B → 1. Player B may be considered risk neutral (since

her utility function is linear), while player A risk averse (since her
utility function is strictly concave), where the degree of her risk aversion
is decreasing in γ. Given this interpretation of the utility functions,
it has been shown that player A’s share of the cake decreases as she
becomes more risk averse.

2.1. An Application to Bribery and the Control of Crime. An
individual C decides whether or not to steal a fixed amount of money
π, where π > 0. If she steals the money, then with probability ζ she is
caught by a policeman P . The policeman is corruptible, and bargains
with the criminal over the amount of bribe b that C gives P in return
for not reporting her to the authorities. The set of possible agreements
is the set of possible divisions of the stolen money, which (assuming
money is perfectly divisible) is {(π− b, b) : 0 ≤ b ≤ π}. The policeman
reports the criminal to the authorities if and only if they fail to reach
agreement. In that eventuality, the criminal pays a monetary fine.
The disagreement point (dC , dP ) = (π(1 − ν), 0), where ν ∈ (0, 1] is
the penalty rate. The utility to each player from obtaining x units of
money is x.

It immediately follows that the NBS is uN
C = π[1− (ν/2)] and uN

P =
πν/2. The bribe associated with the NBS is bN = πν/2. Notice that,
although the penalty is never paid to the authorities, the penalty rate
influences the amount of bribe that the criminal pays the corruptible
policeman.

Given this outcome of the bargaining situation, I now address the
issue of whether or not the criminal commits the crime. The expected
utility to the criminal from stealing the money is ζπ[1−(ν/2)]+(1−ζ)π,
because with probability ζ she is caught by the policeman (in which
case her utility is uN

C ) and with probability 1−ζ she is not caught by the
policeman (in which case she keeps all of the stolen money). Since her
utility from not stealing the money is zero, the crime is not committed
if and only if π[1− (ζν/2)] ≤ 0. That is, since π > 0, the crime is not
committed if and only if ζν ≥ 2. Since ζ < 1 and 0 < ν ≤ 1 implies
that ζν < 1, for any penalty rate ν ∈ (0, 1] and any probability ζ < 1
of being caught, the crime is committed. This analysis thus vindicates
the conventional wisdom that if penalties are evaded through bribery,
then they have no role in preventing crime.

2.2. Asymmetric Nash Bargaining Solutions. The NBS depends
upon the set Ω of possible utility pairs and the disagreement point
d. However, the outcome of a bargaining situation may be influenced
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by other factors, such as the tactics employed by the bargainers, the
procedure through which negotiations are conducted, the information
structure and the players’ discount rates. However, none of these fac-
tors seem to affect the two objects upon which the NBS is defined,
and yet it seems reasonable not to rule out the possibility that such
factors may have a significant impact on the bargaining outcome. I
now state generalizations of the NBS which possess a facility to take
into account additional factors that may be deemed relevant for the
bargaining outcome.

For each τ ∈ (0, 1), an asymmetric (or, generalized) Nash bargaining
solution of the bargaining problem (Ω, d) stated above is the unique
solution to the following maximization problem

max
(uA,uB)∈Θ

(uA − dA)τ (uB − dB)1−τ ,

where Θ is stated above. Note that if and only if τ = 1/2 is the asym-
metric NBS identical to the NBS.5 For any τ ∈ (0, 1), the asymmetric
NBS is the unique solution to the following pair of equations

(2) −h′(uA) =

(
τ

1− τ

)[
uB − dB

uA − dA

]
and uB = h(uA).

Notice that as τ increases, player A’s utility increases while player
B’s utility decreases. As such τ captures player A’s bargaining power,
while 1− τ player B’s.

3. The Rubinstein Model

In this section I study Rubinstein’s (alternating-offers) model of bar-
gaining. A key feature of this model is that it specifies a rather attrac-
tive procedure of bargaining: the players take turns to make offers to
each other until agreement is secured. This model has much intuitive
appeal, since making offers and counteroffers lies at the heart of many
real-life negotiations.

Rubinstein’s model provides several insights about bargaining sit-
uations. One insight is that frictionless bargaining processes are in-
determinate. A bargaining process may be considered ‘frictionless’ if
the players do not incur any costs by haggling (i.e., by making offers
and counteroffers) — in which case there is nothing to prevent them
from haggling for as long as they wish. It seems intuitive that for the
players to have some incentive to reach agreement they should find it
costly to haggle. Another insight is that a player’s bargaining power

5Strategic models of bargaining studied in later sections provide guidance on
what elements of a bargaining situation determine the value of τ .
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depends on the relative magnitude of the players’ respective costs of
haggling, with the absolute magnitudes of these costs being irrelevant
to the bargaining outcome.

An important reason for the immense influence that Rubinstein’s
model has had, and continues to have, is that it provides a basic frame-
work, which can be adapted, extended and modified for the purposes
of application. This will become evident in several later sections of this
article.

3.1. The Alternating-Offers Model. Two players, A and B, bar-
gain over the partition of a cake of size π (where π > 0) according to
the following, alternating-offers, procedure. At time 0 player A makes
an offer to player B. An offer is a proposal of a partition of the cake.
If player B accepts the offer, then agreement is struck and the players
divide the cake according to the accepted offer. On the other hand,
if player B rejects the offer, then she makes a counteroffer at time
∆ > 0. If this counteroffer is accepted by player A, then agreement is
struck. Otherwise, player A makes a counter-counteroffer at time 2∆.
This process of making offers and counteroffers continues until a player
accepts an offer.

A precise description of this bargaining procedure now follows. Offers
are made at discrete points in time: namely, at times 0, ∆, 2∆, 3∆, . . . , t∆, . . .,
where ∆ > 0. An offer is a number greater than or equal to zero and less
than or equal to π. I adopt the convention that an offer is the share
of the cake to the proposer, and, therefore, π minus the offer is the
share to the responder. At time t∆ when t is even (i.e., t = 0, 2, 4, . . .)
player A makes an offer to player B. If player B accepts the offer, then
the negotiations end with agreement. On the other hand, if player B
rejects the offer, then ∆ time units later, at time (t + 1)∆, player B
makes an offer to player A. If player A accepts the offer, then the ne-
gotiations end with agreement. On the other hand, if player A rejects
the offer, then ∆ time units later, at time (t + 2)∆, player A makes
an offer to player B, and so on. The negotiations end if and only if a
player accepts an offer.

The payoffs are as follows. If the players reach agreement at time t∆
(t = 0, 1, 2, . . .) on a partition that gives player i (i = A, B) a share xi

(0 ≤ xi ≤ π) of the cake, then player i’s payoff is xi exp(−rit∆), where
ri > 0 is player i’s discount rate. On the other hand, if the players
perpetually disagree (i.e., each player always rejects any offer made to
her), then each player’s payoff is zero.
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This completes the description of the alternating-offers game. For
notational convenience, define δi ≡ exp(−ri∆), where δi is player i’s
discount factor. Notice that 0 < δi < 1.

The subgame perfect equilibrium (SPE) concept will be employed to
characterize the outcome of this game. In particular, answers to the
following questions will be sought. In equilibrium, do the players reach
agreement or do they perpetually disagree? In the former case, what
is the agreed partition and at what time is agreement struck?

3.2. The Unique Subgame Perfect Equilibrium. Consider a SPE
that satisfies the following two properties:

Property 1 (No Delay). Whenever a player has to make an offer, her
equilibrium offer is accepted by the other player.

Property 2 (Stationarity). In equilibrium, a player makes the same
offer whenever she has to make an offer.

Given Property 2, let x∗i denote the equilibrium offer that player
i makes whenever she has to make an offer. Consider an arbitrary
point in time at which player A has to make an offer to player B.
It follows from Properties 1 and 2 that player B’s equilibrium payoff
from rejecting any offer is δBx∗B. This is because, by Property 2, she
offers x∗B after rejecting any offer, which, by Property 1, is accepted by
player A. Perfection requires that player B accept any offer xA such
that π− xA > δBx∗B, and reject any offer xA such that π− xA < δBx∗B.
Furthermore, it follows from Property 1 that π−x∗A ≥ δBx∗B. However,
π−x∗A ≯ δBx∗B; otherwise player A could increase her payoff by instead
offering x′A such that π − x∗A > π − x′A > δBx∗B. Hence

(3) π − x∗A = δBx∗B.

