
The Nature of Technological Change 1960-2016∗

Costas Cavounidis†, Vittoria Dicandia‡, Kevin Lang§, and Raghav Malhotra¶

Abstract
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tion function. Using six decades of data, we conclude that routine-cognitive- and
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1 Introduction
Often technological change modifies how jobs are done rather than eliminating them out-
right. The IBM Selectric was an electronic typewriter. Its introduction in 1961 affected
secretaries, whose primary tasks were typing, planning, and communicating. The Selectric
replaced jam-prone typebars with a golf-ball-like element and, in later versions, was even
“self-correcting.” This made typing much more productive. Secretaries could now produce
typewritten pages much faster; thus, fewer secretaries were needed to type the same number
of pages. Hence, secretaries shifted between occupations toward less typing-intensive jobs.
But just as importantly, secretaries reduced their time spent typing and instead did more
planning and communicating, leading to within-occupation skill shifts.

We develop a transparent structural model that links changes in the productivity of
individual skills to changes in skill use both within and between occupations. Relying only on
readily observable variables and employing mere ordinary least squares and weighted means,
our framework extracts skill-productivity changes from worker-mobility patterns between
occupations with different skill use. We use these productivity changes to explain skill-use
shifts within occupations, en passant deriving the complementarity and substitutability of
skills with respect to their own and other skills’ productivities - analogous to elasticities.

We study the US labor market since 1960. We reproduce the stylized fact that workers
in this period moved away from routine- (both cognitive and manual) and manual-intensive
occupations. In the first part of our study period (1959-83), workers move into nonroutine-
cognitive-intensive occupations, both abstract and social-intensive. In contrast, in the second
part (1995-2017), the shift occurs only toward social-intensive occupations, consistent with
Deming [2017], who first highlighted the growing importance of social skills in an overlapping
period. We also show that within-occupation, social-skill use grew while routine-skill (both
cognitive and manual) use fell. For abstract-skill use we observe an increase in the first half of
our period and a decrease in the second half. These within-occupation shifts frequently dwarf
the between-occupation moves that dominate the literature. The pattern for manual-skill
use is less consistent, but use fell in most periods.

Our formulation explains shifts across occupations by rapid productivity growth of rou-
tine skills and slow productivity growth of abstract and social skills. Our approach allows
us to infer that complementarities with respect to other skills consistently explain a large
proportion of skill use shifts for most skills and periods. The slow productivity growth of the
social skills explains the increased within-occupation use of these cognitive skills throughout
the period we study. Similarly, the fast growth of the two routine skills’ productivity explains
their reduced use within occupations. Perhaps surprisingly, the fast growth of routine-skill
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productivity partially offset the growth of abstract-skill use within occupation, and the slow
growth of the cognitive skills’ productivity offset some of the within-occupation decline in
routine-cognitive skill use.

How does one compute skill-productivity changes? This would be straightforward if
technological change did not affect how jobs are done. We could simply measure the number
of pages a typical secretary typed before and after the Selectric. However, within-occupation
shifts are a confounding factor. Secretaries became more productive typists but also altered
their use of typing and other skills; perhaps they shifted to abstract skills to plan or social
skills to communicate. In this case, we would underestimate the Selectric’s effect on typing
productivity.

We circumvent this problem by deriving a “first-order” approach that relates changes in
employment to the levels of skill initially used in each occupation. Assuming that demand
for different outputs is relatively inelastic, as we argue is likely, employment will fall in
occupations that are intensive in their use of skills whose productivity is increasing more
rapidly than average. We show how this allows us to estimate the relative productivity
growth of different skills.

We combine these skill-productivity growth estimates with our estimates of skill com-
plementarity/substitutability to uncover how skill acquisition responds to skill-productivity
changes. We identify these cross-derivatives despite minimal assumptions on occupational
production functions.

In our model, workers first choose skills and then occupations. Each occupation has its
own production function, which maps a worker’s skills to the output produced. Outputs
are specific to each occupation. We allow for skill-enhancing technological change, a form of
“skill bias,” but leave open the character of the change. The Selectric’s arrival boosts typing
productivity, increasing the number of typed pages. However, whether workers respond by
supplementing their typing skills depends on each occupation’s elasticity of skill substitu-
tion. Typing might decline for secretaries but increase for economists (alas). Employment
in typing-intensive jobs can rise or fall; if demand for their output is relatively inelastic,
employment is likely to decrease.

We also allow for shifts in output demand (possibly due to trade shocks) or outside
competition (possibly due to offshoring) that alter demand for workers with different skills.
The model thus clarifies the distinction between technological changes to the productivity
of individual skills and changes to demand for particular kinds of workers.

