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Abstract

We consider a problem of mechanism design without money, where a
planner selects a winner among a set of agents with binary types and re-
ceives outside signals (like the report of external referees). We show that
there is a gap between the optimal Dominant Strategy Incentive Compatible
(DSIC) mechanism and the optimal Bayesian Incentive Compatible (BIC)
mechanism. In the optimal BIC mechanism, the planner can leverage the
outside signal to elicit information about agents’ types. BIC mechanisms
are lexicographic mechanisms, where the planner first shortlists agents who
receive high reports from the referees and then uses agents’ reports to break
ties among agents in the shortlist. We compare the “self-evaluation” mech-
anism with a “peer evaluation” mechanism where agents evaluate other
agents, and show that for the same signal precision, the self- evaluation
mechanism outperforms the peer evaluation mechanism. We show that op-
timal Ex Post Incentive Compatible (EPIC) mechanisms give the planner
an intermediate value between the optimal DSIC and BIC mechanisms
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1 Introduction

We consider a selection problem without money, where a planner awards a single,

indivisible, prize to one of n competing agents. The prize can be a coveted position

in an organization, a project or research proposal to be funded, or the recognition

of a particular achievement. Each individual can either be suitable or unsuitable

for the award. The planner wants to select a suitable candidate but does not

observe the suitability of the candidates.

In the absence of transfers, the planner is unable to elicit the suitability of

candidates. Irrespective of their types, all agents have an incentive to report that

they are suitable, in order to be considered for the award. In this paper, we show

that if the planner is able to observe an outside signal on the candidate’s types,

for example a report by an external referee, she can leverage this information to

elicit agents’ suitability for the award.

More precisely, we suppose that both candidates and external referees receive

a signal on agents’ suitability, with precision levels denoted by p and r, where

1 > p ≥ r > 1/2, reflecting the fact that agents have a better (although imper-

fect) perspective on their suitability than an external referee. We analyze direct

selection mechanisms, termed “self-evaluation” mechanisms, where the planner

asks candidates and referees to report their signals, and chooses a probability of

assigning the award to any candidate as a function of the 2n-tuple of reports. A

dominant strategy incentive compatible (DSIC) mechanism must ignore the re-

ports of the agents. The optimal DSIC mechanism will utilize the reports of the

external referees but at an efficiency loss, which will be particularly pronounced

when the precision of the referee’s signal, r, is low. We then weaken the incentive

compatibility requirement and focus attention on Bayesian incentive compatible

(BIC) mechanisms.

Our first result shows that there is a gap between optimal DSIC and BIC

mechanisms and that an optimal BIC mechanism gives a higher expected payoff to

the planner than the optimal DSIC mechanisms. Correlation between the signals

of the agents and the external referees can be exploited by the planner to improve

upon any mechanism which only relies on the referee reports. The intuition is best
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illustrated when there are only two contestants. In the optimal DSIC mechanism,

when the two candidates receive the same report from the external referee, each

is chosen with equal probability. The planner can do better when agents face BIC

constraints. She can discriminate among the agents when they submit different

reports, by increasing the probability of selecting an agent who reports high type

when the two referee reports are high and decreasing that probability when the

two referee reports are low. Given that the signals of the agents and referees are

positively correlated, the referee is more likely to report that the agent is suitable

when the agent receives a high signal, so that the planner can strictly increase the

expected probability of selecting a suitable agent, while keeping the BIC constraint

satisfied.

This intuition can be used to characterize the optimal BIC mechanism, both

with two contestants and in the general model with an arbitrary number of can-

didates. The optimal mechanisms are lexicographic. The planner first follows the

reports of the external referees, and shortlists agents who receive a high report

from the referees. The planner then selects, with equal probability, one of the

agents in the short list who reports a high signal. When all agents receive low

reports from the referees, the planner selects with high probability an agent who

reports a low signal.

We also consider a second class of mechanisms, the “peer evaluation” mech-

anisms, where candidates are asked to report not their own type, but the suit-

ability of another candidate. There are several settings where close analogues of

peer evaluation mechanisms are used. In computer science conferences, program

committee members who review and rank papers also typically submit papers to

the conference. The National Science Foundation has asked applicants to review

and rank other applicants for the same funding program.1 These practices have

given rise to a recent literature on DSIC peer evaluation mechanisms. Formally,

the self-evaluation and peer evaluation mechanisms may be interpreted as “du-

als” of each other, but give very different predictions. First, we show that, in

1See the article by Jeffrey Marvis in Science on July 17, 2014, “Want a grant? First
review someone else’s proposal!”, https://www.science.org/content/article/want-grant-first-
review-someone-elses-proposal.

3



contrast to the self-evaluation mechanism, the optimal BIC and DSIC peer eval-

uation mechanisms coincide when there are two contestants. When the number

of individuals exceeds two, the optimal BIC peer evaluation mechanism performs

better than the DSIC mechanism, but still yields a lower value than the optimal

BIC self-evaluation mechanism for the same signal precision. The superiority of

the self-evaluation mechanism stems from the fact that the planner can more easily

construct compensating probabilities when the binding incentive constraint affects

agents reporting that they have a low type than when it affects agents reporting

that their competitors have a high type.

Finally, we consider Ex Post Incentive Compatibility (EPIC) mechanisms,

where agents have an incentive to tell the truth, for any truthful announcement of

the other agents, and taking expectations over the reports of the referees. When

the number of agents is equal to two, the optimal EPIC mechanisms give the

same value as the optimal DSIC mechanism. In general, EPIC mechanisms al-

ways generate a lower value than optimal BIC mechanisms, and when the number

of agents is greater than two, the optimal EPIC mechanism gives a value which is

intermediate between the optimal DSIC and BIC mechanisms.

The proofs of the main characterization theorem is given in the Appendix.

In Online Appendix 1, we provide the proofs of the other results in the paper.

In Online Appendix 2, we run several robustness checks, showing that the main

results of the paper remain true if the underlying information structure is non-

symmetric, if we consider wasteful and non-anonymous mechanisms, and if the

number of signals is greater than two.

2 Related Literature

Our paper belongs to the growing literature on mechanism design without mon-

etary transfers. To the best of our knowledge, the paper by Kattwinkel and

Knoepfle [?] is the first to point out how (positive) correlation between an outside

signal and the agent’s report can be used to provide incentives in a setting with-

out monetary transfers. Kattwinkel and Knoepfle [?] consider a principal-agent

model, where the principal, for instance, has to allocate an indivisible project to
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the agent. The principal observes a signal on the cost of the project while the

agent reports a value. Costs and values are positively correlated. Kattwinkel and

Knoepfle [?] show that the principal can exploit the correlation in costs and val-

ues to design a direct mechanism that induces truth-telling and improves upon a

constant mechanism.

A recent paper by Pereyra and Silva [?] exploits the same intuition to show

that imperfect signals can improve the allocation mechanism in an assignment

model with a continuum of agents. Inspired by the problem of assigning students

to colleges, Pereyra and Silva [?] consider a setting where colleges receive an

imperfect signal correlated with the students’ abilities. They characterize the

optimal allocation mechanism which involves students sorting by selecting among

two tracks with different admission thresholds.

Our paper is complementary to these papers, as we focus on a problem of

selection among multiple but finite number of agents. The structure of the optimal

mechanisms is very different from the structure of the optimal mechanisms in these

papers. We find that any optimal mechanism is “lexicographic”: it first follows

the recommendation of the referees and uses signals of the agents to break ties.

We also compare self-evaluation and peer evaluation mechanisms and show that

the former outperforms the latter. Such results cannot be obtained in the setups

studied either in Kattwinkel and Knoepfle [?] or Pereyra and Silva [?].

Our paper is of course also related to the older literature on allocation without

transfers but with costly verification. This literature was initiated by Ben Porath,

Dekel and Lipman [?] who derive a very simple optimal mechanism, the “favored

agent mechanism”, where the good is allocated to one given agent, except if an-

other agent reports a value above a threshold. In that case, the agent’s report is

checked for accuracy. Mylonanov and Zapechelnuyk [?] assume that reports can

only be verified ex post, after the object has been allocated and punishments are

limited. When the number of agents is large, the optimal mechanism is, like in

our case, a shortlisting method. Each agent reports whether her type is above

a threshold, and a winner is chosen randomly among the shortlisted candidates

and checked. Finally, in a recent paper, Li [?] assumes ex ante costly verification

and limited punishment and shows that the optimal mechanism is a version of a
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shortlisting method.

Other papers on mechanism design without transfers focus on different specific

settings. For instance, Börger and Postl [?] study BIC mechanisms in a voting

problem with three alternatives, while Gerkshov et al. [?] characterize optimal

DSIC rules as sequential voting rules in a general model of voting over social

states. Miralles [?] and Halafir and Miralles [?] focus on mechanism design issues

in matching problems. Antic and Steverson [?] analyze a problem where a principal

selects among a set of agents, and show how complementarities in preferences can

be used to circumvent the absence of transfers.

Our paper also connects to the large literature in economics and computer

science on incentive compatibility and peer selection. This literature has focused

on dominant strategy mechanisms. Holzman and Moulin [?] provide an axiomatic

analysis of “external” voting rules when individuals nominate a single individual

for office. Tamura and Ohseto [?], Berga and Gjorjiev [?], Mackenzie [?] and

[?], are other contributions that explore various facets of the axiomatic analysis of

dominant strategy in peer selection problems. Alon et al. [?] consider the problem

of designing a dominant strategy mechanism to select k individuals from a group

of peers. They show that no deterministic efficient dominant mechanism exists,

and then go on to construct approximately efficient, stochastic, dominant strategy

mechanisms. Fischer and Klimm [?], Bousquet, Norin and Vetta [?] improve on

the partition algorithm proposed in Alon et al. [?]. Kurokawa et al. [?] and Aziz

et al. [?] and [?] propose other algorithms to improve on the partition algorithm.

Bjelde, Fischer and Klimm [?] and Babichenko, Dean and Tenneholtz [?] consider

other aspects of the peer selection problem.

3 The model

We consider a set of agents, N = {0, . . . , n−1}. Each agent i ∈ N is characterized

by a type Θi ∈ {0, 1}, which can be either high (Θi = 1) (a “suitable candidate”)

or low (Θi = 0) (an ”unsuitable candidate”) with equal probability, Pr(Θi = 0) =

Pr(Θi = 1) = 1/2. Types are distributed independently.

Each agent i receives a signal, Xi ∈ {0, 1}, about her type. For any agent
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i ∈ N , let p = Pr(Xi = 1 | Θi = 1) = Pr(Xi = 0 | Θi = 0) be the precision of the

signal. We assume that p ∈ (1/2, 1).

The planner also has access to other signals, called referee reports, (Yi)i∈N

where Yi ∈ {0, 1} is a signal about the type of agent i. Conditional on the type

of agent i, the signal received by the agent, xi, and the referee report yi are

independently distributed.

For any agent i ∈ N , let r = Pr(Yi = 1 | Θi = 1) = Pr(Yi = 0 | Θi = 0)

be the precision of the referee report. We assume that r ∈ (1/2, p], so that the

referee reports are less accurate than the signals that agents receive about their

own type.2 Notice that, in the benchmark model, the information structure we

consider is completely symmetric. In Online Appendix 2, we show that our results

extend to non-symmetric information structures.

Formally, a direct mechanism without transfers is a mapping, π : {0, 1}N ×
{0, 1}N → ∆(N),3 that assigns a probability of selecting agent i, πi(x,y), given

the vectors of reports x = (xi)i∈N and y = (yi)i∈N . 4 Throughout the paper

we use S = ∆(N){0,1}
N×{0,1}N to denote the set of all direct mechanisms without

transfers.5

We assume that an agent receives a payoff of 1 when she is selected and a payoff

of 0 otherwise. The planner receives a value of 1 if she selects a suitable candidate

and a value of 0 if she selects an unsuitable candidate, so that the expected value

of the planner is given by6

Π = E

(∑
i∈N

πi(X,Y )[Θi = 1]

)
.

We are interested in mechanisms under which the agents have incentives to report

their signals truthfully and, within such sets of mechanisms, in the mechanisms

2This Assumption is not needed to prove that the optimal BIC mechanism dominates the
optimal DSIC mechanism, but will prove convenient to characterize the class of optimal BIC
mechanisms.

3Given a nonempty set S we use ∆(S) to denote the set of probability distributions on S.
4Notwithstanding the absence of transfers, the mechanism design problem we consider is a

classical problem, and the revelation principle applies. There is thus no loss of generality in
focussing on direct mechanisms.

5We denote by the lower case xi (respectively yi, θi) a realization of the signal Xi (respectively
Yi,Θi).

6Given logical proposition ϕ, [ϕ] is the Iverson bracket taking value 1 when ϕ is true and
value 0 otherwise.
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that maximize the planner’s expected value. We consider two concepts of incentive

compatibility, Dominant Strategy and Bayesian Incentive Compatibility.

Definition 1 (Dominant Strategy Incentive Compatibility). A mechanism π ∈ S
is dominant strategy incentive compatible (DSIC) if and only if, for any agent

i ∈ N , any tuples of signals x ∈ {0, 1}N and y ∈ {0, 1}N , and any report x′i ∈
{0, 1} of agent i,7

πi(x,y) ≥ πi(x
′
i,x−i,y). (1)

Dominant Strategy Incentive Compatibility is a strong notion of incentive

compatibility. Under mild conditions (that are automatically satisfied in the two-

person case), a DSIC mechanism must ignore the reports of the agents and depend

only upon the referee reports.

We next define the weaker Bayesian Incentive Compatibility property.

Definition 2 (Bayesian Incentive Compatibility). A mechanism π ∈ S is Bayesian

incentive compatible (BIC) if and only if, for any agent i ∈ N , any signal

xi ∈ {0, 1} and any report x′i ∈ {0, 1} of agent i,

E(πi(xi,X−i,Y )|Xi = xi) ≥ E(πi(x
′
i,X−i,Y )|Xi = xi) . (2)

A mechanism is Bayesian Incentive Compatible if agents have no incentive to

misreport their signals when the other agents report truthfully. Clearly, any DSIC

mechanism also satisfies BIC, but the converse need not be true.

We restrict attention to anonymous mechanisms under which the probability

of selecting an agent only depends on the reports received on the agents and not

on their identities.

Definition 3 (Anonymity). A mechanism π : {0, 1}N×{0, 1}N → ∆(N) is anony-

mous if and only if, for any agent i ∈ N , any vector of reports x ∈ {0, 1}N of the

agents, any vector of public signals y ∈ {0, 1}N , and any permutation σ : N → N ,

πi(x,y) = πσ(i)
(
(xσ(i))i∈N , (yσ(i))i∈N

)
. (3)

7Throughout the paper, given a vector x and indices i and j, we denote by x−i the vector
obtained from x by omitting the value at index i and x−i,j the vector obtained from x by
omitting the values at indices i and j.
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Our main goal in this paper is to characterize mechanisms under the anonymity

and incentive compatibility constraints that maximize the expected value of the

social planner.

Definition 4 (Optimality). A anonymous DSIC (BIC) mechanism π ∈ S is op-

timal if there is no other anonymous DSIC (resp BIC) mechanism π′ ∈ S such

that

E

(∑
i∈N

π′i(X,Y )[Θi = 1]

)
> E

(∑
i∈N

πi(X,Y )[Θi = 1]

)
. (4)

4 Selecting a winner among two agents

We first analyze the planner’s problem when there are only two candidates. The

social planner has access to four reports: (x0x1, y0y1) where x0 and x1 denote

the reports of the two agents and y0 and y1 the reports of the external refer-

ees. A direct mechanism is thus determined by the probabilities π0(x0x1, y0y1)

and π1(x0x1, y0y1), for each of the 16 possible reports (x0x1, y0y1) ∈ {0, 1}4. By

anonymity, π0(x0x1, y0y1) = π1(x1x0, y1y0) so we can focus attention on the 16

probabilities of selecting agent 0, and drop the subscript, letting π(x0x1, y0y1) =

π0(x0x1, y0y1).

With these notations in hand, we write the expected value of the planner as

Π =
1

2
((1− p)(1− r)Q(π(00, 00) + π(01, 01)) + (1− p)(1− r)(1−Q)(π(00, 01) + π(01, 00))

+ p(1− r)Q(π(10, 00) + π(11, 01)) + p(1− r)(1−Q)(π(10, 01) + π(11, 00))

+ (1− p)rQ(π(00, 10) + π(01, 11)) + (1− p)r(1−Q)(π(00, 11) + π(01, 10))

+ prQ(π(10, 10) + π(11, 11)) + pr(1−Q)(π(10, 11) + π(11, 10)))

where Q = pr+(1−r)(1−p) denotes the expected probability that the two reports

(of the agent and the referee) coincide.

It is straightforward to observe that, in a DSIC mechanism, the planner can

only condition the probability on the report of the referees. She selects with equal

probability the two projects when they receive the same report, and always selects

the project with the high report when the projects receive different referee reports.
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The BIC constraint for the low-signal agent is given by

Q2(π(00, 00)− π(10, 00) + π(01, 01)− π(11, 01))

+Q(1−Q)(π(00, 01)− π(10, 01) + π(01, 00)− π(11, 00))

+(1−Q)Q(π(00, 10)− π(10, 10) + π(01, 11)− π(11, 11))

+(1−Q)2(π(00, 11)− π(10, 11) + π(01, 10)− π(11, 10)) ≥ 0.

We first show that the planner can exploit the correlation between the agent’s

signals and the referee reports to improve upon the optimal DSIC mechanism.

The planner’s value would increase if she could use the agents’ reports, and select,

with higher probability, an agent who reports a high signal. However, this runs

against the incentives of the low-signal agent, who has an incentive to report a high

signal. In order to mitigate this effect, the planner can increase the probability

of selecting an agent announcing high signal for some reports of the referees, and

decrease the probability for other reports. Because the reports of the referees are

correlated with the agents’ signals, a low-signal agent is less likely to receive a

high report from the referee. Hence, by increasing the probability of selecting an

agent reporting a high signal when both referee reports are high, and decreasing

this probability when both referee reports are low, the planner can increase her

value while keeping the incentive constraint of the two types of agents satisfied.

We now proceed to characterize the optimal BIC mechanism. Given that the

planner does not suffer any utility loss from selecting an unsuitable candidate,

there is no waste in the optimal mechanism: for any vector of reports, one of the

two agents is always selected. We then compute

π(x1x0, y1y0) = 1− π(x0x1, y0y1)

and the mechanism is fully determined by the following six probabilities:

π1 = π(10, 10), π2 = π(10, 00), π3 = π(00, 10), π4 = π(10, 01); π5 = π(10, 11), π6 = π(11, 10).

We consider the relaxed problem where the social planner only faces the BIC

constraint for the low-signal agent. The social planner solves a linear programming
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problem given by

max
πi

1
2

+ (1− p)(1− p(2r − 1)) +
∑
aiπi

s.to 3
2
−Q−∑ biπi ≥ 0

0 ≤ πi ≤ 1

where

a1 =
(
p2r2 − (1− p)2(1− r)2

)
, a2 = a5 =

(
p2r(1− r)− (1− p)2r(1− r)

)
,

a3 = a6 =
(
r2p(1− p)− (1− r)2p(1− p)

)
, a4 =

(
p2(1− r)2 − (1− p)2r2

)
b1 = b2 = Q, b3 = 0, b4 = b5 = 1−Q, b6 = 1− 2Q.

We consider the relaxed problem where the planner only faces the BIC con-

straint of the low type but subsequently check that the solution satisfies the BIC

constraint for the high type) which is given by

3

2
−Q− b1π1 − b2π2 − b3π3 − b4π4 − b5π5 − b6π6 ≥ 0. (5)

where

b1 = b2 = Q, b3 = 0, b4 = b5 = 1−Q, b6 = 1− 2Q.

This is a linear relaxation of the knapsack problem and the solution to this

problem is well known. (See, for example Theorem 2.2.1 in [?].) As b3 = 0 and

b6 < 0, the items 3 and 6 are always included. For the other items, we compute

the efficiency indices γi = −ai/bi as

γ1 = p+ r − 1 > γ5 =
r(1− r)(2p− 1)

1−Q > γ2 =
r(1− r)(2p− 1)

Q
> γ4 = p− r.

It is easy to check that items 1 and 5 are always included, item 4 never included,

and item 2, the split item, is included with probability π2 = 1− 1/(2Q).

The optimal BIC mechanism is thus a lexicographic mechanism where the

planner first considers the reports of the referees. If the reports of the refer-

ees differ, the planner always selects the agent who receives the high report,

π(00, 10) = π(10, 10) = π(01, 10) = π(11, 10) = 1. If the two agents receive

the same report from the referees and report the same signal, they are selected
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with equal probability, π(00, 00) = π(00, 11) = π(11, 00) = π(11, 11) = 1/2. It is

when the two agents receive the same referee report but report different signals

that the optimal BIC mechanism differs from the optimal DSIC mechanism. In-

stead of selecting each agent with equal probability, the social planner selects the

agent reporting the high signal with probability one when the referees send high

reports, π(10, 11) = 1, but with a probability smaller than 1/2 when the referees

send low reports, π(10, 00) = 1− 1/(2Q).8

5 Selecting a winner among n agents

We now extend the characterization of the optimal mechanism to an arbitrary

number of agents and show that the optimal BIC mechanism again has a lexico-

graphic structure, where the planner only uses the agents’ reports to break ties

among candidates who receive the same reports from external referees. In this

extension, different régimes can arise, and new notations are needed. We will dis-

tinguish between situations where the precision of the signal of the referee is high,

r ≥ r∗, or low, r < r∗, where the threshold value r∗ is defined as follows. Define

ϕn : [0, 1)→ R to be the function

ϕn(x) =
(2− x)n

1− x − x(1− x)n−2.

We show in the Appendix that, for any n ≥ 2, there exists a unique x ∈ [1/2, 1)

such that ϕn(x) = 2n. Then9

r∗ =
ϕ
(−1)
n (2n) + p− 1

2p− 1
.

Since we consider anonymous mechanisms, the probability of selecting candi-

date i ∈ N only depends on the scores received by i, (xi, yi) and the number of

other agents receiving different combinations of scores: (0, 0), (0, 1), (1, 0) and

(1, 1). Given any natural number m let

S4(m) =
{

(z0,0, z0,1, z1,0, z1,1) ∈ N4 : z0,0 + z0,1 + z1,0 + z1,1 = m
}

8When r = 1/2, Q = 1/2. In this case, the mechanism reduces to the optimal DSIC mecha-
nism.

9We observe that the threshold value r∗(p, n) is strictly decreasing in p and it is equal to

ϕ
(−1)
2 (2n) when p = 1. It is also equal to 1/2, for all p ∈ [1/2, 1], when n = 2. Hence in the case

of n = 2 it is always “sufficiently high”.
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denote the set of all four-partitions of m into the sum of four natural numbers.

Any z = (z0,0, z0,1, z1,0, z1,1) ∈ S4(m) contains a record of numbers of different

scores received among m agents. In some situations we will be interested only in

the numbers of agents receiving different self-scores among the agents receiving

low scores from the referee. Given any natural number m let

S2(m) =
{

(z0,0, z1,0) ∈ N2 : z0,0 + z1,0 = m
}

denote the set of all bipartitions of m.

We are now ready to state the theorem providing a full characterization of

optimal anonymous BIC mechanisms.

Theorem 1. A mechanism π ∈ S is an optimal anonymous BIC mechanism if

and only if

• It selects one of the agents from the set M of agents receiving maximal reports

from the referee.

• If all agents in M receive the same self-reports then one of them is selected

with probability 1/|M |.

• If some agents in M receive low self-reports (set M0) and some agents in M

receive high self-reports (set M1) then

(1) if r < r∗ then

(a) if agents in M received high report from the referee then an agent

in M0 is selected with probability αz/|M0| or an agent in M1 is

selected with probability (1− αz)/|M1|,
(b) if agents in M received low report from the referee then one of the

agents in M0 is selected with probability 1/|M0|,

(2) if r ≥ r∗ then

(a) if agents in M received high report from the referee then one of the

agents in M1 is selected with probability 1/|M1|,
(b) if agents in M received low report from the referee then an agent

in M0 is selected with probability βz/|M0| or an agent in M1 is

selected with probability (1− βz)/|M1|,
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where (αz)z∈S4(n) ∈ [0, 1]S4(n) satisfies∑
z∈S4(n)
z0,1>0
z1,1>0

αz

(
n

z0,0, z0,1, z1,0, z1,1

)
Qz0,0+z1,1(1−Q)z0,1+z1,0

2n
=

(1−Q)2n +Q(1−Q)n−1 − (2−Q)n

2n
. (6)

and (βz)z∈S2(n) ∈ [0, 1]S2(n) satisfies∑
z∈S2(n)
z0,0>0
z1,0>0

βz

(
n

z0,0, z1,0

)
Qz0,0(1−Q)z1,0

2n
=

(1−Q)22n +Q (1−Qn)− (1−Q)(2−Q)n

Q2n
, (7)

As in the case of two agents, optimal BIC mechanisms are lexicographic. They

first follow the reports of the referees to establish a shortlist of agents with maximal

reports and only uses the reports of the agents to break ties in the shortlist. If

all agents in the shortlist report the same signal, they are selected with equal

probability. Otherwise, the planner adjusts the probability of selecting an agent

in the shortlist according to agents’ reports and the numbers of agents receiving

different combinations of reports, z ∈ S4(n). This is done differently depending

on whether precision of referee’s signal is high or low and depending on whether

the score of the shortlisted agents received from the referee is high or low.

If the precision of the referee’s signal is low and the score of the shortlisted

agents is low, the ties are broken in favor of the shortlisted agents receiving low

self-reports. In that case, the mechanism goes “against” self-reports and chooses

to inefficiently select an agent with low self-report. If the precision of the signal is

low and the score of the shortlisted agents is high , then the mechanism selects one

of the shortlisted agents with high self-report with a probability greater than 1
2
,

thereby improving upon the optimal DSIC mechanism. The probability of going

against self-reports of the agents, denoted αz is not uniquely determined but the

sum of probabilities
∑

z∈S4(n)
∈ [0, 1]S4(n)(αz) must satisfy Equation (6), which is

determined by the BIC constraint for the low type agent.

If the precision of the referee’s signal is high and the score of the shortlisted

agents is high, the ties are broken in favor of the shortlisted agents receiving high
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self-reports, improving upon the optimal DSIC mechanism. If the precision of the

signal is high and the score of the shortlisted agents is low, then the mechanism

selects one of the shortlisted agents with low self-report with a probability greater

than 1
2
, introducing an inefficiency by going against self-reports. The probability

of going against self-reports of the agents, βz, is again not uniquely determined

and only the sum
∑

z∈S2(n)
∈ [0, 1]S2(n)(βz) is pinned down by Equation (7) which

is determined by the BIC constraint for the low type.

The complete proof of Theorem 1 is given in the Appendix. It amounts to

computing the solution of a linear relaxation of a knapsack problem with a large

number of variables and multiple constraints. We first show that, for any set of

reports z such that there exist agents submitting high reports who receive different

scores from the referees (the case (11, 10) when n = 2), the agents receiving low

referee reports are never selected. We then prove that a transfer of probability

from the agent receiving a low report to the agent receiving a high report results

both in an increase in value (because high-type agents are more likely to generate

high reports from referees) and a relaxation of the BIC constraints. This result is

contained in Lemma 1 in the Appendix.

This first observation, together with the probability constraints, allows us to

rewrite the objective function of the social planner and the BIC constraints only

in terms of the probabilities of selecting agents submitting low reports. When at

least one other agent submits a high report, the coefficient of these probabilities

in the objective function of the social planner are negative. Hence, if the low-

type BIC constraint were slack, the planner could reduce these probabilities and

increase value. This argument shows that the BIC constraint for the low-type

agent must be satisfied with equality (Lemma 2).

Next, we consider a relaxed optimization problem, where the only binding

constraint is the BIC constraint of the low type. In the relaxed problem, we first

show that, when there exist agents submitting low reports who receive different

scores from the referees, (the case (00, 10) when n = 2) the agents receiving low

referee reports are never selected. This result appears as Lemma 3.

The next step in the argument considers the effect of probability transfers and

provides an implicit ranking of the probabilities, showing which ones are selected
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or are critical at the optimum. Lemma 4 summarizes this discussion.

The logic behind the computation of the optimal probabilities αz and βz is

similar to the logic in the two agent case. As a low-type agent is more likely to

generate a low report from the referee, the social planner can increase the value of a

BIC mechanism by increasing the probability of selecting an agent reporting a high

type when referee reports are high while simultaneously reducing the probability

of selecting an agent reporting a high type when referee reports are low. With

more than two agents, the event that all referee reports are low becomes less likely

than the event that some referee reports are high, creating an imbalance which

may prevent the social planner from compensating probabilities.

As in the two-agent problem, we find that the social planner first follows the

reports of the referees and uses agents’ reports to break ties when they receive

the same reports from the referees. As opposed to the two-agent case, an optimal

mechanism is not unique. Through Equations (6) and (7), an optimal mecha-

nism pins down the weighted sums of probabilities (αz)z∈S4(n) ∈ [0, 1]S4(n) and

(βz)z∈S2(n) ∈ [0, 1]S2(n) of selecting agents with low reports when some agents re-

ceive high referee reports. In particular, for all z ∈ S4(n), αz could be set to the

same value, αc(Q), where

αc(Q) =
(1−Q)2n +Q(1−Q)n−1 − (2−Q)n∑

z∈S4(n)
z0,1>0
z1,1>0

(
n

z0,0,z0,1,z1,0,z1,1

)
Qz0,0+z1,1(1−Q)z0,1+z1,0

=
(1−Q)2n +Q(1−Q)n−1 − (2−Q)n

2n − (1 +Q)n − (2−Q)n + 1

and, for all z ∈ S2(n), βz could be set to βc(Q), where

βc(Q) =
(1−Q)22n +Q (1−Qn)− (1−Q)(2−Q)n

Q
∑

z∈S2(n)
z0,0>0
z1,0>0

(
n

z0,0,z1,0

)
Qz0,0(1−Q)z1,0

=
(1−Q)22n +Q (1−Qn)− (1−Q)(2−Q)n

Q(1−Qn − (1−Q)n)

Figure 1 shows, for n = 3, the probabilities of selecting an agent with low

report, αc(Q) and βc(Q), as a function of Q. This figure displays the two possible

regimes, as a function of the precision Q. If Q is low, even when the planner always

selects a low report agent when all agents receive low report from the referee, he
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cannot select a high report agent with probability 1 when the shortlisted agents

receive high report from the referee and different self-reports. As Q increases,

the probability of selecting a low self-report agent from among shortlisted agents

with high report from the referee, αc(Q), decreases until a point where a low self-

report agent is chosen with probability 0. From that point on, as Q increases,

the planner is able to decrease the probability of selecting a low self-report agent

when all shortlisted agents receive low report from the referee, while keeping the

probability of selecting a low self-report agent from among the shorlisted agents

with high self-reports equal to 0.
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αc(Q)
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Figure 1: αc(Q), and βc(Q) for n = 3.

We conclude the analysis of the general model by comparing the value of

the social planner’s objective function at the optimal BIC and DSIC mechanisms.

Under mild and well-known conditions, a DSIC mechanism must ignore the reports

of the agents.10 The optimal DSIC mechanism thus only uses the reports of

the referees and selects one of the agents with maximal report uniformly. The

proposition below provides the values of the social planner’s objective function at

the optimal BIC and DSIC mechanisms.

Proposition 1. The probability of selecting a high quality project under an optimal

10If we exclude “bossy” mechanisms (Satterthwaite and Sonnenschein [?]) where agents can
by their reports change the assignment probability of other agents without affecting their own
assignment probability, the DSIC mechanisms must be independent of the report of the agents.

17



anonymous BIC mechanism is given by

ΠB(p, r) = r − 2r − 1

2n

(
1−

(
r(1− r)(2p− 1)2

Q(1−Q)

)
min

(
1− (1−Q)n−1,

2n(1−Q)− (2−Q)n +Q

Q

))
and probability of selecting a high quality project under an optimal anonymous

DSIC mechanism is given by

ΠD(p, r) = r − 2r − 1

2n
.

Except for the two limit cases where the reports of the referees are uninfor-

mative or perfectly informative (r = 1
2

and r = 1), the value of an optimal BIC

mechanism is strictly larger than the value of the optimal DSIC mechanism. Fig-

ure 2 illustrates these values when n = 3 and agents have nearly perfect signals

about their types, close to p = 1, as a function of r. The kink in the value of the

BIC mechanism corresponds to the change in regime at r = r∗, where the sum

of probabilities of selecting a low-type agent when all agents receive low reports

from the referees reaches one.
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Figure 2: Payoffs ΠB(p, r) and ΠD(p, r) for n = 3 and and the limit case of p = 1.

We close this section with a figure which shows how the difference in optimal

values for the BIC and DSIC mechanisms changes when n varies.

Figure 3 shows that the maximal difference between the value of an optimal

BIC and DSIC mechanism initially increases from n = 2 to n = 3, and then
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Figure 3: Difference in payoffs ΠB(p, r)− ΠD(p, r) as a function of n.

quickly decreases, to become negligible for n ≥ 10. The convergence between the

value of an optimal BIC and the optimal DSIC mechanism when n becomes large

is easily interpreted. An optimal BIC mechanism differs from the optimal DSIC

mechanism by setting low probabilities to agents with high reports when all the

agents receive low reports from the referee and high reports when the shortlisted

agents receive high reports from the referee and different self-reports. But as

n increases, the probability that all agents receive low reports from the referees

becomes smaller and smaller. Therefore, as n grows large, the difference in value

between the optimal BIC and DIC mechanisms vanishes.