Equation 3 states that player B is indifferent between accepting and
rejecting player A’s equilibrium offer. By a symmetric argument (with
the roles of A and B reversed), it follows that player A is indifferent
between accepting and rejecting player B’s equilibrium offer. That is

(4) π − x∗B = δAx∗A.

Equations 3 and 4 have a unique solution, namely

x∗A = µAπ and x∗B = µBπ, where(5)

µA =
1− δB

1− δAδB

and µB =
1− δA

1− δAδB

.(6)

The uniqueness of the solution to equations 3 and 4 means that there
exists at most one SPE satisfying Properties 1 and 2. In that SPE,
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player A always offers x∗A and always accepts an offer xB if and only if
π − xB ≥ δAx∗A, and player B always offers x∗B and always accepts an
offer xA if and only if π−xA ≥ δBx∗B, where x∗A and x∗B are defined in (5).
It is straightforward to verify that this pair of strategies is a subgame
perfect equilibrium. Furthermore, there does not exist another SPE,
and, hence we have the following result:

Proposition 1. The following pair of strategies constitute the unique
subgame perfect equilibrium of the alternating-offers game:
• player A always offers x∗A and always accepts an offer xB if and only
if xB ≤ x∗B,
• player B always offers x∗B and always accepts an offer xA if and only
if xA ≤ x∗A,
where x∗A and x∗B are defined in (5).

In the unique SPE, agreement is reached at time 0, and the SPE is
Pareto efficient. Since it is player A who makes the offer at time 0, the
shares of the cake obtained by players A and B in the unique SPE are
x∗A and π − x∗A, respectively, where x∗A = µAπ and π − x∗A = δBµBπ.

The equilibrium share to each player depends on both players’ dis-
count factors. In particular, the equilibrium share obtained by a player
is strictly increasing in her discount factor, and strictly decreasing in
her opponent’s discount factor. Notice that if the players’ discount
rates are identical (i.e., rA = rB = r > 0), then player A’s equilibrium
share π/(1 + δ) is strictly greater than player B’s equilibrium share
πδ/(1+δ), where δ ≡ exp(−r∆). This result suggests that there exists
a ‘first-mover’ advantage, since if rA = rB then the only asymmetry in
the game is that player A makes the first offer, at time 0. However,
note that this first-mover advantage disappears in the limit as ∆ → 0:
each player obtains one-half of the cake.

As is evident in the following corollary, the properties of the equi-
librium shares (when rA 6= rB) are relatively more transparent in the
limit as the time interval ∆ between two consecutive offers tends to
zero.

Corollary 1. In the limit, as ∆ → 0, the shares obtained by players A
and B respectively in the unique SPE converge to ηAπ and ηBπ, where

ηA =
rB

rA + rB

and ηB =
rA

rA + rB

.

Proof. For any ∆ > 0

µA =
1− exp(−rB∆)

1− exp
(
−(rA + rB)∆

) .
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Since when ∆ > 0 but small, exp(−ri∆) = 1−ri∆, it follows that when
∆ > 0 but small, µA = rB∆/(rA + rB)∆ — that is, µA = rB/(rA + rB).
The corollary now follows immediately. �

In the limit, as ∆ → 0, the relative magnitude of the players’ discount
rates critically influence the equilibrium partition of the cake: the equi-
librium share obtained by a player depends on the ratio rA/rB. Notice
that even in the limit, as both rA and rB tend to zero, the equilibrium
partition depends on the ratio rA/rB. The following metaphor nicely
illustrates the message contained in Corollary 1: In a boxing match,
the winner is the relatively stronger of the two boxers; the absolute
strengths of the boxers are irrelevant to the outcome.

3.3. Properties of the Equilibrium. It has been shown that if rA >
0 and rB > 0, then the basic alternating-offers game has a unique SPE,
which is Pareto efficient. If, on the other hand, rA = rB = 0, then
there exists many (indeed, a continuum) of subgame perfect equilib-
ria, including equilibria which are Pareto inefficient. If rA = rB = 0,
then neither player cares about the time at which agreement is struck.
This means that the players do not incur any costs by haggling (i.e.,
by making offers and counteroffers) — which characterizes, what may
be called, a ‘frictionless’ bargaining process. One important message,
therefore, of the basic alternating-offers model is that frictionless bar-
gaining processes are indeterminate. This seems intuitive, because, if
the players do not care about the time at which agreement is struck,
then there is nothing to prevent them from haggling for as long as
they wish. On the other hand, frictions in the bargaining process may
provide the players with some incentive to reach agreement.

It seems reasonable to assume that the share of the cake obtained
by a player in the unique SPE reflects her ‘bargaining power’. Thus,
a player’s bargaining power is decreasing in her discount rate, and in-
creasing in her opponent’s discount rate. Why does being relatively
more patient confer greater bargaining power? To obtain some insight
into this issue, I now identify the cost of haggling to each player, be-
cause it is intuitive that a player’s bargaining power is decreasing in
her cost of haggling, and increasing in her opponent’s cost of haggling.

In the alternating-offers game, if a player does not wish to accept
any particular offer and, instead, would like to make a counteroffer,
then she is free to do so, but she has to incur a ‘cost’: this is the cost
to her of waiting ∆ time units. The smaller is her discount rate, the
smaller is this cost. That is why being relatively more patient confers
greater bargaining power.
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Notice that even if both players’ costs of haggling become arbitrarily
small in absolute terms (for example, as ∆ → 0), the equilibrium par-
tition depends on the relative magnitude of these costs (as captured by
the ratio rA/rB).

3.3.1. Relationship with Nash’s Bargaining Solution. It is straightfor-
ward to verify that the limiting, as ∆ → 0, SPE payoff pair (ηAπ, ηBπ)
— as stated in Corollary 1 — is identical to the asymmetric Nash bar-
gaining solution of the bargaining problem (Ω, d) with τ = ηA, where
Ω = {(uA, uB) : 0 ≤ uA ≤ π and uB = π−uA} and d = (0, 0) — where
the asymmetric Nash bargaining solution is stated in section 2.2.

This remarkable result provides a strategic justification for Nash’s
bargaining solution. In particular, it provides answers to the questions
of why, when and how to use Nash’s bargaining solution. The asym-
metric Nash bargaining solution is applicable because the bargaining
outcome that it generates is identical to the (limiting) bargaining out-
come that is generated by the basic alternating-offers model. However,
it should only be used when ∆ is arbitrarily small, which may be inter-
preted as follows: it should be used in those bargaining situations in
which the absolute magnitudes of the frictions in the bargaining process
are small. Furthermore, it should be defined on the bargaining prob-
lem (Ω, d), where Ω is the set of instantaneous utility pairs obtainable
through agreement, and d is the payoff pair obtainable through per-
petual disagreement (or what may be called the players’ payoffs from
an impasse).

3.3.2. The Value and Interpretation of the Alternating-Offers Model.
The basic alternating-offers game is a stylized representation of the
following two features that lie at the heart of most real-life negotiations:
• Players attempt to reach agreement by making offers and counterof-
fers.
• Bargaining imposes costs on both players.

As such the game is useful because it provides a basic framework
upon which one can build richer models of bargaining — this is shown
in later chapters where, for example, I shall study extensions of this
game that incorporate other important features of real-life negotiations.
Furthermore, since this game is relatively plausible and tractable, it is
attractive to embed it (or, some extension of it) in larger economic
models. An important value, therefore, of the basic alternating-offers
game is in terms of the insights that its extensions deliver about bar-
gaining situations, and also in terms of its usefulness in applications.

Another important contribution of this model is that it provides a
justification for the use of Nash’s bargaining solution. Furthermore,
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as is shown in later chapters, its extensions can guide the application
of the Nash bargaining solution in relatively more complex bargaining
situations.