We use an analog of Roy’s identity to show that the sensitivity of output to a skill’s
productivity is proportional to the amount of that skill workers possess, a readily observable
quantity. Assuming output demand varies by industry, not occupation, allows us to separate
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the employment effects of technology and demand. We decompose occupational employment
shifts into (elasticity-weighted) productivity-change-weighted skill-use terms and shifts in
output demand.1

We then use our estimated changes in relative skill productivity to understand how
workers’ skills in each occupation evolve over time. This enables us to use changes in skill use
within occupations to evaluate the results of our first exercise. We express within-occupation
changes in skill use as products of skill-productivity changes and matrices representing the
technological substitutability of skills within an occupation. Using Slutsky symmetry, we
reduce the estimands to a manageable number.

To estimate the model, we use the skills studied by Autor et al. [2003] and measured
in the Dictionary of Occupational Titles, using the third edition for skill use in 1960, the
original fourth edition for 1971, and the revised fourth edition for 1983. We combine these
measures with data from the Current Population Surveys and Censuses to measure between-
and within-occupation changes in skill use from 1960 to 1983. We also create2 and use skill
measures from the 3.0, 12.0, and 22.2 versions of the O*NET. We combine those measures
with data from the Current Population Surveys, American Community Surveys, and censuses
to measure between- and within-occupation changes in skill use from 1995 to 2016. We
focus on changes within each of the periods covered by the DOT and O*NET. For reasons
discussed in the text, we are skeptical of changes occurring during the transition between
the two sources.

Within data sets, our estimates of relative skill-productivity growth are broadly similar
across periods. Unsurprisingly, the magnitudes differ between DOT and O*NET, given the
difference in how skills are measured. Nevertheless, the broadly similar pattern of skill-
productivity growth in the two data sets is reassuring. Both show routine-cognitive- and
finger-dexterity-skill productivity growing much more rapidly than abstract- and social-skill
productivity, with manual-skill productivity falling in between.

In brief, while confirming prior work that focuses on technological change that reduced the
demand for routine-intensive work by increasing the productivity of those tasks, we establish
an equally important role for the slow growth of abstract- and social-skill productivity and,
to some extent of manual-skill productivity.

Still, there is a strong sense in which our approach is orthogonal to the exercises conducted
by Autor et al. [2003] and Goos et al. [2014]. They use the routine intensity of occupations
to measure the vulnerability to technological change and study its relation to employment

1We assume that the outputs of individual occupations are globally aggregated using a CES specification,
though our results can readily be extended to nested CES setups.

2Except for finger-dexterity skills, for which the same variable is available in both the DOT and the
O*NET
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changes. Instead, our approach leverages employment changes to identify the relevant tech-
nological change. Autor et al. [2003] observe the correlation between computerization and
the performance of routine tasks and show that this type of technological change can pro-
vide relevant insights into changes in employment in the United States. Goos et al. [2014]
study the role of routine-biased technological change and offshoring in explaining changes in
employment in 16 European countries, providing evidence of a much bigger role played by
the former.

Our skill-based occupation-specific production model cannot be nested in a task-based
model, the approach used by Autor et al. [2003], Acemoglu and Autor [2011], and Acemoglu
and Restrepo [2018]. The Selectric did not replace typists or substitute for typing outputs.
If anything, the demand for typed pages increased after the Selectric’s introduction. Neither
did the Selectric make high-skilled labor uniformly more productive or more in demand, as
in the canonical SBTC models (Katz and Murphy [1992], Berman et al. [1994], Berman et al.
[1998], Juhn [1999]). Instead, it simply increased the speed at which everyone could type -
changing the productivity of only one skill secretaries used in production.

Kogan et al. [2021], too, adopt an approach orthogonal to ours. They create a measure
of the similarity between the technology introduced by patents and the tasks performed in
an occupation as a proxy for exposure to technological advances and use it to study its
association with changes in employment and wages over a time span of almost two centuries.
Bárány and Siegel [2020] estimate productivity change down to the sector/occupation level,
assuming that each occupation uses only a single skill. In contrast, our occupations mix
different skills in different amounts, and we account for sector-level demand. Acemoglu and
Restrepo [2019] feature the emergence of entirely new occupations; our analysis is based
only on the relative employment in existing occupations and is thus not influenced by such
occurrences.

