1. Proof of Sufficiency of the Equilibrium Conditions

(i) In this not-for-publication Appendix, we prove the sufficiency of the first-order conditions (3.8), (3.10) in the paper for equilibrium investment. To do this, we introduce the following notation. Let \(e \) be an arbitrary investment level, and let \(V_k(e) \) be the payoff in the unmatched state to a cost type \(k = h, l \) who has invested \(e \), net of the cost of investment. So, \(V_k(e) = v(e) - c_k e \), where \(v(e) \) denotes the payoff in the unmatched state (search) to an agent who has invested some arbitrary amount \(e \). Note therefore that \(v(e_h) = v_h, v(e_l) = v_l \), where \(v_h, v_l \) are the equilibrium payoffs to search defined in the paper. Of course, \(V(.) , v(.) \) also depend on equilibrium investments \(e_h, e_l \), but we suppress this dependence for clarity in what follows. So, it suffices to show that \(V_k(e) \) has a global maximum at \(e = e_k, k = h, l \). [Note that by the arguments in the paper, \(V_k(e) \) has a local maximum at \(e_k \).] We look at the cases of \(k = h, l \) separately, beginning with \(k = h \).

(ii) Consider first a deviation by an \(h \)-type to some \(e < e_h \). Depending on how low \(e \) is, there are a number of possibilities. If \(e \) is sufficiently close to \(e_h \), i.e. above some critical value \(e^* \), then (a) \(y(e_l, e) \geq v_l \), so \(l \)-types will accept a match with the deviant, and (ii) \(y(e_h, e)/2 \geq v_h \), so \(h \)-types will accept a match with the deviant, and divide the surplus equally. In this event, from (3.4) in the paper, the deviant’s payoff will be

\[
V_h(e) = \overline{V}_h(e) = \phi[\pi_h \left(\frac{y(e_h)}{2} \right) + \pi_l (y(e, e_l) - \phi_l \left(\frac{y(e_l, e_l)}{2} \right))] - c_h e
\]

Note from (1.1) and the strict concavity of \(y \) in \(e \) that \(\overline{V}_h(e) \) is a strictly concave function of \(e \) with a global maximum at \(e = e_h \).

If \(e \) is such that either one of conditions (i) and (ii) is violated, the deviant will be at least weakly worse off relative to \(\overline{V}_h \), conditional on investment i.e. \(V_h(e) \leq \overline{V}(e) \), as shown in Figure 1(a). This is because either he is rejected by a matching partner, or because \(y(e_h, e)/2 < v_h \), so the deviant is now residual claimant in a match with another \(h \)-type, and thus receiving less than half the surplus, or some possible combination of these.

(ii) Now consider a deviation by an \(h \)-type to some \(e > e_h \). Depending on how high \(e \) is, there are a number of possibilities. Define \(y(e_l, e_h)/2 = v_l \). If \(e_h < e < e^* \), then the deviant \(h \)-type is still a residual claimant in a match with an \(l \)-type, and so from (1.1), \(V_h(e) = \overline{V}_h(e) \). If \(e > e^* \), then the deviant \(h \)-type is no longer a residual claimant in a match with an \(l \)-type, but rather the output is shared equally in the match, so then by calculations similar to those in the paper:

\[
V_h(e) = V^*_h(e) = \phi[\pi_h \left(\frac{y(e_h)}{2} \right) + \pi_l (y(e, e_l) - \frac{y(e_l, e_l)}{2})] - c_h e
\]

It is then easily verified from (1.2) that \(V^*_h(e) \) is a strictly concave function of \(e \) with a global maximum at some \(e^*_h \). Moreover, comparing (1.1) and (1.2), \(e^*_h < e_h \) because \(y(e, e_l) \) is divided by two in (1.2).

Finally, at \(e^*_h \), by definition of \(e^*_h \), \(V^*_h(e^*_h) = \overline{V}_h(e^*_h) \).

(iii) Putting (i) and (ii) together, we see that \(V_h(e) \) must be as shown in Figure 1(a), i.e. a continuous and piecewise differentiable function of \(e \) with a global maximum at \(e = e_h \).

(iv) Consider a deviation by an \(l \)-type to some \(e \neq e_l \). Consider first \(e < e_l \). Depending on how low \(e \) is, there are a number of possibilities. If \(e \) is sufficiently close to \(e_l \), i.e. above some critical \(e^*_l \), then (i) \(y(e_l, e)/2 \geq v_l \), \(l \)-types will accept a match with the deviant and divide the surplus equally, and (ii)
\(v(e) \geq y(e_h, e)/2 \), so the deviant is residual claimant in a match with an \(h \)-type. In this event, from (3.3) in the paper, the payoff to deviating is

\[
V_l(e) = V_l(e) \equiv \phi_i \frac{y(e, e_l)}{2} - c_i e
\]

(1.3)

If \(e \) is such that either one of conditions (i) and (ii) is violated, the deviant will be at least weakly worse off than at \(e = e_l \), i.e. \(V_l(e) \leq V_l(e_l) \), as shown in Figure 1(b). This is because either (a) he is no longer receiving his outside option, evaluated at \(e_l \) i.e. \(v_l \), but something less, or (b) so the deviant is now residual claimant in a match with another \(l \)-type, and thus receiving less than half the surplus, or (c) has a match rejected, or some possible combination of these.

(v) Now consider a deviation by an \(l \)-type to some \(e > e_l \). Then it is clear that no matter how high \(e \) is, the deviant’s continuation payoff must be less than \(y(e, e_l)/2 \), as all other agents have investment of at most \(e_l \). So, there are two possibilities. The first is that the deviant’s continuation payoff is less than \(y(e, e_h) \), in which case the deviant will accept a match with an \(h \)-type. In this case, \(V_l(e) = V_h(e) \) as defined in (1.3) above. The second is that the deviant rejects a match with an \(h \)-type. In this case, his continuation payoff satisfies

\[
rv(e) = \alpha \pi_t \left(\frac{y(e, e_l)}{2} - v(e) \right) \Rightarrow v(e) = \phi_i \frac{y(e, e_l)}{2}
\]

which, is the same as in (1.3), abSENT the cost of investment. So, again in this case, \(V_l(e) = V_l(e) \) as defined in (1.3) above.

(vi) Putting (iv) and (v) together, we see that \(V_l(e) \) must be as shown in Figure 1(b), i.e. a continuous and piecewise differentiable function of \(e \) with a global maximum at \(e_l \). This completes the proof. QED.
Figure 1(a)

Figure 1(b)