The basic alternating-offers model incorporates several specific as-
sumptions that I now interpret. First, I shall interpret the (infinite
horizon) assumption that the players may make offers and counterof-
fers forever. Is this assumption plausible, especially since players have
finite lives? I now argue that, when properly interpreted, this mod-
elling assumption is compelling. The assumption is motivated by the
observation that a player can always make a counteroffer immediately
after rejecting an offer. This observation points towards the infinite
horizon assumption, and against the finite horizon assumption.6 Sup-
pose, for example, a seller and a buyer are bargaining over the price
of some object, and have to reach agreement within a single day. The
players’ strategic reasoning (and hence their bargaining behaviour) is
typically influenced by their perception that after any offer is rejected
there is room for at least one more offer. This suggests that the in-
finite horizon assumption is an appropriate modelling assumption —
notwithstanding the descriptive reality that bargaining ends in finite
time.

The time interval ∆ between two consecutive offers is a parameter
of the game, and it is assumed that ∆ > 0. I now argue that attention
should, in general, focus on arbitrarily small values of ∆. The argument
rests on the observation that since waiting to make a counteroffer is
costly, a player will wish to make her counteroffer immediately after
rejecting her opponent’s offer. Unless there is some good reason that
prevents her from doing so, the model with ∆ arbitrarily small is the
most compelling and least artificial. Why not then set ∆ = 0? There
are two reasons for not doing so. The straightforward reason is that it
does take some time, albeit very small, to reject an offer and make a
counteroffer. The subtle reason is that such a model fails to capture any
friction in the bargaining process. The model with ∆ > 0, on the other
hand, does contain frictions — as captured by the players’ positive costs
of haggling. To further illustrate the difference between the model with
∆ = 0 and the model with ∆ strictly positive but arbitrarily small,
notice the following. In the limit as ∆ → 0 the relative magnitude

6The finite horizon version of the alternating-offers game begs the following ques-
tion. Why should the players stop bargaining after some exogenously given number
of offers have been rejected? Since they would prefer to continue bargaining, some-
how they have to be prevented from doing so. What, or who, prevents them from
continuing to attempt to reach agreement? Unless a convincing answer is provided,
the finite horizon assumption is implausible.
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of the players’ costs of haggling is well defined, but if ∆ = 0 then
this relative magnitude is undetermined (since zero divided by zero is
meaningless). This difference is of considerable significance, since, as
I argued above, it is intuitive that the equilibrium partition depends
critically on the players’ relative bargaining powers — as captured by
the relative magnitude of the players’ costs of haggling — and not so
much on absolute magnitudes.7

The discount factor may be interpreted more broadly as reflecting
the costs of haggling — it need not be given a literal interpretation.
For example, set rA = rB = r. The literal interpretation is that r is the
players’ common discount rate. An alternative interpretation is that r
is the rate at which the cake (or, ‘gains from trade’) shrinks. For ex-
ample, when bargaining over the partition of an ice cream, discounting
future utilities is an insignificant factor. The friction in this bargaining
process is that the ice cream is melting, where the rate r at which the
ice cream is melting captures the magnitude of this friction.

4. Risk of Breakdown

While bargaining the players may perceive that the negotiations
might break down in a random manner for one reason or another. A
potential cause for such a risk of breakdown is that the players may get
fed up as negotiations become protracted, and thus walk away from
the negotiating table. This type of human behaviour is random, in
the sense that the exact time at which a player walks away for such
reasons is random. Another possible cause for the existence of a risk of
breakdown is that ‘intervention’ by a third party results in the disap-
pearance of the ‘gains from co-operation’ that exists between the two
players. For example, while two firms bargain over how to divide the
returns from the exploitation of a new technology, an outside firm may
discover a superior technology that makes their technology obsolete.
Another example is as follows: while a corruptible policeman and a
criminal are bargaining over the bribe, an honest policeman turns up
and reports the criminal to the authorities.

Two players, A and B, bargain over the partition of a cake of size
π (where π > 0) according to the alternating-offers procedure, but
with the following modification: immediately after any player rejects
any offer at any time t∆, with probability p (where 0 < p < 1) the
negotiations break down in disagreement, and with probability 1 − p

7In the limit as ∆ → 0 the first-mover advantage disappears — hence this is an
additional reason for focusing on arbitrarily small values of ∆.
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the game proceeds to time (t + 1)∆ — where the player makes her
counteroffer.

The payoffs are as follows. If the players reach agreement at time
t∆ (t = 0, 1, 2, 3, . . ., and ∆ > 0) on a partition that gives player i a
share xi (0 ≤ xi ≤ π) of the cake, then her payoff is xi. If negotiations
break down in disagreement at time t∆, then player i obtains a payoff
of bi, where 0 ≤ bi < π. The payoff pair (bA, bB) is called the breakdown
point. Assume that bA+bB < π, which ensures that there exist mutually
beneficial partitions of the cake.

If the players perpetually disagree (i.e., each player always rejects
any offer made to her), then player i’s payoff is

pbi

∞∑
t=0

(1− p)t,

which equals bi. Since player i can guarantee a payoff of bi by always
asking for a share bi and always rejecting all offers, it follows that in
any subgame perfect equilibrium, player i’s (i = A, B) payoff is greater
than or equal to bi. The following proposition characterizes the unique
subgame perfect equilibrium.

Proposition 2. The unique subgame perfect equilibrium of the model
with a risk of breakdown is as follows:
• player A always offers x∗A and always accepts an offer xB if and only
if xB ≤ x∗B,
• player B always offers x∗B and always accepts an offer xA if and only
if xA ≤ x∗A, where

x∗A = bA +
1

2− p

(
π − bA − bB

)
and

x∗B = bB +
1

2− p

(
π − bA − bB

)
.

Proof. The proof involves a straightforward adaptation of the argu-
ments in sections 3.2. In particular, in any SPE that satisfies Prop-
erties 1 and 2 player i is indifferent between accepting and rejecting
player j’s (j 6= i) equilibrium offer. That is

π − x∗A = pbB + (1− p)x∗B and

π − x∗B = pbA + (1− p)x∗A.

The unique solution to these two equations is stated in the proposition.
�

In the unique SPE, agreement is reached at time 0, and the bargain-
ing outcome is Pareto efficient: in equilibrium, the negotiations do not
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break down in disagreement. As I argued in Section 3.3.2, attention
should in general be focused upon arbitrarily small values of ∆. It is
assumed that as the time interval ∆ between two consecutive offers de-
creases, the probability of breakdown p between two consecutive offers
decreases, and that p → 0 as ∆ → 0.

Corollary 2 (Split-The-Difference Rule). In the limit, as ∆ → 0, the
unique SPE shares of the cake to players A and B respectively converge
to

bA +
1

2

(
π − bA − bB

)
and bB +

1

2

(
π − bA − bB

)
.

The friction in the bargaining process underlying the above described
game arises from the risk that negotiations break down between two
consecutive offers, which is captured by the probability p. As the ab-
solute magnitude of this friction becomes arbitrarily small — and thus
the common cost of haggling to the players becomes arbitrarily small
— the limiting equilibrium partition of the cake, which is independent
of who makes the first offer, may be interpreted as follows. The play-
ers agree first of all to give player i (i = A, B) a share bi of the cake
(which gives her a payoff equal to the payoff she obtains when, and if,
negotiations break down), and then they split equally the remaining
cake π − bA − bB.

5. Outside Options

Consider a situation in which University A and academic economist
B bargain over the wage. Moreover, suppose that the academic econo-
mist has been offered a job at some alternative (but similar) university
at a fixed, non-negotiable, wage wB. A main objective of this chapter is
to investigate the impact of such an ‘outside option’ on the outcome of
bargaining between A and B. Although the academic economist B has
to receive at least a wage of wB if she is to work at University A, it is
far from clear, for example, whether the negotiated wage will equal wB,
or strictly exceed wB. In this section I study the role of outside options
through a simple extension of the basic alternating-offers mode.8

Two players, A and B, bargain over the partition of a cake of size π
(where π > 0) according to the alternating-offers procedure, but with
the following modification. Whenever any player has to respond to any
offer, she has three choices, namely: (i) accept the offer, (ii) reject the

8In contrast to the model studied above, in the model studied here there is no
exogenous risk of breakdown. A player’s decision to take up her outside option
(and thus, to terminate the negotiations in disagreement) is a strategic decision: no
random event forces a player to opt out.
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offer and make a counteroffer ∆ time units later, and (iii) reject the
offer and opt out, in which case negotiations terminate in disagreement.