We depart from the skill-weights approaches of Lazear [2009], Gathmann and Schönberg
[2010], and Cavounidis and Lang [2020] by allowing the production function translating
skills or tasks into output to be a general constant-returns-to-scale neoclassical production
function. The earlier papers assume that output in each occupation is a linear function
of skills, with occupation-varying weights. While Yamaguchi [2012] uses a somewhat more
general specification for determining wages, it, too, makes wages in each occupation a linear
function of the worker’s skills. Moreover, Yamaguchi [2012] limits the analysis to cognitive
and motor tasks. In addition, these papers focus on mobility across occupations and skill
acquisition, either by investment or learning by doing, among individual employed workers.
We abstract from the latter and focus on labor market equilibrium.

We are not the first to look at within-occupation changes in skill use. Spitz-Oener [2006]
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and Black and Spitz-Oener [2010], using German data, and Deming and Noray [2020], using
Burning Glass data, track significant within-occupation shifts in skill use, but for a later
period. Atalay et al. [2020], using keyword frequencies from three newspapers’ job ads over
an impressively long period, show that within-occupation changes account for most task
variation over time. It is an open question as to how representative these ads are. The
paper by Consoli et al. [2023] is closest to ours. It examines within-occupation changes in
routine-task intensity (RTI) from 1980-2010. Much of their paper focuses on reconciling
the DOT and O*NET measures so that they can examine changes between 1990 and 2000
(or more precisely, between the 1991 revision of the 4th edition of the DOT and the 2000
O*NET version 3.0). In our preliminary work, we, like them, found a large shift in within-
occupation skill use when shifting between the two sources. We have, therefore, chosen to
exclude this period from our analysis. Most significantly, we develop a model to help us
interpret the results and apply it to a very long period. Like us, Freeman et al. [2020]
detect within-occupation changes in O*NET skills but over a shorter period and using quite
different measures. We confirm and explain the finding that most of the changes in the
O*NET period took place within jobs. Autor and Price [2013] also study a very long period
but do not allow for within-occupation changes in skill use.3

This paper can be read in two ways. Those interested solely in a better accounting of
the changes from 1960 to 2016 can jump to the data section and then examine Tables 1 and
2 and the accompanying text in the results section. We think this analysis is a contribution
in its own right. However, we are hopeful that readers will find that the model presents a
simple, versatile framework allowing for different kinds of technological shocks and, there-
fore, assists in thinking about our results and the large literature in this area.

2 A model of skill and job choice in general equilibrium

2.1 Skill acquisition and intermediate good production
Before employment, each worker chooses a vector of skills S ∈ Rn

+, where each component
Si reflects ability at task i. Once workers have acquired skills, each chooses a job J ∈ J ,
where J is the set of all jobs. If a worker with skills S is employed at job J , she produces
a quantity y((AiSi)i≤n, J) of intermediate good J , where each Ai > 0 is common to all jobs
and is a measure of the general productivity of skill i. Thus, each AiSi is the “effective”
amount of input i, and output y depends on the vector of effective inputs (AiSi)i≤n.

3Autor et al. [2003] examine the relationship between computer use and within-occupation change in task
use between the 1977 and 1991 revisions of the DOT but do not discuss the magnitudes of these changes.
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We place as little structure on J and y as possible. We assume only that J is a compact
subset of a Euclidian space, that y(·, J) is a constant-returns standard neoclassical production
function,4 and that y is continuous.

For simplicity, we assume that workers have a fixed budget for skills, which we normalize
to 1, so that for any individual ΣiSi = 1. This assumption captures the idea that a worker
can study plumbing or philosophy, but if she chooses to spend more time on philosophy, she
must spend less time learning plumbing. Allowing her to choose time spent learning could
affect the comparative statics on total production through a labor/leisure/learning trade-off.
However, it would only affect the effective number of labor units each worker provides. With
a constant-returns-to-scale aggregate production function, it would not affect the objects of
interest to us.

A worker who anticipates holding job J will therefore

max
S≥0

y((AiSi)i≤n, J) (1)

subject to
∑

i

Si = 1. (2)

The optimal S∗(J) and y∗(J) := y((AiS
∗
i (J))i≤n, J) are given by solving the Lagrangian.

The Lagrangian’s first-order condition at the optimum with respect to any Si is

Aiy
′
i((AiS

∗
i (J))i≤n, J) = λ = y∗(J) (3)

where the second equality follows straightforwardly from constant returns to scale. We
assume that workers always have skills that are optimal for the job they perform. Although
this assumption is strong, we maintain that in the sort of timescales our empirics cover,
workers will, at the least, endeavor to develop the right skills for the careers they select.
Allowing for investment while employed, as in Cavounidis and Lang [2020], would make this
a sensible assumption for workers not too far advanced in their work lives.