6 Peer evaluation

In this section, we analyze a different class of mechanisms, which are often used

in practice to select papers in conferences or applicants to research funds. Agents

are asked to evaluate the agents with whom they compete for the allocation of a

prize. In the model we assume that agents, who are not external, serve as referees

and evaluate other agents, whom they compete with. In addition, a social planner

has access to reports of external, less informed, referees.
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We suppose that agents are ordered arbitrarily and each agent i is asked to

evaluate his immediate successor in the order, agent i ⊕ 1 = (i + 1) mod n.11

In these peer evaluation mechanisms, each agent i ∈ N receives two signals: a

signal on her own quality, Vi ∈ {0, 1}, and a signal on the quality of agent i⊕ 1 ,

Xi⊕1 ∈ {0, 1}. We denote by p ∈ (1
2
, 1) the precision of the signal on own quality

and by q ∈ (1
2
, 1) the precision of the signal on the quality of the other agent,

Pr(Vi = 1 | Θi = 1) = Pr(Vi = 0 | Θi = 0) = p and Pr(Xi⊕1 = 1 | Θi⊕1 = 1) =

Pr(Xi⊕1 = 0 | Θi⊕1 = 0) = q. We suppose that each agent receives a more precise

signal on her quality than on the quality of her competitor so that q ≤ p.

While, in principle, the social planner could ask each agent to report her two

signals, we suppose, as is customary in peer selection mechanisms, that agents

only report their evaluation of the quality of their competitor. In addition, as

in the benchmark, self-evaluation model studied in previous sections, the planner

has access to a report by an referee, Yi ∈ {0, 1}, of precision r = Pr(Yi = 1 | Θi =

1) = Pr(Yi = 0 | Θi = 0) with r ∈ (1/2, q). That is, we suppose that the signal of

the referee is less informative than the signal of the peer evaluator.

As in the benchmark model, a mechanism associates to every vector of reports

(x,y) a probability distribution π(x,y) in the simplex ∆(N). The objective

function of the social planner is given by

Π = E

(∑
i∈N

πi(X,Y )|θi = 1

)
,

and is hence identical to the objective function in the self-evaluation model, once

we replace the precision of the signal on own quality, p, with the precision on the

signal on the quality of the competitor, q. The DSIC constraints are given by

πi(x,y) ≥ πi(x
′
i⊕1,x−i⊕1,y),

for any (2n − 1)-tuple of signals x and y in {0, 1}N , any i ∈ N , and any report

x′i⊕1. The BIC constraints are different in the peer evaluation mechanism and

in the benchmark mechanism. Because agents receive two signals (Vi, Xi⊕1), even

11As long as the mechanism satisfies anonymity and does not distinguish agents according to
their position in the directed evaluation graph, any evaluation graph would give rise to the same
optimal anonymous mechanism. We can therefore consider as well a simple evaluation graph
where agents are organized in a directed cycle of order n.
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though the mechanism only uses signalXi⊕1, each agent faces four BIC constraints,

one for each possible realization of the signals (Vi, Xi⊕1). The BIC constraints are

thus given by

E (πi(xi⊕1,X−i⊕1,Y ) | (Vi, Xi⊕1) = (vi, xi⊕1)) ≥ E
(
πi(x

′
i⊕1,X−i⊕1,Y ) | (Vi, Xi⊕1) = (vi, xi⊕1)

)
,

for all signals xi ∈ {0, 1} and reports x′i ∈ {0, 1}. Our first result shows that,

when there are only two agents, an optimal BIC peer evaluation mechanism does

not perform better than the optimal DSIC mechanism (the proof is provided in

the on-line appendix).

Proposition 2. Suppose that n = 2. Any optimal BIC peer evaluation mechanism

results in the same value for the social planner as the optimal DSIC mechanism.

Proposition 2 stands in sharp contrast to the analysis of the benchmark model.

In the peer evaluation mechanism, the planner cannot exploit correlations between

the agent’s types and the report of the referee to improve on the optimal DSIC

mechanism. To understand this result, recall that, in the benchmark model, the

planner is able to improve upon the optimal DSIC mechanism by increasing the

probability of selecting an agent who reports a high type, when both reports of the

referee are high and lower the probability of selecting an agent who reports a high

type when both reports of the referee are low. This result was obtained because

the only binding constraint in the baseline model is the BIC constraint for the

low type agent. In the peer-evaluation mechanism, there are four BIC constraints

(every type of agent (high or low) must prefer to report the true type of the

other agent) and one cannot assume that a single BIC constraint is binding as in

the self-evaluation case. We claim that the adjustment of probabilities becomes

impossible. To see this, consider a relaxed problem where the only binding BIC

constraints are the two constraints faced by the low-type agent. An agent who

observes that his competitor’s type is low will assign a higher probability to the

fact that the referee receives a low signal. Similarly, an agent who observes that his

competitor’s type is high will assign a higher probability to the fact that the referee

receives a high signal. But this implies that any adjustment which increases the

probability of selecting an agent who reports that her competitor is low (or high)
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will result in one of the two BIC constraints to be violated. In order to satisfy

simultaneously both BIC constraints, the planner must assign the same probability

of selecting the agent who reports a low (or high) type of his competitor when the

referee reports that both types are high and both types are low. The optimal BIC

mechanism is now identical to the optimal DSIC mechanism.

Proposition 2 does not extend to more than two players. When n ≥ 3, numer-

ical examples show that the optimal BIC mechanism gives a strictly higher value

to the planner than the optimal DSIC mechanism. However, as we argue below,

the optimal BIC mechanism under peer evaluation always results in a lower value

than the optimal BIC mechanism of the benchmark model, where agents are asked

to report on their own types.

As a full characterization of the optimal anonymous mechanism under peer

evaluation for n ≥ 3 is difficult, we consider instead a simpler mechanism where

agents do not receive any signal about their own type, Vi, but only a signal on the

quality of their competitor, Xi. In this artificial scenario, the planner only faces

two BIC nstraints, which correspond to the average of the BIC constraints of the

peer-evaluation mechanism, where the average is taken over the two possible types

Vi of the agents. Clearly, this new problem is a relaxation of the original problem:

any mechanism satisfying the four BIC constraints in the original problem also

satisfies the two BIC constraints in the new problem, but the converse may not

be true.

The characterization of the optimal anonymous BIC mechanism in the relaxed

problem follows exactly the same steps as the characterization of the optimal

anonymous BIC mechanism in the benchmark model, and is given in the Online

Appendix. The optimal value of the mechanism is computed as a function of q

and Q = qr + (1 − q)(1 − r), giving an upper bound on the value of the peer

evaluation mechanism.

Proposition 3. An upper bound on the value of the optimal BIC peer evaluation

mechanism is given by:

Π
PB

(q, r) = r − 2r − 1

2n

(
1− r(1− r)(2q − 1)2(1−Qn−1)

Q(1−Q)

)
.

If r ∈ (1/2, 1) then ΠB(p, r) ≥ Π
PB

(p, r) with equality only in the case n = 2.
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Proposition 3 has an important implication. It shows that even when the

two signals have the same precision, q = p, the value to the planner is higher in

the scenario where agents are asked to self-evaluate, strictly higher when n ≥ 3.

The intuition underlying this comparison can be grasped by noting the differences

in the incentives to misreport in the two scenarios. The binding constraints are

different in the optimal self-evaluation and peer-evaluation mechanisms. In the

self-evaluation mechanism, the low-type agent must be given incentives to report

her true type. In the peer-evaluation mechanism, an agent observing a high type

for her competitor must be given an incentive to report truthfully. Because low

types are more likely to generate low referee reports, and high types are more likely

to generate high referee reports, this implies that the compensation probabilities

chosen by the planner will be diametrically opposed in the two mechanisms. In

the self-evaluation mechanism, the planner chooses an agent reporting a high type

with low probability when all agents receive low referee reports, and an agent

reporting a high type with high probability when some agents receive high referee

reports. By contrast, in the peer evaluation mechanism the planner chooses an

agent who receives a high report from a competitor with high probability when

all agents receive low referee reports and an agent who receives a high report from

a competitor with low probability when some agents receive high referee reports.

There is an imbalance between the expected probability of the two events and: the

first event is much less likely than the second one (except for the case n = 2), and

this difference increases with the number of agents. This implies that the situations

where the compensation probabilities increase the value of the objective function

in the self-evaluation mechanism are more likely to arise than the situations where

the compensation probabilities increase the value of the objective function in the

peer evaluation mechanism. In addition, note that, as agents who receive low

referee reports are never shortlisted, when p is sufficiently large, changes in the

probability of selecting an agent when all agents receive low report from the referee

have a small effect on the incentive constraint in the self-evaluation mechanism.

By contrast, in the peer evaluation mechanism, agents ignore the report they

will receive, and hence their incentive constraint is affected by changes in Zα(n).

This second effect limits further the planner’s ability to exploit compensations in
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probabilities to increase the value of the objective function in the peer evaluation

mechanism.

We conclude this section with two diagrams illustrating the upper bound on

the optimal payoffs in the scenario with peer evaluation and optimal payoffs in

the scenario with self-evaluation.

Figure 4 illustrates the upper bound and the optimal payoffs under the two

scenarios for three agents and perfect signals about own quality, p = 1. Figure 5

illustrates the difference between the optimal payoff and the upper bound for n = 3

agents, r ∈ (1/2, 1), and p ∈ (r, 1). These figures show that the difference in value

between the two mechanisms is highest when agents have perfect information and

the precision of the referee reports is intermediate.
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Figure 4: Payoffs ΠB(p, r) and Π
PB

(p, r) for n = 3 and p = 1.

7 Ex Post Incentive Compatibility

In the preceding analysis, we have considered two incentive compatibility notions:

Dominant Strategy Incentive Compatibility, where the players have an incentive

to report the truth for all reports of the other players and of the external refer-

ees and Bayesian Incentive Compatibility , where the players have an incentive

to report the truth, assuming that the other players also tell the truth and tak-

ing expectations over the reports of the other players and external referees. In
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Figure 5: Difference in payoffs ΠB(p, r)− Π
PB

(p, r) when n = 3.

our setting, where external referees are not strategic players, there is meaningful

third, intermediate, incentive compatibility constraint where the players have an

incentive to report the truth for all reports of the other players but taking expec-

tations over the reports of the external referees. In this Section, we explore this

intermediate Incentive Compatibility condition for the self-evaluation mechanism.

We will assume that players evaluate the probability of the signals of the external

referees conditional on the fact that the other agents report the truth, so that the

notion is analogous to Ex Post Incentive Compatibility.

Definition 5 (Ex Post Incentive Compatibility). A mechanism π : {0, 1}N ×
{0, 1}N → ∆(N) is ex post incentive compatible (EPIC) if and only if, for any

agent i ∈ N , any tuple of agents signals x ∈ {0, 1}N and any report x′i of agent i

E(πi(x,Y |X = x)) ≥ E(πi(x
′
i,x−i,Y |X = x)).

Proposition 4. Suppose that n = 2. Any optimal EPIC results in the same value

for the social planner as the optimal DSIC mechanism.

Proposition 4 shows that the gap between the optimal BIC and DSIC mech-

anisms is due to the fact that the planner can exploit the correlation between

the referees’ signals and the agents’ announcements rather than the fact that the

planner can take expectations over the signals of the referees. With two players,

the optimal EPIC mechanism does not give a higher value to the planner than
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the optimal DSIC mechanism. In general, the characterization of the optimal

EPIC mechanism is very complex and we have been unable to obtain a precise

characterization of the optimal EPIC mechanism. However, we can show that the

optimal BIC mechanism does not satisfy the EPIC constraints so that the optimal

EPIC mechanism always gives the planner a smaller value than the optimal BIC

mechanism:

Proposition 5. For any n ≥ 2, any r ∈ (1/2, 1) and any p ∈ (r, 1), the payoff

from an optimal anonymous EPIC mechanism is strictly lower than the payoff

from an optimal anonymous BIC mechanism.

When the number of agents exceeds two, we also know that the optimal EPIC

mechanism gives the planner a higher value than the optimal DSIC mechanism,

as illustrated by the following example with three agents.

Example 1 (EPIC mechanism for n = 3 agents better than optimal DSIC mech-

anism). Consider a lexicographic mechanism such that

%(0, 1, (1, 0, 0, 1)) =
1

3
− 1

6
min

(
1,

2Q− 1

(1−Q)2

)
%(0, 1, (0, 1, 0, 1)) =

1

3

%(0, 0, (1, 0, 1, 0)) =
1

3
+

1

6
min

(
1,

2(1−Q)2

Q2

)
%(0, 1, (0, 0, 1, 1)) =

1

3
− 1

6
min

(
1,

2Q− 1

(1−Q)2

)
%(0, 1, (0, 0, 0, 2)) =

1

3

%(0, 0, (0, 0, 2, 0)) =
2

3
+

1

3
min

(
1,

2Q− 1

(1−Q)2

)
and the rest of the mechanism is determined by the lexicographic property and by

the probability constraints.

The mechanism satisfies the EPIC constraints and yields payoff

ΠEP(p, r) = r − 2r − 1

8

(
1− r(1− r)(2p− 1)2

Q
min

(
2,

Q2

(1−Q)2

))
which, for any r ∈ (1/2, 1) and p ∈ (1/2, 1), is strictly higher than the payoff from

the constant mechanism, %c. Figure 6 illustrates these two payoffs (as a function

of r) for the case when agents have nearly perfect signals about their types.
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Figure 6: Payoffs from the EPIC mechanism in Example 1 and ΠD(p, r) for n = 3
and and the limit case of p = 1.

8 Conclusions

We consider a problem of mechanism design without money, where a planner

selects a winner among a set of agents with binary types. In addition to the re-

ports of the agents, the planner has access to a binary signal on the agent’s types

(the reports of external referees). We characterize the optimal Bayesian Incentive

(BIC) mechanisms as a lexicographic mechanisms, where the planner first short-

lists agents who receive high reports from the referees and then uses agents’ reports

to break ties among agents in the shortlist. We show that the planner can exploit

the correlation between the reports of referees and the agents’ types to improve

upon the optimal Dominant Strategy Incentive Compatible (DSIC) mechanism

and that the gain in value is highest when the precision of the signal of the referee

is intermediate. We compare “self-evaluation” mechanisms with “peer evaluation”

mechanism where agents obtain signals and are asked to report on the types of

other agents, and show that for the same signal precision, the self- evaluation

mechanism always results in a higher value than the peer evaluation mechanism.

Finally, we explore Ex Post Incentive Compatible (EPIC) self-evaluation mech-

anisms and show that they give the planner an intermediate value, between the

optimal DSIC and BIC mechanisms.

Our analysis can be used to guide the design of selection procedures for confer-
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ence papers, prizes or positions. It suggests that self-evaluation reports are useful,

but that they should be used to break ties after agents are shortlisted using the re-

ports of referees. It also suggests that one should sometimes go against the report

of the agents - and select with high probability an agent who sends a low report

– in order to provide the correct incentives for truth-telling. Finally, if the cost

of obtaining external signals is increasing in their precision, the analysis indicates

that one only needs to recruit referees with intermediate signal precision, as this

will be sufficient to discipline agents and result in the highest efficiency gain with

respect to the DSIC mechanism.

We are aware of a number of limitations in our study, which should be tackled

in future research. First, our mechanism relies on a strong commitment power of

the planner. Once the planner receives the reports, she clearly has an incentive

to ignore the reports of the referees and follow the agents’ reports instead - and

hence must be able to commit to the mechanism. Second, in order to keep the

model with an arbitrary number of agents tractable, we focus attention on a binary

model. Allowing for more categories, or for a continuum of types, is clearly and

important item in our future research agenda. Finally, we consider a very simple

peer evaluation mechanism, where each agent reports on another agent, and does

not report on herself. In future work, we plan on exploring more complex peer

evaluation mechanisms, where agents could receive multiple reports, both from

themselves and from other agents.

A Appendix

The Appendix contains the proof of Theorem 1 . The proofs of other results in
the paper are provided in Online Appendix 1. An anonymous mechanism π is fully
described by a mapping % : {0, 1}2 × S4(n− 1)→ [0, 1] such that πi(x,y) = %(xi, yi, z)
where, for any (b, b′) ∈ {0, 1}2, zb,b′ = |{j ∈ N \ {i} : (xj , yj) = (b, b′)}|.

The objective function of the planner can then be written as:

Π =
n

2

∑
(x0,y0)∈{0,1}2

∑
z∈S4(n−1)

U(z)ζ1(x0, y0)%(x0, y0, z), (8)

where, given z ∈ S4(n− 1),

U(z) =
1

2n−1

(
n− 1

z0,0, z0,1, z1,0, z1,1

)
Qz1,1+z0,0(1−Q)z0,1+z1,0 , (9)
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is the probability that, for each (a, b) ∈ {0, 1}2, za,b out of n− 1 agents receive reports
ab and

ζa(x0, y0) = ([x0 = a]p+ [x0 6= a](1− p))([y0 = a]r + [y0 6= a](1− r)), (10)

is the probability that an agent receives signal x0 and a referee report y0 when the true
type of the agent is a.

The probability constraints stemming from the no-waste condition take the form:12

(zx0,y0 +1)%(x0, y0, z)+
∑

(b,b′)∈{0,1}2\(x0,y0)

zb,b′%(b, b′, z−(b,b′),(x0,y0), zb,b′−1, zx0,y0 +1) = 1.

(11)
We now generalize the BIC constraints and compute the optimal anonymous BIC

mechanism. The two BIC constraints take the form∑
y0∈{0,1}

∑
z∈S4(n−1)

U(z)ζ(0, y0) (%(0, y0, z)− %(1, y0, z)) ≥ 0. (12)

∑
y0∈{0,1}

∑
z∈S4(n−1)

U(z)ζ(1, y0) (%(1, y0, z)− %(0, y0, z)) ≥ 0. (13)

where
ζ(x0, y0) = ζ0(x0, y0) + ζ1(x0, y0) = [x0 = y0]Q+ [x0 6= y0](1−Q) (14)

is twice the probability that an agent receives signal x0 and referee report y0.
The proof of Theorem 1 follows from a number of auxiliary lemmas.

Lemma 1. For any optimal mechanism (%(x0, y0, z))(x0,y0)∈{0,1}2,z∈S4(n−1), and any
z ∈ S4(n− 1), if z1,1 > 0 then %(1, 0, z) = 0.

Proof. Let (%(x0, y0, z))(x0,y0)∈{0,1}2,z∈S4(n−1) be an optimal mechanism. Suppose that
there exists z ∈ S4(n− 1) with z1,1 > 0 such that %(1, 0, z) > 0.

Consider a modification to the mechanism where %(1, 0, z) is decreased by ε/(z1,0 +
1) and %(1, 1, z0,0, z0,1, z1,0 + 1, z1,1 − 1) is increased by ε/z1,1, where ε ∈ (0, (z1,0 +
1)%(1, 0, z)). This modification maintains the probability constraint (11).

Moreover, for any A ∈ R and B ∈ R, the change in the sum

U(z)A%(1, 0, z) + U(z−(1,0),(1,1), z1,0 + 1, z1,1 − 1)B%(1, 1, z−(1,0),(1,1), z1,0 + 1, z1,1 − 1)

resulting from this modification is equal to

− U(z)
ε

z1,0 + 1
A+ U(z−(1,0),(1,1), z1,0 + 1, z1,1 − 1)

ε

z1,1
B =

1

n2n−1

(
n

z0,0, z0,1, z1,0 + 1, z1,1

)
Qz0,0+z1,1(1−Q)z0,1+z1,0+1ε

(
B

Q
− A

1−Q

)
.

Thus the sign of the change is the same as the sign of B(1−Q)−AQ.
Consider the change to the value of the objective function resulting from the change

to the mechanism. We have A = ζ1(1, 0) = p(1− r), B = ζ1(1, 1) = pr, and

B(1−Q)−AQ = p(2r − 1)(1− p) > 0.

12We adopt the convention that %(x0, y0, z) can have negative argument when it is multiplied
by zero.
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Thus the change results in an increase in the value of the objective function.
Consider now the BIC constraints and the change to the value of the LHS of a

constraint resulting from the change to the mechanism. Suppose that x0 = 0. Then
A = −ζ(0, 0) = −Q, B = −ζ(1, 1) = Q− 1, and

B(1−Q)−AQ = −(1−Q)2 +Q2 = 2Q− 1 > 0,

as Q > 1/2. Hence the LHS of the constraint increases and the constraint remains
satisfied. Suppose that x0 = 1. Then A = ζ(1, 0) = 1−Q, B = ζ(1, 1) = Q, and

B(1−Q)−AQ = Q(1−Q)−Q(1−Q) = 0.

Again, the LHS of the constraint is unchanged and the constraint remains satisfied.

By Lemma 1, either %(1, 0, z) = 0 or z1,1 = 0. Thus, using the probability con-
straints (11), we obtain:

%(1, 1, z) =
1− z0,0%(0, 0, z−(0,0),(1,1), z0,0 − 1, z1,1 + 1)− z0,1%(0, 1, z−(0,1),(1,1), z0,1 − 1, z1,1 + 1)

z1,1 + 1
(15)

and, in the case of z1,1 = 0,

%(1, 0, z) =
1− z0,0%(0, 0, z−(0,0),(1,0), z0,0 − 1, z1,0 + 1)− z0,1%(0, 1, z−(0,1),(1,0), z0,1 − 1, z1,0 + 1)

z1,0 + 1
.

(16)
Using these identities, we rewrite the objective function as

n

2

( ∑
z∈S4(n−1)
s.t. z1,1>0

U(z) (1− p− r) %(0, 0, z) +
∑

z∈S4(n−1)
s.t. z1,1>0

U(z)

(
r(1− r)(1− 2p)

Q

)
%(0, 1, z)

+
∑

z∈S4(n−1)
s.t. z1,0>0,z1,1=0

U(z)

(
r(1− r)(1− 2p)

1−Q

)
%(0, 0, z) +

∑
z∈S4(n−1)

s.t. z1,0>0,z1,1=0

U(z) (r − p) %(0, 1, z)

+
∑

z∈S4(n−1)
s.t. z1,0=z1,1=0,

z0,0>0

(1− p)(Q+ r − 1)

Q
U(z)%(0, 1, z)

)
+ C,

(17)
where the constant C is given by

C =
1

2n

(
2n − (2−Q)n

Q
pr +

(2−Q)n − 1

1−Q p(1− r)− (1− r)(1− (1−Q)n) + rQ(1−Q)n−1

Q

)
.

(18)
Similarly we rewrite the BIC constraint in the case of x0 = 0 as∑

z∈S4(n−1)
s.t. z1,1>0

U(z)%(0, 0, z) +
∑

z∈S4(n−1)
s.t. z1,1>0

(
1−Q
Q

)
U(z)%(0, 1, z) +

∑
z∈S4(n−1)

s.t. z1,1=0,z1,0>0

(
Q

1−Q

)
U(z)%(0, 0, z) +

∑
z∈S4(n−1)

s.t. z1,1=0,z1,0>0

U(z)%(0, 1, z) ≥

1

n2n−1

(
2n(1−Q)2 + (2Q− 1)(2−Q)n −Q

Q(1−Q)

)
,

(19)
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and in the case of x0 = 1 as∑
z∈S4(n−1)
s.t. z1,1>0

U(z)%(0, 0, z) +
∑

z∈S4(n−1)
s.t. z1,1>0

U(z)%(0, 1, z) +

∑
z∈S4(n−1)

s.t. z1,1=0,z1,0>0

U(z)%(0, 0, z) +
∑

z∈S4(n−1)
s.t. z1,1=0,z1,0>0

U(z)%(0, 1, z) +

∑
z∈S4(n−1)

s.t. z1,1=z1,0=0
z0,0>0

(
2Q− 1

Q

)
U(z)%(0, 1, z) ≤ 1

n2n−1

(
2nQ− 1− (2Q− 1)(1−Q)n−1

Q

)
.

(20)
Thus Lemma 1 allows us to rewrite the optimization problem as max%(0,0,z),%(0,1,z) (17)

subject to BIC constraints (19) and (20), the probability constraints (11), and the con-
straints that all the variables %(·, ·, ·) are non-negative. Using the fact that the variables
%(1, 0, ·) and %(1, 1, ·) do not appear in the objective function and in the BIC constraints
we can show that at an optimum the BIC constraint for x0 = 0 is satisfied with equality.
To show that we need to show, in particular, that we are able to adjust the values of
variables %(1, 0, ·) and %(1, 1, ·) so that the probability constraints are still satisfied when
the values of variables %(0, 0, ·) and %(0, 1, ·) are modified.

Lemma 2. At any optimal mechanism, the BIC constraint for x0 = 0 is satisfied with
equality.

Proof. We show first that at any optimal mechanism either the BIC constraint for
x0 = 0 is satisfied with equality or, for all z ∈ S4(n − 1) with z1,0 + z1,1 > 0,
%(0, 0, z) = %(0, 1, z) = 0. This follows from the fact that the coefficients at %(0, 0, z)
and %(0, 1, z) in the objective function (17) in the case z1,0+z1,1 > 0 are negative. Hence
one can increase the value of the objective function while maintaining the probability
and BIC constraints, either by reducing the value of %(0, 0, z) or %(0, 1, z) by a suffi-
ciently small amount and simultaneously increasing the value of %(1, 1, z−(0,0),(1,1), z0,0+
1, z0,1, z1,0, z1,1 − 1) or the value of %(1, 0, z−(0,0),(1,0), z0,0 + 1, z0,1, z1,0 − 1, z1,1) (in the
case of decreasing %(0, 0, z)) or increasing the value of %(1, 1, z−(0,1),(1,1), z0,0, z0,1 +
1, z1,0, z1,1 − 1) or the value of %(1, 0, z−(0,1),(1,0), z0,0, z0,1 + 1, z1,0 − 1, z1,1) (in the case
of decreasing %(0, 1, z)). This contradicts the fact that the mechanism is optimal and
proves the first step.

Second, we show that for some z ∈ S4(n−1) with z1,0 +z1,1 > 0 either %(0, 0, z) > 0
or %(0, 1, z) > 0. Assume that this is not the case. Then the LHS of the BIC constraint
for x0 = 0 is equal to 0. On the other hand the RHS is equal to

1

n2n−1

(
2n(1−Q)2 + (2Q− 1)(2−Q)n −Q

Q(1−Q)

)
>

1

n2n−1

(
2(1−Q)2 + (2Q− 1)(2−Q)−Q

Q(1−Q)

)
= 0,

as n ≥ 2, Q < 1, and 2−Q > 1. This shows that the BIC constraint is not satisfied, a
contradiction which completes the proof of the Lemma.

We will now characterize the solutions of a relaxed optimization problem, dropping
the BIC constraint for x0 = 1. We will then show that all these solutions satisfy the
BIC constraint for x0 = 1 and, therefore, are also solutions of the original problem.
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Lemma 3. Consider a relaxed optimization problem, without the BIC constraint for
x0 = 1. For any optimal mechanism (%(x0, y0, z))(x0,y0)∈{0,1}2,z∈S4(n−1), and any z ∈
S4(n− 1), if z0,1 > 0 then %(0, 0, z) = 0.

Proof. Let (%(x0, y0, z))(x0,y0)∈{0,1}2,z∈S4(n−1) be an optimal mechanism of the relaxed
optimization problem. Assume, to the contrary, that there exists z ∈ S4(n − 1) with
z0,1 > 0 such that %(0, 0, z) > 0.

Consider a modification to the mechanism where %(0, 0, z) is decreased by ε/(z0,0 +
1) and %(0, 1, z0,0 + 1, z0,1 − 1, z1,0, z1,1) is increased by ε/z0,1, where ε ∈ (0, (z0,0 +
1)%(0, 0, z)). This modification maintains the probability constraint (11). Moreover, for
any A ∈ R and B ∈ R, the change in the sum

U(z)A%(0, 0, z) + U(z−(0,0),(0,1), z0,0 + 1, z0,1 − 1)B%(0, 1, z−(0,0),(0,1), z0,0 + 1, z0,1 − 1)

resulting from this modification is equal to

− U(z)
ε

z0,0 + 1
A+ U(z−(0,0),(0,1), z0,0 + 1, z0,1 − 1)

ε

z0,1
B =

1

n2n−1

(
n

z0,0 + 1, z0,1, z1,0, z1,1

)
Qz0,0+z1,1+1(1−Q)z0,1+z1,0ε

(
B

1−Q −
A

Q

)
.

Thus the sign of the change is the same as the sign of BQ−A(1−Q).
Consider the change to the value of the objective function resulting from the change

to the mechanism. If z1,1 > 0 then A = 1− p− r, B = r(1− r)(1− 2p)/Q and

BQ−A(1−Q) = p(1− p)(2r − 1) > 0.

If z1,1 = 0 and z1,0 > 0 then A = r(1− r)(1− 2p)/(1−Q), B = r − p and

BQ−A(1−Q) = p(1− p)(2r − 1) ≥ 0.

In both cases the change results in an increase in the value of the objective function.
Consider now the BIC constraint for x0 = 0 given by Equation (19) If z1,1 > 0

then A = 1, B = (1 − Q)/Q, and BQ − A(1 − Q) = 0. If z1,1 = 0 and z1,0 > 0 then
A = Q/(1 − Q), B = 1, and BQ − A(1 − Q) = 0. If z1,1 = z1,0 = 0 then A = B = 0
and, again, BQ − A(1 − Q) = 0. Hence the LHS of the constraint remains unchanged
and the constraint remains satisfied.

Using Lemmas 2 and 3, the BIC constraint for x0 = 0 can be rewritten as follows:∑
z∈S4(n−1)

s.t. z0,1=0,z1,1>0

U(z)%(0, 0, z) +
∑

z∈S4(n−1)
s.t. z1,1>0

(
1−Q
Q

)
U(z)%(0, 1, z) +

∑
z∈S4(n−1)

s.t. z0,1=z1,1=0,z1,0>0

(
Q

1−Q

)
U(z)%(0, 0, z) +

∑
z∈S4(n−1)

s.t. z1,1=0,z1,0>0

U(z)%(0, 1, z) =

1

n2n−1

(
2n(1−Q)2 + (2Q− 1)(2−Q)n −Q

Q(1−Q)

)
.

(21)

By Lemma 3 and the probability constraints, in the case of any z ∈ S4(n− 1) such that
z1,0 = z1,1 = 0 and z0,0 > 0, %(0, 1, z) = 1/(z0,1 + 1). This, together with Lemma 3
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and (17) allows us to rewrite the objective as:

n

2

( ∑
z∈S4(n−1)

s.t. z0,1=0,z1,1>0

U(z) (1− p− r) %(0, 0, z) +
∑

z∈S4(n−1)
s.t. z1,1>0

U(z)

(
r(1− r)(1− 2p)

Q

)
%(0, 1, z)

+
∑

z∈S4(n−1)
s.t. z0,1=z1,1=0,z1,0>0

U(z)

(
r(1− r)(1− 2p)

1−Q

)
%(0, 0, z) +

∑
z∈S4(n−1)

s.t. z1,0>0,z1,1=0

U(z) (r − p) %(0, 1, z)

)

+ C ′,
(22)

where the constant C ′ is equal to

C ′ = C +
n

2

∑
z∈S4(n−1)

s.t. z1,0=z1,1=0,
z0,0>0

(1− p)(Q+ r − 1)

Q
U(z)

1

z0,1 + 1
,

and the constant C is given by (18). Since∑
z∈S4(n−1)

s.t. z1,1=z1,0=0
z0,0>0

U(z)
1

z0,1 + 1
=

1

n2n−1

(
1−Qn − (1−Q)n

1−Q

)
,

C ′ is equal to

C ′ = C +
1

2n

(
(1− p)(Q+ r − 1) (1−Qn − (1−Q)n)

Q(1−Q)

)
. (23)

Before characterizing the solutions of the relaxed optimization problem, we prove a
simple mathematical fact about the function

ϕn(x) =
(2− x)n

1− x − x(1− x)n−2.

Fact 1. For any n ≥ 2 there exists a unique x∗n ∈ [1/2, 1) such that ϕn(x∗n) = 2n. In
addition, for all x < x∗n, ϕn(x) < 2n, and for all x > x∗n, ϕn(x) > 2n. Moreover,
x∗2 = 1/2 and for any n ≥ 3, x∗n ∈ (2/3, 1).

Proof. Let ψn(x) = ϕn(x)− 2n. Notice that

∂ψn(x)

∂x
=

(2− x)n−1(x(n− 1)− (n− 2)) + (1− x)n−1(x(n− 1)− 1)

(1− x)2
.

Let N(x) = (2− x)n−1(x(n− 1)− (n− 2)) + (1− x)n−1(x(n− 1)− 1). Since

∂N(x)

∂x
= n(2− x)n−2(1− x) + (1− x)n−2(2− nx) = (2− x)n−3,

and, for x ∈ [0, 1), ∂N(x)
∂x > 0 if n = 2 and, in the case of n ≥ 3,

∂N(x)

∂x
= (2− x)n−3n(2− x)(1− x) + (1− x)n−3(1− x)(2− nx)

> (1− x)n−3(n(2− x)(1− x) + (1− x)(2− nx)) = 2(1− x)n−3(1− x)(n(1− x) + 1) > 0,
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so N(x) is strictly increasing for any natural n ≥ 2. In addition, if n ≥ 2, N(0) =
−2n−1(n− 2)− 1 < 0 and N(1) = 1. Hence, on the interval [0, 1), N(x) is first negative
and then positive. Therefore ∂ψn(x)/∂x is first negative and then positive on [0, 1). It
follows that ψn(x) is first decreasing and then increasing on [0, 1). Since ψn(0) = 0,
limx↑1 ψn(x) = +∞, and ψn(x) is first decreasing and then increasing on [0, 1) and
continuous everywhere, there exists a unique x∗n ∈ (0, 1) such that ψn(x) = 0. In
addition, for all x < x∗n, ψ(x) < 0, and for all x > x∗n, ψ(x) > 0. This establishes the
first part of the Fact. Notice that

ψ2(1/2) =
2 · 9− 16− 2

2n
= 0,

and

ψn(2/3) =
4n − 2− 2n3n−1

3n−1
=

2n
(
2n − 3n−1

)
3n−1

< 0,

for n ≥ 3, because in this case
n
√

3 ≤ 3
√

3 <
3

2
.

Hence it follows that if n ≥ 3 then x∗n ∈ [2/3, 1).