The payoffs are as follows. If the players reach agreement at time
t∆ (t = 0, 1, 2, 3, . . ., and ∆ > 0) on a partition that gives player i
(i = A, B) a share xi (0 ≤ xi ≤ π) of the cake, then her payoff is
xi exp(−rit∆). If, on the other hand, the players do not reach agree-
ment because a player opts out at time t∆, then player i takes up her
outside option, and obtains a payoff of wi exp(−rit∆), where wA < π,
wB < π and wA + wB < π. The outside option point is the payoff pair
(wA, wB), where wi is player i’s outside option. Finally, if the players
perpetually disagree (i.e., each player always rejects any offer made to
her, and never opts out), then each player’s payoff is zero. The follow-
ing proposition characterizes the unique subgame perfect equilibrium
of this model in the limit as ∆ → 0.

Proposition 3 (The Outside Option Principle). In the limit, as ∆ →
0, the unique SPE share x∗A obtained by player A is as follows:

x∗A =


ηAπ if wA ≤ ηAπ and wB ≤ ηBπ

π − wB if wA ≤ ηAπ and wB > ηBπ

wA if wA > ηAπ and wB ≤ ηBπ,

where ηA = rB/(rA + rB) and ηB = rA/(rA + rB), and the unique SPE
share obtained by player B is to x∗B = π − x∗A.

Proof. The proof involves a minor and straightforward adaptation of
the arguments in Sections 3.2. In any SPE that satisfies Properties 1
and 2 player i is indifferent between accepting and not accepting player
j’s (j 6= i) equilibrium offer. That is

π − x∗A = max{δBx∗B, wB} and

π − x∗B = max{δAx∗A, wA}.

These equations have a unique solution, which converge to those stated
in the proposition, as ∆ → 0. �

In the unique SPE, agreement is reached at time 0, and the bargain-
ing outcome is Pareto efficient: in equilibrium, the players do not take
up their respective outside options. However, the presence of the out-
side options do influence the equilibrium partition of the cake. If each
player’s outside option is less than or equal to the share she receives
in the (limiting) SPE of Rubinstein’s model (cf. Corollary 1), then
the outside options have no influence on the (limiting) SPE partition.
On the other hand, if one player’s outside option strictly exceeds her
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(limiting) Rubinsteinian SPE share, then her (limiting) SPE share is
equal to her outside option.

As I now illustrate, the results derived above capture, in particular,
the notion that the players should not be influenced by threats which
are not credible. Suppose that University A and academic economist
B are bargaining over the wage w when neither player has any out-
side option. The (instantaneous) utilities to A and B if they reach
agreement on wage w are 1− w and w, respectively, and both players
discount future utilities at a common rate r > 0. Applying Corollary
1, it follows that the (limiting) SPE wage w∗ = 0.5. Now suppose that
B has an outside option wB > 0. It seems intuitive that if B’s outside
option wB is less than or equal to 0.5, then her threat to opt out is not
credible. If she is receiving a wage of 0.5, then getting an alternative
job offer with a wage of 0.49, for example, should be useless: University
A should ignore any threats made by B to quit. If, on the other hand,
the alternative wage exceeds 0.5, then University A has only to exactly
match the outside wage offer; there is no need to give more.

I now show how to apply the asymmetric Nash bargaining solution
in bargaining situations with outside options. First, note that it follows
from Proposition 3 that the unique limiting (as ∆ → 0) SPE payoff
pair (x∗A, π − x∗A) is identical to the unique solution of the following
maximization problem

max
uA,uB

(uA)ηA(uB)ηB

subject to (uA, uB) ∈ Ω, uA ≥ 0 and uB ≥ 0, where
(7)

Ω = {(uA, uB) : 0 ≤ uA ≤ π, uB = π − uA, uA ≥ wA and uB ≥ wB}.

Thus, in the limit, as ∆ → 0, the unique SPE payoff pair of the
model with outside options and discounting converges to the asym-
metric Nash bargaining solution of the bargaining problem (Ω, d) with
τ = rB/(rA + rB), where Ω is defined in (7) and d = (0, 0). Thus,
the Nash’s bargaining solution is applicable when the friction in the
bargaining process is arbitrarily small (i.e., ∆ is arbitrarily close to
zero). The important point to note here concerns, in particular, how
the outside option point should be mapped into the objects upon which
Nash’s bargaining solution is defined. It should be noted that in the
bargaining situation considered above, there are two possible ways in
which the players fail to reach agreement: through perpetual disagree-
ment and when a player opts out. The disagreement point in Nash’s
set-up should be identified with the players’ payoff from impasse; the
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outside option point, on the other hand, constrains the set Ω of possi-
ble utility pairs on which Nash’s bargaining solution should be defined
— by requiring that each utility pair (uA, uB) ∈ Ω be such that ui is
at least as high as player i’s outside option. I thus emphasize that the
outside option point does not affect the disagreement point.

6. Inside Options

Consider the basic exchange situation in which a seller and a buyer
are bargaining over the price at which the seller sells an indivisible
object (such as a house) to the buyer. If agreement is reached on
price p, then the seller’s payoff is p and the buyer’s payoff is π − p.
Furthermore, the seller obtains utility at rate gS while the object is in
her possession, where gS ≥ 0; thus, for ∆ > 0 but small, she obtains
a payoff of gS∆ if she owns the house for ∆ units of time. Given her
discount rate rS > 0, this means that if she keeps possession of the
house forever, then her payoff is gS/rS, which is assumed to be less
than π — for otherwise gains from trade do not exist. The payoff that
the seller obtains while the parties temporarily disagree is her inside
option — which equals gS[1 − exp(−rS∆)]/rS if they disagree for ∆
units of time. In contrast, her outside option is the payoff she obtains
if she chooses to permanently stop bargaining, and chooses not to reach
agreement with the buyer; for example, this could be the price p∗ (where
p∗ > gS/rS) that she obtains by selling the house to some other buyer.

Two players, A and B, bargain over the partition of a cake of size π
(π > 0) according to the alternating-offers procedure. The payoffs are
as follows. If the players reach agreement at time t∆ (t = 0, 1, 2, 3, . . .
and ∆ > 0) on a partition that gives player i a share xi (0 ≤ xi ≤ π)
of the cake, then her payoff is∫ t∆

0

gi exp(−ris)ds + xi exp(−rit∆),

where ri > 0 and gi ≥ 0. The interpretation behind this payoff is as
follows: the second term is her (discounted) utility from xi units of the
cake (where ri is her discount rate), while the first term captures the
notion that until agreement is struck player i obtains a flow of utility
at rate gi. After integrating the first term, it follows that this payoff
equals

gi[1− exp(−rit∆)]

ri

+ xi exp(−rit∆).

If an offer is rejected at time t∆, then in the time interval ∆ — before
a counteroffer is made at time (t + 1)∆ — player i obtains a utility
of gi[1 − exp(−ri∆)]/ri, which is her inside option. Notice that for
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∆ small, her inside option is approximately equal to gi∆. The pair
(gA, gB) is called the inside option point.

If the players perpetually disagree (i.e., each player always rejects
any offer made to her), then player i’s payoff is gi/ri. Assume that
gA/rA + gB/rB < π; for otherwise, gains from co-operation do not
exist. A straightforward observation is that player i can guarantee a
payoff of gi/ri by always asking for the whole cake and always rejecting
all offers. Thus, in any subgame perfect equilibrium of any subgame
of the model with inside options and discounting, player i’s payoff is
greater than or equal to gi/ri. The following proposition characterizes
the unique subgame perfect equilibrium (SPE) of this model in the
limit as ∆ → 0.

Proposition 4 (Split-The-Difference Rule). In the limit, as ∆ → 0,
the unique subgame perfect equilibrium shares of the cake to players A
and B respectively are:

QA =
gA

rA

+ ηA

(
π − gA

rA

− gB

rB

)
and

QB =
gB

rB

+ ηB

(
π − gA

rA

− gB

rB

)
,

where ηA = rB/(rA + rB) and ηB = rA/(rA + rB).

Proof. The proof involves a straightforward adaptation of the argu-
ments in Sections 3.2. In particular, in any SPE that satisfies Prop-
erties 1 and 2 player i is indifferent between accepting and rejecting
player j’s equilibrium offer. That is

π − x∗A =
gB(1− δB)

rB

+ δBx∗B and

π − x∗B =
gA(1− δA)

rA

+ δAx∗A.