How do optimal output and skills change with A? From the envelope theorem,

∂y∗(J)
∂Ai

= S∗
i (J)y′

i((AiS
∗
i (J))i≤n, J) (4)

4y(·, J) is strictly increasing in each AiSi on Rn
++, is twice continuously differentiable, features a bordered

Hessian with non-vanishing determinant on Rn
++, is strictly quasi-concave, and y((AiSi)i≤n, J) = 0 iff

AiSi = 0 for some i. This would imply that optimal skills are continuously differentiable in A and, more
importantly, interior. If skills are quite occupation-specific, e.g., plumbing or surgery skills, this may be a
bad assumption; however, the skills used in our empirical section are relatively general. We thus think that
excluding corner solutions is unproblematic for our application.
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so that substituting for y′
i using (3), we get

∂ ln y∗(J)
∂ ln Ai

= S∗
i (J). (5)

This is effectively an application of Roy’s identity, with our skill constraint playing the role
of the budget constraint in standard utility maximization.

To speak sensibly about the effect of changes in A on S∗(J), we proceed by inspecting
y(·, J)’s i-j elasticity of substitution for any two inputs at the optimum

σi,j((AiS
∗
i (J))i≤n, J) =

∂ln
(

AiS
∗
i (J)

AjS∗
j (J)

)
∂ln Ai

Aj

= 1 +
∂ ln(S∗

i (J)/S∗
j (J))

∂ ln(Ai/Aj)
(6)

which we can rearrange as

∂ ln(S∗
i (J)/S∗

j (J))
∂ ln(Ai/Aj)

= σi,j((AiS
∗
i (J))i≤n, J) − 1. (7)

Thus, if inputs i and j are gross substitutes (complements) in job J at the optimal skill
bundle, a relative increase in the productivity of skill i will cause workers to acquire relatively
more (less) of it. If all inputs are gross substitutes (complements) in job J at the optimal
skill bundle, the constraint that ∑i S∗

i (J) = 1 further implies that ∂S∗
i (J)

∂Ai
> 0 (< 0).

2.2 Final good production and worker allocation
So far, the model somewhat resembles the model in Cavounidis and Lang (2020) in the
sense that workers are aligning their skill choices and occupation choices. We extend it by
assuming that instead of goods of intrinsic value, workers produce inputs in a CES final good
production function

Y (q) =
[∫

J
h(J)q(J)ε

] 1
ε

. (8)

Here, h(J) is the relative importance of input J for final production, and q(J) is the total
quantity of intermediate good J used as an input. We assume h is continuous. The economy
has workers of total measure 1, and each worker acquires skills, subject to the constraint,
and may choose any job in J .

The model satisfies conditions under which the decentralized equilibrium is Pareto effi-
cient. Therefore, we solve for the equilibrium by solving the planner’s problem subject to the
skill acquisition and worker measure constraints. Efficiency implies that workers producing
good J will all be identical and acquire skills S∗(J); therefore, q(J) = y∗(J)f(J), where f(J)
is the density of workers assigned to producing intermediate good J .
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Therefore, we can write the planner’s problem as

max
f

[∫
J

h(J) [y∗(J)f(J)]ε
] 1

ε

(9)

subject to
∫

J
f(J) = 1. (10)

We can then pointwise differentiate the Lagrangian and obtain

h(J)y∗(J)εf(J)ε−1 = h(J ′)y∗(J ′)εf(J ′)ε−1, (11)

which we can write as

f(J)h(J ′)
1

1−ε y∗(J ′)
ε

1−ε = f(J ′)h(J)
1

1−ε y∗(J)
ε

1−ε (12)

so that we can now integrate out J ′ and using constraint (10) get

f(J) = h(J)
1

1−ε y∗(J)
ε

1−ε∫
J h(J ′)

1
1−ε y∗(J ′)

ε
1−ε

. (13)

2.3 Comparative statics
We consider the effect of technological progress that is broadly skill enhancing, as measured
by A, and changes in the demand for intermediate goods, as measured by h. The distinction
is imperfect. For example, the reduction in transportation costs, at least partly due to
technological change, reduced demand for some locally produced intermediate goods that had
hitherto been too expensive to import. Still, we think of changes in A as capturing broad-
based technological progress, such as electronic calculators rather than adding machines for
routine-cognitive skills and electric rather than manual drills for manual skills, and h as
capturing the effects of trade and, more recently, robots.