Lemma 4. Consider the relaxed optimization problem, without the BIC constraint for
x0 = 1. Mechanism (%(x0, y0, z))(x0,y0)∈{0,1}2,z∈S4(n−1) is optimal if and only if for any
z ∈ S4(n− 1):

1. If z0,1 > 0 then %(0, 0, z) = 0 and if z1,1 > 0 then %(1, 0, z) = 0,

2. If z0,1 = 0 then

(a) if z1,1 > 0 then %(0, 0, z) = 0,

(b) if z0,0 > 0 then %(1, 1, z) = 1
z1,1+1 .

3. If z1,1 = 0 then

(a) if z1,0 > 0 then %(0, 1, z) = 1
z0,1+1 ,

(b) if z0,1 > 0 then %(1, 0, z) = 0.

4. If Q < ϕ
(−1)
n (2n) then

(a) if z1,1 = z0,1 = 0 and z1,0 > 0 then %(0, 0, z) = 1
z0,0+1 ,

(b) if z1,1 = z0,1 = 0 and z0,0 > 0 then %(1, 0, z) = 0,

(c)
∑

z∈S4(n−1)
z1,1>0

U(z)%(0, 1, z) = 1
n2n−1

(
2n(1−Q)+Q(1−Q)n−1−(2−Q)n

1−Q

)
.

5. If Q ≥ ϕ(−1)
n (2n) then

(a) if z0,1 > 0 then %(1, 1, z) = 1
z1,1+1 ,

(b) if z1,1 > 0 then %(0, 1, z) = 0.

(c)
∑

z∈S4(n−1)
z0,1=z1,1=0, z1,0>0

U(z)%(0, 0, z) = 1
n2n−1

(
2n(1−Q)2+Q(1−Qn)−(2−Q)n(1−Q)

Q2

)
.
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Proof. We first show that any optimal mechanism under relaxed optimization problem
satisfies the characterization given in the lemma.

Point 1 follows directly from Lemmas 1 and 3.
Throughout the proof we will use the following sets of possible reports on the other

agents:

Z1 = {z ∈ S4(n− 1) : z0,1 = 0 and z1,1 > 0} Z2 = {z ∈ S4(n− 1) : z1,1 > 0}
Z3 = {z ∈ S4(n− 1) : z0,1 = z1,1 = 0, z1,0 > 0} Z4 = {z ∈ S4(n− 1) : z1,1 = 0 and z1,0 > 0}.

Set Z1 consists of reports on n − 1 agents where at least one agent received two high
reports and there is no agent who reported low on himself and received high report from
the referee. Set Z2 consists of reports on n− 1 agents where at least one agent received
two high reports. Set Z3 consists of reports on n− 1 agents where no agent received a
high report from the referee and at least one agent reported a high type and received
low report from the referee. Lastly, set Z4 consists of reports on n− 1 agents where no
agent reported a high type and received a high report from the referee and there exists
an agent who reported a high type and received a high report from the referee

Let

D =
1

n2n−1

(
2n(1−Q)2 + (2Q− 1)(2−Q)n −Q

Q(1−Q)

)
.

By (21), the BIC constraint for x0 = 0 is

∑
z∈Z1

U(z)%(0, 0, z) +
∑
z∈Z2

(
1−Q
Q

)
U(z)%(0, 1, z) +

∑
z∈Z3

(
Q

1−Q

)
U(z)%(0, 0, z) +

∑
z∈Z4

U(z)%(0, 1, z) = D. (24)

By (22) the objective function can be rewritten as

n

2

( ∑
z∈Z1

U(z) (1− p− r) %(0, 0, z) +
∑
z∈Z2

U(z)

(
r(1− r)(1− 2p)

Q

)
%(0, 1, z)

+
∑
z∈Z3

U(z)

(
r(1− r)(1− 2p)

1−Q

)
%(0, 0, z) +

∑
z∈Z4

U(z) (r − p) %(0, 1, z)

)
+ C ′. (25)

Since

(p+ r− 1)(1−Q)− (2p− 1)(1− r)r = (2p− 1)(1− r)r− (p− r)Q = p(1− p)(2r− 1) > 0

(for 1/2 < r ≤ p < 1 and Q > 1−Q) so

1− p− r < r(1− r)(1− 2p)

1−Q <
r(1− r)(1− 2p)

Q
< r − p. (26)

For the left to right implication, we will show that if there exists z for which one of
the points given in the lemma is not satisfied for mechanism % then the mechanism can
be adjusted so that all the constraints remain satisfied and the value of the objective
function increases, which contradicts optimality. By Lemmas 1 and 3, either %(1, 0, z) =

35



0 or z1,1 = 0 and either %(0, 0, z) = 0 or z0,1 = 0. Therefore, depending on x0, y0, and
z, the probability constraints (11) can be rewritten as follows:

(z0,0 + 1)%(0, 0, z) + z1,1%(1, 1, z−(0,0),−(1,1), z0,0 + 1, z1,1 − 1) = 1, if z0,1 = 0 and z1,1 > 0

(z0,0 + 1)%(0, 0, z) + z1,0%(1, 0, z−(0,0),−(1,0), z0,0 + 1, z1,0 − 1) = 1, if z0,1 = 0, z1,1 = 0, and z1,0 > 0

(z0,0 + 1)%(0, 0, z) = 1, if z0,1 = 0, z1,1 = 0, and z1,0 = 0

(z0,1 + 1)%(0, 1, z) + z1,1%(1, 1, z−(0,1),−(1,1), z0,1 + 1, z1,1 − 1) = 1, if z1,1 > 0

(z0,1 + 1)%(0, 1, z) + z1,0%(1, 0, z−(0,1),−(1,0), z0,1 + 1, z1,0 − 1) = 1, if z1,1 = 0 and z1,0 > 0

(z0,1 + 1)%(0, 1, z) = 1, if z1,1 = 0 and z1,0 = 0

(z1,0 + 1)%(1, 0, z) + z0,1%(0, 1, z−(0,1),−(1,0), z0,1 − 1, z1,0 + 1) = 1, if z1,1 = 0 and z0,1 > 0

(z1,0 + 1)%(1, 0, z) + z0,0%(0, 0, z−(0,0),−(1,0), z0,0 − 1, z1,0 + 1) = 1, if z1,1 = 0, z0,1 = 0, and z0,0 > 0

(z1,0 + 1)%(1, 0, z) = 1, if z1,1 = 0, z0,1 = 0, and z0,0 = 0

(z1,1 + 1)%(1, 1, z) + z0,1%(0, 1, z−(0,1),−(1,1), z0,1 − 1, z1,1 + 1) = 1, if z0,1 > 0

(z1,1 + 1)%(1, 1, z) + z0,0%(0, 0, z−(0,0),−(1,1), z0,0 − 1, z1,1 + 1) = 1, if z0,1 = 0 and z0,0 > 0

(z1,1 + 1)%(1, 1, z) = 1, if z0,1 = 0 and z0,0 = 0.
(27)

We will refer to the following sets of variables of the optimization problem:

V1 = {%(0, 0, z) : z ∈ Z1}, V̄1 = {%(1, 1, z) : z ∈ S4(n− 1), z0,1 = 0 and z0,0 > 0}
V2 = {%(0, 1, z) : z ∈ Z2}, V̄2 = {%(1, 1, z) : z ∈ S4(n− 1), z0,1 > 0}
V3 = {%(0, 0, z) : z ∈ Z3}, V̄3 = {%(1, 0, z) : z ∈ S4(n− 1), z0,1 = z1,1 = 0, z0,0 > 0}
V4 = {%(0, 1, z) : z ∈ Z4}, V̄4 = {%(1, 0, z) : z ∈ S4(n− 1), z1,1 = 0 and z0,1 > 0}.

Notice that, for any i ∈ {1, . . . , 4}, any variable in the set Vi is associated, through
the probability constraints (27), with a unique variable in the set V̄i. Moreover, sets
V̄1, . . . , V̄4 are pairwise disjoint. Therefore for any adjustment of the values of variables
in the sets V1, . . . , V4 we can adjust the values of variables in the sets V̄1, . . . , V̄4 and
maintain the probability constraints. Since both the objective function and the BIC
constraints only involve variables in the sets V1, . . . , V4, we can restrict attention to the
variables in these sets.

Suppose that mechanism (%(x0, y0, z))(x0,y0)∈{0,1}2,z∈S4(n−1) is optimal. For point 2a
of the lemma, notice first that, by the probability constraints, for any z ∈ S4(n − 1),
%(0, 0, z) ≤ 1/(z0,0 + 1) and %(0, 1, z) ≤ 1/(z0,1 + 1). Therefore

∑
z∈Z2

(
1−Q
Q

)
U(z)%(0, 1, z) +

∑
z∈Z3

(
Q

1−Q

)
U(z)%(0, 0, z) +

∑
z∈Z4

U(z)%(0, 1, z) ≤

∑
z∈Z2

(
1−Q
Q

)
U(z)

1

z0,1 + 1
+
∑
z∈Z3

(
Q

1−Q

)
U(z)

1

z0,0 + 1
+
∑
z∈Z4

U(z)
1

z0,1 + 1

and the equality is attained when %(0, 0, z) = 1/(z0,0+1), for all z ∈ Z3, and %(0, 1, z) =
1/(z0,1 + 1), for all z ∈ Z2 ∪ Z4. Next we observe that
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∑
z∈Z2

U(z)
1

z0,1 + 1
=

1

n2n−1

(
2n − (1 +Q)n − (2−Q)n + 1

1−Q

)
(28)

∑
z∈Z3

U(z)
1

z0,0 + 1
=

1

n2n−1

(
1−Qn − (1−Q)n

Q

)
(29)

∑
z∈Z4

U(z)
1

z0,1 + 1
=

1

n2n−1

(
(2−Q)n +Qn − 2

1−Q

)
(30)

so that∑
z∈Z2

(
1−Q
Q

)
U(z)%(0, 1, z) +

∑
z∈Z3

(
Q

1−Q

)
U(z)%(0, 0, z) +

∑
z∈Z4

U(z)%(0, 1, z)

≤ 1

n2n−1

(
2n − (1 +Q)n − (2−Q)n + 1

Q
+

1−Qn − (1−Q)n

1−Q +
(2−Q)n +Qn − 2

(1−Q)

)
=

1

n2n−1

(
(2−Q)n(2Q− 1)−Q(1−Q)n − (1−Q)(1 +Q)n + 2n(1−Q)− 2Q+ 1

Q(1−Q)

)
.

Since, for Q ∈ (0, 1) and n ≥ 2,

2n−1 − 1− (1 +Q)n−1

1− (1 +Q)
= 1 +

n−2∑
i=0

2i −
n−2∑
i=0

(1 +Q)i ≥ 1,

and
2n−1 − (1−Q)n−1 − (1 +Q)n−1 ≥ 0,

as for Q ∈ (0, 1) and n ≥ 2, (1−Q)n−1 + (1 +Q)n−1 ≤ ((1−Q) + (1 +Q))n−1 = 2n−1,
so

1

n2n−1

(
(2−Q)n(2Q− 1)−Q(1−Q)n − (1−Q)(1 +Q)n + 2n(1−Q)− 2Q+ 1

Q(1−Q)

)
−D

=
1

n2n−1

(
Q2n + 1−Q(1−Q)n − (1 +Q)n +Q(1 +Q)n −Q− 2nQ2

Q(1−Q)

)
=

1

n2n−1

(
Q(1−Q)2n + 1−Q−Q(1−Q)n − (1−Q)(1 +Q)n

Q(1−Q)

)
=

1

n2n−1

(
Q2n + 1−Q(1−Q)n−1 − (1 +Q)n)

Q

)
=

1

n2n−1

(
Q2n−1 +Q2n−1 + 1−Q(1−Q)n−1 − (1 +Q)(1 +Q)n−1)

Q

)
=

1

n2n−1

(
Q2n−1 + 1− (1 +Q)n−1 +Q

(
2n−1 − (1−Q)n−1 − (1 +Q)n−1

)
Q

)

=
1

n2n−1

(
2n−1 − 1− (1 +Q)n−1

1− (1 +Q)
+
(
2n−1 − (1−Q)n−1 − (1 +Q)n−1

))
> 0.

Hence∑
z∈Z2

(
1−Q
Q

)
U(z)

1

z0,1 + 1
+
∑
z∈Z3

(
Q

1−Q

)
U(z)

1

z0,0 + 1
+
∑
z∈Z4

U(z)
1

z0,1 + 1
> D.

(31)
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Now assume, to the contrary, that there exists z ∈ S4(n − 1) with z0,1 = 0 and
z1,1 > 0 (i.e. z ∈ Z1) such that %(0, 0, z) > 0. By the BIC constraint (24) and by (31)
either

(i) there exists z′ ∈ Z2 with %(0, 1, z′) < 1/(z0,1 + 1), or

(ii) there exists z′ ∈ Z3 with %(0, 0, z′) < 1/(z0,0 + 1), or

(iii) there exists z′ ∈ Z4 with %(0, 1, z′) < 1/(z0,1 + 1).

Suppose case (i) holds. Then decreasing the value of %(0, 0, z) by ε (and adjusting
the value of the corresponding variable in V̄1 accordingly) and increasing the value of
%(0, 1, z′) by εQU(z)/((1 − Q)U(z′)) (and adjusting the value of the corresponding
variable in V̄2 accordingly), maintains the BIC constraint and changes the value of the
objective function by

εU(z)

(
r(1− r)(1− 2p)

1−Q − (1− p− r)
)
,

which, by (26), is greater than 0. Hence the adjustment increases the value of the
objective function and maintains the constraints, a contradiction.

Suppose case (ii) holds. Then decreasing the value of %(0, 0, z) by ε (and adjusting
the value of the corresponding variable in V̄1 accordingly) and increasing the value of
%(0, 0, z′) by ε(1 − Q)U(z)/(QU(z′)) (and adjusting the value of the corresponding
variable in V̄3 accordingly), maintains the BIC constraint and changes the value of the
objective function by

εU(z)

(
r(1− r)(1− 2p)

Q
− (1− p− r)

)
,

which, by (26), is greater than 0. Hence the adjustment increases the value of the
objective function and maintains the constraints, a contradiction.

Lastly, suppose case (iii) holds. Then decreasing the value of %(0, 0, z) by ε (and
adjusting the value of the corresponding variable in V̄1 accordingly) and increasing the
value of %(0, 1, z′) by εU(z)/U(z′) (and adjusting the value of the corresponding variable
in V̄4 accordingly), maintains the BIC constraint and changes the value of the objective
function by εU(z)(r − p − (1 − p − r)), which, by (26), is greater than 0. Hence the
adjustment increases the value of the objective function and maintains the constraints,
a contradiction.

As we reach a contradiction in all three cases, we conclude that for all z ∈ Z1,
%(0, 0, z) = 0 and point 2a of the Lemma holds. By point 2a and the probability
constraints (27), for all z ∈ Z1, %(1, 1, z−(0,0),(1,1), z0,0 +1, z1,1−1) = 1/(z1,1 +1). Hence
point 2b follows.

To prove point 3a of the Lemma recall that, by the probability constraints, for any
z ∈ S4(n− 1), %(0, 1, z) ≤ 1/(z0,1 + 1). Therefore∑

z∈Z4

U(z)%(0, 1, z) ≤
∑
z∈Z4

U(z)
1

z0,1 + 1

and the equality is attained when %(0, 1, z) = 1/(z0,1 + 1), for all z ∈ Z4. Notice that

2n(1−Q)−(2−Q)n+Q = Q+

n∑
i=0

(
n

i

)
(1−Q)−

n∑
i=0

(
n

i

)
(1−Q)i =

n∑
i=1

(
n

i

)(
1−Q− (1−Q)i

)
> 0,

(32)
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as for Q ∈ (0, 1), n ≥ 2, and for all i ∈ {1, . . . , n − 2}, 1 − Q ≥ (1 − Q)i with equality
only if i = 1. In addition, for any Q ∈ (0, 1) and n ≥ 2, Qn−1 < 1. Therefore, using
Equation (30), for any Q ∈ (0, 1),

D − 1

n2n−1

(
(2−Q)n +Qn − 2

1−Q

)
=

1

n2n−1

(
2n(1−Q)2 +Q(1−Qn)− (2−Q)n(1−Q)

Q(1−Q)

)
=

1

n2n−1

(
(1−Q) (2n(1−Q)− (2−Q)n +Q) +Q2(1−Qn−1)

Q(1−Q)

)
> 0

and, consequently, ∑
z∈Z4

U(z)
1

z0,1 + 1
< D. (33)

Now assume, by contradiction, that there exists z ∈ S4(n − 1) with z1,1 = 0 and
z1,0 > 0 (i.e. z ∈ Z4), and such that %(0, 1, z) < 1/(z0,1+1). By the BIC constraint (24),
point 2a of the lemma, and by (33) either

(i) there exists z′ ∈ Z2 with %(0, 1, z′) > 0, or

(ii) there exists z′ ∈ Z3 with %(0, 0, z′) > 0.

Suppose case (i) holds. Then increasing the value of %(0, 1, z) by ε (and adjusting
the value of the corresponding variable in V̄4 accordingly) and decreasing the value of
%(0, 1, z′) by εQU(z)/((1 − Q)U(z′)) (and adjusting the value of the corresponding
variable in V̄2 accordingly), maintains the BIC constraint and changes the value of the
objective function by

εU(z)

(
r − p− r(1− r)(1− 2p)

1−Q

)
,

which, by (26), is greater than 0. Hence the adjustment increases the value of the
objective function and maintains the constraints.

Suppose case (ii) holds. Then increasing the value of %(0, 1, z) by ε (and adjusting
the value of the corresponding variable in V̄4 accordingly) and decreasing the value of
%(0, 0, z′) by ε(1 − Q)U(z)/(QU(z′)) (and adjusting the value of the corresponding
variable in V̄3 accordingly), maintains the BIC constraint and changes the value of the
objective function by

εU(z)

(
r − p− r(1− r)(1− 2p)

Q

)
,

which, by (26), is greater than 0. Hence the adjustment increases the value of the
objective function and maintains the constraints.

As we reach a contradiction in both cases, we conclude that for all z ∈ Z4, %(0, 1, z) =
1/(z0,1 + 1) and that point 3a of the Lemma holds.

By point 3a and the probability constraints (27), for all z ∈ Z4, %(1, 0, z−(0,1),(1,0), z0,1+
1, z1,0 − 1) = 0. Hence point 3b follows.

Using points 2a and 3a of the lemma, the BIC constraint (24) can be rewritten as∑
z∈Z2

(
1−Q
Q

)
U(z)%(0, 1, z) +

∑
z∈Z3

(
Q

1−Q

)
U(z)%(0, 0, z) = D′, (34)
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where

D′ = D −
∑
z∈Z4

U(z)
1

z0,1 + 1
=

1

n2n−1

(
2n(1−Q)2 +Q(1−Qn)− (2−Q)n(1−Q)

Q(1−Q)

)
,

and the objective function can be rewritten as

r(1− r)(2p− 1)n

2

−∑
z∈Z2

U(z)

(
1

Q

)
%(0, 1, z)−

∑
z∈Z3

U(z)

(
1

1−Q

)
%(0, 0, z)

+ C ′′,

(35)
where, using Equation (30),

C ′′ = C ′ +
n(r − p)

2

∑
z∈Z4

U(z)

(
1

z0,1 + 1

)
= C ′ +

1

2n

(
(r − p) ((2−Q)n +Qn − 2)

1−Q

)
.

(36)
Using (34), the objective function can be further rewritten as(

r(1− r)(2p− 1)n

2(1−Q)

)
2Q− 1

1−Q
∑
z∈Z3

U(z)%(0, 0, z) +C ′′−
(
r(1− r)(2p− 1)n

2(1−Q)

)
D′. (37)

Since 1/2 < p < 1 and 1/2 < Q < 1, 2p − 1 > 0, and (2Q − 1)/(1 − Q) > 0. Hence to
maximize the value of the objective function we need to maximize

∑
z∈Z3

U(z)%(0, 0, z).

For point 4a of the lemma suppose that Q < ϕ
(−1)
n (2n). Since∑

z∈Z3

U(z)
1

z0,0 + 1
=

1

n2n−1

(
1−Qn − (1−Q)n

Q

)
,

we have

D′ −
∑
z∈Z3

(
Q

1−Q

)
U(z)

1

z0,0 + 1
=

1

n2n−1

(
2n(1−Q) +Q(1−Q)n−1 − (2−Q)n

Q

)
.

If Q < ϕ
(−1)
n (2n) then, by Fact 1, the above expression is positive and hence

D′ >
∑
z∈Z3

(
Q

1−Q

)
U(z)

1

z0,0 + 1
. (38)

By (37) the value of the objective function increases as the value of %(0, 0, z) increases, for
all z ∈ Z3. By (38) the BIC constraints are satisfied when %(0, 0, z) = 1/(z0,0+1), taking
its maximal value, for all z ∈ Z3. Hence point 4a of the Lemma holds. By point 4a and
the probability constraints (27), for all z ∈ Z3, %(1, 0, z−(0,0),(1,0), z0,0 + 1, z1,0 − 1) = 0.
Hence point 4b follows. Point 4c of the lemma follows immediately by point 4a of the
Lemma together with (34).

To prove point 5a of the Lemma suppose that Q ≥ ϕ(−1)
n (2n). Then

D′ ≤
∑
z∈Z3

(
Q

1−Q

)
U(z)

1

z0,0 + 1
. (39)

By (37) the value of the objective function increases as the value %(0, 0, z) increases, for
all z ∈ Z3. By (39) the BIC constraints are not satisfied when %(0, 0, z) = 1/(z0,0 + 1),
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taking its maximal value, for all z ∈ Z3. Hence for all z ∈ Z2, %(0, 1, z) = 0, and so
point 5b of the Lemma holds. By point 5b, for all z ∈ Z2, %(0, 1, z−(0,1),(1,1), z0,1 −
1, z1,1 + 1) = 0. This, together with the probability constraints (27), yields point 5a.
Point 5c of the Lemma follows immediately by point 5b of the Lemma together with (34).

To check that any mechanism that satisfies the characterization given in the lemma
is optimal under the relaxed optimization problem notice that the characterization fully
determines the values of the probabilities % except for the values in sets V2 and V̄2, when

Q ≥ ϕ
(−1)
n (2n), and V3 and V̄3, when Q < ϕ

(−1)
n (2n). Since the value of the objective

function given by (37) only depends on the sum
∑

z∈Z3
U(z)%(0, 0, z) of the values of

the variables in V3, which is fixed by points 4a and 5c, any mechanism satisfying the
characterization given in the Lemma is optimal.

We now check that the BIC constraint of the high type is always satisfied at an
optimal BIC mechanism of the relaxed problem.

Lemma 5. Mechanism (%(x0, y0, z))(x0,y0)∈{0,1}2,z∈S4(n−1) is optimal under the original
problem if and only if it is optimal under the relaxed problem.

Proof. Let (%(x0, y0, z))(x0,y0)∈{0,1}2,z∈S4(n−1) be an optimal mechanism under the re-
laxed problem. By the characterization given in Lemma 4, the BIC constraint (20) for
x0 = 1 can be rewritten as∑
z∈S4(n−1)
s.t. z1,1>0

U(z)%(0, 1, z) +
∑

z∈S4(n−1)
s.t. z0,1=z1,1=0,z1,0>0

U(z)%(0, 0, z) +
∑

z∈S4(n−1)
s.t. z1,1=0,z1,0>0

U(z)
1

z0,1 + 1
+

∑
z∈S4(n−1)

s.t. z1,1=z1,0=0
z0,0>0

(
2Q− 1

Q

)
U(z)

1

z0,1 + 1
≤ 1

n2n−1

(
2nQ− 1− (2Q− 1)(1−Q)n−1

Q

)
.

Since ∑
z∈S4(n−1)

s.t. z1,1=0,z1,0>0

U(z)
1

z0,1 + 1
=

1

n2n−1

(
(2−Q)n +Qn − 2

1−Q

)
∑

z∈S4(n−1)
s.t. z1,0=z1,1=0

z0,0>0

U(z)
1

z0,1 + 1
=

1

n2n−1

(
1−Qn − (1−Q)n

1−Q

)
,

the BIC constraint can be rewritten as∑
z∈S4(n−1)
s.t. z1,1>0

U(z)%(0, 1, z) +
∑

z∈S4(n−1)
s.t. z0,1=z1,1=0,z1,0>0

U(z)%(0, 0, z)

≤ 1

n2n−1

(
2n(1−Q)− (2−Q)n −Qn−1(1−Q) + 1

1−Q

)
. (40)

Suppose that Q < ϕ
(−1)
n (2n). By Lemma 4,∑

z∈S4(n−1)
z1,1>0

U(z)%(0, 1, z) =
1

n2n−1

(
2n(1−Q) +Q(1−Q)n−1 − (2−Q)n

1−Q

)
.
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Thus (40) can be rewritten as

∑
z∈S4(n−1)

s.t. z0,1=z1,1=0,z1,0>0

U(z)%(0, 0, z) ≤ 1

n2n−1

(
1−Q(1−Q)n−1 − (1−Q)Qn−1

1−Q

)
. (41)

By Lemma 4, for any z ∈ S4(n − 1) with z1,1 = z0,1 = 0 and z1,0 > 0, %(0, 0, z) =
1/(z0,0 + 1). Since

∑
z∈S4(n−1)

s.t. z1,0=z1,1=0
z1,0>0

U(z)
1

z0,0 + 1
=

1

n2n−1

(
1−Qn − (1−Q)n

Q

)
,

so the LHS of (41) is equal to

1

n2n−1

(
1−Qn − (1−Q)n

Q

)
.

Subtracting this from the RHS we obtain

1

n2n−1

(
1−Q(1−Q)n−1 − (1−Q)Qn−1

1−Q

)
− 1

n2n−1

(
1−Qn − (1−Q)n

Q

)
=

1

n2n−1

(
Q−Q2(1−Q)n−1 − (1−Q) + (1−Q)n+1

Q(1−Q)

)
1

n2n−1

(
2Q− 1− (1−Q)n−1

(
Q2 − (1−Q)2

)
Q(1−Q)

)
1

n2n−1

(
(2Q− 1)

(
1− (1−Q)n−1

)
Q(1−Q)

)
,

which is positive for any Q ∈ (1/2, 1) and n ≥ 2. Thus the BIC constraint is satisfied.

Suppose that Q ≥ ϕ
(−1)
n (2n). By Lemma 4, for any z ∈ S4(n − 1) with z1,1 > 0,

%(0, 1, z) = 0 and

∑
z∈S4(n−1)

z0,1=z1,1=0, z1,0>0

U(z)%(0, 0, z) =
1

n2n−1

(
2n(1−Q)2 +Q(1−Qn)− (2−Q)n(1−Q)

Q2

)
,

which is also equal to the LHS of the constraint. Subtracting this from the RHS we
obtain

1

n2n−1

(
(2Q− 1) (2n(1−Q)− (2−Q)n +Q)

Q2(1−Q)

)
.

By (32), 2n(1−Q)−(2−Q)n+Q > 0 for n ≥ 2 and Q ∈ (1/2, 1). In addition 2Q−1 > 0
for Q ∈ (1/2, 1). Hence the difference RHS minus LHS is positive and the BIC constraint
is satisfied.

This completes the proof of the theorem.
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B Online Appendix 1: Proofs

B.1 Proof of Proposition 1

We provide computations for the values of the planner’s objective function under
the optimal DSIC and BIC mechanisms.

Lemma 6. The probability of selecting a high quality project under an optimal
DSIC mechanism is

ΠD(p, r) = r − 2r − 1

2n
.

Proof. Since DSIC mechanisms are independent of agents’ reports, the following
mechanism

%D(x0, y0, z) =


1

z0,1+z1,1+1
, if y0 = 1 and zx0,1 = z0,1 + z1,1,

1
n
, if y0 = 0 and z0,0 + z1,0 = n− 1,

0, otherwise,

is an optimal DSIC mechanism.
By (8), the value of the objective function under %D is equal to

ΠD(p, r) =
n

2

∑
(x0,y0)∈{0,1}2

∑
z∈S4(n−1)

U(z)ζ1(x0, y0)%
D(x0, y0, z) = r − 2r − 1

2n
. (42)

Lemma 7. The probability of selecting a high quality project under an optimal
anonymous BIC mechanism is

ΠB(p, r) = r−2r − 1

2n

(
1−

(
r(1− r)(2p− 1)2

Q(1−Q)

)
min

(
1− (1−Q)n−1,

2n(1−Q)− (2−Q)n +Q

Q

))
.

Proof. By (37), the value of the objective function under any optimal anonymous
BIC mechanism, % ∈ RB, is

ΠB(p, r) = C ′′−
(
r(1− r)(2p− 1)n

2(1−Q)

)D′ − 2Q− 1

1−Q
∑

z∈S4(n−1)
z0,1=z1,1=0, z1,0>0

U(z)%(0, 0, z)

 ,

where

D′ =
1

n2n−1

(
2n(1−Q)2 +Q(1−Qn)− (2−Q)n(1−Q)

Q(1−Q)

)
,

by (18), (23), and (36),

C ′′ =
1

2n

(
pr(1−Q)2n − r(1− r)(2p− 1)((2−Q)n +Qn) +Q(p− r)

Q(1−Q)

)
(43)
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and, by points 4a and 5c of Lemma 4 and (29),

∑
z∈S4(n−1)

z0,1=z1,1=0, z1,0>0

U(z)%(0, 0, z) =


1

n2n−1

(
1−Qn−(1−Q)n

Q

)
, if Q < Q∗n

1
n2n−1

(
2n(1−Q)2+Q(1−Qn)−(2−Q)n(1−Q)

Q2

)
, if Q ≥ Q∗n.


=


1

n2n−1

(
1−Qn−(1−Q)n

Q

)
, if 1−Q

Q
D′ > 1

n2n−1

(
1−Qn−(1−Q)n

Q

)
1−Q
Q
D′, if 1−Q

Q
D′ ≤ 1

n2n−1

(
1−Qn−(1−Q)n

Q

)
.


= min

(
1

n2n−1

(
1−Qn − (1−Q)n

Q

)
,
1−Q
Q

D′
)

=

(
1−Q
Q

)(
D′ − 1

n2n−1
max (2n(1−Q) +Q(1−Q)n−1 − (2−Q)n, 0)

Q

)
.

Therefore the value of the objective function is

ΠB(p, r) =r − 2r − 1

2n

(
1

Q(1−Q)

)(
p(1− p)

+

(
r(1− r)(2p− 1)2

Q

)
max

(
Q(1−Q)n−1, (2−Q)n − 2n(1−Q)

))
.

(44)
Since Q(1−Q) = p(1− p) + r(1− r)(2p− 1)2, this can be further rewritten as

ΠB(p, r) = r−2r − 1

2n

(
1−

(
r(1− r)(2p− 1)2

Q(1−Q)

)
min

(
1− (1−Q)n−1,

2n(1−Q)− (2−Q)n +Q

Q

))
.

B.2 Proof of Proposition 2

We first provide formulas for the objective function and the BIC constraints.
Adopting the same notations as in Section 4, we can write the objective function
of the social planner as

Π =
1

2

(
1

2
+ (1− q)(1− q(2r − 1)) + a1π1 + a2π2 + a3π3 + a4π4 + a5π5 + a6π6

)
.

We stress that in the case of peer evaluation, x0 denotes the signal received by
agent 1 about the type of agent 0 and x1 denotes the signal received by agent 0
about the type of agent 1. So (x0, y0) is the pair of reports on agent 0 and (x1, y1)
is the pair of reports on agent 1. Therefore the formula for the objective function
remains the same as in the benchmark model. As in the benchmark model, the
optimal DSIC mechanism selects the agent with the highest report of the external
referee when the two agents receive different reports and each agent with equal
probability when the reports are identical,

π1 = π3 = π6 = 1, π4 = 0, π2 = π5 =
1

2
.
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Let Q = qr + (1 − q)(1 − r) denote, as in the benchmark model, the probability
that the two signals Xi and Yi are equal. Furthermore, define

R1 = pqr + (1− p)(1− q)(1− r),
R2 = p(1− q)r + (1− p)q(1− r),
R3 = pq(1− r) + (1− p)(1− q)r,
R4 = p(1− q)(1− r) + (1− p)qr

With these notations in hand, the four BIC constraints are given by Type (Vi, Xi⊕1) =
(0, 1)

− (R1Q+R4(1−Q))π1 − (R2 +R1)(1−Q)π2 + (R1Q−R3(1−Q))π3

− (R2Q+R3(1−Q))π4 − (R3 +R4)Qπ5 − (R2Q−R4(1−Q))π6

+
1

2
[(R1 +R2)(1−Q) + (R3 +R4)Q+ 2R2Q+ 2R3(1−Q)] ≥ 0.

(45)

Type (Vi, Xi⊕1) = (0, 0)

(R1(1−Q) +R4Q)π1 + (R2 +R1)Qπ2 − (R1(1−Q)−R3Q)π3

+(R2(1−Q) +R3Q)π4 + (R3 +R4)(1−Q)π5 + (R2(1−Q)−R4Q)π6

−1

2
[(R1 +R2)Q+ (R3 +R4)(1−Q) + 2R2(1−Q) + 2R3Q] ≥ 0.

(46)

Type (Vi, Xi⊕1) = (1, 1)

−(R1(1−Q) +R4Q)π1 − (R3 +R4)(1−Q)π2 − (R2(1−Q)−R4Q)π3

−((R2(1−Q) +R3Q))π4 − (R1 +R2)Qπ5 + (R1(1−Q)−R3Q)π6

+
1

2
[(R1 +R2)Q+ (R3 +R4)(1−Q) + 2R2(1−Q) + 2R3Q] ≥ 0.

(47)

Type (Vi, Xi⊕1) = (1, 0)

(R1Q+R4(1−Q))π1 + (R3 +R4)Qπ2 + (R2Q−R4(1−Q))π3

+(R2Q+R3(1−Q))π4 + (R1 +R2)(1−Q)π5 − (R1Q−R3(1−Q))π6

−1

2
[(R1 +R2)(1−Q) + (R3 +R4)Q+ 2R2Q+ 2R3(1−Q)] ≥ 0.