These equations have a unique solution, which converge to those stated
in the proposition as ∆ → 0. �

The limiting equilibrium partition of the cake may be interpreted
as follows. The players agree first of all to give each player i a share
gi/ri of the cake — which gives her a payoff equal to the payoff that
she obtains from perpetual disagreement — and then they split the
remaining cake.

The limiting SPE payoff pair (QA, QB) is the unique solution of the
following maximization problem:

max
uA,uB

(uA − dA)ηA(uB − dB)ηB
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subject to (uA, uB) ∈ Ω, uA ≥ dA and uB ≥ dB, where

Ω = {(uA, uB) : 0 ≤ uA ≤ π and uB = π − uA}(8)

d = (gA/rA, gB/rB).(9)

This observation implies the result that the limiting SPE payoff pair is
identical to the asymmetric Nash bargaining solution of the bargaining
problem (Ω, d) with τ = ηA, where Ω and d are respectively defined in
(8) and (9). Thus, in the limit, as ∆ → 0, the unique subgame perfect
equilibrium payoff pair in the model with inside options and discounting
converges to the asymmetric Nash bargaining solution of the bargaining
problem (Ω, d) with τ = ηA, where Ω and d are respectively defined
in (8) and (9), and ηA = rB/(rA + rB). Thus, Proposition 4 shows
how to incorporate the impact of the inside options — as captured by
the flow rates gA and gB — in Nash’s bargaining solution: they affect
the disagreement point in Nash’s bargaining solution. This is another
illustration of the insight — obtained also in other contexts — that the
disagreement point in Nash’s framework should be identified with the
players’ payoffs from perpetual disagreement (impasse).

6.1. An Application to Sovereign Debt Renegotiations. Coun-
try B, who produces one unit of some domestic commodity β per unit
time, owes a large amount of some foreign commodity α to a foreign
bank A. By trading on international markets, B obtains P units of
commodity α for one unit of commodity β, where P > 1. The utility
per unit time to B is the sum of the quantities of commodities α and
β that it consumes. In the absence of any outside interference, in each
unit of time B would trade the unit of commodity β for P units of the
foreign commodity α, and obtain a utility of P . However, if A and B
fail to reach agreement on some debt repayment scheme, then the bank
seizes a fraction ν of the country’s traded output.

The players bargain over the payment per unit time x that B makes
to A everafter. If agreement is reached on x at time t∆, then in each
future unit of time B trades the unit of its domestic commodity β for
P units of the foreign commodity α — and thus, the payoffs to A and
B (from time t∆ onwards) are respectively x/r and (P − x)/r, where
r > 0 is the players’ common discount rate. It is assumed that the
amount that B owes A exceeds P/r, and furthermore, the parties are
committed to the agreed debt repayment scheme. In the framework
of the model studied in above, the players are bargaining over the
partition of a cake of size π = P/r; and if player A receives a share xi

of this cake, then this means that the per unit time repayment x = rxi.
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The inside options to the players are now derived. If any offer is
rejected at any time t∆, then — before a counteroffer is made at time
(t + 1)∆ — ∆ units of the domestic commodity is produced. Country
B either consumes all of it or trades without agreement. In the former
case the inside options of B and A are respectively ∆ and zero, while in
the latter case the inside options of B and A are respectively (1−ν)P∆
and νP∆− ε, where ε denotes an infinitesimal (small) cost of seizure.
Hence, since B makes the decision on whether to consume or trade, it
follows (in the notation of the previous section) that

(gA, gB) =

{
(0, 1) if 1 > (1− ν)P

(νP − ε, (1− ν)P ) if 1 ≤ (1− ν)P .

Noting that gA/r + gB/r < π, one may apply Proposition 4 and obtain
that the players reach agreement immediately (at time 0) with Country
B agreeing to pay the foreign bank an amount x per unit time, where,
in the limit as ε → 0, x converges to

x∗ =

{
(P − 1)/2 if ν > 1− (1/P )

νP if ν ≤ 1− (1/P ).

If international trade sanctions (as captured by the value of ν) are
sufficiently harsh, then Country B’s inside option is derived from con-
suming the domestic commodity — which implies that the equilibrium
debt payment per unit time equals half the gains from trade. On the
other hand, if international trade sanctions are not too harsh, then
Country B’s inside option is derived from trading the domestic com-
modity — which implies that the equilibrium debt payment per unit
time equals the quantity of traded good seized.

A major insight obtained from this analysis is as follows. If ν is
sufficiently high, then further international trade sanctions (as captured
by an increase in ν) have no effect on debt payments. In contrast, an
increase in the terms of Country B’s international trade (as captured
by an increase in P ) always increases debt payments.

It seems reasonable to assume that the value of ν can be (strategi-
cally) chosen by the foreign bank. Assuming that ν is chosen before
the renegotiations begin, and that the bank is committed to its choice,
the bank will set ν to maximize the equilibrium debt payment per unit
time x∗. For any P , x∗ is strictly increasing in ν over the closed in-
terval [0, 1 − (1/P )], and equals (P − 1)/2 for any ν in the interval
(1 − (1/P ), 1]. Hence, since at ν = 1 − (1/P ), x∗ = P − 1, the op-
timal value of ν is ν∗ = 1 − (1/P ). Thus, since 1 − (1/P ) < 1, the
optimal level of ν is strictly less than one; that is, it is not optimal for
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the foreign bank to seize all the traded output. The optimal level of
debt payment per unit time equals P − 1, the gains from international
trade per unit time. Thus, at the optimum, the bank captures all of
the gains from international trade — it cannot, however, extract any
greater amount of payment per unit time from Country B.

7. Asymmetric Information

In some bargaining situations at least one of the players knows some-
thing of relevance that the other player does not. For example, when
bargaining over the price of her second-hand car the seller knows its
quality but the buyer does not. In such a bargaining situation, the seller
has private information; and there exists an asymmetry in information
between the players. In this section I study the role of asymmetric
information on the bargaining outcome.

A player may in general have private information about a variety of
things that may be relevant for the bargaining outcome, such as her
preferences, outside option and inside option. However, in order to
develop the main fundamental insights in a simple manner attention
is focused on the following archetypal bargaining situation. A seller
and a buyer are bargaining over the price at which to trade an indi-
visible object (such as a second-hand car, or a unit of labour). The
payoff to each player (from trading) depends on the agreed price and
on her reservation value. A key assumption is that at least one player’s
reservation value is her private information.

The following argument illustrates the possibility that the bargaining
outcome cannot be efficient. A buyer and a seller are bargaining over
the price of a second-hand car, whose quality is the seller’s private
information. If she owns a low quality car, then she has an incentive to
pretend to own a high quality car in order to obtain a relatively high
price. Since the buyer is aware of this ‘incentive to lie’, the maximum
price that she might be willing to pay may be strictly less than the
high reservation value of a seller owning a high quality car. Thus, if
the seller actually owns a high quality car, then mutually beneficial
trade between the two parties may fail to occur.

Consider a bargaining situation in which player S owns (or, can
produce) an indivisible object that player B wants to buy. If agreement
is reached to trade at price p (p ≥ 0), then the payoffs to the seller
(player S) and the buyer (player B) are respectively p − c and v − p,
where c denotes the seller’s reservation value (or, cost of production)
and v denotes the buyer’s reservation value (or, the maximum price at
which she is willing to buy). If the players do not reach an agreement to
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trade, then each player’s payoff is zero. The outcome of this bargaining
situation is ex-post efficient if and only if when v ≥ c the players reach
an agreement to trade, and when v < c the players do not reach an
agreement to trade.

A key assumption is that exactly one player’s reservation value is
her private information. Section 7.1 studies the case in which the play-
ers’ reservation values are independent of each other, while section 7.2
studies the case in which the players’ reservation values are correlated.