2.3.1 The effect of skill-augmenting technological change

What happens if skill i becomes more productive? Taking the derivative of (13) with respect
to Ai gives

∂f(J)
∂Ai

= ε

1 − ε
f(J)

[
∂ ln y∗(J)

∂Ai

−
∫

J

∂ ln y∗(J ′)
∂Ai

f(J ′)
]

(14)

or simply, using (5),

∂ ln f(J)
∂ ln Ai

= ε

1 − ε

[
S∗

i (J) −
∫

J
S∗

i (J ′)f(J ′)
]

. (15)
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In other words, if and only if the elasticity of substitution among intermediate goods
1/ (1 − ε) is less than 1, will an increase in the productivity of skill i move workers away from
jobs where it is used more than average, and toward jobs where it is used less than average.
So, for example, if routine-cognitive skill is a complement to other skills in intermediate good
production, and intermediate good demand is inelastic, an increase in AR (a technological
change that makes routine-cognitive skill more productive) will (a) reduce routine-cognitive
use in all jobs (within) and (b) shift workers to less routine-cognitive-intensive jobs (across).

The idea that sectors experiencing slower productivity growth also experience faster em-
ployment growth is an old one (Baumol [1967]; see also Ngai and Pissarides [2007] and
Acemoglu and Guerrieri [2008]). We build on that idea. In our case, jobs that make more
use of skills whose productivity grows slowly will experience more employment growth.

2.3.2 The effect of changes in demand for intermediate goods

What about changes in h? In our setup, these will move workers around but not affect skill
use within a job. A decrease in the demand for horseshoes merely alters how many people
shoe horses, not how they shoe them.

To see the effect of changes in h on employment, we take the log of each side in (13) and
totally differentiate to get

d ln f(J) = 1
1 − ε

d ln h (J) + ε

1 − ε
d ln y∗(J) − d ln

(∫
J

h(J ′)
1

1−ε y∗(J ′)
ε

1−ε

)
. (16)

For a change in h, the second term in (16) is 0 and the third term does not depend on J. A
few manipulations yield

d ln f(J) = 1
1 − ε

[
d ln h (J) −

∫
J

d ln h(J ′)f(J ′)
]

. (17)

Thus, the percentage employment growth in job J is proportional to the deviation of
the percentage change in h (J) from the employment-weighted average.

2.3.3 Putting it all together

Combining (15) and (17), we have

d ln f(J) = ε

1 − ε

∑
i

[
S∗

i (J) −
∫

J
S∗

i (J ′)f(J ′)
]

d ln Ai

+ 1
1 − ε

[
d ln h (J) −

∫
J

d ln h(J ′)f(J ′)
]

. (18)

The model distinguishes between changes that replace (or reduce demand for) occupations
by automating or offshoring them (a decline in h), such as when data input is imported
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from abroad, and those in which technology makes relevant skills more productive, such as
when keypunch machines are replaced by input at computer terminals. When h declines, the
number of workers employed in data entry in the home country falls, but any workers engaged
in data input continue to input data using the same skill set. Suppose the productivity Ai

of a skill i important to data entry increases. If skill inputs are complements of data entry
and intermediate-good demand is inelastic, workers in data-entry jobs end up with less skill
i, and fewer workers are hired to input data.

Interpreted within our model, Autor et al. [2003] found that, in the period they study,
technological innovation increased the productivity of routine skills. Since the demand for
these skills was inelastic, the amount of time individual workers spent on them declined
as did total employment in routine-intensive occupations. Our interpretation of the longer
period that we study will be that the productivity of abstract- and social-skill use did not
increase as rapidly as that of routine-cognitive and finger-dexterity skill. This caused a shift
toward abstract- and social-skill use because the elasticity of substitution between interme-
diate goods is less than 1, thereby shifting employment to abstract and social-skill-intensive
occupations. Within occupations, declining relative abstract- and social-skill productivity
shifted skill use within occupations toward these nonroutine-cognitive skills overall, while
increasing relative routine-skill productivity (routine cognitive and finger dexterity) shifted
skill use away from routine-cognitive skill.

We note that our model assumes ex-ante identical workers. In a richer model with ex-ante
heterogeneous workers, changes in demand might alter how jobs are done. Intuition suggests
that workers “better at routine-cognitive tasks” do jobs more routinely than other workers.
In such a world, a reduction in demand for routine-cognitive-intensive outputs would shift
such workers to less-routine jobs, and those workers would then perform those jobs more
routinely than before, which is the reverse of what we observe.