(48)
We consider the relaxed problem where the BIC constraints (46) and (48) are

ignored and rewrite the BIC constraints (45) and (47) as

b1π1 + b2π2 + b3π3 + b4π4 + b5π5 + b6π6 +B ≥0,

c1π1 + c2π2 + c3π3 + c4π4 + c5π5 + c6π6 + C ≥0.

The problem is then a linear relaxation of a knapsack problem with two con-
straints, and we define the efficiency indices βi = −ai/bi and γi = −ai/ci We
easily check that bi ≤ 0 for i ∈ {1, 2, 4, 5, 6}, b3 ≥ 0, ci ≤ 0 for i ∈ {1, 2, 4, 5} and
c6 ≥ 0. The coefficient c3 is either positive or negative depending on the sign of
p(1 − q)2 − q2(1 − p). The following claim ranks the values β1, β2, β4, β5 and β6
and γ1, gamma2, γ3, γ4 and γ5.
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Claim 1. We have β6 > β5 > β2 > β4, β1 > β5, γ1 > γ2 > γ5, γ2 > γ4, γ3 > γ2.

Proof. We first note that β6 = (1 − q)/(p − q) ≥ 1 and a5 = q2r(1 − r) − (1 −
q)2r(1−r) ≤ pqr(1−r) < (p(1−r)+r(1−p))(qr+(1−q)(1−r)) = b5, β5 < 1 < β6.

Next, to prove β5 > β2, because a2 = a5, it is sufficient to prove b2 > b5 or

pr + (1− p)(1− r) > p(1− r) + r(1− p), (49)

an inequality which is always verified.
To prove β2 > β4, as a2 = a4r/(1− r), it is enough to show

r (R2(1−Q) +R3Q)− (1− r)Q (R1 +R2) > 0. (50)

Now, observe that r(1−Q)− (1− r)Q = (1− q)(2r− 1) > 0 so that rR2(1−Q) >
(1 − r)R2Q. In addition rR3 − (1 − r)R1 = (1 − p)(1 − q)(2r − 1) ≥ 0 so that
rR3Q− (1− r)R1Q ≥ 0, establishing inequality (50).

Next, note that

β1 =
a1
b1

=
q2r2 − (1− q)2(1− r)2
R1Q+R4(1−Q)

>
q2r2 − (1− q)2(1− r)2

R1Q+R4Q

while

β5 =
q2r(1− r)− (1− q)2r(1− r)

R3Q+R4Q
.

In order to prove β1 > β5, it is thus sufficient to show

(q2r2− (1− q)2(1− r)2)(R3 +R4) > (q2r(1− r)− (1− q)2r(1− r))(R1 +R4). (51)

Now,(
q2r2 − (1− q)2(1− r)2

)
R3 −

(
q2r(1− r)− (1− q)2r(1− r)

)
R1

= (1− p)(1− q)r(2r − 1)(2q − 1) > 0

and as q2r2 − (1− q)2(1− r)2 > q2r(1− r)− (1− q)2r(1− r),(
q2r2 − (1− q)2(1− r)2

)
R4 −

(
q2r(1− r)− (1− q)2r(1− r)

)
R4 > 0,

establishing equality (51).
Next, to prove γ1 > γ2, note that

γ1 =
a1

R1(1−Q) +R4Q
>

a1
R1Q+R4Q

and γ2 =
a2

R1Q+R2Q
.

Now a1 > a2 and R2 −R4 = (2r − 1)(p− q) ≥ 0, establishing the result.
To prove γ2 > γ5, recall that a2 = a5 and note that, as Q > 1−Q, c5 > b5 >

b2 > c2.
Next, to prove γ2 > γ4, it is sufficient to note that c2 < b2 and c4 = R3(1 −

Q) +R2(1−Q) < R2Q+R2(1−Q) = b4 as Q > 1/2 and R3 > R2.
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To prove γ3 > γ2 when c3 ≤ 0, note that

γ3 =
q(1− q)

p(1− q)2 − (1− p)q2 while γ2 =
(2q − 1)r(1− r)

[q(1− r) + r(1− q)][p(1− r) + r(1− p)] .

A sufficient condition for γ3 > γ2 is:

q(1− q)[q(1− p) + p(1− q)]r(1− r) ≥ (2q− 1)r(1− r)[p(1− q)2− (1− p)q2]. (52)

Note that inequality (52) is always satisfied as qp(1− q)2 > (2q − 1)p(1− q)2.
If c3 > 0, γ3 = +∞ > γ2.

Proof of Proposition 2. We use Claim 1 to compute the solution of the knapsack
problem. We note that π1, π3, π6 must be larger than π2 and π5, and that π2 ≥
π4. Either the three probabilities π1, π3 and π6 are equal to one, or the three
probabilities π2, π4, and π5 are equal to zero. It is easy to check that when
π2 = π4 = π5 = 0, the two BIC constraints (45) and (47) are slack, so that
an increase in any of the probabilities π1, π3 or π6 would result in an increase in
welfare. Hence one of the three probabilities π2, π4, π5 has to be different from 0,
and we conclude that at the optimum π1 = π3 = π6 = 1. In addition, we know
that either π4 = 0 or π2 = 1. However, if π1 = π2 = π3 = π6 = 1, the BIC
constraint (45) cannot be satisfied, so that π2 < 1 and hence π4 = 0. But now,
given that π1 = π3 = π6 = 1 and π4 = 0, the two BIC constraints (45) and (47)
can only be satisfied when π2 = π5 = 1/2, so that the optimal BIC mechanism is
equal to the optimal DSIC mechanism.

B.3 Proof of Proposition 3

In this section we prove Proposition 3 that compares optimal BIC mechanisms
in self-evaluation and peer-evaluation scenarios. To this end, we first obtain a
full characterization of optimal BIC mechanisms for the artificial peer evaluation
scenario, where agents do not receive any signal about their own type, but only
a signal on the quality of their competitor. Then we use this characterization to
compare planner’s payoffs in the two scenarios.

As in the case of the benchmark model, we consider the representation of the
anonymous mechanisms based on the function % : {0, 1}2 × S4(n − 1) → [0, 1],
which determines probability of the project being selected based on the scores
it received and on the numbers of possible scores among the remaining projects.
We stress that in the case of peer evaluation, x0 denotes the signal received by
agent n − 1 about the type of agent 0 so (x0, y0) is the pair of reports on agent
0. Therefore the formula for the objective function remains the same as in the
benchmark model.

The formulation of the objective function (8) and the probability constraints (11)
remains like in the benchmark model. There are 4n BIC constraints, one for every
quadruple (i, a, b, b′) where i ∈ {0, . . . , n − 1}, a ∈ {0, 1}, and b 6= b′. Since the
BIC constraints are independent across agents and given the form of the objec-
tive function, we can restrict attention to the BIC constraints for agent 0. There
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are 4 such BIC constraints. Given (v0, x1, x
′
1) with v0 ∈ {0, 1} and x1 6= x′1 the

corresponding BIC constraint is

E(π0(x1,X−1,Y ) | X1 = x1, v0 = a)− E(π0(x
′
1,X−1,Y ) | X1 = x1, v0 = a) ≥ 0.

The LHS of the constraint can be rewritten as∑
t∈{0,1}N

∑
x−1∈{0,1}N\{1}

∑
y∈{0,1}N

Pr(Θ = t,X−1 = x−1,Y = y | X1 = x1, v0 = a)(π0(x1,x−1,y)− π0(x′1,x−1,y)) =

∑
x−1∈{0,1}N\{1}

∑
y∈{0,1}N

 ∑
t∈{0,1}N

Pr(Θ = t,X−1 = x−1,Y = y | X1 = x1, v0 = a)

 (π0(x1,x−1,y)− π0(x′1,x−1,y)),

where

Pr(Θ = t,X−1 = x−1,Y = y | X1 = x1, v0 = a)

= Pr(Θ0 = t0, X0 = x0, Y0 = y0 | v0 = a)Pr(Θ1 = t1, Y1 = y1 | X1 = x1)Pr(Θ−0,1 = t−0,1,X−0,1 = x−0,1,Y−0,1 = y−0,1)

=
Pr(Θ0 = t0, X0 = x0, Y0 = y0, v0 = a)

Pr(v0 = a)

Pr(Θ1 = t1, X1 = x1, Y1 = y1)

Pr(X1 = x1)
Pr(Θ−0,1 = t−0,1,X−0,1 = x−0,1,Y−0,1 = y−0,1) =

=
Pr(V0 = a,X0 = x0, Y0 = y0 | Θ0 = t0)Pr(Θ0 = t0)

Pr(v0 = a)

1

Pr(X1 = x1)
Pr(Θ = t−0,X−0 = x−0,Y−0 = y−0)

= 2Pr(v0 = a | Θ0 = t0)Pr(X0 = x0, Y0 = y0 | Θ0 = t0)Pr(Θ = t−0,X−0 = x−0,Y−0 = y−0)

= 2Pr(v0 = a | Θ0 = t0)
Pr(X0 = x0, Y0 = y0,Θ0 = t0)

Pr(Θ0 = t0)
Pr(Θ = t−0,X−0 = x−0,Y−0 = y−0)

= 4Pr(v0 = a | Θ0 = t0)Pr(Θ = t,X = x,Y = y)

= 4Pr(v0 = a | Θ0 = t0)
∏
j∈N

Pr(Θj = tj , Xj = xj , Yj = yj)

= 4Pr(v0 = a | Θ0 = t0)
∏
j∈N

Pr(Xj = xj , Yj = yj | Θj = tj)Pr(Θj = tj)

= 4Pr(v0 = a | Θ0 = t0)
∏
j∈N

Pr(Xj = xj , Yj = yj | Θj = tj)

2
,

as

Pr(Θ0 = t0) =
1

2
,

Pr(v0 = a) = Pr(v0 = a,Θ1 = 0) + Pr(v0 = a,Θ1 = 1)

= Pr(v0 = a | Θ1 = 1)Pr(Θ1 = 1) + Pr(v0 = a | Θ1 = 1)Pr(Θ1 = 1)

=
1

2
(p+ 1− p) =

1

2
,

Pr(X1 = x1) = Pr(X1 = x1,Θ1 = 0) + Pr(X1 = x1,Θ1 = 1)

= Pr(X1 = x1 | Θ1 = 1)Pr(Θ1 = 1) + Pr(X1 = x1 | Θ1 = 1)Pr(Θ1 = 1)

=
1

2
(p+ 1− p) =

1

2
.

Let
ηt(a) = Pr(v0 = a | Θ0 = t) = [a = t]p+ [a 6= t](1− p).
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Then∑
t∈{0,1}N

Pr(Θ = t,X−1 = x−1,Y = y | X1 = x1, v0 = a) =

4
∑

t∈{0,1}N
Pr(v0 = a | Θ0 = t0)

∏
j∈N

Pr(Xj = xj , Yj = yj | Θj = tj)

2
=

2 (Pr(v0 = a | Θ0 = 0)Pr(Xj = xj , Yj = yj | Θ0 = 0) + Pr(v0 = a | Θ0 = 1)Pr(Xj = xj , Yj = yj | Θ0 = 1))∏
j∈N\{0}

Pr(Xj = xj , Yj = yj | Θj = 0) + Pr(Xj = xj , Yj = yj | Θj = 1)

2
=

2
(
η0(a)ξ00(x,y) + η1(a)ξ10(x,y)

)
T0(x,y),

and the BIC constraints can be rewritten as∑
x−1∈{0,1}N\{1}

∑
y∈{0,1}N

(
η0(a)ξ00(x,y) + η1(a)ξ10(x,y)

)
T0(x,y)

(
π0(x,y)− π0(x′1,x−1,y)

)
≥ 0.

Notice that for any x−0 ∈ {0, 1}N\{0} and any y−0 ∈ {0, 1}N\{0}, |{i ∈ N \ {0} : xi =
x1 and yi = y1}| ≥ 1. Moreover, for any y1 ∈ {0, 1} and any z ∈ S4(n − 1) with
zx1,y1 > 0 there are(

n− 2

z−(x1,y1), zx1y1 − 1

)
=

(
zx1y1
n− 1

)(
n− 1

z0,0, z0,1, z1,0, z1,1

)
vectors (x−0,y−0) such that for all (b, b′) ∈ {0, 1}2, |{i ∈ N \ {0} : xi = b and yi =
b′}| = zb,b′ . Therefore we can rewrite the BIC constraints as∑

(x0,y0)∈{0,1}2

∑
y1∈{0,1}

∑
z∈S4(n−1)
zx1y1>0

zx1y1U(z)α(a, x0, y0)
(
%(x0, y0, z)

− %(x0, y0, z−(x1,y1),(x′1,y1), zx1,y1 − 1, zx′1,y1 + 1)
)
≥ 0,

where
α(a, x0, y0) = η0(a)ζ0(x0, y0) + η1(a)ζ1(x0, y0).

The LHS of the constraint can be further rewritten as∑
(x0,y0)∈{0,1}2

∑
y1∈{0,1}

∑
z∈S4(n−1)
zx1y1

>0

zx1y1
U(z)α(a, x0, y0)%(x0, y0, z)

−
∑

(x0,y0)∈{0,1}2

∑
y1∈{0,1}

∑
z∈S4(n−1)
zx1y1

>0

zx1y1
U(z)α(a, x0, y0)%(x0, y0, z−(x1,y1),(x′1,y1), zx1,y1

− 1, zx′1,y1
+ 1)

=
∑

(x0,y0)∈{0,1}2

∑
y1∈{0,1}

∑
z∈S4(n−1)
zx1y1

>0

zx1y1
U(z)α(a, x0, y0)%(x0, y0, z)

−
∑

(x0,y0)∈{0,1}2

∑
y1∈{0,1}

∑
z∈S4(n−1)
zx′1y1

>0

(zx1y1
+ 1)U(z−(x1,y1),(x′1,y1), zx1,y1

+ 1, zx′1,y1
− 1)α(a, x0, y0)%(x0, y0, z).

Since

U(z−(x1,y1),(x′1,y1), zx1,y1 + 1, zx′1,y1 − 1) =
zx′1y1

zx1y1 + 1

[x1 = y1]Q+ [x1 6= y1](1−Q)

[x1 6= y1]Q+ [x1 = y1](1−Q)
U(z)
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so this can be further rewritten as∑
(x0,y0)∈{0,1}2

∑
y1∈{0,1}

∑
z∈S4(n−1)
zx1y1

>0

zx1y1
U(z)α(a, x0, y0)%(x0, y0, z)

−
∑

(x0,y0)∈{0,1}2

∑
y1∈{0,1}

∑
z∈S4(n−1)
zx′1y1

>0

zx′1y1

[x1 = y1]Q+ [x1 6= y1](1−Q)

[x1 6= y1]Q+ [x1 = y1](1−Q)
U(z)α(a, x0, y0)%(x0, y0, z)

=
∑

(x0,y0)∈{0,1}2

∑
y1∈{0,1}

∑
z∈S4(n−1)

zx1y1U(z)α(a, x0, y0)%(x0, y0, z)

−
∑

(x0,y0)∈{0,1}2

∑
y1∈{0,1}

∑
z∈S4(n−1)

zx′1y1

[x1 = y1]Q+ [x1 6= y1](1−Q)

[x1 6= y1]Q+ [x1 = y1](1−Q)
U(z)α(a, x0, y0)%(x0, y0, z)

=
∑

(x0,y0)∈{0,1}2

∑
y1∈{0,1}

∑
z∈S4(n−1)

(
zx1y1 − zx′1y1

[x1 = y1]Q+ [x1 6= y1](1−Q)

[x1 6= y1]Q+ [x1 = y1](1−Q)

)
U(z)α(a, x0, y0)%(x0, y0, z)

=
∑

(x0,y0)∈{0,1}2

∑
z∈S4(n−1)

U(z)α(a, x0, y0)%(x0, y0, z)
∑

y1∈{0,1}

(
zx1y1 − zx′1y1

[x1 = y1]Q+ [x1 6= y1](1−Q)

[x1 6= y1]Q+ [x1 = y1](1−Q)

)

=
∑

(x0,y0)∈{0,1}2

∑
z∈S4(n−1)

U(z)α(a, x0, y0)%(x0, y0, z)
∑

y1∈{0,1}

(
zx1y1 + zx′1y1

−
zx′1y1

[x1 6= y1]Q+ [x1 = y1](1−Q)

)

=
∑

(x0,y0)∈{0,1}2

∑
z∈S4(n−1)

U(z)α(a, x0, y0)%(x0, y0, z)

n− 1−
∑

y1∈{0,1}

zx′1y1

[x1 6= y1]Q+ [x1 = y1](1−Q)


=

∑
(x0,y0)∈{0,1}2

∑
z∈S4(n−1)

U(z)
α(a, x0, y0)

Q(1−Q)
%(x0, y0, z)

(n− 1)Q(1−Q)−
∑

y1∈{0,1}
zx′1y1

([x1 = y1]Q+ [x1 6= y1](1−Q))

 .

Thus, multiplying both sides by Q(1−Q), the BIC constraint can be rewritten as∑
(x0,y0)∈{0,1}2

∑
z∈S4(n−1)

U(z)α(a, x0, y0)%(x0, y0, z)

(n− 1)Q(1−Q)−
∑

y1∈{0,1}

zx′1y1 ([x1 = y1]Q+ [x1 6= y1](1−Q))

 ≥ 0

and, further, as∑
(x0,y0)∈{0,1}2

∑
z∈S4(n−1)

U(z)α(a, x0, y0)β(x1, x
′
1, z)%(x0, y0, z) ≥ 0, (53)

where

β(x1, x
′
1, z) =

(n− 1)Q(1−Q)−
∑

y1∈{0,1}

zx′1y1 ([x1 = y1]Q+ [x1 6= y1](1−Q))

 .

(54)
Adding pairs of BIC constraints with the same values of (x0, x

′
0) and different val-

ues of a we obtain a relaxed optimization problem with two constraints, one for each
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(x0, x
′
0) ∈ {0, 1}2 with x0 6= x′0,∑

(x0,y0)∈{0,1}2

∑
z∈S4(n−1)

U(z)ζ(x0, y0)β(x1, x
′
1, z)%(x0, y0, z) ≥ 0.

We solve the relaxed optimization problem, following similar steps to those used to
find optimal BIC mechanisms in the case of the benchmark model. The further analysis
is divided in three parts. First we consider a further relaxed optimization problem where
the BIC constraint for x1 = 0 and x′1 = 1 is dropped and we fully characterize optimal
mechanisms for this problem. Next we show that the optimal mechanisms satisfy the
BIC constraint for x1 = 0 and x′1 = 1. Hence we obtain a full characterization of the
optimal mechanisms for the unrelaxed optimization problem.

Lemma 8. For any optimal mechanism (%(x0, y0, z))(x0,y0)∈{0,1}2,z∈S4(n−1) under the
relaxed optimization problem without the BIC constraint for x1 = 0 and x′1 = 1, any
x0 ∈ {0, 1}, and any z ∈ S4(n− 1), if zx0,1 > 0 then %(x0, 0, z) = 0.

Proof. Let (%(x0, y0, z))(x0,y0)∈{0,1}2,z∈S4(n−1) be an optimal mechanism of the relaxed
optimization problem. Assume, to the contrary, that there exists x0 ∈ {0, 1} and z ∈
S4(n− 1) with zx0,1 > 0 such that %(x0, 0, z) > 0.

Consider a modification to the mechanism where %(x0, 0, z) is decreased by ε/(zx0,0+
1) and %(x0, 1, z−(x0,0),(x0,1)zx0,0+1, zx0,1−1) is increased by ε/zx0,1, where ε ∈ (0, (zx0,0+
1)%(x0, 0, z)). This modification maintains the probability constraint (11). Moreover,
for any A ∈ R and B ∈ R, the change in the sum

U(z)A%(x0, 0, z)+U(z−(x0,0),(x0,1), zx0,0+1, zx0,1−1)B%(x0, 1, z−(x0,0),(x0,1), zx0,0+1, zx0,1−1)

resulting from this modification is equal to, in the case of x0 = 0,

− U(z)
ε

z0,0 + 1
A+ U(z−(0,0),(0,1), z0,0 + 1, z0,1 − 1)

ε

z0,1
B =

1

n2n−1

(
n

z−(0,0),(0,1), z0,0 + 1, z0,1

)
Qz0,0+z1,1+1(1−Q)z0,1+z1,0ε

(
B

1−Q −
A

Q

)
=

(
BQ−A(1−Q)

Q(1−Q)

)
and, in the case of x0 = 1,

− U(z)
ε

z1,0 + 1
A+ U(z−(1,0),(1,1), z1,0 + 1, z1,1 − 1)

ε

z1,1
B =

1

n

(
n

z−(1,0),(1,1), z1,0 + 1, z1,1

)
Qz0,0+z1,1(1−Q)z0,1+z1,0+1ε

(
B

Q
− A

1−Q

)
=

(
B(1−Q)−AQ

Q(1−Q)

)
.

Thus the sign of the change is the same as the sign of BQ − A(1 − Q), in the case of
x0 = 0, and as the sign of B(1−Q)−AQ, in the case of x0 = 1.

Consider the change to the value of the objective function resulting from the change
to the mechanism. In the case of x0 = 0 we have A = ζ1(0, 0) = (1 − q)(1 − r),
B = ζ1(0, 1) = (1− q)r, and

BQ−A(1−Q) = q(2r − 1)(1− q) > 0,

as 1/2 < r ≤ q < 1. In the case of x0 = 1 we have A = ζ1(1, 0) = q(1 − r), B =
ζ1(1, 1) = qr, and again

B(1−Q)−AQ = q(2r − 1)(1− q) > 0.
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Thus the change results in an increase in the value of the objective function.
Consider now the BIC constraints and the change to the value of the LHS of a

constraint resulting from the change to the mechanism. Notice that, by (54), for any
x1, x

′
1 ∈ {0, 1} such that x1 6= x′1,

β(x1, x
′
1, z−(0,0),(0,1), z0,0 + 1, z0,1 − 1) = β(x1, x

′
1, z) + [x′1 = 0](2Q− 1),

β(x1, x
′
1, z−(1,0),(1,1), z1,0 + 1, z1,1 − 1) = β(x1, x

′
1, z)− [x′1 = 1](2Q− 1).

(55)

Suppose that x0 = 0. Since ζ(0, 0) = Q so

A(1−Q) = Q(1−Q)β(x1, x
′
1, z)

and, since ζ(0, 1) = 1−Q so, using (55),

BQ = Q(1−Q)β(z−(0,0),(0,1), z0,0+1, z0,1−1) = Q(1−Q)(β(x1, x
′
1, z)+[x′1 = 0](2Q−1)).

Thus
BQ−A(1−Q) = [x′1 = 0](2Q− 1) ≥ 0,

as Q > 1/2. Thus the LHS of the BIC constraint weakly increases and the constraint
remains satisfied. Suppose that x0 = 1. Since ζ(1, 0) = 1−Q so

AQ = Q(1−Q)β(x1, x
′
1, z)

and, since ζ(1, 1) = Q so, using (55),

B(1−Q) = Q(1−Q)β(z−(1,0),(1,1), z1,0+1, z1,1−1) = Q(1−Q)
(
β(x1, x

′
1, z)− [x′1 = 1](2Q− 1)

)
.

Thus
B(1−Q)−AQ = −[x′1 = 1](2Q− 1),

which, in the case of x′1 = 0, is equal to 0. Hence in this case the LHS of the BIC
constraint remains unchanged.

This shows that changing the mechanism increases the value of the objective function
and maintains the BIC constraint. A contradiction with the assumption of optimality
of the mechanism. Thus the lemma is satisfied.

By Lemma (8), for any x0 ∈ {0, 1}, either %(x0, 0, z) = 0 or zx0,1 = 0. Therefore,
depending on the value of x0, y0, and z, the probability constraint (11) can be rewritten
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as follows:

(z0,0 + 1)%(0, 0, z) + z1,1%(1, 1, z−(0,0),(1,1), z0,0 + 1, z1,1 − 1) = 1, if z0,1 = 0 and z1,1 > 0

(z0,0 + 1)%(0, 0, z) + z1,0%(1, 0, z−(0,0),(1,0), z0,0 + 1, z1,0 − 1) = 1, if z0,1 = 0, z1,1 = 0, and z1,0 > 0

(z0,0 + 1)%(0, 0, z) = 1, if z0,1 = 0, z1,1 = 0, and z1,0 = 0

(z0,1 + 1)%(0, 1, z) + z1,1%(1, 1, z−(0,1),(1,1), z0,1 + 1, z1,1 − 1) = 1, if z1,1 > 0

(z0,1 + 1)%(0, 1, z) + z1,0%(1, 0, z−(0,1),(1,0), z0,1 + 1, z1,0 − 1) = 1, if z1,1 = 0 and z1,0 > 0

(z0,1 + 1)%(0, 1, z) = 1, if z1,1 = 0 and z1,0 = 0

(z1,0 + 1)%(1, 0, z) + z0,1%(0, 1, z−(0,1),(1,0), z0,1 − 1, z1,0 + 1) = 1, if z1,1 = 0 and z0,1 > 0

(z1,0 + 1)%(1, 0, z) + z0,0%(0, 0, z−(0,0),(1,0), z0,0 − 1, z1,0 + 1) = 1, if z1,1 = 0, z0,1 = 0, and z0,0 > 0

(z1,0 + 1)%(1, 0, z) = 1, if z1,1 = 0, z0,1 = 0, and z0,0 = 0

(z1,1 + 1)%(1, 1, z) + z0,1%(0, 1, z−(0,1),(1,1), z0,1 − 1, z1,1 + 1) = 1, if z0,1 > 0

(z1,1 + 1)%(1, 1, z) + z0,0%(0, 0, z−(0,0),(1,1), z0,0 − 1, z1,1 + 1) = 1, if z0,1 = 0 and z0,0 > 0

(z1,1 + 1)%(1, 1, z) = 1, if z0,1 = 0 and z0,0 = 0.
(56)

Using (56), we rewrite the objective function as

n

2

( ∑
z∈S4(n−1)
z1,1=0,z0,1>0

(q − r)U(z)%(1, 0, z) +
∑

z∈S4(n−1)
z0,1>0

r(1− r)(2q − 1)

1−Q U(z)%(1, 1, z) +

∑
z∈S4(n−1)

z0,1=z1,1=0,z0,0>0

r(1− r)(2q − 1)

Q
U(z)%(1, 0, z) +

∑
z∈S4(n−1)
z0,1=0,z0,0>0

(q + r − 1)U(z)%(1, 1, z)

)
+ C ′

(57)
where constant C ′ is equal to

n

2

( ∑
z∈S4(n−1)
z0,1>0

Q

1−Q
U(z)

z1,1 + 1
(1− q)r +

∑
z∈S4(n−1)
z0,1=0,z0,0>0

U(z)

z1,1 + 1
(1− q)(1− r) +

∑
z∈S4(n−1)
z1,1=0,z0,1>0

U(z)

z1,0 + 1
(1− q)r +

∑
z∈S4(n−1)

z0,1=z1,1=0,z0,0>0

1−Q
Q

U(z)

z1,0 + 1
(1− q)(1− r) +

∑
z∈S4(n−1)
z0,0=z0,1=0

U(z)

z1,1 + 1
qr +

∑
z∈S4(n−1)

z0,0=z0,1=z1,1=0

U(z)

n
q(1− r) +

∑
z∈S4(n−1)
z1,0=z1,1=0

U(z)

z0,1 + 1
(1− q)r +

∑
z∈S4(n−1)

z0,1=z1,0=z1,1=0

U(z)

n
(1− q)(1− r)

)
.

(58)
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Similarly, we rewrite the BIC constraint for x1 = 1 and x′1 = 0 as∑
z∈S4(n−1)

s.t. z0,1>0,z1,1=0

U(z)%(1, 0, z) +
∑

z∈S4(n−1)
s.t. z0,1>0

(
Q

1−Q

)
U(z)%(1, 1, z) +

∑
z∈S4(n−1)

s.t. z0,1=z1,1=0,z0,0>0

(
1−Q
Q

)
U(z)%(1, 0, z) +

∑
z∈S4(n−1)

s.t. z0,1=0,z0,0>0

U(z)%(1, 1, z)

≤ 1

n2n−1

(
2nQ2 − (2Q− 1)(1 +Q)n +Q− 1

Q(1−Q)

)
(59)

and the BIC constraint for x1 = 0 and x′1 = 1 as∑
z∈S4(n−1)

s.t. z0,1>0,z1,1=0

U(z)%(1, 0, z) +
∑

z∈S4(n−1)
s.t. z0,1>0

U(z)%(1, 1, z) +

∑
z∈S4(n−1)

s.t. z0,1=z1,1=0,z0,0>0

U(z)%(1, 0, z) +
∑

z∈S4(n−1)
s.t. z0,1=0,z0,0>0

U(z)%(1, 1, z)

≥ 1

n2n−1

(
(1 +Q)n(2Q− 1)−Q22n −Q+ 1

Q(1−Q)

)
(60)

In the following analysis we will use sets or report statistics defined below:

Z1 = {z ∈ S4(n− 1) : z0,1 > 0 and z1,1 = 0}
Z2 = {z ∈ S4(n− 1) : z0,1 > 0}
Z3 = {z ∈ S4(n− 1) : z0,1 = z1,1 = 0, z0,0 > 0}
Z4 = {z ∈ S4(n− 1) : z0,1 = 0 and z0,0 > 0}.

These sets are clearly pairwise disjoint. Set Z1 consists of reports on n− 1 agents where
at least one agent received high report from the non-expert and there is no agent who
received two high reports. Set Z2 consists of reports on n− 1 agents where at least one
agent received low report from an expert and hight report from the non-expert. Set
Z3 consists of reports on n − 1 agents where no agent received a high report from the
non-expert and at least one agent received two low reports. Lastly, set Z4 consists of
reports on n−1 agents where no agent received high report from an expert and received
high report from the non-expert and there exists an agent who received two low reports.
We will also refer to the following sets of variables:

V1 = {%(1, 0, z) : z ∈ Z1} V3 = {%(1, 0, z) : z ∈ Z3}
V2 = {%(1, 1, z) : z ∈ Z2} V4 = {%(1, 1, z) : z ∈ Z4}

V̄1 = {%(0, 1, z) : z ∈ S4(n− 1), z1,0 > 0 and z1,1 = 0}
V̄2 = {%(0, 1, z) : z ∈ S4(n− 1), z1,1 > 0}
V̄3 = {%(0, 0, z) : z ∈ S4(n− 1), z0,1 = z1,1 = 0, z1,0 > 0}
V̄4 = {%(0, 0, z) : z ∈ S4(n− 1), z0,1 = 0 and z1,1 > 0}.

Notice that, for any i ∈ {1, . . . , 4}, any variable in set Vi is associated, through the
probability constraints (56), with exactly one other variable and that variable is in the
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set V̄i. We will call this associated variable the twin variable. Notice that all these
sets are pairwise disjoint. Hence for any adjustment of the values of variables in sets
V1, . . . , V4 we can adjust the values of their twin variables in sets V̄1, . . . , V̄4 and maintain
the probability constraints and we can consider adjustments of the values of variables in
the sets V1, . . . , V4 independently. Therefore, since both the objective function and the
BIC constraints contain only the variables from sets V1, . . . , V4, we can restrict attention
to these variables and consider adjustments that maintain the BIC constraints and the
constraint of non-negativity of the variables.

We first show that the BIC constraint for x1 = 0 and x′1 = 1 is satisfied with equality
at any optimum of the relaxed optimization problem.

Lemma 9. At any optimum of the relaxed optimization problem without the BIC con-
straint for x1 = 0 and x′1 = 1, the BIC constraint for x1 = 1 and x′1 = 0 is satisfied with
equality.

Proof. Consider the relaxed optimization problem without the BIC constraint for x1 = 0
and x′1 = 1. We show first that at any optimum either the BIC constraint for x1 = 1 and
x′1 = 0 is satisfied with equality or, for all z ∈ Z1∪Z3, %(1, 0, z) = 1/(z1,0+1), and for all
z ∈ Z2 ∪ Z4, %(1, 1, z) = 1/(z1,1 + 1). This follows because the coefficients at %(1, 0, z)
and %(1, 1, z) in the objective function (57) are all positive (as 1/2 < r ≤ q < 1).
Hence, increasing the value of %(1, 0, z) or %(1, 1, z) by sufficiently small amount and
decreasing the value of the corresponding twin variable by the right amount, to maintain
the probability constraint, maintains the BIC constraints and increases the value of the
objective function. Since the objective function is at an optimum, this is not possible.
Hence the claim follows.

Second, we show that if for all z ∈ Z1 ∪ Z3, %(1, 0, z) = 1/(z1,0 + 1), and for all
z ∈ Z2 ∪ Z4, %(1, 1, z) = 1/(z1,1 + 1), then the BIC constraint is not satisfied. For in
this case the LHS of the BIC constraint is equal to∑

z∈S4(n−1)
s.t. z0,1>0,z1,1=0

U(z)
1

z1,0 + 1
+

∑
z∈S4(n−1)
s.t. z0,1>0

(
Q

1−Q

)
U(z)

1

z1,1 + 1
+

∑
z∈S4(n−1)

s.t. z0,1=z1,1=0,z0,0>0

(
1−Q
Q

)
U(z)

1

z1,0 + 1
+

∑
z∈S4(n−1)

s.t. z0,1=0,z0,0>0

U(z)
1

z1,1 + 1
.

Since ∑
z∈Z2

U(z)
1

z1,1 + 1
=

1

n2n−1

(
2n − (1 +Q)n − (2−Q)n + 1

Q

)
,

∑
z∈Z3

U(z)
1

z1,0 + 1
=

1

n2n−1

(
1−Qn − (1−Q)n

1−Q

)
,

∑
z∈Z4

U(z)
1

z1,1 + 1
=

1

n2n−1

(
(1 +Q)n + (1−Q)n − 2

Q

)
,
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so the LHS of the BIC constraint is greater or equal to∑
z∈S4(n−1)
s.t. z0,1>0

(
Q

1−Q

)
U(z)

1

z1,1 + 1
+

∑
z∈S4(n−1)

s.t. z0,1=z1,1=0,z0,0>0

(
1−Q
Q

)
U(z)

1

z1,0 + 1
+

∑
z∈S4(n−1)

s.t. z0,1=0,z0,0>0

U(z)
1

z1,1 + 1

=
Q

1−Q
1

n2n−1

(
2n − (1 +Q)n − (2−Q)n + 1

Q

)
+

1−Q
Q

1

n2n−1

(
1−Qn − (1−Q)n

1−Q

)
+

1

n2n−1

(
(1 +Q)n + (1−Q)n − 2

Q

)
.