7.1. The Case of Private Values. In this section it is assumed that
the players’ reservation values are independent of each other, and ex-
actly one player, say the buyer, has private information about her reser-
vation value. The seller’s reservation value is known to both players.
This asymmetry in information is modelled as follows. The buyer’s
reservation value is a random draw from the following (binary) proba-
bility distribution: with probability α (where 0 < α < 1) the buyer’s
reservation value is H, and with probability 1 − α the buyer’s reser-
vation value is L, where H > L. The buyer knows the realization of
the random draw, but the seller does not. The seller only knows that
the buyer’s reservation value is a random draw from this probability
distribution. The following proposition establishes that the bargaining
outcome can be ex-post efficient.

Proposition 5. There exists a bargaining procedure such that the in-
duced bargaining game has an ex-post efficient Bayesian Nash Equilib-
rium (BNE).

Proof. Consider the following bargaining procedure. The buyer makes
an offer to the seller. If she accepts the offer, then agreement is struck
and the game ends. But if she rejects the offer, then the game ends
with no agreement. Letting p∗H and p∗L respectively denote the buyer’s
price offers when v = H and v = L, the following pair of strategies
is a BNE: p∗H = min{H, c}, p∗L = min{L, c}, and the seller accepts a
price offer p if and only if p ≥ c. The proposition follows immediately,
because this BNE is ex-post efficient. �

It is straightforward to generalise this argument and show that if
the players’ reservation values are independent of each other, and ex-
actly one player’s reservation value is her private information, then the
bargaining outcome can be ex-post efficient.

7.2. The Case of Correlated Values. I now assume that the player’s
reservation values are correlated, and exactly one player has private in-
formation about her reservation value. This assumption is modelled
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as follows. There is a parameter θ — which is a real number — that
determines both players’ reservation values, and furthermore, the value
of θ is the private information of exactly one player. It is assumed that
each player’s reservation value is strictly increasing in θ. Furthermore,
for any θ, the buyer’s reservation value — which is denoted by v(θ)
— is greater than or equal to the seller’s reservation value — which is
denoted by c(θ).

Assume that it is the seller who has private information about θ.
This asymmetry in information is modelled as follows. The value of θ
is a random draw from the following (binary) probability distribution:
with probability α (where 0 < α < 1) the value of θ is H, and with
probability 1 − α the value of θ is L, where H > L. The seller knows
the realization of the random draw, but the buyer does not. The buyer
only knows that the value of θ is a random draw from this probability
distribution. The following proposition establishes that the bargaining
outcome can be ex-post efficient if and only if ve ≥ c(H), where ve =
αv(H) + (1− α)v(L) is the buyer’s expected reservation value.

Proposition 6. (a) If ve ≥ c(H), where ve = αv(H) + (1 − α)v(L),
then there exists a bargaining procedure such that the induced bargain-
ing game has an ex-post efficient BNE.
(b) If ve < c(H), then for any bargaining procedure the induced bar-
gaining game does not have an ex-post efficient BNE.

Proof. I first establish Proposition 6(a). Consider the following bar-
gaining procedure. The seller makes an offer to the buyer. If she accepts
the offer, then agreement is struck and the game ends. But if she rejects
the offer, then the game ends with no agreement. Since ve ≥ c(H), the
following pair of strategies is a BNE: p∗(H) = p∗(L) = c(H) (where
p∗(H) and p∗(L) are respectively the seller’s price offers when θ = H
and θ = L), the buyer accepts the price p = c(H) and rejects any price
p 6= c(H). The desired conclusion follows immediately, because this
BNE is ex-post efficient. �

I now proceed to prove Proposition 6(b). In order to do so I need
to consider the set of all possible bargaining procedures. However, I
begin by considering a particular subset of the set of all bargaining
procedures, which is called the set of all direct revelation procedures.
In the context of the bargaining situation under consideration, a direct
revelation procedure (DRP) is characterized by four numbers: λL, λH ,
pL and pH , where λs ∈ [0, 1] and ps ≥ 0 (s = L, H). In a DRP the
seller announces a possible value of θ. If s denotes the announced value
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(where s ∈ {L, H}), then with probability λs trade occurs at price ps,
and with probability 1− λs trade does not occur.

Fix an arbitrary DRP, and consider the induced bargaining game
(which is a single-person decision problem). Let s(θ) ∈ {L, H} denote
the seller’s announcement if the true (realized) value is θ (θ = L, H).
The DRP is incentive-compatible if and only if in the induced bargaining
game the seller announces the truth — that is, s∗(L) = L and s∗(H) =
H. Thus, the DRP is incentive-compatible if and only if the following
two inequalities are satisfied

λL(pL − c(L)) ≥ λH(pH − c(L))(10)

λH(pH − c(H)) ≥ λL(pL − c(H)).(11)

Inequalities 10 and 11 are respectively known as the incentive-compatibility
constraints for the low-type seller and high-type seller. Inequality 10
states that the expected payoff to the low-type seller by announcing
the truth is greater than or equal to her expected payoff by telling
a lie. Similarly, inequality 11 states that the expected payoff to the
high-type seller by announcing the truth is greater than or equal to her
expected payoff by telling a lie.

An incentive-compatible DRP is individually-rational if and only if in
the incentive-compatible DRP each type of seller and the buyer obtain
an expected payoff that is not less than their respective payoff from
disagreement (which equals zero). That is, if and only if the following
three inequalities are satisfied

λL(pL − c(L)) ≥ 0(12)

λH(pH − c(H)) ≥ 0(13)

αλH(v(H)− pH) + (1− α)λL(v(L)− pL) ≥ 0.(14)

Since (by assumption) v(H) ≥ c(H) and v(L) ≥ c(L), a DRP is
ex-post efficient if and only if the buyer trades with the seller of either
type with probability one. That is, if and only if

(15) λL = λH = 1.

The Revelation Principle allows me to consider only the set of all
incentive-compatible and individually-rational direct revelation proce-
dures.9 It follows from the Revelation Principle that if there does not

9The Revelation Principle is as follows. Fix an arbitrary bargaining situation
with asymmetric information and an arbitrary bargaining procedure. For any BNE
outcome of the induced bargaining game there exists an incentive-compatible and
individually-rational DRP that implements the BNE outcome.
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exist an incentive-compatible and individually-rational DRP that is ex-
post efficient, then there does not exist a bargaining procedure whose
induced bargaining game has an ex-post efficient BNE. Proposition 6(b)
is therefore an immediate consequence of the following claim.

Claim 1. If ve < c(H), where ve is defined in Proposition 6, then
there does not exist an incentive-compatible and individually-rational
DRP that is ex-post efficient.

Proof. Suppose, to the contrary, that there exists a DRP that satisfies
(10)–(15). Substituting (15) into (10) and (11), it follows that pL = pH .
Hence, after substituting (15) into (13)–(15), it follows from (13)–(15)
that ve ≥ c(H), thus contradicting the hypothesis. �

8. Repeated Bargaining Situations

In this section I study a model of a situation in which two players
have the opportunity to be involved in a sequence of bargaining situa-
tions. Such a situation will be called a ‘repeated’ bargaining situation
(RBS). Examples of repeated bargaining situations abound. For in-
stance: (i) in any marriage the wife and the husband are in a RBS,
and (ii) in most bilateral monopoly markets the seller and the buyer
are in a RBS.

Two players, A and B, bargain over the partition of a cake of size π
(π > 0) according to the alternating-offers procedure. If agreement is
reached at time t1, where t1 = 0, ∆, 2∆, . . ., and ∆ (∆ > 0) is the time
interval between two consecutive offers, then immediately the players
consume their respective (agreed) shares. Then τ (τ > 0) time units
later, at time t1 + τ , the players bargain over the partition of a second
cake of size π according to the alternating-offers procedure. Agreement
at time t2, where t2 = t1 + τ, t1 + τ +∆, t1 + τ +2∆, . . ., is followed im-
mediately with the players consuming their respective (agreed) shares.
Then τ time units later, at time t2 + τ , the players bargain over the
partition of a third cake of size π according to the alternating-offers pro-
cedure. This process continues indefinitely, provided that the players
always reach agreement. However, if the players perpetually disagree
over the partition of some cake, then there is no further bargaining
over new cakes; the players have terminated their relationship. With-
out loss of generality, I assume that player i makes the first offer when
bargaining begins over the partition of the (n+1)th cake (n = 1, 2, . . .)
if it was player j (j 6= i) whose offer over the partition of the nth cake
was accepted by player i. Furthermore, player A makes the offer at
time 0.
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The payoffs to the players depend on the number N (where N =
0, 1, 2, . . .) of cakes that they partition. If N = 0 — that is, they
perpetually disagree over the partition of the first cake — then each
player’s payoff is zero. If 1 ≤ N < ∞ — that is, they partition N cakes
and perpetually disagree over the partition of the (N + 1)th cake —
then player i’s (i = A, B) payoff is

N∑
n=1

xn
i exp(−ritn),

where xn
i (0 ≤ xn

i ≤ π) is player i’s share of the nth cake, tn is the time
at which agreement over the partition of the nth cake is struck, and ri

(ri > 0) is player i’s discount rate. Finally, if N = ∞ — that is, they
partition all the cakes — then player i’s payoff is

∞∑
n=1

xn
i exp(−ritn).