2.4 Implications for empirical work
For empirical analysis, we rewrite (18) as

∆ ln(empI,J) = ε

1 − ε
Σi

(
d ln Ai

(
Si,J − Si

))
+ γI + µI,J (19)

where ∆ ln(empI,J) is the change in the employment level in industry I in occupation J, the
empirical counterpart of f (J), and γI is the coefficient on an industry dummy that captures
changes in demand due to shifts in industry demand. We note that this is an imperfect
proxy for changes in h. It will capture changes in demand for an occupation resulting from,
for example, import competition but not changes due to occupation-specific factors such
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as robots, although we note that robot penetration is typically measured at the industry or
broad geographic level. We measure Si,J by its average in two proximate editions of the DOT
or O*NET. µ is a mean-zero error term. We estimate (19) separately for each time-period
pair.

Since each worker’s skills sum to 1, skill use on a job sums to 1, as does mean skill use.
Therefore, (19) still applies if we add a constant term to each d ln Ai; we choose to subtract
d ln A, the mean change. We thus rewrite (19) as

∆ ln(empI,J) = ε

1 − ε
Σi

((
d ln Ai − d ln A

) (
Si,J − Si

))
+ γI + µI,J (20)

= ε

1 − ε
Σi

((
d ln Ai − d ln A

)
Si,J

)
+ γI + µI,J (21)

= ΣiSi,Jβi + γI + µI,J . (22)

Equation (22) describes a regression of the (approximate) percentage change of employ-
ment in an occupation/industry cell on the skills used in that occupation and industry
dummies. The coefficients show the change in each skill’s productivity relative to the aver-
age up to a factor of proportionality. This factor is negative if the elasticity of substitution
between intermediate goods is less than 1, which we assume. Thus, a negative coefficient
means that the productivity of that skill grew faster than the average of all the skills.

Although derived quite differently, our final equation is similar to the one in Goos et al.
[2014]. Their theoretical model includes wages in the equivalent of (22), which they proxy
by industry-year and occupation dummies.5 Since we first-difference the data and estimate
the model separately for each pair of years, we implicitly control for occupation and year
while explicitly controlling for industry. They also use an alternative specification in which
they explicitly control for wages but do not include it in the main text as there are concerns
about endogeneity. While we agree with such concerns, we perform the same exercise and
observe that the inclusion of wages does not alter the outcome of our analysis.6 The major
difference in our specifications is that they include only routine-task intensity and not the
other skills but also include a measure of offshorability.

Assuming an elasticity less than 1 seems natural. As Jones [2011] notes in a somewhat
different context, intermediate goods are unlikely to be substitutes. As he puts it, computers
are close to essential for producing some goods. Consistent with this argument, Goos et al.
[2014] estimate that the elasticity of substitution across industry outputs is 0.42. Our case is

5We ignore the country component since we study only one country.
6We do not model wages in our current framework. A case for their inclusion could be made if we assumed

the labor supply to an occupation to be elastic but not infinitely elastic. However, this is unnecessary given
that empirically, wages do not affect our results (Table 2A).
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even stronger; the outputs of secretaries, sales workers, plumbers, and truck drivers cannot
easily substitute for each other. Note that this differs from the statement that someone
working as a secretary might be almost as productive if he worked in sales. This is entirely
plausible in our model if the required underlying skills are close.

Note that we must drop a skill because the skills sum to 1. Therefore, we can interpret
the coefficients as the growth rate of productivity of each skill relative to the excluded skill,
again up to a multiplicative factor. Together with the requirement that the sum of the
deviations from average productivity growth equals 0, this fully identifies the changes in
relative productivity between skills.

Equation (22) addresses only changes in the productivity of skills and not shifts in the
demand for occupations except through the inclusion of the two-digit industry dummies,
in line with the effect of h in (17). Demand for occupations concentrated in industries
facing import competition or declining demand will fall even absent technological change.
Controlling for industry will capture employment losses due to import competition but not
robots or outsourcing of specific occupations to other countries. We estimate (22) by ordinary
least squares.

3 Data
Following Autor et al. [2003], our skill-use measures for the first part of our period come from
the Dictionary of Occupational Titles (DOT). We use the third edition, issued in 1965 but
compiled starting sometime after the release of the second edition in 1949, as our measure
of skill use in an occupation in 1960, although it may be centered more on the late 1950s.
To the best of our knowledge, the 1965 DOT has not been previously used for this type of
analysis. We use the fourth edition, published in 1977 and based on data starting in 1965 for
job use in 1970-72 (“1971”). Finally, we use the last revision of the fourth edition, based on
revisions from 1977 to 1991 for skill use in 1982-84 (“1983”). The files for the 4th and revised
4th versions of the DOT come from Autor et al. [2003]. As others have noted, the revised
fourth edition is not a “fifth” edition; many occupations were not revisited between the
fourth edition and the revised 1991 edition because the revision addressed only occupations
believed to have changed the skills they used. Therefore, we probably underestimate the
extent of within-occupation changes in skill use between 1971 and 1983. However, we observe
differences between the 4th and revised 4th editions for most of the occupations present in
both 1971 and 1983.