Subtracting the RHS of the BIC constraint from it we obtain

1

n2n−1

(
(1−Q)2n − (2−Q)n − (1−Q)Qn−1 + 1

1−Q

)
.

Since

(1−Q)2n−(2−Q)n−(1−Q)Qn−1+1 = (1−Q)2n−(2−Q)n+Q+(1−Q)(1−Qn−1) > 0,

as, for Q ∈ (1/2, 1) and n ≥ 2,

(1−Q)2n−(2−Q)n+Q = Q+(1−Q)
n∑
j=0

(
n

j

)
+

n∑
j=0

(
n

j

)
(1−Q)j =

n∑
j=1

(
n

j

)(
1−Q− (1−Q)j

)
≥ 0

and

(1−Q)(1−Qn−1) > 0,

so ∑
z∈S4(n−1)
s.t. z0,1>0

(
Q

1−Q

)
U(z)

1

z1,1 + 1
+

∑
z∈S4(n−1)

s.t. z0,1=z1,1=0,z0,0>0

(
1−Q
Q

)
U(z)

1

z1,0 + 1
+

∑
z∈S4(n−1)

s.t. z0,1=0,z0,0>0

U(z)
1

z1,1 + 1

>
1

n2n−1

(
2nQ2 − (2Q− 1)(1 +Q)n +Q− 1

Q(1−Q)

)
.

(61)

Hence the LHS of the BIC constraint is strictly greater than the RHS of the BIC con-
straint and so the constraint is not satisfied.

The lemma follows immediately from the two points shown above.

Next we provide a complete characterization of the optimal mechanisms of the re-
laxed optimization problem.

Lemma 10. Consider the relaxed optimization problem without the BIC constraint for
x1 = 0 and x′1 = 1. If Mechanism (%(x0, y0, z))(x0,y0)∈{0,1}2,z∈S4(n−1) is optimal then for
any z ∈ S4(n− 1):

1. If z0,1 = 0 then

(a) if z0,0 > 0 then %(1, 1, z) = 1
z1,1+1 ,

(b) if z1,1 > 0 then %(0, 0, z) = 0.

2. If z1,1 = 0 then
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(a) if z0,1 > 0 then %(1, 0, z) = 0,

(b) if z1,0 > 0 then %(0, 1, z) = 1
z0,1+1 .

3. If z0,1 = z1,1 = 0 then

(a) if z0,0 > 0 then %(1, 0, z) = 1
z1,0+1 ,

(b) if z1,0 > 0 then %(0, 0, z) = 0.

4.
∑

z∈S4(n−1)
z0,1>0

U(z)%(1, 1, z) = 1
n2n−1

(
Q22n+(1−Q)Qn−Q(1+Q)n

Q2

)
.

Proof. Let

D =
1

n2n−1

(
2nQ2 − (2Q− 1)(1 +Q)n +Q− 1

Q(1−Q)

)
.

By Lemma 9 and (59) the BIC constraint for x1 = 1 and x′1 = 0 is∑
z∈Z1

U(z)%(1, 0, z) +
∑
z∈Z2

(
Q

1−Q

)
U(z)%(1, 1, z) +

∑
z∈Z3

(
1−Q
Q

)
U(z)%(1, 0, z) +

∑
z∈Z4

U(z)%(1, 1, z) = D

(62)

and the objective function (57) can be rewritten as

n

2

( ∑
z∈Z1

(q − r)U(z)%(1, 0, z) +
∑
z∈Z2

r(1− r)(2q − 1)

1−Q U(z)%(1, 1, z) +

∑
z∈Z3

r(1− r)(2q − 1)

Q
U(z)%(1, 0, z) +

∑
z∈Z4

(q + r − 1)U(z)%(1, 1, z)

)
+ C ′

(63)

where C ′ is a constant.
Since

(q+ r− 1)(1−Q)− (2q− 1)(1− r)r = (2q− 1)(1− r)r− (q− r)Q = q(1− q)(2r− 1) > 0

(for 1/2 < r ≤ q < 1) and Q > 1−Q so

q + r − 1 >
r(1− r)(2q − 1)

1−Q >
r(1− r)(2q − 1)

Q
> q − r. (64)

Suppose that mechanism (%(x0, y0, z))(x0,y0)∈{0,1}2,z∈S4(n−1) is optimal. For point 1a
of the lemma assume, to the contrary, that there exists z ∈ S4(n− 1) with z0,1 = 0 and
z0,0 > 0 (i.e. z ∈ Z4) such that %(1, 1, z) < 1/(z1,1 + 1). Then∑

z∈Z4

U(z)%(1, 1, z) <
∑
z∈Z4

U(z)
1

z1,1 + 1
.

Since ∑
z∈Z4

U(z)
1

z1,1 + 1
=

1

n2n−1

(
(1 +Q)n + (1−Q)n − 2

Q

)
,
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D− 1

n2n−1

(
(1 +Q)n + (1−Q)n − 2

Q

)
=

1

n2n−1

(
Q22n − (1−Q)n+1 −Q(1 +Q)n + 1−Q

Q(1−Q)

)
,

Q22n − (1−Q)n+1 −Q(1 +Q)n + 1−Q = Q(Q2n − (1 +Q)n) + (1−Q)2 − (1−Q)n+1,

and, for Q ∈ (1/2, 1) and n ≥ 2, we have (1−Q)2 > (1−Q)n+1 and

Q2n−(1+Q)n+1−Q = Q
n∑
j=0

(
n

j

)
−

n∑
j=0

(
n

j

)
Qj+1−Q =

n∑
j=1

(
n

j

)(
Q−Qj

)
> 0, (65)

so ∑
z∈Z4

U(z)%(1, 1, z) < D.

Hence, by point (1a) of the lemma, either (i) there exists z′ ∈ Z1 with %(1, 0, z′) > 0,
or (ii) there exists z′ ∈ Z2 with %(1, 1, z′) > 0, or (iii) there exists z′ ∈ Z3 with
%(1, 0, z′) > 0. Suppose case (i) holds. Then increasing the value of %(1, 1, z) by ε (and
adjusting the value of the corresponding twin variable in V̄4 accordingly) and decreasing
the value of %(1, 0, z′) by εU(z)/U(z′) (and adjusting the value of the corresponding
twin variable in V̄1 accordingly), where ε > 0 is sufficiently small to maintain the proba-
bility constraints and the non-negativity constraints, maintains the BIC constraint and
increases the value of the objective function as, by (64), q+ r− 1 > q− r. Hence we get
a contradiction with the assumption of optimality of the mechanism. Suppose case (ii)
holds. Then increasing the value of %(1, 1, z) by ε (and adjusting the value of the cor-
responding twin variable in V̄4 accordingly) and decreasing the value of %(1, 1, z′) by
ε(1−Q)U(z)/(QU(z′)) (and adjusting the value of the corresponding twin variable in
V̄2 accordingly), where ε > 0 is sufficiently small to maintain the probability constraints
and the non-negativity constraints, maintains the BIC constraint and changes the value
of the objective function by

εU(z)

(
q + r − 1− r(1− r)(2q − 1)

Q

)
,

which, by (64), is greater than 0. Hence the adjustment increases the value of the
objective function and maintains the constraints, a contradiction with the assumption
of optimality of the mechanism. Lastly, suppose case (iii) holds. Then increasing the
value of %(1, 1, z) by ε (and adjusting the value of the corresponding twin variable
in V̄4 accordingly) and decreasing the value of %(1, 0, z′) by εQU(z)/((1 − Q)U(z′))
(and adjusting the value of the corresponding twin variable in V̄3 accordingly), where
ε > 0 is sufficiently small to maintain the probability constraints and the non-negativity
constraints, maintains the BIC constraint and changes the value of the objective function
by

εU(z)

(
q + r − 1− r(1− r)(2q − 1)

1−Q

)
,

which, by (64), is greater than 0. Hence the adjustment increases the value of the
objective function and maintains the constraints, a contradiction with the assumption
of optimality of the mechanism. Since in all the three cases we arrive at contradiction, it
must be that for all z ∈ Z4, %(1, 1, z) = 1/(z1,1+1) and that point 1a of the lemma holds.
By point 1a and the probability constraints (56), for all z ∈ Z4, %(0, 0, z−(0,0),(1,1), z0,0−
1, z1,1 + 1) = 0. Hence point 1b of the lemma follows.

For point 2a of the lemma, assume, to the contrary, that there exists z ∈ S4(n− 1)
with z1,1 = 0 and z0,1 > 0 (i.e. z ∈ Z1), and such that %(1, 0, z) > 0. By the BIC
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constraint (62) together with the inequality (61) and with point 1a of the lemma, either
(i) there exists z′ ∈ Z2 with %(1, 1, z′) < 1/(z1,1 + 1), or (ii) there exists z′ ∈ Z3 with
%(1, 0, z′) < 1/(z1,0 + 1). Suppose case (i) holds. Then decreasing the value of %(1, 0, z)
by ε (and adjusting the value of the corresponding twin variable in V̄1 accordingly) and
increasing the value of %(1, 1, z′) by ε(1−Q)U(z)/(QU(z′)) (and adjusting the value of
the corresponding twin variable in V̄2 accordingly), where ε > 0 is sufficiently small to
maintain the probability constraints and the non-negativity constraints, maintains the
BIC constraint and changes the value of the objective function by

εU(z)

(
r(1− r)(2q − 1)

Q
− (q − r)

)
,

which, by (64), is greater than 0. Hence the adjustment increases the value of the
objective function and maintains the constraints, a contradiction with the assumption
of optimality of the mechanism. Suppose case (ii) holds. Then decreasing the value
of %(1, 0, z) by ε (and adjusting the value of the corresponding twin variable in V̄1
accordingly) and increasing the value of %(1, 0, z′) by εQU(z)/((1 − Q)U(z′)) (and
adjusting the value of the corresponding twin variable in V̄3 accordingly), where ε >
0 is sufficiently small to maintain the probability constraints and the non-negativity
constraints, maintains the BIC constraint and changes the value of the objective function
by

εU(z)

(
r(1− r)(2q − 1)

1−Q − (q − r)
)
,

which, by (64), is greater than 0. Hence the adjustment increases the value of the
objective function and maintains the constraints, a contradiction with optimality of the
mechanism. Since in both cases we arrive at contradiction, it must be that for all z ∈ Z1,
%(1, 0, z) = 0 and that point 2a of the lemma holds. By point 2a and the probability
constraints (56), for all z ∈ Z1, %(0, 1, z−(0,1),(1,0), z0,1−1, z1,0 +1) = 1/(z0,1 +1). Hence
point 2b of the lemma follows.

Using points 1a and 2a of the lemma, the BIC constraint (62) can be rewritten as∑
z∈Z2

(
Q

1−Q

)
U(z)%(1, 1, z) +

∑
z∈Z3

(
1−Q
Q

)
U(z)%(1, 0, z) = D′ (66)

where

D′ = D −
∑
z∈Z4

U(z)
1

z1,1 + 1
=

1

n2n−1

(
Q22n − (1−Q)n+1 −Q(1 +Q)n + 1−Q

Q(1−Q)

)
,

and the objective function can be rewritten as

nr(1− r)(2q − 1)

2

(
1

1−Q
∑
z∈Z2

U(z)%(1, 1, z) +
1

Q

∑
z∈Z3

U(z)%(1, 0, z)

)
+ C ′′ (67)

where

C ′′ = C ′ +
n

2
(q + r − 1)

∑
z∈Z4

U(z)
1

z1,1 + 1
. (68)

Using (66), the objective function can be further rewritten as

nr(1− r)(2q − 1)

2

2Q− 1

Q2

∑
z∈Z3

U(z)%(1, 0, z) + C ′′ +
nr(1− r)(2q − 1)

2Q
D′.
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Since 1/2 < Q < 1 so (2Q − 1)/Q2 > 0 and to maximize the value of the objective
function we need to maximize

∑
z∈Z3

U(z)%(1, 0, z).
Since ∑

z∈Z3

U(z)
1

z1,0 + 1
=

1

n2n−1

(
1−Qn − (1−Q)n

1−Q

)
so

D′ − 1−Q
Q

∑
z∈Z3

U(z)
1

z1,0 + 1
=

1

n2n−1

(
Q22n + (1−Q)Qn −Q(1 +Q)n

Q(1−Q)

)
.

Since n ≥ 2 and Q ∈ (1/2, 1) so

Q2n + (1−Q)Qn−1 − (1 +Q)n = Q
n∑
j=0

(
n

j

)
+ (1−Q)Qn−1 −

n∑
j=0

(
n

j

)
Qj

= (1−Q)Qn−1 +
n∑
j=0

(
n

j

)(
Q−Qj

)
= (1−Q)Qn−1 +Q− 1 +Q−Qn +

n−1∑
j=1

(
n

j

)(
Q−Qj

)
= (2Q− 1)

(
1−Qn−1

)
+
n−1∑
j=1

(
n

j

)(
Q−Qj

)
> 0

and

D′ − 1−Q
Q

∑
z∈Z3

U(z)
1

z1,0 + 1
> 0.

By the probability constraints (56), %(1, 0, z) ≤ 1/(z1,0 + 1). Hence setting the value
of all variables %(1, 0, z) with z ∈ Z3 (i.e. z0,1 = z1,1 = 0 and z0,0 > 0) to 1/(z1,0 + 1)
maximises the value of the objective function and allows for satisfying the BIC constraint
by setting the values of variables %(1, 1, z) with z ∈ Z2 to any values in [0, 1/(z1,1 + 1)]
such that ∑

z∈Z2

U(z)%(1, 1, z) =
1

n2n−1

(
Q22n + (1−Q)Qn −Q(1 +Q)n

Q2

)
.

This shows points 3a and 4 of the lemma. By point 3a and the probability con-
straints (56), for all z ∈ Z3, %(0, 0, z−(0,0),(1,0), z0,0 − 1, z1,0 + 1) = 0. Hence point 3b of
the lemma follows.

Lemma 11. An upper bound on the probability of selecting a high quality project under
an optimal anonymous BIC mechanism with peer reports is

ΠpB(p, r) = r − 2r − 1

2n

(
1− r(1− r)(2p− 1)2(1−Qn−1)

Q(1−Q)

)
.

Proof. By (67), the value of the objective function under any optimal anonymous BIC
mechanism, % ∈ RpB, is

ΠpB(p, r) = C ′′ +

(
r(1− r)(2p− 1)n

2Q

)D′ + 2Q− 1

Q

∑
z∈S4(n−1)

z0,1=z1,1=0, z0,0>0

U(z)%(0, 1, z)

 ,
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where

D′ =
1

n2n−1

(
Q22n − (1−Q)n+1 −Q(1 +Q)n + 1−Q

Q(1−Q)

)
,

by (58), and (68),

C ′′ =
1

2n

(
(1− p)rQ2n + r(1− r)(2p− 1)((1 +Q)n + (1−Q)n)− (1−Q)(p+ r − 1)

Q(1−Q)

)
and, by point 4 of Lemma 10,∑

z∈S4(n−1)
z0,1=z1,1=0, z0,0>0

U(z)%(0, 1, z) =
1

n2n−1

(
1−Qn − (1−Q)n

1−Q

)
.

Therefore the value of the objective function is

ΠpB(p, r) =
1

2n

(
(1− p)rQ2n + r(1− r)(2p− 1)((1 +Q)n + (1−Q)n)− (1−Q)(p+ r − 1)

Q(1−Q)

)
+

1

2n

(
r(1− r)(2p− 1)(Q22n − (1−Q)n+1 −Q(1 +Q)n + 1−Q)

Q2(1−Q)

)
+

1

2n

(
r(1− r)(2p− 1)(2Q− 1) (1−Qn − (1−Q)n)

Q2(1−Q)

)
=

1

2n

(
(1− p)rQ2n − (1−Q)(p+ r − 1)

Q(1−Q)

)
+

1

2n

(
r(1− r)(2p− 1)(Q22n + 1−Q)

Q2(1−Q)

)
+

1

2n

(
r(1− r)(2p− 1)(2Q− 1) (1−Qn)

Q2(1−Q)

)
=r +

1

2n

(−p(1− p)(2r − 1)

Q(1−Q)

)
− 1

2n

(
r(1− r)(2p− 1)(2Q− 1)Qn

Q2(1−Q)

)
=r − 2r − 1

2n

(
1− r(1− r)(2p− 1)2(1−Qn−1)

Q(1−Q)

)
.

Proof of Proposition 3. The formula for upper bound on the the probability of selecting
a high quality project in the mechanism follows directly from Lemma 11.

To show that ΠB(p, r) ≥ ΠpB(p, r) when r ∈ (1/2, 2) and p ∈ (r, 1), with strict
inequality when n ≥ 3, it is enough to show that under these assumptions,(

(2p− 1)2

Q(1−Q)

)
min

(
1− (1−Q)n−1,

2n(1−Q)− (2−Q)n +Q

Q

)
>

(2p− 1)2(1−Qn−1)
Q(1−Q)

.

The inequality holds if

min

(
1− (1−Q)n−1,

2n(1−Q)− (2−Q)n +Q

Q

)
> 1−Qn−1.

If r > 1/2 and p ∈ (0, 1) then Q > 1/2 and Q > 1−Q. Thus 1− (1−Q)n−1 > 1−Qn−1.
It remains to show that

2n(1−Q)− (2−Q)n +Q ≥ Q−Qn. (69)
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It is immediate to see that this holds with equality when n = 2. Suppose that n = 3.
Let ϕ(x) = 2n(1− x)− (2− x)n + xn. Since

ϕ′′(x) = n(n− 1)(xn−2 − (2− x)n−2) ≤ 0

when x ∈ [1/2, 1] and n ≥ 3 with equality when x = 1 only, so ϕ′(x) is strictly decreasing
on [1/2, 1] and

ϕ′(x) = n(xn−1+(2−x)n−1)−2n ≤ ϕ′
(

1

2

)
= n

((
3

2

)n−1
+

(
1

2

)n−1)
−2n < 2n−2n < 0

when x ∈ [1/2, 1] and n ≥ 3 with equality only when x = 1. Hence ϕ(x) is strictly
decreasing on [1/2, 1] and so

ϕ(Q) = 2n(1−Q)− (2−Q)n +Qn > ϕ(1) = 0,

for any Q ∈ (1/2, 1) and n ≥ 3. Since Q ∈ (1/2, 1) when r ∈ (1/2, 1) and p ∈ [r, 1) so
Inequality (69) follows.

B.4 Proof of Proposition 4.

Proof. The four EPIC constraints are given by:
Incentive constraint IC(0, 0)

0 ≤ Q2[π(00, 00)− π(10, 00)] +Q(1−Q)[π(00, 10)− π(10, 10)]

+Q(1−Q)[π(00, 10)− π(10, 10)] + (1−Q)2[π(00, 11)− π(10, 11)]

Incentive constraint IC(0, 1)

0 ≤ Q2[π(01, 01)− π(11, 01)] +Q(1−Q)[π(01, 00)− π(11, 00)]

+Q(1−Q)[π(01, 11)− π(11, 11)] + (1−Q)2[π(01, 10)− π(11, 10)]

Incentive constraint IC(1, 0)

0 ≤ Q2[π(10, 10)− π(00, 10)] +Q(1−Q)[π(10, 11)− π(00, 11)]

+Q(1−Q)[π(10, 00)− π(00, 00)] + (1−Q)2[π(10, 01)− π(00, 01)]

Incentive constraint IC(1, 1)

0 ≤ Q2[π(11, 11)− π(01, 11)] +Q(1−Q)[π(11, 10)− π(01, 10)]

+Q(1−Q)[π(11, 01)− π(01, 01)] + (1−Q)2[π(11, 00)− π(01, 00)]

We solve the relaxed problem where we maximize the expected utility of the planner:

Π =
1

2
((1− p)(1− r)Q(π(00, 00) + π(01, 01)) + (1− p)(1− r)(1−Q)(π(00, 01) + π(01, 00))

+ p(1− r)Q(π(10, 00) + π(11, 01)) + p(1− r)(1−Q)(π(10, 01) + π(11, 00))

+ (1− p)rQ(π(00, 10) + π(01, 11)) + (1− p)r(1−Q)(π(00, 11) + π(01, 10))

+ prQ(π(10, 10) + π(11, 11)) + pr(1−Q)(π(10, 11) + π(11, 10)))
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subject to the two incentive constraints of the low type IC(0, 0) and IC(0, 1).
Using non-wastefulness and symmetry, we can simplify the problem by only consid-

ering the six probabilities:

π1 = π(10, 10), π2 = π(10, 00), π3 = π(00, 10), π4 = π(10, 01);π5 = π(10, 11), π6 = π(11, 10).

And the problem becomes:

max
πi

1
2 + (1− p)(1− p(2r − 1)) +

∑
aiπi

s.to 1
2 −

∑
biπi ≥ 0

1−Q−∑ ciπi ≥ 0

0 ≤ πi ≤ 1

where

a1 =
(
p2r2 − (1− p)2(1− r)2

)
, a2 = a5 =

(
p2r(1− r)− (1− p)2r(1− r)

)
,

a3 = a6 =
(
r2p(1− p)− (1− r)2p(1− p)

)
, a4 =

(
p2(1− r)2 − (1− p)2r2

)
b1 = Q(1−Q), b2 = Q2, b3 = 0, b4 = Q(1−Q), b5 = (1−Q)2, b6 = 0

c1 = Q2, c2 = Q(1−Q), c3 = 0, c4 = (1−Q)2, c5 = Q(1−Q), c6 = −(2Q− 1)

This is a linear relaxation of a knapsack problem with two constraints. As b3 = b6 =
0, c3 = 0, c6 < 0, we can set π3 = π6 = 1After this transformation, the two constraints
become

0 ≤ 1

2
− b1π − b2π2 − b4π4 − b5π5,

0 ≤ Q− c1π1 − c2π2 − c4π4 − c5π5

Let βi = −ai
bi

and γi = −ai
ci

for i = 1, 2, 4, 5 denote the efficiency indices. Using the
computations of the BIC case, we obtain the following rankings

β1 > β5 > β2 > β4,

γ1 > γ5 = γ2 > γ4.

It is easy to check that π1 = 1 and π4 = 0. Plugging in the constraints, we get

0 ≤ 1

2
−Q(1−Q)− π2Q2 − π5(1−Q)2,

0 ≤ Q(1−Q)(1− (π2 + π5))

Now, we argue that at the optimum π2 + π5 = 1. Suppose not, i.e. π2 + π5 < 1. if
π5 > π2, then one can increase the planner’s payoff by increasing π2 and π5 by ε while
keeping the incentive constraint satisfied. If π5 < π2, then consider a switch to π′2 =
π5 + ε, π′5 = π2 + ε. This results in an increase in the planner’s payoff while keeping the
incentive constraints satisfied for ε sufficiently small. Now, we conclude that π2+π5 = 1,
which implies that the planner’s payoff is the same as when π2 = π5 = 1

2 (because the
coefficients of π2 and π5 in the planner’s objective function are identical).

63



B.5 Proof of Proposition 5.

Proof. We start by rewriting the EPIC constraints. There is one constraint for every
agent i ∈ N , every signal value xi ∈ {0, 1}, and every tuple of signals of other agents,
x−i ∈ {0, 1}N\{i}, n2n constraints in total. We restrict attention to the EPIC constraints
for agent 0. There are 2n such constraints. Given (x0, x

′
0) ∈ {0, 1}2 with x0 6= x′0 and

x−0 ∈ {0, 1}N\{0} the corresponding EPIC constraint is∑
y∈{0,1}N

Pr(Y = y |X = x)
(
π0(x,y)− π0(x′0,x−0,y)

)
≥ 0.

Given (x0, x
′
0) ∈ {0, 1}2 with x0 6= x′0 and x−0 ∈ {0, 1}N\{0} Since

Pr(Y = y |X = x) =

∏
i∈N ([xi = yi]Q+ [xi 6= yi](1−Q))

2n
= Ti(x,y)ζ(x0, y0),

where ζ and Ti are defined in the paper, the constraint can be rewritten as∑
y∈{0,1}N

Ti(x,y)ζ(x0, y0)
(
π0(x,y)− π0(x′0,x−0,y)

)
≥ 0

Since the mechanism is anonymous, the probability of choosing agent 0 depends only on
the reports received by 0 and the numbers of reports, (z0,0, z0,1, z1,0, z1,1) ∈ S4(n − 1),
received by the remaining agents. Since the LHS of every constraint takes a sum over
all possible reports of the referee, every constraint for given x0 ∈ {0, 1} and x−0 ∈
{0, 1}N\{0} depends on the number of values 1 and the number of values 0 in x−i. Hence,
under the representation of anonymous mechanisms by a function %{0, 1}2×S4(n−1)×
[0, 1], there is one EPIC constraint for every signal value x0 ∈ {0, 1} and every number,
k ∈ {0, . . . , n− 1}, of values 1 among the reports of the remaining agents. There are 2n
constraints in total. The constraint for given x0 =∈ {0, 1} and k ∈ {0, . . . , n− 1} is

∑
y0∈{0,1}

∑
(z0,0,z0,1)∈S2(n−k−1)

(z1,0,z1,1)∈S2(k)

(
n− k − 1

z0,0, z0,1

)(
k

z1,0, z1,1

)

Qz0,0+z1,1(1−Q)z0,1+z1,0

2n−1
ζ(x0, y0)

(
%(x0, y0, z)− %(x′0, y0, z)

)
≥ 0,

where x′0 = 1− x0. Since(
n− k
z0,0, z0,1

)(
k

z1,0, z1,1

)
=

(
n

z0,0, z0,1, z1,0, z1,1

)/(n
k

)
so, multiplying both sides by

(
n
k

)
, the constraint can be further rewritten as∑

y0∈{0,1}

∑
(z0,0,z0,1)∈S2(n−k−1)

(z1,0,z1,1)∈S2(k)

U(z)ζ(x0, y0)
(
%(x0, y0, z)− %(x′0, y0, z)

)
≥ 0,

Obviously, EPIC constraints are stronger than BIC constraint and since, by The-
orem 1, all optimal BIC mechanisms are lexicographic so we can restrict attention to
lexicographic EPIC mechanisms. Moreover, since any optimal BIC mechanism satis-
fies the BIC constraint for the low type with equality and since (as we showed above)
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the BIC constraint for the low type is a weighted sum of the EPIC constraints for the
low type so we can restrict attention to lexicographic EPIC mechanism that satisfy the
constraints for the low type with equality.

In all lexicographic mechanisms %(x0, 0, z) = 0 if z0,1 + z1,1 > 0 (if there are agents
receiving high report from the external referee, no agent receiving low report from the
external referee is chosen by the mechanism). Using that together with the probability
constraint (11), in the case of x0 = 0 the constraint for given k ∈ {0, . . . , n− 1} can be
rewritten as∑

(z0,0,z0,1)∈S2(n−k−1)
(z1,0,z1,1)∈S2(k)

s.t. z1,1>0

(1−Q)U(z)%(0, 1, z) +
∑

(z0,0,z0,1)∈S2(n−k−1)
(z1,0,z1,1)∈S2(k)

s.t. z0,1=z1,1=0, z1,0>0

QU(z)%(0, 0, z) +

(
1−Q
Q

) ∑
(z0,0,z0,1)∈S2(n−k−2)
(z1,0,z1,1)∈S2(k+1)

s.t. z1,1>0

(1−Q)U(z)%(0, 1, z) +

(
Q

1−Q

) ∑
(z0,0,z0,1)∈S2(n−k−2)
(z1,0,z1,1)∈S2(k+1)

s.t. z0,1=z1,1=0, z1,0>0

QU(z)%(0, 0, z) = Dk

where

Dk =

(
n

k + 1

)(
1

n2n−1

)(
(1−Q)

(
1− (1−Q)k+1 +Qn−k+1(1−Q)k−1

)
Q

)

−
(
n

k

)
[k > 0]

n2n−1

(
1−Qn−k

)
(1−Q)k − [k = 0]

n2n−1
.

Given k ∈ {0, . . . , n− 1} let

Xk =
∑

(z0,0,z0,1)∈S2(n−k−1)
(z1,0,z1,1)∈S2(k)

s.t. z1,1>0

(1−Q)U(z)%(0, 1, z)

Yk =
∑

(z0,0,z0,1)∈S2(n−k−1)
(z1,0,z1,1)∈S2(k)

s.t. z0,1=z1,1=0, z1,0>0

QU(z)%(0, 0, z).

Using that the constraint for x0 = 0 and k ∈ {0, . . . , n− 2} can be rewritten as

Xk + Yk +

(
1−Q
Q

)
Xk+1 +

(
Q

1−Q

)
Yk+1 = Dk

and the constraint for k = n− 1 can be rewritten as

Xk + Yk = Dk.

In addition, X0 = 0 and Y0 = 0.
Suppose that % is an optimal BIC mechanism. We will show that it does not satisfy

at least one of the EPIC constraints with equality.
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Suppose that Q < ϕ
(−1)
n (2n). By point 4a of Lemma 4, if z1,1 = z0,1 = 0 and z1,0 > 0

then %(0, 0, z) = 1
z0,0+1 . Hence

Yk = Bk =
∑

(z0,0,z0,1)∈S2(n−k−1)
(z1,0,z1,1)∈S2(k)

s.t. z0,1=z1,1=0, z1,0>0

QU(z)
1

z0,0 + 1
=

(
n

k

)
[k > 0]

n2n−1
(1− (1−Q)n−k)(1−Q)k

and the EPIC constraints for x0 = 0 and k ∈ {0, . . . , n− 2} can be rewritten as

Xk +

(
1−Q
Q

)
Xk+1 = Ek.

and the constraint for k = n− 1 can be rewritten as

Xk = Ek,

where

Ek = Dk −Bk −
(

Q

1−Q

)
Bk+1

and X0 = 0.
Solving the system of equations determined by the constraints (starting from Xn−1

and deriving subsequent Xk for decreasing k) we obtain, for k ∈ {0, . . . , n− 1}

Xk =

n−k−1∑
i=0

(−1)i
(

1−Q
Q

)i
Ek+i.

Since X0 = 0 so the solution is valid only if

n−1∑
i=0

(−1)i
(

1−Q
Q

)i
Ei = 0. (70)

Using binomial formula,

n−1∑
i=0

(−1)i
(

1−Q
Q

)i
Ei =

1

n2n−1

(
2Q− 1

(1−Q)2

)
W (n)

where

W (n) =

(
Qn −

(
Q2

2Q− 1

)(
2Q− 1

Q

)n
+

(
1− (1−Q)2

Q

)n
−
(

(1−Q)(2Q− 1)

Q

)n
+ (1−Q)n − 1

)
.

Since
Q2

2Q− 1
= 1 +

(1−Q)2

2Q− 1

so, since Q ∈ (1/2, 1),

W (n) < V (n) =

(
Qn −

(
2Q− 1

Q

)n
+

(
1− (1−Q)2

Q

)n
−
(

(1−Q)(2Q− 1)

Q

)n
+ (1−Q)n − 1

)
.
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Using the fact that, for any r ∈ R,

rn = 1− (1− r)
n∑
i=0

ri,

V (n) =
n−1∑
i=0

((
1−Q
Q

)(
2Q− 1

Q

)i
+

(
Q+

(1−Q)2

Q

)(
(1−Q)(2Q− 1)

Q

)i
− (1−Q)Qi −Q(1−Q)i −

(
(1−Q)2

Q

)(
1− (1−Q)2

Q

)i)

Since V (2) = −(1−Q)4/Q2 so, for n ≥ 2,

V (n) =

n−1∑
i=2

((
1−Q
Q

)(
2Q− 1

Q

)i
+

(
Q+

(1−Q)2

Q

)(
(1−Q)(2Q− 1)

Q

)i
− (1−Q)Qi −Q(1−Q)i −

(
(1−Q)2

Q

)(
1− (1−Q)2

Q

)i)
− (1−Q)4

Q2

Since

1−Q
Q

= 1−Q+
(1−Q)2

Q
,

2Q− 1

Q
= Q− (1−Q)2

Q
, and

(1−Q)(2Q− 1)

Q
= 1−Q− (1−Q)2

Q

so, in the case of Q ∈ (1/2, 1) and n ≥ 2,

V (n) <

n−1∑
i=2

((
(1−Q)2

Q

)(
2Q− 1

Q

)i
+

(
(1−Q)2

Q

)(
(1−Q)(2Q− 1)

Q

)i
−
(

(1−Q)2

Q

)(
1− (1−Q)2

Q

)i)
.

Since
2Q− 1

Q
+

(1−Q)(2Q− 1)

Q
< 1− (1−Q)2

Q

and, for i ≥ 1,(
2Q− 1

Q

)i
+

(
(1−Q)(2Q− 1)

Q

)i
≤
(

2Q− 1

Q
+

(1−Q)(2Q− 1)

Q

)i
so V (n) < 0. Hence, for any Q ∈ (1/2, 1) and n ≥ 2, W (n) < 0 and, consequently, (70) is

not satisfied for any Q ∈ (1/2, 1). Thus in the case of Q < ϕ
(−1)
n (2n) (and Q ∈ (1/2, 1))

no optimal BIC mechanisms satisfies the EPIC constraints.

Suppose that Q ≥ ϕ(−1)
n (2n). By point 5b of Lemma 4, if z1,1 > 0 then %(0, 1, z) = 0.