Define for each i = A, B, δi ≡ exp(−ri∆) and αi ≡ exp(−riτ). The pa-
rameters δA and δB capture the bargaining frictions: they respectively
represent the costs to players A and B of haggling over the partition of
a cake. In contrast, the parameters αA and αB respectively represent
the values to players A and B of future bargaining situations.

One interpretation of the repeated bargaining model described above
is as follows. Two players have the opportunity to engage in an infinite
sequence of ‘one-shot’ transactions, where π denotes the size of the
surplus generated from each one-shot transaction and τ the frequency
of such one-shot transactions. The outcomes of any pair of one-shot
transactions are negotiated separately, and, moreover, the outcome of
each one-shot transaction is negotiated when (and if) it materializes.
Letting a one-shot contract denote a contract that specifies the outcome
of a single one-shot transaction, the model embodies the notion that the
long-term relationship is governed by a sequence of one-shot contracts.
An alternative interpretation of the model is as follows. Two players
have the opportunity to generate (through some form of co-operation) a
flow of money at rate π̂. They bargain over a contract that specifies the
partition of the money over the duration of the contract, where τ is the
duration of the contract. Thus, the present discounted value of the total
amount of money generated over the duration of any single contract is
π = π̂[1 − exp(−rmτ)]/rm, where rm (rm > 0) is the market interest
rate. The model embodies the notion that the long-term relationship
is governed by a sequence of limited-term contracts (of duration τ).
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8.1. The Unique Stationary Subgame Perfect Equilibrium. Fix
an arbitrary subgame perfect equilibrium (SPE) that satisfies Proper-
ties 1 and 2 (which are stated in section 3). Given Property 2, let x∗i
(i = A, B) denote the equilibrium offer that player i makes whenever
she has to make an offer. I adopt the convention that an offer is the
share to the proposer. Furthermore, letting V ∗

i denote player i’s equi-
librium payoff in any subgame beginning with her offer, it follows from
Properties 1 and 2 that V ∗

i = x∗i + αi(π − x∗j) + α2
i V

∗
i (j 6= i). Hence,

it follows that

(16) V ∗
A =

x∗A + αA(π − x∗B)

1− α2
A

and V ∗
B =

x∗B + αB(π − x∗A)

1− α2
B

.

Consider an arbitrary point in time at which player i has to make
an offer to player j. By definition, player j’s equilibrium payoff from
rejecting any offer is δjV

∗
j . Therefore, perfection requires that player j

accept any offer xi (where 0 ≤ xi ≤ π) such that π−xi +αjV
∗
j > δjV

∗
j ,

and reject any offer xi such that π−xi+αjV
∗
j < δjV

∗
j . Hence, if ∆ ≥ τ ,

then optimality implies that x∗A = x∗B = π.
On the other hand, if ∆ < τ then player i is indifferent between

accepting and rejecting player j’s equilibrium offer. That is

(17) π − x∗B + αAV ∗
A = δAV ∗

A and π − x∗A + αBV ∗
B = δBV ∗

B.

After substituting for V ∗
A and V ∗

B in (17) using (16), and then solving
for x∗A and x∗B, it follows that

x∗A =
(1− δAαA)(1− δB)(1 + αB)π

(1− δAαA)(1− δBαB)− (δA − αA)(δB − αB)
and(18)

x∗B =
(1− δBαB)(1− δA)(1 + αA)π

(1− δAαA)(1− δBαB)− (δA − αA)(δB − αB)
.(19)

Hence, we obtain the following result:

Proposition 7. The unique stationary subgame perfect equilibrium of
the repeated bargaining model is as follows:
• player A always offers x∗A and always accepts an offer xB if and only
if xB ≤ x∗B,
• player B always offers x∗B and always accepts an offer xA if and only
if xA ≤ x∗A,
where if ∆ ≥ τ then x∗A = x∗B = π, and if ∆ < τ then x∗A and x∗B are
respectively stated in equations 18 and 19. In equilibrium agreement
is reached immediately over the partition of each and every cake. The
equilibrium partition of the nth cake is (x∗A, π − x∗A) if n is odd (i.e.,
n = 1, 3, 5, . . .), and (π − x∗B, x∗B) if n is even (i.e., n = 2, 4, 6, . . .).
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Hence, if ∆ ≥ τ , then in the unique stationary subgame perfect
equilibrium (SSPE) player A obtains the whole of the nth cake when n
is odd and player B obtains the whole of the nth cake when n is even.
The intuition behind this result is that if ∆ ≥ τ , then (in a SSPE) the
proposer effectively makes a ‘take-it-or-leave-it-offer’. Although this
result is rather provocative, it is not plausible that ∆ ≥ τ . It is more
likely that τ > ∆ — the time interval between two consecutive offers
during bargaining over the partition of any cake is smaller than the
time taken for the ‘arrival’ of a new cake.

Before proceeding further, however, I note that (in general) the
unique SSPE partition of each and every cake is different from the
unique SPE partition of the single available cake in Rubinstein’s bar-
gaining model. The intuition for this difference — which is further
developed below — is based on the following observation. In Rubin-
stein’s model the cost to player i of rejecting an offer is captured by
δi; rejecting an offer shrinks, from player i’s perspective, the single
available cake by a factor of δi. In contrast, in the model studied here
the rejection of an offer not only shrinks the current cake, but it also
shrinks all the future cakes, thus inducing a relatively higher cost of
rejecting an offer.

As is evident from the expressions for x∗A and x∗B in (18) and (19),
when τ > ∆ the equilibrium partition of each and every cake depends
on the parameters rA, rB, ∆ and τ in a rather complex manner. How-
ever, one of the main insights of the model can be obtained in a simple
manner by examining the impact of the derived parameters αA, αB,
δA and δB on the unique SSPE partitions. Notice that if τ > ∆, then
δi > αi (i = A, B).

Corollary 3. For each i = A, B, x∗i is (i) strictly increasing in δi

on the set Z, (ii) strictly decreasing in αi on the set Z, (iii) strictly
decreasing in δj (j 6= i) on the set Z and (iv) strictly increasing in αj

on the set Z, where

Z = {(αA, αB, δA, δB) : δA > αA and δB > αB}.

Proof. The corollary follows in a straightforward manner from the four
derivatives of x∗i (which is stated in (18)–(19)) — with respect to δi,
αi, δj and αj. �

It follows immediately from Corollary 3 and Proposition 7 that if
τ > ∆, then player i’s share of each and every cake in the unique
SSPE is strictly increasing in δi, but strictly decreasing in αi. The
former effect is consistent with the insight obtained in the context
of Rubinstein’s bargaining model when the players bargain over the
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partition of the single available cake. The latter effect, however, is
novel, but the intuition behind it is straightforward. As αi increases,
the value to player i of future bargaining situations increases. Thus,
when bargaining over the partition of any cake, her desire to proceed to
bargain over the partition of the next cake has increased, which works
to player j’s advantage.

Notice that Corollary 3 implies that a decrease in ri has two opposite
effects on player i’s equilibrium share of each and every cake — because
a decrease in ri increases both δi and αi. It will be shown below that if
∆ is arbitrarily small and (for each i = A, B) riτ > 0 but small, then
the effect through αi dominates that through δi, thus implying that as
player i becomes more patient her equilibrium share of each and every
cake decreases.