For the second half of our time period, we follow Firpo et al. [2011] in relying on O*NET,
the successor to the DOT, which was first issued in 1998. Since then, there have been
multiple revisions of the O*NET. Each revision updates a subsample of occupations. We
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use version 3.0 issued in 2000 for skill use in 1994-96 (“1995”),7 version 12.0, issued in 2007
for skill use in 2005-07 (“2006”) and the last before the Great Recession, and version 22.2,
issued in February 2018 for skill use in 2015-17 (“2016”).

The DOT identifies aptitudes, temperaments, and abilities used in a job and measures
them numerically. The O*NET identifies abilities, skills, work activities, and work contexts.
In both data sets, observations are at the occupation-title level.

The 1965 DOT includes all of the skill-use (task) measures used in Autor et al. [2003].
With some small caveats discussed below, it recorded them on the same scales as the later
edition, allowing us to have consistent skill measures. Of course, we cannot be sure that
individuals interpreted the measures in the same way in the 1950s, 60s, and 70s, but we see
no reason that this concern should be greater than for many measures used to compare time
periods or geographies.

The one small change is that the earlier edition provides a single measure of “General
Education Development,” while the later releases measure reasoning, mathematical, and
language development separately. We experimented with using the average or the maximum
of these three to generate a single measure comparable to the 1965 measure and checked
whether this affected the correlation between the third- and fourth-edition measures. The
correlations were similar. Looking across groups did not create a strong case for either. We
present results using the average of the reasoning, mathematical, and language development
measures for General Education Development in the 1977 and 1991 DOT s. In addition, the
1965 DOT sometimes provides more than one value of an aptitude, temperament, or ability
for a single job title. In such cases, we use a simple average of the values reported.

Like Autor et al. [2003], we measure routine-cognitive skill using the variable “adapt-
ability to situations requiring the precise attainment of set limits, tolerances, or standards” ;
finger-dexterity skill, which they call routine-manual skill by “finger dexterity” ; manual
skill by “eye-hand-foot coordination” ; abstract-interactive skill, that we will call social skill,
by “adaptability to accepting responsibility for the direction, control, and planning of an
activity.” For our measure of abstract-cognitive skill, we use “General Education Develop-
ment” rather than only its mathematical component to allow for consistency across all DOTs.

While the O*NET is the DOT ’s successor, they have somewhat different variables and
scales. We select variables present and measured consistently in all O*NET versions we
use.8 “Finger dexterity” is the only variable we used from the DOT that is also available

7We cannot use O*NET version 1.0 because its occupational classification cannot be aggregated to census
occupations. We do not observe any differences in reported skill levels for those occupation titles common
to 1998 and 2000. Hence, any changes in skills between the two versions probably reflect only different
occupation classifications.

8As with the DOT, we cannot be sure that the measures were interpreted consistently over time but do
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in the O*NET. We thus use it as our measure for finger-dexterity skill. In the absence
of a perfect match between the two data sets, we measure manual skill by the average of
“multilimb coordination” and “gross body coordination.” We measure routine-cognitive skill
by the average of “importance of being exact or accurate,” “importance of repeating the same
tasks,” and “number facility.” We measure social skill by the average of “guiding, directing,
and motivating subordinates” and “developing objectives and strategies.”

We measure the three components of General Education Development analogously to our
measures from the DOT and average them. We use “mathematical reasoning” for the math-
ematical component; an average of “oral expression,” “written expression,” and “written
comprehension” for the language component; and “critical thinking,” “processing informa-
tion,” and “making decisions and solving problems” for the reasoning component.9 For each
census occupation, we use a weighted average (by employment share) of the skill used in the
DOT or O*NET occupations comprising that census occupation.