Hence Xk = 0, for all k ∈ {0, . . . , n − 1}, and the EPIC constraints for x0 = 0 and
k ∈ {0, . . . , n− 2} can be rewritten as

Yk +

(
Q

1−Q

)
Yk+1 = Dk.
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and the constraint for k = n− 1 can be rewritten as

Yk = Dk,

where Y0 = 0.
Solving the system of equations determined by the constraints (starting from Yn−1

and deriving subsequent Yk for decreasing k) we obtain, for k ∈ {0, . . . , n− 1}

Yk =

n−k−1∑
i=0

(−1)i
(

Q

1−Q

)i
Dk+i.

Since Y0 = 0 so the solution is valid only if

n−1∑
i=0

(−1)i
(

Q

1−Q

)i
Di = 0. (71)

Using binomial formula,

n−1∑
i=0

(−1)i
(

Q

1−Q

)i
Di =

1

n2n−1

(
2Q− 1

Q2

)
W (n)

where

W (n) = (−1)n+1 (2Q− 1)n−1

(1−Q)n−2
− (1−Q)n.

If n is even then, since Q ∈ (1/2, 1) and n ≥ 2, W (n) < 0 and, consequently, (71) is not
satisfied for any Q ∈ (1/2, 1). If n is odd, i.e. n ≥ 3 and odd, then W (n) = 0 if and
only if (2Q− 1)n−1 = (1−Q)2(n−1). Hence W (n) = 0 if and only if

2Q− 1 = (1−Q)2

which, in the case of Q ∈ (1/2, 1) holds for Q = 2−
√

2. By Fact 1, ϕ
(−1)
n (2n) > 2/3 and,

since 2 −
√

2 < 2/3, ϕ
(−1)
n (2n) > 2 −

√
2. Hence for all ϕ

(−1)
n (2n) ≤ Q < 1, W (n) 6= 0

and any odd n ≥ 3, W (n) 6= 0 and, consequently, (71) is not satisfied. Thus in the case

of Q ≥ ϕ
(−1)
n (2n) (and Q ∈ (1/2, 1)) no optimal BIC mechanisms satisfies the EPIC

constraints.
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C Online Appendix 2: Robustness checks

C.1 Robustness checks

We assume n = 2 and run four robustness checks. We first consider a non-symmetric
structure where the probability of high and low type agents are different. We then
extend the model by allowing for more than two signals for the referees. Finally, we
show that there is no loss of generality in assuming anonymity and non-wastefulness of
the selection mechanism.

C.2 Non-symmetric type structure

We first check whether our results extend to a model where the signal and type structures
are non-symmetric. While there are many ways to generalize the model, we focus on a
situation where the probability of the two types is not fixed at 1/2, but can vary. We
let ρ ∈ (0, 1) denote the probability that the candidate is a high type.

Define

f(ρ) =
ρ2

ρ2 + (1− ρ)2

Then, f is an increasing function with f(0) = 0, f(1/2) = 1/2 and f(1) = 1. We show
that as long as p > f(ρ),13 the analysis of the benchmark model generalizes: the optimal
mechanism for the planner is a lexicographic mechanism where the candidate is selected
according to the reports of the referees and ties are broken using self-reports when the
two reports of the referees are identical. Interestingly, this mechanism becomes infea-
sible when the inequality is reversed. In that case, the construction of a compensating
mechanism, where an increase in the probability of selecting the candidate reporting the
high type when the two referees report a high type is compensated by a decrease in the
probability of selecting a candidate reporting a high type when the two types are low,
becomes too costly.

Formally, as in the benchmark model, using the no-waste and anonymity assump-
tions, an optimal mechanism is characterized by the six probabilities:

π1 = π(10, 10), π2 = π(10, 00), π3 = π(00, 10),

π4 = π(10, 01), π5 = π(10, 11), π6 = π(11, 10).

Proposition 6. Whenever the referees receive different signals, the optimal mechanism
selects the candidate with the high signal: π1 = 1, π3 = 1, π4 = 0 and π6 = 1.

1. If p > f(ρ) then the optimal mechanism selects

π5 = 1, π2 =
(1− ρ)2p− ρ2(1− p)

[(1− ρ)r + ρ(1− r)][(1− ρ)pr + ρ(1− p)(1− r)]

2. If p < f(ρ) then the optimal mechanism selects

π5 = π2 =
1

2
.

13Note that since f(1/2) = 1/2 and p > 1/2, this inequality was satisfied in the benchmark
model.
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Proof of Proposition 6. We define

Q00 = (1− ρ)pr + ρ(1− p)(1− r)
Q01 = (1− ρ)p(1− r) + ρ(1− p)r
Q10 = (1− ρ)(1− p)r + ρp(1− r)
Q11 = (1− ρ)(1− p)(1− r) + ρpr

The expected value of the planner is

V = A+ a1π1 + a2π2 + a3π3 + a4π4 + a5π5 + a6π6,

where

a1 = prQ00 − (1− p)(1− r)Q11,

a2 = p(1− r)Q00 − (1− p)(1− r)Q10,

a3 = (1− p)rQ00 − (1− p)(1− r)Q01,

a4 = p(1− r)Q01 − (1− p)rQ10,

a5 = prQ01 − (1− p)rQ11,

a6 = prQ10 − p(1− r)Q11

The incentive constraint of the low type is given by

B − b1π1 − b2π2 − b3π3 − b4π4 − b5π5 − b6π6 ≥ 0

with

B = Q00[
Q00

2
+Q01 +

Q10

2
] +Q01[

Q01

2
+Q10 +

Q11

2
],

b1 = Q00(Q01 +Q11),

b2 = Q00(Q00 +Q10),

b3 = 0,

b4 = Q01(Q00 +Q10)

b5 = Q01(Q01 +Q11)

b6 = Q01Q10 −Q00Q11

and the incentive constraint of the high type is given by

C + c1π1 + c2π2 + c3π3 + c4π4 + c5π5 + c6π6 ≥ 0

with
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C = Q10[−
Q00

2
−Q01 −

Q10

2
] +Q11[−

Q01

2
−Q10 −

Q11

2
],

c1 = Q11(Q10 +Q00),

c2 = Q10(Q00 +Q10),

c3 = Q01Q10 −Q00Q11,

c4 = Q10(Q01 +Q10)

c5 = Q11(Q01 +Q11)

c6 = 0

Now, we immediately obtain the following inequalities:

Q00Q11 −Q01Q10 = ρ(1− ρ)(2p− 1)(2r − 1) > 0,

rQ10 − (1− r)Q11 = (1− ρ)(1− p)(2r − 1) > 0,

rQ00 − (1− r)Q01 = (1− ρ)p(2r − 1) > 0.

We first consider the relaxed problem where the planner only faces the constraint
of the low type. Clearly as b3 = 0 and b6 < 0, at the optimum, the planner chooses
π3 = π6 = 1. For the four remaining probabilities we observe that

a1
b1
>
a5
b5
,
a2
b2
>
a4
b4
.

The only unresolved comparison is the comparison between a5
b5

and a2
b2

and we find that
a5
b5
> a2

b2
if and only if

p >
ρ2

(1− ρ)2 + ρ2
.

In that case, the planner optimally chooses to increase π5 to 1 and lower π2 so that
the incentive constraint of the low type is satisfied. It is easy to check that the incentive
constraint of the high type is also satisfied.

Next, suppose that (1 − ρ)2p − ρ2(1 − p) < 0.. Suppose first that the incentive
constraint of the high type is slack. Then the planner must optimally choose π2 = 1
and π5 <

1
2 to satisfy the incentive constraint fo the low type. However, the incentive

constraint of the high type will be violated. Suppose next that the incentive constraint
of the low type is slack and consider the relaxed problem where the planner only faces
the incentive constraint of the high type. It is easy to check that the planner optimally
chooses π3 = π6 = 1. In addition,

a1
c1
>
a5
c5
,
a2
c2
>
a4
c4
.

And, if b2 < b5, then necessarily c2 < c5, so that the planner optimally selects
π2 = 1 and π5 to satisfy the incentive constraint of the high type. However, the incentive
constraint of the low type will then be violated.

We conclude that both incentive constraints must be binding at the optimum. It is
easy to check that the optimal mechanism when both incentive constraints are binding
is the optimal DIC mechanism where π5 = π2 = 1

2 .
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C.3 Multiple signals for the referees

In the second robustness check, we let the number of signal values increase. Due to the
significantly higher complexity of the problem (in particular the increase of the number
of BIC constraints) we restrict attention to scenarios where there are two agents with
the same binary signals as in the benchmark model, while the set of signals of the referee
is S = {s1, . . . , sm} where 0 = s1 < . . . < sm = 1 and m ≥ 2. We restrict attention to
the case of n = 2 agents. Like in the benchmark model, we assume that p > 1/2. In the
case of signals of the referee, we assume that for each i ∈ {0, 1}, Pr(Yi = y | Θi = 1)
is strictly increasing in y and Pr(Yi = y | Θi = 0) is strictly decreasing in y. Like
in the benchmark model, we assume that for each agent i and each type t ∈ {0, 1},
random variables Xi | Θi = t and Yi | Θi = t are independent, i.e. for all x ∈ {0, 1}
and y ∈ S, Pr(Xi = x, Yi = y | Θi = t) = Pr(Xi = x | Θi = t)Pr(Yi = y | Θi = t).
Like in the benchmark model, we assume anonymity across the agents, i.e. for all
x ∈ {0, 1}, y ∈ S, and t ∈ {0, 1}, Pr(X0 = x | Θ0 = t) = Pr(X1 = x | Θ1 = t) and
Pr(Y0 = y | Θ0 = t) = Pr(Y1 = y | Θ1 = t).

Like in the case of two agents in the benchmark model, an optimal DSIC mechanism
selects the agent with higher report from the referee and, in the case of a tie in these
reports, selects each of the agents with probability 1/2. Consider a mechanism defined
as follows. Let s∗ be the minimal signal value in S such that∑

y∈S
y>s∗

Pr(Y0 = y)Pr(X0 = 0, Y0 = y) <
1

2

∑
y∈S

Pr(Y0 = y)Pr(X0 = 0, Y0 = y),

and let

q =

1
2

∑
y∈S Pr(Y0 = y)Pr(X0 = 0, Y0 = y)−∑ y∈S

y>s∗
Pr(Y0 = y)Pr(X0 = 0, Y0 = y)

Pr(Y0 = s∗)Pr(X0 = 0, Y0 = s∗)
.

Let

πL(x0, x1, y0, y1) =


1, if y0 > y1,

1, if y0 = y1 > s∗ and x0 > x1,

q, if y0 = y1 = s∗ and x0 > x1,

0, if y0 = y1 < s∗ and x0 > x1,

and the remaining values of πL are determined by the anonymity and the no-waste
properties. The mechanism is a generalization of the lexicographic mechanism for two
agents and m = 2 signal values of the referee to m ≥ 2 signal values of the referee. The
mechanism follows the reports of the referees and, in case of a tie in these reports, uses
the reports of the agents to select an agent. If the reports of the referee are above the
threshold s∗ the mechanism follows the reports of the agents and selects the agent with
the higher self-report. If the reports are below the threshold s∗ then the mechanism
goes against the reports of the agents and selects the agent with lower self-report.

It is elementary to verify that πL satisfies both BIC constraints, the one for the low
type with equality and the one for the hight type with a slack. The following fact states
that if

p

1− p >
Pr(Y0 = sm | Θ0 = 1)

Pr(Y0 = sm | Θ0 = 0)

Pr(Y0 = sm−1 | Θ0 = 1)

Pr(Y0 = sm−1 | Θ0 = 0)
(72)

then the mechanism has strictly higher value to the social planner than an optimal DSIC
mechanism. Notice that (72) is satisfied by the benchmark model, as the RHS is equal
to 1 when m = 2, while the LHS > 1 due to the assumption that p > 1/2.

72



Proposition 7. If (72) is satisfied then πL has strictly greater value to the social planner
than an optimal DSIC.

Proof of Proposition 7. The difference in social planner’s payoff from mechanism π and
a DSIC mechanism is equal to

∆ = 2

∑
y∈S
y>s∗

b(1, y, 0, y) + qb(1, s∗, 0, s∗)− 1

2

∑
y∈S

b(1, y, 0, y)

 ,

where

b(x0, y0, x1, y1) = Pr(X0 = x0, Y0 = y0)Pr(X1 = x1, Y1 = y1)d(x0, y0, x1, y1),

and

d(x0, y0, x1, y1) = Pr(Θ0 = 1 | X0 = x0, Y0 = y0)−Pr(Θ1 = 1 | X1 = x1, Y1 = y1).

Using the anonymity and independence assumptions,

b(1, y, 0, y) =
1

4
Pr(Y0 = y | Θ0 = 0)Pr(Y0 = y | Θ0 = 1)(2p− 1)

= P (Y0 = y)P (X0 = 0, Y0 = y)σ(y),

where

σ(y) =
2p− 1

1 + (1− p)Pr(Y0=y|Θ0=1)
Pr(Y0=y|Θ0=0) + pPr(Y0=y|Θ0=0)

Pr(Y0=y|Θ0=1)

.

Let h(y) = Pr(Y0 = y | Θ0 = 1)/Pr(Y0 = y | Θ0 = 0). Since Pr(Y0 = y | Θ0 = 1) is
strictly increasing in y and Pr(Y0 = y | Θ0 = 0) is strictly decreasing in y so h(y) is
strictly increasing in y. Notice that, for y > y′,

p
1

h(y)
+ (1− p)h(y)− p 1

h(y′)
− (1− p)h(y′) = (h(y)− h(y′))

(
1− p− p

h(y)h(y′)

)
.

Since y > y′ and h is increasing so this is negative when

p

1− p > h(y)h(y′) =
Pr(Y0 = y | Θ0 = 1)

Pr(Y0 = y | Θ0 = 0)

Pr(Y0 = y′ | Θ0 = 1)

Pr(Y0 = y′ | Θ0 = 0)
,

in which case σ(y) > σ(y′). Since h is increasing so h(y)h(y′) takes its maximal value
when y = sm and y′ = sm−1. This if

p

1− p >
Pr(Y0 = sm | Θ0 = 1)

Pr(Y0 = sm | Θ0 = 0)

Pr(Y0 = sm−1 | Θ0 = 1)

Pr(Y0 = sm−1 | Θ0 = 0)

then σ(y) is strictly increasing in y.
Since∑
y∈S
y>s∗

Pr(Y0 = y)Pr(X0 = 0, Y0 = y)

+ qPr(Y0 = s∗)Pr(X0 = 0, Y0 = s∗) =

1

2

∑
y∈S

Pr(Y0 = y)Pr(X0 = 0, Y0 = y)
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and σ(y) is strictly increasing in y so∑
y∈S
y>s∗

Pr(Y0 = y)Pr(X0 = 0, Y0 = y)σ(y)

+ qPr(Y0 = s∗)Pr(X0 = 0, Y0 = s∗)σ(s∗) >

1

2

∑
y∈S

Pr(Y0 = y)Pr(X0 = 0, Y0 = y)σ(y).

Proposition 7 shows that if p is high enough, it is possible to design a BIC mechanism
that has a greater value to the social planner than an optimal DSIC mechanism by
changing the probabilities of selecting an agent with higher self report when reports of the
referee are the same for both agents. Because σ(y) defined in the proof of the proposition
is strictly increasing, mechanism πL is optimal in the class of such mechanisms. The
problem with this class of mechanisms is that the gain in value happens in the cases
when the two signals of the referee are equal – an event the probability of which goes to
0 when the number of signals increases. Can there be BIC mechanisms which improve
the value even further and select agents on the basis of their self reports overriding the
reports of the referee? We give below an example that shows that such mechanisms are
indeed possible.

Example 2. Let m = 4, and for all i ∈ {0, 1}, let

Pr(Yi = s1 | Θi = 1) =
1

18
,

Pr(Yi = s2 | Θi = 1) =
2

18
,

Pr(Yi = s3 | Θi = 1) =
5

18
,

Pr(Yi = s4 | Θi = 1) =
10

18
,

and for all j ∈ {1, 2, 3, 4}, Pr(Yi = sj | Θi = 0) = Pr(Yi = s5−j | Θi = 1). Let
p > 25/26. Notice the the probabilities satisfy condition (72).

The utility of the social planner from a DSIC mechanism is equal to 149/216.
Mechanism πL in this case is defined by s∗ = s1 and πL(1, 0, s1, s1) = q = (99p −
74)/1296 ∈ (551/33696, 650/33696). The utility of the social planner from mechanism
πL is 149/216 + 5(2p− 1)(99p+ 1222)/419904 > 149/216 when p > 25/26.

Consider a mechanism π′ defined for (x0, x1, y0, y1) such that either x0 > x1 or
x0 = x1 and y0 > y1 as follows

π′(x0, x1, y0, y1) =


1, if (x0, x1, y0, y1) = (1, 0, s3, s4)
612589
370656 − 7

9p+1 , if (x0, x1, y0, y1) = (1, 0, s2, s2)

0, if (x0, x1, y0, y1) = (1, 0, s1, s1)

πL(x0, x1, y0, y1), otherwise,

and the remaining values of π′ are determined by the anonymity and the no-waste prop-
erties. It is elementary to verify that π′ satisfies the BIC constraint for the low type
with equality and the BIC constraint for the high type with a slack. The utility of the
social planner from mechanism π′ exceeds the utility from πL by 5(176687− 1354637p+
1969064p2−612612p3)/(13343616(9p+1)), which is positive for all p ∈ (25/26, 1). Given
that mechanism πL is optimal in the class of mechanism that follow reports of the agents
in the cases of tying reports of the referee only, the value of mechanism π′ exceeds the
value of all mechanisms in that class.
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C.4 Non-anonymous mechanisms

Suppose that the planner is not constrained to choose anonymous mechanisms, and may
treat the two agents differently so that π0(x0x1, y0y1) 6= π1(x1x0, y1y0). Assuming that
there is no waste, we show that the social planner cannot do better than in the optimal
anonymous BIC mechanism, so that there is no loss of generality in focusing attention
to anonymous mechanisms.

As the mechanism does not involve any waste, for any report (x,y), we have

π0(x,y) + π1(x,y) = 1.

This allows us to focus attention on the probability of assigning the object to agent 0,
and we drop the subscript and denote π(x,y) the sixteen probabilities that characterize
the mechanism.

Now, we write the social planner’s objective function as

Π = 1− Cπ(00, 01)−Bπ(01, 00)−Aπ(01, 01) + Cπ(00, 10)−Dπ(01, 10)−Bπ(01, 11)

+Bπ(10, 00) +Dπ(10, 01)− Cπ(11, 01) +Aπ(10, 10) +Bπ(10, 11) + Cπ(11, 10)

where

A = p2r2 − (1− p)2(1− r)2

B = p2r(1− r)− (1− p)2r(1− r)
C = r2p(1− p)− (1− r)2p(1− p)
D = p2(1− r)2 − (1− p)2r2.

It is easy to check that for p < 1 and r > 1/2, A > B, B > C and B > D.
We consider the relaxed problem where the only constraints are the constraints of

the agent of type 0 and write down the BIC constraints for agents 0 and 1 (which are
now different as the two agents need not be treated anonymousally), giving

Q2(π(00, 00)− π(10, 00) + π(01, 01)− π(11, 01)) +

(1−Q)Q(π(00, 01)− π(10, 01) + π(01, 00)− π(11, 00)) +

Q(1−Q)(π(00, 10)− π(10, 10) + π(01, 11)− π(11, 11)) +

(1−Q)2(π(00, 11)− π(10, 11) + π(01, 10)− π(11, 10)) ≥ 0,

Q2(π(01, 00)− π(00, 00) + π(11, 10)− π(10, 10)] +

(1−Q)Q(π(01, 10)− π(00, 10) + π(11, 00)− π(10, 00)) +

Q(1−Q)(π(01, 01)− π(00, 01) + π(11, 11)− π(10, 11)) +

(1−Q)2(π(01, 11)− π(00, 11) + π(11, 01)− π(10, 01)) ≥ 0.

Proposition 8. Suppose that n = 2. The value of the optimal BIC mechanism is equal
to the value of the optimal anonymous BIC mechanism.

Proof of Proposition 8. The We consider the relaxed problem where the only constraint
is the sum of the constraints of the two agents:

Qπ(01, 00) +Qπ(01, 01) + (1−Q)π(01, 10) + (1−Q)π(01, 11)

−Qπ(10, 00)− (1−Q)π(10, 01)− (2Q− 1)π(11, 01)−Qπ(10, 10)

−(1−Q)π(10, 11) + (2Q− 1)π(11, 10) ≥ 0.

(73)
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We easily check that at the optimum, the constraint (73) is satisfied with equality.
Furthermore, at the optimum we must have π(11, 10) = 1, π(11, 01) = 0, π(00, 01) = 0,
and π(00, 10) = 1. For the eight remaining probabilities, we compute the index (the
ratio between the linear coefficient in the social planner’s objective function and in the
BIC constraint) and obtain

probability index probability index

π(01, 00) B
Q π(01, 01) A

Q

π(01, 10) D
1−Q π(01, 11) B

1−Q
π(10, 00) B

Q π(10, 01) D
1−Q

π(10, 10) A
Q π(10, 11) B

1−Q

We compute
A(1−Q)−BQ = p(1− p)(2r − 1)(p+ r − 1) > 0

and
B(1−Q)−DQ = p(1− p)(2r − 1)(p− r) > 0

so that we obtain the following ranking of indices: A
Q > B

1−Q > B
Q > D

1−Q .
We now establish the following simple claim:

Claim 2. For any i, j, if βi > βj, then at the optimum πi ≥ πj. In addition, either
πi = 1 or πj = 0.

Proof. Suppose that βi > βj and that πi < πj . Consider a small increase in πi by ε and
a decrease in πj by δ such that the BIC constraint remains unchanged:

biε− bjδ = 0.

This results in a change in the objective function of the social planner

∆Π = aiε− ajδ = (βi − βj)ε > 0.

resulting in a contradiction that proves the first statement of the claim. Next suppose
that πi ≥ πj and πi and πj are both interior values in (0, 1). The same steps show that
a small increase in πi and a small decrease in πj result in an increase in welfare.

Now, for all probabilities with positive coefficient in the value function, by Claim 2
we obtain:

π(10, 10) > π(10, 11) > π(10, 00) > π(10, 01).

Similarly, for all probabilities with negative coefficients in the value function,

π(01, 10) > π(01, 00) > π(01, 11) > π(01, 01),

where in each ranking there is at most one probability which is strictly interior. In
addition, we check that the interior probability in each of the two rankings must corre-
spond to the same index, since otherwise there is a possible improvement by transferring
probabilities. We check that the interior probabilities which are chosen to equalize the
BIC constraints are, as in the anonymous mechanism, the probabilities π(10, 00) and
π(01, 00) which must satisfy:

π(01, 00)− π(10, 00) =
1−Q
Q

.
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As the objective function of the planner only depends on the difference π(01, 00) −
π(10, 00), any probability choice which results in the same difference π(01, 00)−π(10, 00)
gives rise to the same value for the planner. Finally, note that in the optimal anonymous
BIC mechanism, π(10, 00) = 1− 1/(2Q), so that π(01, 00)−π(10, 00) = (1−Q)/Q, and
hence the value of the relaxed problem is equal to the value of the optimal anonymous
BIC mechanism.

C.5 Wasteful mechanisms

Suppose that the planner is not forced to select the project of one of the two agents. A
mechanism with waste is a mechanism assigning to each report (x,y) two nonnegative
numbers π0(x,y) and π1(x,y) such that

π0(x,y) + π1(x,y) ≤ 1.

Allowing for waste but keeping anonymity, we write the objective function of the
social planner as

Π = (1− p)(1− r)Q(π(00, 00) + π(01, 01)) + (1− p)(1− r)(1−Q)(π(00, 01) + π(01, 00))

+ p(1− r)Q(π(10, 00) + π(11, 01)) + p(1− r)(1−Q)(π(10, 01) + π(11, 00))

+ (1− p)rQ(π(00, 10) + π(01, 11)) + (1− p)r(1−Q)(π(00, 11) + π(01, 10))

+ prQ(π(10, 10) + π(11, 11)) + pr(1−Q)(π(10, 11) + π(11, 10))

while the BIC constraint of type 0 is given by

Q2(π(00, 00)− π(10, 00) + π(01, 01)− π(11, 01)) +

Q(1−Q)(π(00, 01)− π(10, 01) + π(01, 00)− π(11, 00)) +

(1−Q)Q(π(00, 10)− π(10, 10) + π(01, 11)− π(11, 11)) +

(1−Q)2(π(00, 11)− π(10, 11) + π(01, 10)− π(11, 10)) ≥ 0.

Assuming that the mechanism treats the two agents anonymously, we focus attention
on the probability of assigning the good to the first agent, and, dispensing with the
index, characterize a mechanism with the 16 probabilities π(x,y) where x ∈ {0, 1}2
and y ∈ {0, 1}2. The following Proposition shows that the optimal BIC mechanism is
identical to the optimal BIC mechanism given in Section 4.

Proposition 9. Suppose that n = 2. The optimal BIC mechanism does not induce any
waste: π0(x,y) + π1(x,y) = 1 for any report (x,y).

Proof of Proposition 9. Consider the relaxed problem of maximizing the objective func-
tion W under the BIC constraint of the agent of type 0. Because the BIC constraint is
increasing in any of the eight probabilities π(x,y) where x0 = 0, we must have

π(00, 00) = π(00, 11) =
1

2
, π(10, 10) + π(01, 01) = 1, π(00, 01) + π(00, 10) = 1,

π(01, 00) + π(10, 00) = π(01, 11) + π(10, 11) = π(01, 10) + π(10, 01) = 1.

In addition, we note that any probability transfer from π(00, 01) to π(00, 10) and from
π(11, 01) to π(11, 10) which leaves the BIC constraint satisfied results in an increase
in welfare so that π(00, 01) = 0 and π(11, 01) = 0. Next, we compute the indices,
corresponding to the ratio of the linear coefficient in Π to the linear coefficient in the
BIC constraint, βi = ai/bi, of the probabilities which remain to be determined:

77



probability index probability index

π(10, 11) r(1−r)(2p−1)
1−Q π(10, 10) p+ r − 1

π(10, 01) p− r π(10, 00) r(1−r)(2p−1)
Q

π(11, 11) pr
1−r π(11, 00) p(1−r)

r

π(11, 10) pr
1−r

We observe that, as p(1 − r)/r > r(1 − r)(2p − 1)/Q, the indices of all three prob-
abilities π(11, 11), π(11, 00) and π(11, 10) are greater than the indices of π(10, 00) and
π(10, 01). Now recall that in the optimal BIC mechanism without waste π(11, 11) =
π(11, 00) = 1/2, π(11, 10) = 1, π(10, 00) < 1 and π(10, 01) = 0. This shows that the
optimal BIC mechanism without waste is also optimal when waste is allowed, as any
probability transfer to π(10, 00) or π(10, 01) which leaves the BIC constraint satisfied
must result in a decrease in the objective function of the planner.
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D Supplementary material

The supplementary material contains the detailed derivations of Equations used in the
proof of Theorem 1.

D.1 Probability constraints and objective function under
anonymous mechanisms

In this section we provide detailed derivations of Equations (11) and (8), expressing
probability constraints and the objective function under the representation of anonymous
mechanisms, % : {0, 1}2 × S4(n− 1)→ [0, 1].

By anonymity constraints, for any i ∈ {0, . . . , n − 1}, j ∈ {0, . . . , n − 1} \ {i},
k ∈ {0, . . . , n − 1} \ {i, j}, x ∈ {0, 1}N , and y ∈ {0, 1}N , πi(x,y) = π0(x0↔i,y0↔i)
and πk(x,y) = πk(xi↔j ,yi↔j). Using that, the probability constraints for each (x,y) ∈
{0, 1}N × {0, 1}N , ∑

i∈N
πi(x,y) = 1

can be rewritten as ∑
i∈N

π0(x0↔i,y0↔i) = 1,

where, given a vector x = (x0, . . . , xn−1), i ∈ {0, . . . , n−1}, and j ∈ {0, . . . , n−1}\{i},
xi↔j is a vector obtained from vector x by swapping the values at positions i and j.

Adding all such probability constraints with the same values of x0, y0, and, for all
(b, b′) ∈ {0, 1}2, the same value of |{j ∈ N \ {0} : (xj , yj) = (b, b′)}|, we obtain

(zx0,y0+1)C(z)%(x0, y0, z)+
∑

(b,b′)∈{0,1}2\(x0,y0)

zb,b′C(z)%(b, b′, z−(b,b′),(x0,y0), zb,b′−1, zx0,y0+1) = C(z),

where

C(z) =

(
n− 1

z0,0, z0,1, z1,0, z1,1

)
=

(n− 1)!

z0,0!z0,1!z1,0!z1,1!

is the multinomial coefficient equal to the number of ways in which the agents in N \{0}
can be partition into four groups of sizes z0,0, z0,1, z1,0, and z1,1. Dividing both sides
by C(z) we obtain the probability constraints that have to be satisfied by the selection
function %,

(zx0,y0 +1)%(x0, y0, z)+
∑

(b,b′)∈{0,1}2\(x0,y0)

zb,b′%(b, b′, z−(b,b′),(x0,y0), zb,b′−1, zx0,y0 +1) = 1,

which are exactly the probability constraints given in Equation (11).
We now rewrite the objective function under the representation % : {0, 1}2 × S4(n−

1)→ [0, 1]. Given a mechanism π : {0, 1}N ×{0, 1}N → ∆(N), the objective function is

E

(∑
i∈N

πi(X,Y ) [Θi = 1]

)
=∑

i∈N

∑
x∈{0,1}N

∑
y∈{0,1}N

Pr(Θi = 1)Pr(Xi = xi, Yi = yi | Θi = 1)Pr(X−i = x−i,Y−i = y−i)πi(x,y) =

1

2

∑
i∈N

∑
x∈{0,1}N

∑
y∈{0,1}N

Pr(Xi = xi, Yi = yi | Θi = 1)Pr(X−i = x−i,y−i = y−i)πi(x,y) .
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For any i ∈ N , the probability that the agents other than i and the non-expert receive
signals (x−i,y−i) about the projects in N \ {i} is equal to

Pr(X−i = x−i,Y−i = y−i) = Ti(x,y)

=
∏

j∈N\{i}
(Pr(Θj = 0)Pr(Xj = xj , Yj = yj | Θj = 0) + Pr(Θj = 1)Pr(Xj = xj , Yj = yj | Θj = 1))

=
∏

j∈N\{i}

Pr(Xj = xj , Yj = yj | Θj = 0) + Pr(Xj = xj , Yj = yj | Θj = 1)

2

=
∏

j∈N\{i}

Pr(Xj = xj | Θj = 0)Pr(Yj = yj | Θj = 0) + Pr(Xj = xj | Θj = 0)Pr(Yj = yj | Θj = 1)

2

=
∏

j∈N\{i}

[xj = yj ](pr + (1− p)(1− r)) + [xj 6= yj ](p(1− r) + (1− p)r)
2

=
∏

j∈N\{i}

[xj = yj ]Q+ [xj 6= yj ](1−Q)

2
,

(74)

where, given a ∈ {0, 1}, the probability that agent i and the non-expert receive signals
(xi, yi) about the project i of quality Θi = a,

Pr(Xi = xi, Yi = yi | Θi = a) = ξai (x,y) = ([xi = a]p+[xi 6= a](1−p))([yi = a]r+[yi 6= a](1−r)).
(75)

Given that, the objective function can be written as

1

2

∑
i∈N

∑
x∈{0,1}N
y∈{0,1}N

Ti(x,y)ξ1i (x,y)πi(x,y). (76)

Notice that, for any i ∈ {0, . . . , n − 1}, x ∈ {0, 1}N , and y ∈ {0, 1}N , Ti(x,y) =
T0(x0↔i,y0↔i) and ξai (x,y) = ξa0(x0↔i,y0↔i). Therefore, the value of the objective
function is equal to

n

2

∑
x∈{0,1}N
y∈{0,1}N

T0(x,y)ξ10(x,y)π0(x,y). (77)

Using (9) and (14), the objective function given in (77) can be rewritten as

n

2

∑
(x0,y0)∈{0,1}2

∑
z∈S4(n−1)

U(z)ζ1(x0, y0)%(x0, y0, z),

which is the formulation given in Equation (8).

D.2 BIC constraints under anonymous mechanisms

There is one BIC constraint for every triple (i, b, b′) ∈ N × {0, 1}2 with b 6= b′. Hence
there are 2n BIC constraints, overall. Since the BIC constraints are independent across
the agents and given the form of the objective function in Equation (77), we can restrict
attention to the BIC constraints for agent 0. There are two such BIC constraints. Given
(x0, x

′
0) ∈ {0, 1} with x0 6= x′0 the corresponding BIC constraint is

E (π0(x0,X−0,Y ) | X0 = x0)−E
(
π0(x

′
0,X−0,Y ) | X0 = x0

)
≥ 0.
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The LHS of the constraint can be rewritten as∑
t∈{0,1}N

∑
x−0∈{0,1}N\{0}

∑
y∈{0,1}N

Pr(Θ = t,X−0 = x−0,Y = y | X0 = x0)(π0(x0,x−0,y)− π0(x′0,x−0,y)) =

∑
x−0∈{0,1}N\{0}

∑
y∈{0,1}N

 ∑
t∈{0,1}N

Pr(Θ = t,X−0 = x−0,Y = y | X0 = x0)

 (π0(x0,x−0,y)− π0(x′0,x−0,y)),

where

Pr(Θ = t,X−0 = x−0,Y = y | X0 = x0)

= Pr(Θ0 = t0, Y0 = y0 | X0 = x0)Pr(Θ−0 = t−0,X−0 = x−0,Y−0 = y−0)

=
Pr(Θ0 = t0, X0 = x0, Y0 = y0)

Pr(X0 = x0)
Pr(Θ−0 = t−0,X−0 = x−0,Y−0 = y−0) =

=
1

Pr(X0 = x0)
Pr(Θ = t,X = x,Y = y)

= 2
∏
j∈N

Pr(Θj = tj , Xj = xj , Yj = yj)

= 2
∏
j∈N

Pr(Xj = xj , Yj = yj | Θj = tj)Pr(Θj = tj)

= 2
∏
j∈N

Pr(Xj = xj , Yj = yj | Θj = tj)

2
,

as

Pr(X0 = x0) = Pr(X0 = x0,Θ0 = 0) + Pr(X0 = x0,Θ0 = 1)

= Pr(X0 = x0 | Θ0 = 0)Pr(Θ0 = 0) + Pr(X0 = x0 | Θ0 = 1)Pr(Θ0 = 1)

=
1

2
(p+ 1− p) =

1

2
.