8.2. Small Time Intervals Between Consecutive Offers. In Corol-
lary 4 below I characterize the unique SSPE in the limit, as ∆ → 0.
I focus attention on this limit because it is the most persuasive case.
Besides, the expressions for x∗A and x∗B in this limit are relatively more
transparent compared to those in (18) and (19).

Corollary 4. Fix any rA > 0, rB > 0 and τ > 0. In the limit, as
∆ → 0, x∗A and x∗B (as defined in Proposition 7) respectively converge
to

z∗A =
rBπ

rB + φArA

and z∗B =
rAπ

rA + φBrB

, where

φA =
(1 + αA)(1− αB)

(1− αA)(1 + αB)
and φB =

(1 + αB)(1− αA)

(1− αB)(1 + αA)
.

Furthermore, the payoffs to players A and B in the limiting (as ∆ → 0)
unique SSPE are respectively

V ∗∗
A =

z∗A
1− αA

and V ∗∗
B =

z∗B
1− αB

.

Proof. Fix τ > ∆. When ∆ > 0 but small, δi = 1− ri∆. Using this to
substitute for δA and δB in (18) and (19), it follows (after simplifying)
that when ∆ > 0 but small

x∗A =
(1− αA + rAαA∆)(1 + αB)rB∆π

(1− αAαB)(rA + rB − rArB∆)∆ + (αB − αA)(rB − rA)∆
and

x∗B =
(1− αB + rBαB∆)(1 + αA)rA∆π

(1− αAαB)(rA + rB − rArB∆)∆ + (αA − αB)(rA − rB)∆
.

After dividing the numerator and the denominator of each of these
expressions by ∆, and then letting ∆ tend to zero, it follows that
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x∗i → z∗i . Since z∗A + z∗B = π, it follows from Proposition 7 that the
equilibrium payoffs in this limit are as stated in the corollary. �

It follows from Corollaries 1 and 4 that unless φA = φB = 1, the
limiting (as ∆ → 0) unique SSPE partition of each and every cake in
the repeated bargaining model is different from the limiting (as ∆ →
0) unique SPE partition of the single available cake in Rubinstein’s
bargaining model. Notice that for any rA > 0, rB > 0 and τ > 0,
φi = 1 if and only if rA = rB. Furthermore, since φi → 1 as riτ →∞,
it follows that when rA 6= rB, the limiting (as ∆ → 0) unique SSPE
partition of each and every cake will have similar properties to the
limiting (as ∆ → 0) unique SPE partition of the single available cake
in Rubinstein’s model if and only if the value to each player of future
bargaining situations is arbitrarily small.

The following corollary characterizes the properties of the limiting
(as ∆ → 0) unique SSPE when rA 6= rB and (for each i = A, B) riτ
is small (which means that the value to player i of future bargaining
situations is large).

Corollary 5. Assume that rA 6= rB, rAτ > 0 but small and rBτ > 0
but small.
(i) z∗i (i = A, B) is strictly increasing in ri, and strictly decreasing in
rj (j 6= i).
(ii) If ri > rj (i 6= j), then z∗i > z∗j .
(iii) If ri > rj (i 6= j), then V ∗∗

i < V ∗∗
j .

(iv) V ∗∗
i (i = A, B) is strictly decreasing in ri, and strictly decreasing

in rj (j 6= i).
(v) If ri > rj (i 6= j) then z∗i is strictly increasing in τ , and if ri < rj

then z∗i is strictly decreasing in τ .
(vi) In the limit as rAτ → 0 and rBτ → 0, z∗A → π/2 and z∗B → π/2.

Proof. When riτ > 0 but small, αi = 1− riτ . Using this to substitute
for αA and αB in the expressions for φA and φB (stated in Corollary
4), it follows that when (for each i = A, B) riτ > 0 but small

φA =
(2− rAτ)rB

rA(2− rBτ)
and φB =

(2− rBτ)rA

rB(2− rAτ)
.

This implies that when (for each i = A, B) riτ > 0 but small

z∗A =
(2− rBτ)π

4− (rA + rB)τ
and z∗B =

(2− rAτ)π

4− (rA + rB)τ
.

The results in the corollary are now straightforward to derive, given
these simple expressions for z∗A and z∗B. �
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Corollary 5(i) states that when rA 6= rB and the value to each player
of future bargaining situations is large, player i’s (i = A, B) share of
each and every cake in the limiting (as ∆ → 0) unique SSPE decreases
as she becomes more patient and/or her opponent becomes less patient.
In contrast, in Rubinstein’s bargaining model a player’s share of the
single available cake in the limiting (as ∆ → 0) unique SPE increases
as she becomes more patient and/or her opponent becomes less patient
(cf. Corollary 1). Thus, this fundamental insight of Rubinstein’s model
does not carry over to long-term relationships when the players have the
opportunity to bargain (sequentially) over the partition of an infinite
number of cakes and the value to each player of future bargaining
situations is large. The intuition behind this conclusion is as follows.

In the repeated bargaining model studied here a player’s discount
rate determines not only her cost of rejecting an offer, but also her
value of future bargaining situations. Suppose that one of the players
— say, player i — becomes more patient. This means that her cost
of rejecting an offer decreases. However, it also means that her value
of future bargaining situations increases. When bargaining over the
partition of a cake, the former effect increases her bargaining power
(as she is more willing to reject offers), but the latter effect decreases
her bargaining power — because she is more willing to accept offers
so that the players can proceed to bargain over the partition of the
next cake (cf. Corollary 3). When ∆ is arbitrarily small the former
effect is negligible, and when riτ > 0 (but small) the latter effect is
non-negligible. Thus, the latter effect dominates the former effect.

The above argument also provides intuition for the result stated in
Corollary 5(ii) that the less patient of the two players receives a greater
share of each and every cake. Not surprisingly, however, the limiting
(as ∆ → 0) unique SSPE payoff of the less patient of the two players
is smaller than her opponent’s limiting unique SSPE payoff (Corollary
5(iii)). This means that the more patient player’s overall bargaining
power in the long-term relationship is relatively higher. And Corollary
5(iv) shows that overall bargaining power increases as she becomes even
more patient, but decreases as her opponent becomes less patient.

Corollary 5(v) implies that the more patient player’s limiting (as
∆ → 0) SSPE share of each and every cake decreases as τ increases.
The intuition behind this conclusion runs as follows. As τ increases,
the decrease in the more patient player’s value of future bargaining
situations is smaller than the decrease in her opponent’s value of future
bargaining situations, which works to her opponent’s advantage.

Notice that if rAτ > 0 and rBτ > 0, then the players’ shares of each
and every cake (and payoffs) in the limiting (as ∆ → 0) unique SSPE
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depend on the relative magnitude of the players’ discount rates. How-
ever, Corollary 5(vi) shows that in the limit as rAτ → 0 and rBτ → 0,
this is no longer true. This implies that (under these limiting con-
ditions) the players’ bargaining powers are identical no matter how
patient or impatient player A is relative to player B. Hence, the in-
sight of Rubinstein’s bargaining model — that the relative magnitude
of the players’ discount rates critically determine the players’ bargain-
ing powers even when the time interval between two consecutive offers
is arbitrarily small — does not carry over to long-term relationships
when the players have the opportunity to bargain (sequentially) over
an infinite number of cakes and the value to each player of future bar-
gaining situations is arbitrarily large.

9. Concluding Remarks

The theory developed in the preceding sections contains some funda-
mental results and insights concerning the role of some key factors on
the bargaining outcome. It cannot be overemphasized that the focus
of this theory is on the fundamentals. Indeed, in the first stage of the
development of an understanding of any phenomenon that is precisely
the kind of theory that is required — one that cuts across a wide and
rich variety of real-life scenarios and focuses upon their common core
elements.

This objective to uncover the fundamentals of bargaining has meant
that so far attention has centred on some basic, elementary models.
That is how it should be. However, it is important that we now move
beyond the fundamentals, in order to develop a richer theory of bar-
gaining. With the theory just developed providing appropriate guid-
ance and a firm foundation, it should be possible to construct tractable
and richer models that capture more aspects of real-life bargaining sit-
uations. At the same time, future research should continue to develop
the fundamentals; not only should we further study the roles of the fac-
tors studied in this article — especially the study of models in which
many such factors are present — but we should also study the role of
other factors that have not been addressed in this article.
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