Thus ∑
t∈{0,1}N

Pr(Θ = t,X−0 = x−0,Y = y | X0 = x0) =

2
∑

t∈{0,1}N

∏
j∈N

Pr(Xj = xj , Yj = yj | Θj = tj)

2
=

2
∏
j∈N

Pr(Xj = xj , Yj = yj | Θj = 0) + Pr(Xj = xj , Yj = yj | Θj = 1)

2
=

2
(
ξ00(x,y) + ξ10(x,y)

)
T0(x,y),

and the BIC constraints can be rewritten as∑
x−0∈{0,1}N\{0}

∑
y∈{0,1}N

(
ξ00(x,y) + ξ10(x,y)

)
T0(x,y)

(
π0(x,y)− π0(x′0,x−0,y)

)
≥ 0.

Using ζ defined in Equation (14) we can rewrite the BIC constraints as∑
y0∈{0,1}

∑
z∈S4(n−1)

U(z)ζ(x0, y0)
(
%(x0, y0, z)− %(x′0, y0, z)

)
≥ 0,

which is the formulation given in Equation (12).
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D.3 Derivation of Equation (17)

In this section we derive formulation of the objective function given in Equation (17).
Using Equations (15) and (16) in the Appendix, the objective function can be rewrit-

ten as

n

2

( ∑
z∈S4(n−1)
s.t. z1,1>0

U(z)

(
ζ1(0, 0)%(0, 0, z) + ζ1(0, 1)%(0, 1, z) +

ζ1(1, 1)

(
1− z0,0%(0, 0, z−(0,0),(1,1), z0,0 − 1, z1,1 + 1)− z0,1%(0, 1, z−(0,1),(1,1), z0,1 − 1, z1,1 + 1)

z1,1 + 1

))
+

∑
z∈S4(n−1)
s.t. z1,1=0

U(z)

(
ζ1(0, 0)%(0, 0, z) + ζ1(0, 1)%(0, 1, z) +

ζ1(1, 1)

(
1− z0,0%(0, 0, z−(0,0),(1,1), z0,0 − 1, z1,1 + 1)− z0,1%(0, 1, z−(0,1),(1,1), z0,1 − 1, z1,1 + 1)

z1,1 + 1

)
+

ζ1(1, 0)

(
1− z0,0%(0, 0, z−(0,0),(1,0), z0,0 − 1, z1,0 + 1)− z0,1%(0, 1, z−(0,1),(1,0), z0,1 − 1, z1,0 + 1)

z1,0 + 1

)))

and, further, as

n

2

( ∑
z∈S4(n−1)

U(z)
(
ζ1(0, 0)%(0, 0, z) + ζ1(0, 1)%(0, 1, z)

)
−

∑
z∈S4(n−1)
s.t. z1,1>0

U(z−(0,0),(1,1), z0,0 + 1, z1,1 − 1)ζ1(1, 1)
(z0,0 + 1)%(0, 0, z)

z1,1

−
∑

z∈S4(n−1)
s.t. z1,1>0

U(z−(0,1),(1,1), z0,1 + 1, z1,1 − 1)ζ1(1, 1)
(z0,1 + 1)%(0, 1, z)

z1,1

−
∑

z∈S4(n−1)
s.t. z1,0>0,z1,1=0

U(z−(0,0),(1,0), z0,0 + 1, z1,0 − 1)ζ1(1, 0)
(z0,0 + 1)%(0, 0, z)

z1,0

−
∑

z∈S4(n−1)
s.t. z1,0>0,z1,1=0

U(z−(0,1),(1,0), z0,1 + 1, z1,0 − 1)ζ1(1, 0)
(z0,1 + 1)%(0, 1, z)

z1,0

+
∑

z∈S4(n−1)
U(z)

ζ1(1, 1)

z1,1 + 1
+

∑
z∈S4(n−1)
s.t. z1,1=0

U(z)
ζ1(1, 0)

z1,0 + 1
.

)
.

By (9),

U(z−(0,0),(1,1), z0,0 + 1, z1,1 − 1) =
z1,1

z0,0 + 1
U(z)

U(z−(0,1),(1,1), z0,1 + 1, z1,1 − 1) =
1−Q
Q

z1,1
z0,1 + 1

U(z)

U(z−(0,0),(1,0), z0,0 + 1, z1,0 − 1) =
Q

1−Q
z1,0

z0,0 + 1
U(z)

U(z−(0,1),(1,0), z0,1 + 1, z1,0 − 1) =
z1,0

z0,1 + 1
U(z)

U(z−(0,0),(0,1), z0,0 + 1, z0,1 − 1) =
Q

1−Q
z0,1

z0,0 + 1
U(z).

(78)
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Hence the objective function can be further rewritten as

n

2

( ∑
z∈S4(n−1)

U(z)
(
ζ1(0, 0)%(0, 0, z) + ζ1(0, 1)%(0, 1, z)

)
−

∑
z∈S4(n−1)
s.t. z1,1>0

U(z)ζ1(1, 1)%(0, 0, z)

−
∑

z∈S4(n−1)
s.t. z1,1>0

(
1−Q
Q

)
U(z)ζ1(1, 1)%(0, 1, z)

−
∑

z∈S4(n−1)
s.t. z1,0>0,z1,1=0

(
Q

1−Q

)
ζ1(1, 0)U(z)%(0, 0, z)

−
∑

z∈S4(n−1)
s.t. z1,0>0,z1,1=0

U(z)ζ1(1, 0)%(0, 1, z)

)
+ C =

n

2

( ∑
z∈S4(n−1)
s.t. z1,1>0

U(z)
(
ζ1(0, 0)− ζ1(1, 1)

)
%(0, 0, z)

+
∑

z∈S4(n−1)
s.t. z1,1>0

U(z)

(
ζ1(0, 1)−

(
1−Q
Q

)
ζ1(1, 1)

)
%(0, 1, z)

+
∑

z∈S4(n−1)
s.t. z1,0>0,z1,1=0

U(z)

(
ζ1(0, 0)−

(
Q

1−Q

)
ζ1(1, 0)

)
%(0, 0, z)

+
∑

z∈S4(n−1)
s.t. z1,0>0,z1,1=0

U(z)
(
ζ1(0, 1)− ζ1(1, 0)

)
%(0, 1, z)

+
∑

z∈S4(n−1)
s.t. z1,0=0,z1,1=0

U(z)
(
ζ1(0, 0)%(0, 0, z) + ζ1(0, 1)%(0, 1, z)

))
+ C,

where

C =
n

2

 ∑
z∈S4(n−1)

U(z)
ζ1(1, 1)

z1,1 + 1
+

∑
z∈S4(n−1)
s.t. z1,1=0

U(z)
ζ1(1, 0)

z1,0 + 1

 .
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Using (14), we can rewrite the objective function as

n

2

( ∑
z∈S4(n−1)
s.t. z1,1>0

U(z) (1− p− r) %(0, 0, z)

+
∑

z∈S4(n−1)
s.t. z1,1>0

U(z)

(
r(1− r)(1− 2p)

Q

)
%(0, 1, z)

+
∑

z∈S4(n−1)
s.t. z1,0>0,z1,1=0

U(z)

(
r(1− r)(1− 2p)

1−Q

)
%(0, 0, z)

+
∑

z∈S4(n−1)
s.t. z1,0>0,z1,1=0

U(z) (r − p) %(0, 1, z)

+ (1− p)
∑

z∈S4(n−1)
s.t. z1,0=0,z1,1=0

U(z) ((1− r)%(0, 0, z) + r%(0, 1, z))

)
+ C

and constant C as

C =
n

2

 ∑
z∈S4(n−1)

U(z)
pr

z1,1 + 1
+

∑
z∈S4(n−1)
s.t. z1,1=0

U(z)
p(1− r)
z1,0 + 1

 .

By the probability constraints (11), if z0,1 = z1,0 = z1,1 = 0 then z0,0 = n− 1 and

%(0, 0, z) =
1

n
.

Hence, for any A ∈ R and B ∈ R,∑
z∈S4(n−1)

s.t. z1,0=z1,1=0

U(z) (A%(0, 0, z) +B%(0, 1, z)) =

∑
z∈S4(n−1)

s.t. z1,0=z1,1=0,
z0,1>0

AU(z)%(0, 0, z) +
∑

z∈S4(n−1)
s.t. z0,1=z1,0=z1,1=0

U(z)
A

n
+

∑
z∈S4(n−1)

s.t. z1,0=z1,1=0

U(z)B%(0, 1, z) =

∑
z∈S4(n−1)

s.t. z1,0=z1,1=0,
z0,1>0

AU(z)%(0, 0, z) +
Qn−1

2n−1
A

n
+

∑
z∈S4(n−1)

s.t. z1,0=z1,1=0

U(z)B%(0, 1, z).

(79)
In addition, by the probability constraints (11), if z1,0 = z1,1 = 0 and z0,1 > 0 then

%(0, 0, z) =
1− z0,1%(0, 1, z−(0,0),(0,1), z0,0 + 1, z0,1 − 1)

z0,0 + 1
.

Hence∑
z∈S4(n−1)

s.t. z1,0=z1,1=0,
z0,1>0

AU(z)%(0, 0, z) =
∑

z∈S4(n−1)
s.t. z1,0=z1,1=0,

z0,1>0

U(z)A

(
1− z0,1%(0, 1, z−(0,0),(0,1), z0,0 + 1, z0,1 − 1)

z0,0 + 1

)
=

∑
z∈S4(n−1)

s.t. z1,0=z1,1=0,
z0,1>0

U(z)

(
A

z0,0 + 1

)
−

∑
z∈S4(n−1)

s.t. z1,0=z1,1=0,
z0,1>0

AU(z)

(
z0,1%(0, 1, z−(0,0),(0,1), z0,0 + 1, z0,1 − 1)

z0,0 + 1

)
.
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Using (78), this can be further rewritten as

∑
z∈S4(n−1)

s.t. z1,0=z1,1=0,
z0,1>0

U(z)

(
A

z0,0 + 1

)

−
∑

z∈S4(n−1)
s.t. z1,0=z1,1=0,

z0,1>0

1−Q
Q

z0,0 + 1

z0,1
U(z−(0,0),(0,1), z0,0 + 1, z0,1 − 1))A

(
z0,1%(0, 1, z−(0,0),(0,1), z0,0 + 1, z0,1 − 1)

z0,0 + 1

)
=

∑
z∈S4(n−1)

s.t. z1,0=z1,1=0,
z0,1>0

U(z)

(
A

z0,0 + 1

)
−

∑
z∈S4(n−1)

s.t. z1,0=z1,1=0,
z0,0>0

(1−Q)A

Q
U(z)%(0, 1, z).

Inserting this in (79) we obtain∑
z∈S4(n−1)

s.t. z1,0=z1,1=0

U(z) (A%(0, 0, z) +B%(0, 1, z)) =

∑
z∈S4(n−1)

s.t. z1,0=z1,1=0,
z0,1>0

U(z)

(
A

z0,0 + 1

)
−

∑
z∈S4(n−1)

s.t. z1,0=z1,1=0,
z0,0>0

(1−Q)A

Q
U(z)%(0, 1, z) +

Qn−1

2n−1
A

n
+

∑
z∈S4(n−1)

s.t. z1,0=z1,1=0

U(z)B%(0, 1, z) =

∑
z∈S4(n−1)

s.t. z1,0=z1,1=0,
z0,1>0

U(z)

(
A

z0,0 + 1

)
+

∑
z∈S4(n−1)

s.t. z1,0=z1,1=0,
z0,0>0

(
B − (1−Q)A

Q

)
U(z)%(0, 1, z) +

Qn−1

2n−1
A

n
+

∑
z∈S4(n−1)

s.t. z0,0=z1,0=z1,1=0

U(z)B%(0, 1, z) =

∑
z∈S4(n−1)

s.t. z1,0=z1,1=0,
z0,1>0

U(z)

(
A

z0,0 + 1

)
+

∑
z∈S4(n−1)

s.t. z1,0=z1,1=0,
z0,0>0

(A+B)Q−A
Q

U(z)%(0, 1, z) +
Qn−1

2n−1
A

n
+

(1−Q)n−1

2n−1
B

n
.

(80)
Since ∑

z∈S4(n−1)
s.t. z1,0=z1,1=0,

z0,1>0

U(z)
1

z0,0 + 1
=

1

n2n−1

(
1−Qn − (1−Q)n

Q

)

so (80) can further be rewritten as∑
z∈S4(n−1)

s.t. z1,0=z1,1=0

U(z) (A%(0, 0, z) +B%(0, 1, z))

=
A

n2n−1

(
1−Qn − (1−Q)n

Q

)
+

∑
z∈S4(n−1)

s.t. z1,0=z1,1=0,
z0,0>0

(A+B)Q−A
Q

U(z)%(0, 1, z) +
A

n2n−1
Qn−1 +

B

n2n−1
(1−Q)n−1

=
∑

z∈S4(n−1)
s.t. z1,0=z1,1=0,

z0,0>0

(A+B)Q−A
Q

U(z)%(0, 1, z) +
1

n2n−1

(
A(1− (1−Q)n) +BQ(1−Q)n−1

Q

)
.

(81)
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Using (81) (with A = 1− r and B = r), we can rewrite the objective function as

n

2

( ∑
z∈S4(n−1)
s.t. z1,1>0

U(z) (1− p− r) %(0, 0, z)

+
∑

z∈S4(n−1)
s.t. z1,1>0

U(z)

(
r(1− r)(1− 2p)

Q

)
%(0, 1, z)

+
∑

z∈S4(n−1)
s.t. z1,0>0,z1,1=0

U(z)

(
r(1− r)(1− 2p)

1−Q

)
%(0, 0, z)

+
∑

z∈S4(n−1)
s.t. z1,0>0,z1,1=0

U(z) (r − p) %(0, 1, z)

+
∑

z∈S4(n−1)
s.t. z1,0=z1,1=0,

z0,0>0

(1− p)(Q+ r − 1)

Q
U(z)%(0, 1, z)

)
+ C,

which is the formulation given in Equation (17). Constant C is

C =
n

2

 ∑
z∈S4(n−1)

U(z)
pr

z1,1 + 1
+

∑
z∈S4(n−1)
s.t. z1,1=0

U(z)
p(1− r)
z1,0 + 1

− 1

2n

(
(1− r)(1− (1−Q)n) + rQ(1−Q)n−1

Q

)
.

Since ∑
z∈S4(n−1)

U(z)
1

z1,1 + 1
=

1

n2n−1Q
(2n − (2−Q)n)

and ∑
z∈S4(n−1)

z1,1=0

U(z)
1

z1,0 + 1
=

1

n2n−1(1−Q)
((2−Q)n − 1)

so constant C can be rewritten as

C =
1

2n

(
2n − (2−Q)n

Q
pr +

(2−Q)n − 1

1−Q p(1− r)− (1− r)(1− (1−Q)n) + rQ(1−Q)n−1

Q

)
,

which is the value given in Equation (18).

D.4 Derivation of Equations (19) and (20)

In this section we derive formulations of the BIC constraints given in Equations (19)
and (20).

By Lemma 1, either %(1, 0, z) = 0 or z1,1 = 0. Using that and the resulting deriva-
tions of %(1, 1, z) given in (15) and %(1, 0, z) given in (16) in the case of x0 = 0, we can
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rewrite the LHS of the BIC constraint as follows:∑
y0∈{0,1}

∑
z∈S4(n−1)

U(z)ζ(0, y0) (%(0, y0, z)− %(1, y0, z))

=
∑

z∈S4(n−1)
U(z) (ζ(0, 0) (%(0, 0, z)− %(1, 0, z)) + ζ(0, 1) (%(0, 1, z)− %(1, 1, z)))

=
∑

z∈S4(n−1)
s.t. z1,1>0

U(z)

(
ζ(0, 0)%(0, 0, z) +

ζ(0, 1)

(
%(0, 1, z)

− 1− z0,0%(0, 0, z−(0,0),(1,1), z0,0 − 1, z1,1 + 1)− z0,1%(0, 1, z−(0,1),(1,1), z0,1 − 1, z1,1 + 1)

z1,1 + 1

))
+

∑
z∈S4(n−1)
s.t. z1,1=0

U(z)

(
ζ(0, 0)

(
%(0, 0, z)

− 1− z0,0%(0, 0, z−(0,0),(1,0), z0,0 − 1, z1,0 + 1)− z0,1%(0, 1, z−(0,1),(1,0), z0,1 − 1, z1,0 + 1)

z1,0 + 1

)
+ ζ(0, 1)

(
%(0, 1, z)

− 1− z0,0%(0, 0, z−(0,0),(1,1), z0,0 − 1, z1,1 + 1)− z0,1%(0, 1, z−(0,1),(1,1), z0,1 − 1, z1,1 + 1)

z1,1 + 1

))
.

This can be further rewritten as∑
z∈S4(n−1)

U(z) (ζ(0, 0)%(0, 0, z) + ζ(0, 1)%(0, 1, z)) +

∑
z∈S4(n−1)
s.t. z1,1>0

U(z−(0,0),(1,1), z0,0 + 1, z1,1 − 1)ζ(0, 1)
(z0,0 + 1)%(0, 0, z)

z1,1
+

∑
z∈S4(n−1)
s.t. z1,1>0

U(z−(0,1),(1,1), z0,1 + 1, z1,1 − 1)ζ(0, 1)
(z0,1 + 1)%(0, 1, z)

z1,1
+

∑
z∈S4(n−1)

s.t. z1,1=0,z1,0>0

U(z−(0,0),(1,0), z0,0 + 1, z1,0 − 1)ζ(0, 0)
(z0,0 + 1)%(0, 0, z)

z1,0
+

∑
z∈S4(n−1)

s.t. z1,1=0,z1,0>0

U(z−(0,1),(1,0), z0,1 + 1, z1,0 − 1)ζ(0, 0)
(z0,1 + 1)%(0, 1, z)

z1,0

−
∑

z∈S4(n−1)
U(z)

ζ(0, 1)

z1,1 + 1
−

∑
z∈S4(n−1)

z1,1=0

U(z)
ζ(0, 0)

z1,0 + 1
.
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Using (78) this can be rewritten as∑
z∈S4(n−1)

U(z) (ζ(0, 0)%(0, 0, z) + ζ(0, 1)%(0, 1, z)) +

∑
z∈S4(n−1)
s.t. z1,1>0

U(z)ζ(0, 1)%(0, 0, z) +

∑
z∈S4(n−1)
s.t. z1,1>0

(
1−Q
Q

)
U(z)ζ(0, 1)%(0, 1, z) +

∑
z∈S4(n−1)

s.t. z1,1=0,z1,0>0

(
Q

1−Q

)
U(z)ζ(0, 0)%(0, 0, z) +

∑
z∈S4(n−1)

s.t. z1,1=0,z1,0>0

U(z)ζ(0, 0)%(0, 1, z)

−
∑

z∈S4(n−1)
U(z)

ζ(0, 1)

z1,1 + 1
−

∑
z∈S4(n−1)

z1,1=0

U(z)
ζ(0, 0)

z1,0 + 1
.

Reorganizing the summands we obtain∑
z∈S4(n−1)
s.t. z1,1>0

U(z)%(0, 0, z) +
∑

z∈S4(n−1)
s.t. z1,1>0

(
1−Q
Q

)
U(z)%(0, 1, z) +

∑
z∈S4(n−1)

s.t. z1,1=0,z1,0>0

(
Q

1−Q

)
U(z)%(0, 0, z) +

∑
z∈S4(n−1)

s.t. z1,1=0,z1,0>0

U(z)%(0, 1, z) +

∑
z∈S4(n−1)

s.t. z1,1=z1,0=0

U(z) (Q%(0, 0, z) + (1−Q)%(0, 1, z))

−
∑

z∈S4(n−1)
U(z)

1−Q
z1,1 + 1

−
∑

z∈S4(n−1)
z1,1=0

U(z)
Q

z1,0 + 1
.
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Similarly, in the case of x0 = 1, we can rewrite the LHS of the BIC constraint as∑
y0∈{0,1}

∑
z∈S4(n−1)

U(z)ζ(1, y0) (%(1, y0, z)− %(0, y0, z))

=
∑

z∈S4(n−1)
U(z) (ζ(1, 0) (%(1, 0, z)− %(0, 0, z)) + ζ(1, 1) (%(1, 1, z)− %(0, 1, z)))

= −
∑

z∈S4(n−1)
U(z) (ζ(1, 0)%(0, 0, z) + ζ(1, 1)%(0, 1, z))

−
∑

z∈S4(n−1)
s.t. z1,1>0

U(z)ζ(1, 1)%(0, 0, z)

−
∑

z∈S4(n−1)
s.t. z1,1>0

(
1−Q
Q

)
U(z)ζ(1, 1)%(0, 1, z)

−
∑

z∈S4(n−1)
s.t. z1,1=0,z1,0>0

(
Q

1−Q

)
U(z)ζ(1, 0)%(0, 0, z)

−
∑

z∈S4(n−1)
s.t. z1,1=0,z1,0>0

U(z)ζ(1, 0)%(0, 1, z)

+
∑

z∈S4(n−1)
U(z)

ζ(1, 1)

z1,1 + 1
+

∑
z∈S4(n−1)

z1,1=0

U(z)
ζ(1, 0)

z1,0 + 1
.

Reorganizing the summands and using (14) we obtain

−
∑

z∈S4(n−1)
s.t. z1,1>0

U(z)%(0, 0, z)−
∑

z∈S4(n−1)
s.t. z1,1>0

U(z)%(0, 1, z)

−
∑

z∈S4(n−1)
s.t. z1,1=0,z1,0>0

U(z)%(0, 0, z)−
∑

z∈S4(n−1)
s.t. z1,1=0,z1,0>0

U(z)%(0, 1, z)

−
∑

z∈S4(n−1)
s.t. z1,1=z1,0=0

U(z) ((1−Q)%(0, 0, z) +Q%(0, 1, z)) +

∑
z∈S4(n−1)

U(z)
Q

z1,1 + 1
+

∑
z∈S4(n−1)

z1,1=0

U(z)
1−Q
z1,0 + 1

.

Thus the BIC constraints can be written as, for x0 = 0:∑
z∈S4(n−1)
s.t. z1,1>0

U(z)%(0, 0, z) +
∑

z∈S4(n−1)
s.t. z1,1>0

(
1−Q
Q

)
U(z)%(0, 1, z) +

∑
z∈S4(n−1)

s.t. z1,1=0,z1,0>0

(
Q

1−Q

)
U(z)%(0, 0, z) +

∑
z∈S4(n−1)

s.t. z1,1=0,z1,0>0

U(z)%(0, 1, z) +

∑
z∈S4(n−1)

s.t. z1,1=z1,0=0

U(z) (Q%(0, 0, z) + (1−Q)%(0, 1, z)) ≥

∑
z∈S4(n−1)

U(z)
1−Q
z1,1 + 1

+
∑

z∈S4(n−1)
z1,1=0

U(z)
Q

z1,0 + 1
,
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and, for x0 = 1: ∑
z∈S4(n−1)
s.t. z1,1>0

U(z)%(0, 0, z) +
∑

z∈S4(n−1)
s.t. z1,1>0

U(z)%(0, 1, z) +

∑
z∈S4(n−1)

s.t. z1,1=0,z1,0>0

U(z)%(0, 0, z) +
∑

z∈S4(n−1)
s.t. z1,1=0,z1,0>0

U(z)%(0, 1, z) +

∑
z∈S4(n−1)

s.t. z1,1=z1,0=0

U(z) ((1−Q)%(0, 0, z) +Q%(0, 1, z)) ≤

∑
z∈S4(n−1)

U(z)
Q

z1,1 + 1
+

∑
z∈S4(n−1)

z1,1=0

U(z)
1−Q
z1,0 + 1

.

Using ∑
z∈S4(n−1)

U(z)
1

z1,1 + 1
=

1

n2n−1Q
(2n − (2−Q)n) ,

and ∑
z∈S4(n−1)

z1,1=0

U(z)
1

z1,0 + 1
=

1

n2n−1(1−Q)
((2−Q)n − 1) ,

we can rewrite the BIC constraint for x0 = 0 as∑
z∈S4(n−1)
s.t. z1,1>0

U(z)%(0, 0, z) +
∑

z∈S4(n−1)
s.t. z1,1>0

(
1−Q
Q

)
U(z)%(0, 1, z) +

∑
z∈S4(n−1)

s.t. z1,1=0,z1,0>0

(
Q

1−Q

)
U(z)%(0, 0, z) +

∑
z∈S4(n−1)

s.t. z1,1=0,z1,0>0

U(z)%(0, 1, z) +

∑
z∈S4(n−1)

s.t. z1,1=z1,0=0

U(z) (Q%(0, 0, z) + (1−Q)%(0, 1, z)) ≥

1

n2n−1

(
2n(1−Q)2 + (2Q− 1)(2−Q)n −Q2

Q(1−Q)

)
.

and further, using (by (81) with A = Q and B = 1−Q)∑
z∈S4(n−1)

s.t. z1,1=z1,0=0

U(z) (Q%(0, 0, z) + (1−Q)%(0, 1, z))

=
1

n2n−1

(
Q(1− (1−Q)n) + (1−Q)Q(1−Q)n−1

Q

)
=

1

n2n−1
,

as ∑
z∈S4(n−1)
s.t. z1,1>0

U(z)%(0, 0, z) +
∑

z∈S4(n−1)
s.t. z1,1>0

(
1−Q
Q

)
U(z)%(0, 1, z) +

∑
z∈S4(n−1)

s.t. z1,1=0,z1,0>0

(
Q

1−Q

)
U(z)%(0, 0, z) +

∑
z∈S4(n−1)

s.t. z1,1=0,z1,0>0

U(z)%(0, 1, z) ≥

1

n2n−1

(
2n(1−Q)2 + (2Q− 1)(2−Q)n −Q

Q(1−Q)

)
,
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which is the formulation of the BIC constraint foro x0 = 0 given in Equation (19).
Similarly, the BIC constraint for x0 = 1 can be rewritten as∑

z∈S4(n−1)
s.t. z1,1>0

U(z)%(0, 0, z) +
∑

z∈S4(n−1)
s.t. z1,1>0

U(z)%(0, 1, z) +

∑
z∈S4(n−1)

s.t. z1,1=0,z1,0>0

U(z)%(0, 0, z) +
∑

z∈S4(n−1)
s.t. z1,1=0,z1,0>0

U(z)%(0, 1, z) +

∑
z∈S4(n−1)

s.t. z1,1=z1,0=0

U(z) ((1−Q)%(0, 0, z) +Q%(0, 1, z)) ≤ 2n − 1

n2n−1

and further, using (by (81) with A = 1−Q and B = Q)∑
z∈S4(n−1)

s.t. z1,1=z1,0=0

U(z) ((1−Q)%(0, 0, z) +Q%(0, 1, z))

=
1

n2n−1

(
(1−Q)(1− (1−Q)n) +Q2(1−Q)n−1

Q

)
=

1

n2n−1

(
1−Q+ (2Q− 1)(1−Q)n−1

Q

)
,

as ∑
z∈S4(n−1)
s.t. z1,1>0

U(z)%(0, 0, z) +
∑

z∈S4(n−1)
s.t. z1,1>0

U(z)%(0, 1, z) +

∑
z∈S4(n−1)

s.t. z1,1=0,z1,0>0

U(z)%(0, 0, z) +
∑

z∈S4(n−1)
s.t. z1,1=0,z1,0>0

U(z)%(0, 1, z) +

∑
z∈S4(n−1)

s.t. z1,1=z1,0=0
z0,0>0

(
2Q− 1

Q

)
U(z)%(0, 1, z) ≤ 1

n2n−1

(
2nQ− 1− (2Q− 1)(1−Q)n−1

Q

)
,

which is the formulation of the BIC constraint for x0 = 1 given in Equation (20).
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D.5 Derivation of Equation (42)

ΠD(p, r) =
n

2

∑
(x0,y0)∈{0,1}2

∑
z∈S4(n−1)

U(z)ζ1(x0, y0)%D(x0, y0, z) =

n

4

(1− r)
∑

x0∈{0,1}

∑
z∈S4(n−1)

U(z)%D(x0, 0, z) + r
∑

x0∈{0,1}

∑
z∈S4(n−1)

U(z)%D(x0, 1, z)

 =

n

2

(1− r)
∑

z∈S4(n−1)
z0,0+z1,0=n−1

U(z)
1

n
+ r

n−1∑
m=0

∑
z∈S4(n−1)
z0,1+z1,1=m

U(z)
1

m+ 1

 =

1

2n

(
(1− r)

∑
(z0,0,z1,0)∈S2(n−1)

(
n− 1

z0,0, z1,0

)
Qz0,0(1−Q)z1,0

+ rn

n−1∑
m=0

1

m+ 1

(
n− 1

m

) ∑
(z0,1,z1,1)∈S2(m)

(
m

z0,1, z1,1

)
Qz1,1(1−Q)z0,1

∑
(z0,0,z1,0)∈S2(n−m−1)

(
n−m− 1

z0,0, z1,0

)
Qz0,0(1−Q)z1,0

)
=

1

2n

(
1− r + rn

n−1∑
m=0

1

m+ 1

(
n− 1

m

))
=

1

2n
(1− r + r(2n − 1)) = r − 2r − 1

2n
.

D.6 Derivation of Equation (44)

ΠB(p, r) =
1

2n

(
pr(1−Q)2n − r(1− r)(2p− 1)((2−Q)n +Qn) +Q(p− r)

Q(1−Q)

)
− 1

2n

(
r(1− r)(2p− 1)(2n(1−Q)2 +Q(1−Qn)− (2−Q)n(1−Q))

Q2(1−Q)

)
− 1

2n

(
r(1− r)(2p− 1)(2Q− 1) max

(
2n(1−Q) +Q(1−Q)n−1 − (2−Q)n, 0

)
Q2(1−Q)

)

=
1

2n

(
pr(1−Q)2n +Q(p− r)

Q(1−Q)

)
− 1

2n

(
r(1− r)(2p− 1)(2nQ(1−Q) +Q))

Q2(1−Q)

)
− 1

2n

(
r(1− r)(2p− 1)(2Q− 1) max

(
Q(1−Q)n−1, (2−Q)n − 2n(1−Q)

)
Q2(1−Q)

)

=r − 2r − 1

2n

(
1

Q(1−Q)

)(
p(1− p)

+

(
r(1− r)(2p− 1)2

Q

)
max

(
Q(1−Q)n−1, (2−Q)n − 2n(1−Q)

))
.

D.7 Derivation of Equation (57)

In this section we derive formulation of the objective function given in Equation (57).
Using Equations (56) in the Appendix we can rewrite the objective function as
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follows:

n

2

( ∑
z∈S4(n−1)

s.t. z0,1>0,z1,1>0

U(z)

(
ζ1(1, 1)%(1, 1,z) + ζ1(0, 1)

(
1− z1,1%(1, 1,z−(0,1),(1,1), z0,1 + 1, z1,1 − 1)

z0,1 + 1

))
+

∑
z∈S4(n−1)

s.t. z0,1=0,z1,1>0

U(z)

(
ζ1(1, 1)%(1, 1,z) + ζ1(0, 1)

(
1− z1,1%(1, 1,z−(0,1),(1,1), z0,1 + 1, z1,1 − 1)

z0,1 + 1

)
+

+ ζ1(0, 0)

(
1− z1,1%(1, 1,z−(0,0),(1,1), z0,0 + 1, z1,1 − 1)

z0,0 + 1

))
+

∑
z∈S4(n−1)

s.t. z0,1>0,z1,0>0,z1,1=0

U(z)

(
ζ1(1, 1)%(1, 1,z) + ζ1(1, 0)%(1, 0,z) + ζ1(0, 1)

(
1− z1,0%(1, 0,z−(0,1),(1,0), z0,1 + 1, z1,0 − 1)

z0,1 + 1

))
+

∑
z∈S4(n−1)

s.t. z0,1>0,z1,0=0,z1,1=0

U(z)

(
ζ1(1, 1)%(1, 1,z) + ζ1(1, 0)%(1, 0,z) +

ζ1(0, 1)

z0,1 + 1

)
+

∑
z∈S4(n−1)

s.t. z0,1=0,z1,0>0,z1,1=0

U(z)

(
ζ1(1, 1)%(1, 1,z) + ζ1(1, 0)%(1, 0,z) + ζ1(0, 1)

(
1− z1,0%(1, 0,z−(0,1),(1,0), z0,1 + 1, z1,0 − 1)

z0,1 + 1

)
+

+ ζ1(0, 0)

(
1− z1,0%(1, 0,z−(0,0),(1,0), z0,0 + 1, z1,0 − 1)

z0,0 + 1

))
∑

z∈S4(n−1)
s.t. z0,1=z1,0=z1,1=0

U(z)

(
ζ1(1, 1)%(1, 1,z) + ζ1(1, 0)%(1, 0,z) +

ζ1(0, 1)

z0,1 + 1
+
ζ1(0, 0)

z0,0 + 1

))

and, further, as follows:

n

2

( ∑
z∈S4(n−1)

U(z)ζ1(1, 1)%(1, 1, z) +

∑
z∈S4(n−1)

z0,1>0

U(z−(0,1),(1,1), z0,1 − 1, z1,1 + 1)ζ1(0, 1)

(
1− (z1,1 + 1)%(1, 1, z)

z0,1

)
+

∑
z∈S4(n−1)

z0,1=0,z0,0>0

U(z−(0,0),(1,1), z0,0 − 1, z1,1 + 1)ζ1(0, 0)

(
1− (z1,1 + 1)%(1, 1, z)

z0,0

)
+

∑
z∈S4(n−1)

z1,1=0

U(z)ζ1(1, 0)%(1, 0, z) +

∑
z∈S4(n−1)

z1,1=0,z0,1>0

U(z−(0,1),(1,0), z0,1 − 1, z1,0 + 1)ζ1(0, 1)

(
1− (z1,0 + 1)%(1, 0, z)

z0,1

)
+

∑
z∈S4(n−1)

z0,1=z1,1=0,z0,0>0

U(z−(0,0),(1,0), z0,0 − 1, z1,0 + 1)ζ1(0, 0)

(
1− (z1,0 + 1)%(1, 0, z)

z0,0

)
+

∑
z∈S4(n−1)
z1,0=z1,1=0

U(z)
ζ1(0, 1)

z0,1 + 1
+

∑
z∈S4(n−1)

z0,1=z1,0=z1,1=0

U(z)
ζ1(0, 0)

z0,0 + 1

)
.
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Reorganizing the summands this can be rewritten as

n

2

( ∑
z∈S4(n−1)

z0,1>0

z0,1U(z)ζ1(1, 1)− (z1,1 + 1)U(z−(0,1),(1,1), z0,1 − 1, z1,1 + 1)ζ1(0, 1)

z0,1
%(1, 1, z) +

∑
z∈S4(n−1)

z0,1=0,z0,0>0

z0,0U(z)ζ1(1, 1)− (z1,1 + 1)U(z−(0,0),(1,1), z0,0 − 1, z1,1 + 1)ζ1(0, 0)

z0,0
%(1, 1, z) +

∑
z∈S4(n−1)

z0,1=0,z0,0=0

U(z)ζ1(1, 1)%(1, 1, z) +

∑
z∈S4(n−1)

z1,1=0,z0,1>0

z0,1U(z)ζ1(1, 0)− (z1,0 + 1)U(z−(0,1),(1,0), z0,1 − 1, z1,0 + 1)ζ1(0, 1)

z0,1
%(1, 0, z) +

∑
z∈S4(n−1)

z0,1=z1,1=0,z0,0>0

z0,0U(z)ζ1(1, 0)− (z1,0 + 1)U(z−(0,0),(1,0), z0,0 − 1, z1,0 + 1)ζ1(0, 0)

z0,0
%(1, 0, z) +

∑
z∈S4(n−1)

z0,0=z0,1=z0,1=0

U(z)ζ1(1, 0)%(1, 0, z)

)
+ C,

where C is a constant equal to

n

2

( ∑
z∈S4(n−1)

z0,1>0

U(z−(0,1),(1,1), z0,1 − 1, z1,1 + 1)ζ1(0, 1)

z0,1
+

∑
z∈S4(n−1)

z0,1=0,z0,0>0

U(z−(0,0),(1,1), z0,0 − 1, z1,1 + 1)ζ1(0, 0)

z0,0
+

∑
z∈S4(n−1)

z1,1=0,z0,1>0

U(z−(0,1),(1,0), z0,1 − 1, z1,0 + 1)ζ1(0, 1)

z0,1
+

∑
z∈S4(n−1)

z0,1=z1,1=0,z0,0>0

U(z−(0,0),(1,0), z0,0 − 1, z1,0 + 1)ζ1(0, 0)

z0,0
+

∑
z∈S4(n−1)
z1,0=z1,1=0

U(z)
ζ1(0, 1)

z0,1 + 1
+

∑
z∈S4(n−1)

z0,1=z1,0=z1,1=0

U(z)
ζ1(0, 0)

z0,0 + 1

)
.

By (9),

U(z−(0,1),(1,1), z0,1 − 1, z1,1 + 1) =
Q

1−Q
z0,1

z1,1 + 1
U(z)

U(z−(0,0),(1,1), z0,0 − 1, z1,1 + 1) =
z0,0

z1,1 + 1
U(z)

U(z−(0,1),(1,0), z0,1 − 1, z1,0 + 1) =
z0,1

z1,0 + 1
U(z)

U(z−(0,0),(1,0), z0,0 − 1, z1,0 + 1) =
1−Q
Q

z0,0
z1,0 + 1

U(z)

(82)

and by (10)

ζ1(1, 1) = qr

ζ1(1, 0) = q(1− r)
ζ1(0, 1) = (1− q)r
ζ1(0, 0) = (1− q)(1− r).
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Using that, we can rewrite the objective function as

n

2

( ∑
z∈S4(n−1)

z0,1>0

rU(z)

1−Q ((1−Q)q −Q(1− q))%(1, 1, z) +

∑
z∈S4(n−1)

z0,1=0,z0,0>0

U(z)(qr − (1− q)(1− r))%(1, 1, z) +

∑
z∈S4(n−1)
z0,0=z0,1=0

qrU(z)%(1, 1, z) +

∑
z∈S4(n−1)

z1,1=0,z0,1>0

U(z)(q(1− r)− (1− q)r)%(1, 0, z) +

∑
z∈S4(n−1)

z0,1=z1,1=0,z0,0>0

(1− r)U(z)

Q
(Qq − (1−Q)(1− q))%(1, 0, z) +

∑
z∈S4(n−1)

z0,0=z0,1=z1,1=0

U(z)q(1− r)%(1, 0, z)

)
+ C

and constant C as

n

2

( ∑
z∈S4(n−1)

z0,1>0

Q

1−Q
U(z)

z1,1 + 1
(1− q)r +

∑
z∈S4(n−1)

z0,1=0,z0,0>0

U(z)

z1,1 + 1
(1− q)(1− r) +

∑
z∈S4(n−1)

z1,1=0,z0,1>0

U(z)

z1,0 + 1
(1− q)r +

∑
z∈S4(n−1)

z0,1=z1,1=0,z0,0>0

1−Q
Q

U(z)

z1,0 + 1
(1− q)(1− r) +

∑
z∈S4(n−1)
z1,0=z1,1=0

U(z)
ζ1(0, 1)

z0,1 + 1
+

∑
z∈S4(n−1)

z0,1=z1,0=z1,1=0

U(z)
ζ1(0, 0)

z0,0 + 1

)
.

(83)

By (56) in the case of z0,0 = z0,1 = 0, %(1, 1, z) = 1/(z1,1 + 1), and in the case of
z0,0 = z0,1 = z1,1 = 0, %(1, 0, z) = 1/n. In addition, in the case of z0,1 = z1,0 = z1,1 = 0,
z0,0 = n. Using that and rewriting the coefficients at the summands, the objective
function can be rewritten as

n

2

( ∑
z∈S4(n−1)

z1,1=0,z0,1>0

(q − r)U(z)%(1, 0, z) +
∑

z∈S4(n−1)
z0,1>0

r(1− r)(2q − 1)

1−Q U(z)%(1, 1, z) +

∑
z∈S4(n−1)

z0,1=z1,1=0,z0,0>0

r(1− r)(2q − 1)

Q
U(z)%(1, 0, z) +

∑
z∈S4(n−1)

z0,1=0,z0,0>0

(q + r − 1)U(z)%(1, 1, z)

)
+ C ′,
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where

C ′ =
n

2

( ∑
z∈S4(n−1)

z0,1>0

Q

1−Q
U(z)

z1,1 + 1
(1− q)r +

∑
z∈S4(n−1)

z0,1=0,z0,0>0

U(z)

z1,1 + 1
(1− q)(1− r) +

∑
z∈S4(n−1)

z1,1=0,z0,1>0

U(z)

z1,0 + 1
(1− q)r +

∑
z∈S4(n−1)

z0,1=z1,1=0,z0,0>0

1−Q
Q

U(z)

z1,0 + 1
(1− q)(1− r) +

∑
z∈S4(n−1)
z0,0=z0,1=0

U(z)

z1,1 + 1
qr +

∑
z∈S4(n−1)

z0,0=z0,1=z1,1=0

U(z)

n
q(1− r) +

∑
z∈S4(n−1)
z1,0=z1,1=0

U(z)

z0,1 + 1
(1− q)r +

∑
z∈S4(n−1)

z0,1=z1,0=z1,1=0

U(z)

n
(1− q)(1− r)

)
,

which is the formulation given in (57).

D.8 Derivation of Equations (59) and (60)

In this section we derive formulations of the BIC constraints given in Equations (59)
and (60).

Using (56), the LHS of the BIC constraints can be rewritten as follows:

∑
(x0,y0)∈{0,1}2

∑
z∈S4(n−1)

U(z)ζ(x0, y0)β(x1, x
′
1,z)%(x0, y0,z)

=
∑

z∈S4(n−1)

β(x1, x
′
1,z)U(z)

∑
(x0,y0)∈{0,1}2

ζ(x0, y0)%(x0, y0,z)

=
∑

z∈S4(n−1)
s.t. z0,1>0

β(x1, x
′
1,z)U(z)

(
ζ(1, 1)%(1, 1,z) + ζ(1, 0)%(1, 0,z) +

ζ(0, 1)

(
1− z1,0%(1, 0,z−(0,1),(1,0), z0,1 + 1, z1,0 − 1)− z1,1%(1, 1,z−(0,1),(1,1), z0,1 + 1, z1,1 − 1)

z0,1 + 1

))
+

∑
z∈S4(n−1)
s.t. z0,1=0

β(x1, x
′
1,z)U(z)

(
ζ(1, 1)%(1, 1,z) + ζ(1, 0)%(1, 0,z) +

ζ(0, 1)

(
1− z1,0%(1, 0,z−(0,1),(1,0), z0,1 + 1, z1,0 − 1)− z1,1%(1, 1,z−(0,1),(1,1), z0,1 + 1, z1,1 − 1)

z0,1 + 1

)
+

ζ(0, 0)

(
1− z1,0%(1, 0,z−(0,0),(1,0), z0,0 + 1, z1,0 − 1)− z1,1%(1, 1,z−(0,0),(1,1), z0,0 + 1, z1,1 − 1)

z0,0 + 1

))
.
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This can be further rewritten as∑
z∈S4(n−1)

β(x1, x
′
1, z)U(z) (ζ(1, 1)%(1, 1, z) + ζ(1, 0)%(1, 0, z))

−
∑

z∈S4(n−1)
s.t. z0,1>0

β(x1, x
′
1, z−(0,1),(1,0), z0,1 − 1, z1,0 + 1)U(z−(0,1),(1,0), z0,1 − 1, z1,0 + 1)ζ(0, 1)

(z1,0 + 1)%(1, 0, z)

z0,1

−
∑

z∈S4(n−1)
s.t. z0,1>0

β(x1, x
′
1, z−(0,1),(1,1), z0,1 − 1, z1,1 + 1)U(z−(0,1),(1,1), z0,1 − 1, z1,1 + 1)ζ(0, 1)

(z1,1 + 1)%(1, 1, z)

z0,1

−
∑

z∈S4(n−1)
s.t. z0,1=0,z0,0>0

β(x1, x
′
1, z−(0,0),(1,0), z0,0 − 1, z1,0 + 1)U(z−(0,0),(1,0), z0,0 − 1, z1,0 + 1)ζ(0, 0)

(z1,0 + 1)%(1, 0, z)

z0,0

−
∑

z∈S4(n−1)
s.t. z0,1=0,z0,0>0

β(x1, x
′
1, z−(0,0),(1,1), z0,0 − 1, z1,1 + 1)U(z−(0,0),(1,1), z0,0 − 1, z1,1 + 1)ζ(0, 0)

(z1,1 + 1)%(1, 1, z)

z0,0

+
∑

z∈S4(n−1)
β(x1, x

′
1, z)U(z)

ζ(0, 1)

z0,1 + 1
+

∑
z∈S4(n−1)

z0,1=0

β(x1, x
′
1, z)U(z)

ζ(0, 0)

z0,0 + 1
.

Notice that, by (54), for any d, d′ ∈ {0, 1} and for any x,x
′
1 ∈ {0, 1} such that

x1 6= x′1,

β(x1, x
′
1, z−(0,1),(1,0), z0,1 − 1, z1,0 + 1) = β(x1, x

′
1, z) +Q([x′1 = 0]− [x′1 = 1]),

β(x1, x
′
1, z−(0,1),(1,1), z0,1 − 1, z1,1 + 1) = β(x1, x

′
1, z) +Q− [x′1 = 1],

β(x1, x
′
1, z−(0,0),(1,0), z0,0 − 1, z1,0 + 1) = β(x1, x

′
1, z) + 1−Q− [x′1 = 1],

β(x1, x
′
1, z−(0,0),(1,1), z0,0 − 1, z1,1 + 1) = β(x1, x

′
1, z) + (1−Q)([x′1 = 0]− [x′1 = 1]).

(84)

Using (82) and (84) the LHS of the BIC constraints can be rewritten as∑
z∈S4(n−1)

β(x1, x
′
1, z)U(z) (ζ(1, 1)%(1, 1, z) + ζ(1, 0)%(1, 0, z))

−
∑

z∈S4(n−1)
s.t. z0,1>0

(β(x1, x
′
1, z) +Q([x′1 = 0]− [x′1 = 1]))U(z)ζ(0, 1)%(1, 0, z)

−
∑

z∈S4(n−1)
s.t. z0,1>0

(
Q

1−Q

)
(β(x1, x

′
1, z) +Q− [x′1 = 1])U(z)ζ(0, 1)%(1, 1, z)

−
∑

z∈S4(n−1)
s.t. z0,1=0,z0,0>0

(
1−Q
Q

)
(β(x1, x

′
1, z) + 1−Q− [x′1 = 1])U(z)ζ(0, 0)%(1, 0, z)

−
∑

z∈S4(n−1)
s.t. z0,1=0,z0,0>0

(β(x1, x
′
1, z) + (1−Q)([x′1 = 0]− [x′1 = 1]))U(z)ζ(0, 0)%(1, 1, z)

+
∑

z∈S4(n−1)
β(x1, x

′
1, z)U(z)

ζ(0, 1)

z0,1 + 1
+

∑
z∈S4(n−1)

z0,1=0

β(x1, x
′
1, z)U(z)

ζ(0, 0)

z0,0 + 1
.

Reorganizing the summands and using

ζ(x0, y0) =

{
Q, if x0 = y0

1−Q, otherwise.
(85)
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we obtain ∑
z∈S4(n−1)
s.t. z0,1>0

Q(1−Q)([x′1 = 1]− [x′1 = 0])U(z)%(1, 0, z) +

∑
z∈S4(n−1)
s.t. z0,1>0

Q([x′1 = 1]−Q)U(z)%(1, 1, z) +

∑
z∈S4(n−1)

s.t. z0,1=0,z0,0>0

(1−Q)([x′1 = 1]− (1−Q))U(z)%(1, 0, z) +

∑
z∈S4(n−1)

s.t. z0,1=0,z0,0>0

Q(1−Q)([x′1 = 1]− [x′1 = 0])U(z)%(1, 1, z) +

∑
z∈S4(n−1)

s.t. z0,0=z0,1=0

β(x1, x
′
1, z)U(z) (Q%(1, 1, z) + (1−Q)%(1, 0, z))

+
∑

z∈S4(n−1)
β(x1, x

′
1, z)U(z)

1−Q
z0,1 + 1

+
∑

z∈S4(n−1)
z0,1=0

β(x1, x
′
1, z)U(z)

Q

z0,0 + 1
.

By Lemma (8), either %(1, 0, z) = 0 or z1,1 = 0. Therefore, the LHS of the BIC
constraint can be rewritten as∑

z∈S4(n−1)
s.t. z0,1>0,z1,1=0

Q(1−Q)([x′1 = 1]− [x′1 = 0])U(z)%(1, 0, z) +

∑
z∈S4(n−1)
s.t. z0,1>0

Q([x′1 = 1]−Q)U(z)%(1, 1, z) +

∑
z∈S4(n−1)

s.t. z0,1=z1,1=0,z0,0>0

(1−Q)([x′1 = 1]− (1−Q))U(z)%(1, 0, z) +

∑
z∈S4(n−1)

s.t. z0,1=0,z0,0>0

Q(1−Q)([x′1 = 1]− [x′1 = 0])U(z)%(1, 1, z) +

∑
z∈S4(n−1)

s.t. z0,0=z0,1=z1,1=0

β(x1, x
′
1, z)U(z)(1−Q)%(1, 0, z) +

∑
z∈S4(n−1)

s.t. z0,0=z0,1=0

β(x1, x
′
1, z)U(z)Q%(1, 1, z) +

∑
z∈S4(n−1)

β(x1, x
′
1, z)U(z)

1−Q
z0,1 + 1

+
∑

z∈S4(n−1)
z0,1=0

β(x1, x
′
1, z)U(z)

Q

z0,0 + 1
.

By the probability constraints (56), if z0,0 = z0,1 = z1,1 = 0 then %(1, 0, z) = 1/n
and, if z0,0 = z0,1 = 0 then %(1, 1, z) = 1/(z1,1+1). Hence the LHS of the BIC constraint
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can be further rewritten as∑
z∈S4(n−1)

s.t. z0,1>0,z1,1=0

Q(1−Q)([x′1 = 1]− [x′1 = 0])U(z)%(1, 0, z) +

∑
z∈S4(n−1)
s.t. z0,1>0

Q([x′1 = 1]−Q)U(z)%(1, 1, z) +

∑
z∈S4(n−1)

s.t. z0,1=z1,1=0,z0,0>0

(1−Q)([x′1 = 1]− (1−Q))U(z)%(1, 0, z) +

∑
z∈S4(n−1)

s.t. z0,1=0,z0,0>0

Q(1−Q)([x′1 = 1]− [x′1 = 0])U(z)%(1, 1, z) +

∑
z∈S4(n−1)

s.t. z0,0=z0,1=z1,1=0

β(x1, x
′
1, z)U(z)

1−Q
n

+
∑

z∈S4(n−1)
s.t. z0,0=z0,1=0

β(x1, x
′
1, z)U(z)

Q

z1,1 + 1
+

∑
z∈S4(n−1)

β(x1, x
′
1, z)U(z)

1−Q
z0,1 + 1

+
∑

z∈S4(n−1)
z0,1=0

β(x1, x
′
1, z)U(z)

Q

z0,0 + 1
.

Using that, the BIC constraint for x1 = 1 and x′1 = 0 is∑
z∈S4(n−1)

s.t. z0,1>0,z1,1=0

Q(1−Q)U(z)%(1, 0, z) +
∑

z∈S4(n−1)
s.t. z0,1>0

Q2U(z)%(1, 1, z) +

∑
z∈S4(n−1)

s.t. z0,1=z1,1=0,z0,0>0

(1−Q)2U(z)%(1, 0, z) +
∑

z∈S4(n−1)
s.t. z0,1=0,z0,0>0

Q(1−Q)U(z)%(1, 1, z)

≤
∑

z∈S4(n−1)
s.t. z0,0=z0,1=z1,1=0

β(1, 0, z)U(z)
1−Q
n

+
∑

z∈S4(n−1)
s.t. z0,0=z0,1=0

β(1, 0, z)U(z)
Q

z1,1 + 1
+

∑
z∈S4(n−1)

β(1, 0, z)U(z)
1−Q
z0,1 + 1

+
∑

z∈S4(n−1)
z0,1=0

β(1, 0, z)U(z)
Q

z0,0 + 1
.

Using∑
z∈S4(n−1)

β(1, 0, z)U(z)
1

z0,1 + 1
=

1

n2n−1

(
Q2(2n − (1 +Q)n−1((n− 1)(1−Q) + 2))

1−Q

)
,

∑
z∈S4(n−1)

z0,1=0

β(1, 0, z)U(z)
1

z0,0 + 1
=

1

n2n−1

(
(1−Q)((Q+ 1)n−1((n− 1)Q2 + 1)− (n− 1)Q− 1)

Q

)
,

∑
z∈S4(n−1)
z0,0=z0,1=0

β(1, 0, z)U(z)
1

z1,1 + 1
=

(n− 1)(1−Q)

n2n−1
(1− (1−Q)n) ,

∑
z∈S4(n−1)

z0,0=z0,1=z1,1=0

β(1, 0, z)U(z)
1

n
=

(n− 1)Q(1−Q)n

n2n−1

and dividing both sides by Q(1−Q), we can rewrite the RHS of the BIC constraint for
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x1 = 1 and x′1 = 0 to obtain∑
z∈S4(n−1)

s.t. z0,1>0,z1,1=0

U(z)%(1, 0, z) +
∑

z∈S4(n−1)
s.t. z0,1>0

(
Q

1−Q

)
U(z)%(1, 1, z) +

∑
z∈S4(n−1)

s.t. z0,1=z1,1=0,z0,0>0

(
1−Q
Q

)
U(z)%(1, 0, z) +

∑
z∈S4(n−1)

s.t. z0,1=0,z0,0>0

U(z)%(1, 1, z)

≤ 1

n2n−1

(
2nQ2 − (2Q− 1)(1 +Q)n +Q− 1

Q(1−Q)

)
,

which is the formulation given in (59).
Similarly, the BIC constraint for x1 = 0 and x′1 = 1 is∑

z∈S4(n−1)
s.t. z0,1>0,z1,1=0

Q(1−Q)U(z)%(1, 0, z) +
∑

z∈S4(n−1)
s.t. z0,1>0

Q(1−Q)U(z)%(1, 1, z) +

∑
z∈S4(n−1)

s.t. z0,1=z1,1=0,z0,0>0

Q(1−Q)U(z)%(1, 0, z) +
∑

z∈S4(n−1)
s.t. z0,1=0,z0,0>0

Q(1−Q)U(z)%(1, 1, z)

≥ −
∑

z∈S4(n−1)
s.t. z0,0=z0,1=z1,1=0

β(0, 1, z)U(z)
1−Q
n
−

∑
z∈S4(n−1)

s.t. z0,0=z0,1=0

β(0, 1, z)U(z)
Q

z1,1 + 1
−

∑
z∈S4(n−1)

β(0, 1, z)U(z)
1−Q
z0,1 + 1

−
∑

z∈S4(n−1)
z0,1=0

β(0, 1, z)U(z)
Q

z0,0 + 1
.

Using ∑
z∈S4(n−1)

z0,0=z0,1=z1,1=0

β(0, 1, z)U(z)
1

n
=

1

n2n−1
(n− 1)(−Q2)(1−Q)n−1

∑
z∈S4(n−1)
z0,0=z0,1=0

β(0, 1, z)U(z)
1

z1,1 + 1
=

1

n2n−1

(
(1−Q)n(nQ2 − (1−Q)2)− (1−Q)((n+ 1)Q− 1)

Q

)
∑

z∈S4(n−1)
β(0, 1, z)U(z)

1

z0,1 + 1
=

1

n2n−1
(
Q((1 +Q)n−1((n− 1)(1−Q) + 2)− 2n)

)
∑

z∈S4(n−1)
z0,1=0

β(0, 1, z)U(z)
1

z0,0 + 1
=

1

n2n−1
(1−Q)

(
n+ 1− (1 +Q)n−1(n(1−Q) +Q+ 1))

)

and dividing both sides by Q(1−Q), we can rewrite the RHS of the BIC constraint for
x1 = 0 and x′1 = 1 to obtain∑

z∈S4(n−1)
s.t. z0,1>0,z1,1=0

U(z)%(1, 0, z) +
∑

z∈S4(n−1)
s.t. z0,1>0

U(z)%(1, 1, z) +

∑
z∈S4(n−1)

s.t. z0,1=z1,1=0,z0,0>0

U(z)%(1, 0, z) +
∑

z∈S4(n−1)
s.t. z0,1=0,z0,0>0

U(z)%(1, 1, z)

≥ 1

n2n−1

(
(1 +Q)n(2Q− 1)−Q22n −Q+ 1

Q(1−Q)

)
,

which is the formulation given in (60).
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D.9 Calculations and auxiliary results∑
z∈S4(n−1)

s.t. z1,0=z1,1=0,
z0,1>0

U(z)
1

z0,0 + 1
=

1

Q

∑
z∈S4(n−1)

s.t. z1,0=z1,1=0,
z0,1>0

(
n− 1

z0,0, z0,1, z1,0, z1,1

)
Qz1,1+z0,0+1(1−Q)z0,1+z1,0

2n−1
1

z0,0 + 1
=

1

n2n−1Q

∑
z∈S4(n−1)

s.t. z1,0=z1,1=0,
z0,1>0

(
n

z0,0 + 1, z0,1, z1,0, z1,1

)
Qz1,1+z0,0+1(1−Q)z0,1+z1,0 =

1

n2n−1Q

∑
z−(1,0),(1,1)∈S2(n)
s.t. z0,0>0,z0,1>0

(
n

z0,0, z0,1

)
Qz0,0(1−Q)z0,1 =

1

n2n−1Q

( ∑
z−(1,0),(1,1)∈S2(n)

(
n

z0,0, z0,1

)
Qz0,0(1−Q)z0,1 −Qn − (1−Q)n

)

=
1

n2n−1

(
1−Qn − (1−Q)n

Q

)
.

(86)

∑
z∈S4(n−1)

U(z)
1

z1,1 + 1
=

1

Q

∑
z∈S4(n−1)

(
n− 1

z0,0, z0,1, z1,0, z1,1

)
Qz1,1+z0,0+1(1−Q)z0,1+z1,0

2n−1
1

z1,1 + 1
=

1

n2n−1Q

∑
z∈S4(n−1)

(
n

z0,0, z0,1, z1,0, z1,1 + 1

)
Qz1,1+z0,0+1(1−Q)z0,1+z1,0 =

1

n2n−1Q

∑
z∈S4(n)
z1,1>0

(
n

z0,0, z0,1, z1,0, z1,1

)
Qz1,1+z0,0(1−Q)z0,1+z1,0 =

1

n2n−1Q

( ∑
z∈S4(n)

(
n

z0,0, z0,1, z1,0, z1,1

)
Qz1,1+z0,0(1−Q)z0,1+z1,0

−
∑

z∈S4(n)
z1,1=0

(
n

z0,0, z0,1, z1,0, z1,1

)
Qz1,1+z0,0(1−Q)z0,1+z1,0

)
=

1

n2n−1Q

(
2n −

∑
z−(1,1)∈S3(n)

(
n

z0,0, z0,1, z1,0

)
Qz0,0(1−Q)z0,1+z1,0

)

=
1

n2n−1Q
(2n − (2−Q)n) .

(87)
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∑
z∈S4(n−1)

z1,1=0

U(z)
1

z1,0 + 1
=

1

1−Q
∑

z∈S4(n−1)
z1,1=0

(
n− 1

z0,0, z0,1, z1,0, z1,1

)
Qz1,1+z0,0(1−Q)z0,1+z1,0+1

2n−1
1

z1,0 + 1
=

1

n2n−1(1−Q)

∑
z∈S4(n−1)

z1,1=0

(
n

z0,0, z0,1, z1,0 + 1, z1,1

)
Qz1,1+z0,0(1−Q)z0,1+z1,0+1 =

1

n2n−1(1−Q)

∑
z−(1,1)∈S3(n)

z1,0>0

(
n

z0,0, z0,1, z1,0

)
Qz0,0(1−Q)z0,1+z1,0 =

1

n2n−1(1−Q)

( ∑
z−(1,1)∈S3(n)

(
n

z0,0, z0,1, z1,0

)
Qz0,0(1−Q)z0,1+z1,0

−
∑

z−(1,1)∈S3(n)
z1,0=0

(
n

z0,0, z0,1, z1,0

)
Qz0,0(1−Q)z0,1+z1,0

)
=

1

n2n−1(1−Q)

(
(2−Q)n −

∑
z−(1,0),(1,1)∈S2(n)

(
n

z0,0, z0,1

)
Qz0,0(1−Q)z0,1

)

=
1

n2n−1(1−Q)
((2−Q)n − 1) .

(88)

∑
z∈S4(n−1)

s.t. z1,0=z1,1=0
z0,0>0

U(z)
1

z0,1 + 1
=

1

1−Q
∑

z∈S4(n−1)
s.t. z1,0=z1,1=0

z0,0>0

(
n− 1

z0,0, z0,1, z1,0, z1,1

)
Qz1,1+z0,0(1−Q)z0,1+z1,0+1

2n−1
1

z0,1 + 1
=

1

n2n−1(1−Q)

∑
z∈S4(n−1)

s.t. z1,0=z1,1=0
z0,0>0

(
n

z0,0, z0,1 + 1, z1,0, z1,1

)
Qz1,1+z0,0(1−Q)z0,1+z1,0+1 =

1

n2n−1(1−Q)

∑
z∈S4(n−1)

s.t. z1,0=z1,1=0
z0,0>0,z0,1>0

(
n

z0,0, z0,1, z1,0, z1,1

)
Qz1,1+z0,0(1−Q)z0,1+z1,0 =

1

n2n−1(1−Q)

( ∑
z∈S4(n−1)

s.t. z1,0=z1,1=0

(
n

z0,0, z0,1, z1,0, z1,1

)
Qz1,1+z0,0(1−Q)z0,1+z1,0

−
∑

z∈S4(n)
z0,1=z1,0=z1,1=0

z0,0>0

(
n

z0,0, z0,1, z1,0, z1,1

)
Qz1,1+z0,0(1−Q)z0,1+z1,0

−
∑

z∈S4(n)
z0,0=z1,0=z1,1=0

z0,1>0

(
n

z0,0, z0,1, z1,0, z1,1

)
Qz1,1+z0,0(1−Q)z0,1+z1,0

)

=
1

n2n−1

(
1−Qn − (1−Q)n

1−Q

)
.

(89)
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∑
z∈S4(n)

z0,1>0,z1,1>0

(
n

z0,0, z0,1, z1,0, z1,1

)
Qz0,0+z1,1(1−Q)z0,1+z1,0 =

 ∑
z∈S4(n)

(
n

z0,0, z0,1, z1,0, z1,1

)
Qz0,0+z1,1(1−Q)z0,1+z1,0

−
∑

z−(0,1)∈S3(n)

(
n

z0,0, z1,0, z1,1

)
Qz0,0+z1,1(1−Q)z1,0

−
∑

z−(1,1)∈S3(n)

(
n

z0,0, z0,1, z1,0

)
Qz0,0(1−Q)z0,1+z1,0

+
∑

z−(0,1),(1,1)∈S2(n)

(
n

z0,0, z1,0

)
Qz0,0(1−Q)z1,0

 =

2n − (1 +Q)n − (2−Q)n + 1.

(90)

By Equation (90),

∑
z∈S4(n−1)

z1,1>0

U(z)
1

z0,1 + 1
=

1

1−Q
∑

z∈S4(n−1)
z1,1>0

(
n− 1

z0,0, z0,1, z1,0, z1,1

)
Qz1,1+z0,0(1−Q)z0,1+z1,0+1

2n−1
1

z0,1 + 1
=

1

n2n−1(1−Q)

∑
z∈S4(n−1)

z1,1>0

(
n

z0,0, z0,1 + 1, z1,0, z1,1

)
Qz1,1+z0,0(1−Q)z0,1+z1,0+1 =

1

n2n−1(1−Q)

∑
z∈S4(n)

z0,1>0,z1,1>0

(
n

z0,0, z0,1, z1,0, z1,1

)
Qz0,0+z1,1(1−Q)z0,1+z1,0

=
1

n2n−1

(
2n − (1 +Q)n − (2−Q)n + 1

1−Q

)
.

(91)
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∑
z∈S4(n−1)

z1,1=0,z1,0>0

U(z)
1

z0,1 + 1
=

1

1−Q
∑

z∈S4(n−1)
z1,1=0,z1,0>0

(
n− 1

z0,0, z0,1, z1,0, z1,1

)
Qz1,1+z0,0(1−Q)z0,1+z1,0+1

2n−1
1

z0,1 + 1
=

1

n2n−1(1−Q)

∑
z∈S4(n−1)

z1,1=0,z1,0>0

(
n

z0,0, z0,1 + 1, z1,0, z1,1

)
Qz1,1+z0,0(1−Q)z0,1+z1,0+1 =

1

n2n−1(1−Q)

∑
z−(1,1)∈S3(n)
z0,1>0,z1,0>0

(
n

z0,0, z0,1, z1,0

)
Qz0,0(1−Q)z0,1+z1,0 =

1

n2n−1(1−Q)

( ∑
z−(1,1)∈S3(n)

(
n

z0,0, z0,1, z1,0

)
Qz0,0(1−Q)z0,1+z1,0

−
∑

z−(0,1),(1,1)∈S2(n)

(
n

z0,0, z1,0

)
Qz0,0(1−Q)z1,0

−
∑

z−(1,0),(1,1)∈S2(n)

(
n

z0,0, z0,1

)
Qz0,0(1−Q)z0,1

+Qn

)

=
1

n2n−1

(
(2−Q)n +Qn − 2

1−Q

)
.

(92)∑
z∈S4(n)

z0,1=z1,1=0,
z0,0>0,z1,0>0

(
n

z0,0, z0,1, z1,0, z1,1

)
Qz1,1+z0,0(1−Q)z0,1+z1,0 =

 ∑
(z0,0,z1,0)∈S2(n)

(
n

z0,0, z1,0

)
Qz0,0(1−Q)z1,0 −Qn − (1−Q)n

 =

1−Qn − (1−Q)n.

(93)

By Equation (93),

∑
z∈S4(n−1)

s.t. z0,1=z1,1=0,
z1,0>0

U(z)
1

z0,0 + 1
=

1

Q

∑
z∈S4(n−1)

s.t. z0,1=z1,1=0,
z1,0>0

(
n− 1

z0,0, z0,1, z1,0, z1,1

)
Qz1,1+z0,0+1(1−Q)z0,1+z1,0

2n−1
1

z0,0 + 1
=

1

n2n−1Q

∑
z∈S4(n−1)

s.t. z0,1=z1,1=0,
z1,0>0

(
n

z0,0 + 1, z0,1, z1,0, z1,1

)
Qz1,1+z0,0+1(1−Q)z0,1+z1,0 =

1

n2n−1Q

∑
z∈S4(n)

z0,1=z1,1=0,
z0,0>0,z1,0>0

(
n

z0,0, z0,1, z1,0, z1,1

)
Qz1,1+z0,0(1−Q)z0,1+z1,0

=
1

n2n−1

(
1−Qn − (1−Q)n

Q

)
.

(94)
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