For consistency with our theoretical model, we depart from Autor et al. [2003] and Autor
and Dorn [2013] in how we use these measures. Autor et al. [2003] use the absolute value
of each skill, while Autor and Dorn [2013] focus on routine intensity defined as (RTI =
ln(R)− ln(M)− ln(A)).10 Instead, we first scale the absolute level of each sub-component of
skill use by where it lies between the maximum and minimum of that skill sub-component’s
use in any occupation over our three sample periods within each of the two data sets. Thus,
use of the sub-component c in occupation J at time t is:

s̃killc,J,t = skillc,J,t − skillmin
c

skillmax
c − skillmin

c

(23)

where skillc,J,t is the value obtained directly from the DOT or O*NET measures aggregated
at the occupation level, and skillmin

c and skillmax
c are the minimum and maximum absolute

values (at the occupation level) for skill sub-component c in any version of the DOT for
DOT measures or O*NET for O*NET measures. We then average over the sub-components
of skill i to obtain s̃killi,J,t, an intermediate measure of the use of skill i in job J in year t.

not see this as concerning.
9For more details on the chosen variables, see Table 3A.

10We, like everyone else in this literature, have to treat the ordinal measures in the DOT and the O*NET
as measured on an interval scale. We do so with an unusual level of chagrin given that one of us has pointed
out (Bond and Lang [2013], Bond and Lang [2019]) that findings can be sensitive to how an ordinal scale is
converted to an interval scale. Unfortunately, the approaches in Bond and Lang are not available to us in
this setting.
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Finally, we compute the share of each skill in the overall sum

Si,J,t = s̃killi,J,t

Σks̃killk,J,t

(24)

so that our five skill measures sum to 1.
Census occupations are more highly aggregated than the DOT’s and the O*NET’s job

titles. Following Autor et al. [2003], we use the DOT -augmented version of the April 1971
Current Population Survey for this aggregation in the first half of our period, since this is the
only data set with both DOT and census codes. For the second part of our period, we use
the Occupational Employment and Wage Statistics of the US Bureau of Labor Statistics,11

which provide annual employment for each occupational title, as well as a crosswalk between
occupational titles and census occupations.

We use the consistent occupation system created by Dorn [2009] and the crosswalk files
provided by Autor and Dorn [2013], linking these occupations to previous census classifica-
tions. This gives us 192 occupations in the initial period, 259 in the second, 318 in the third,
316 in the fourth, 320 in the fifth, and 309 in the last period12. We create the occupation skill
measures using occupation weights from all full-time workers not living in group quarters
between ages 18 and 64 in the IPUMS 1960 5 percent sample, in the IPUMS 1970 1 percent
State sample, the IPUMS 1980 5 percent sample, the IPUMS 2000 5 percent sample, and
the 2005-2007 and 2015-17 ACS three-year samples.

Despite the tremendous insights that measures of these skills have provided, a non-
negligible share of workers purportedly make no use of manual skills. In the first period,
about 13 percent of workers do not use social skills, 9 percent do not use routine-cognitive
skills, and 8 percent of workers do not use manual skills. Seven percent of workers do not
use social skills in the second period. In the fourth and fifth periods, 5 and 9 percent of
workers do not use manual skills. To address this latest issue and make sure that the decline
in manual-skill use in our O*NET period was not driven by the share of workers who do not
use it at all, we used an alternative definition for manual skill that included “Spend Time
Using Your Hands to Handle, Control, or Feel Objects, Tools, or Controls,” a measure that
is not as closely related to the DOT original variable as the ones we selected but was used
by Acemoglu and Autor [2011] and has only one occupation in 2006 reporting a value of 0
over the entire O*NET period. This change does not affect the patterns of the shifts in skill
use (overall, within, and across occupations). Thus, we conclude that the sizable share of
workers not using manual skills in the O*NET period is not a concern for our results.

11https://www.bls.gov/oes/tables.htm
12Like Autor and Dorn [2013], we exclude agricultural occupations.
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Our data on the occupation distribution come from the census (IPUMS), March (Annual
Social and Economic Supplement) Current Population Surveys (CPS), and the American
Community Surveys (ACS) and are limited to workers ages 25-64, but otherwise, our sample
restrictions are the same as for the calculation of the skill weights. Since economists know
these data well, we do not describe them here. Except for the last two periods, for which
we always use the 2005-07 ACS and 2015-2017 ACS three-year samples, our choice of which
sources to use for different purposes reflects an admittedly arbitrary trade-off between sample
size and proximity of the employment data to the timing of the DOTs or O*NET. Before
1968, the CPS coded occupations in fewer than 40 categories and did not use the census
classification. Therefore, we use the 1960 1 percent census sample for our initial period.
We rely on the 1970, 1980, and 1990 Census samples for the three later periods when we
believe greater accuracy in estimating the employment cells is critical. Thus, we use the
censuses or the ACS to aggregate from DOT and O*NET to census occupations and when
using occupation/industry cells as observations in our regressions. Our decomposition of
skill use into within- and between-occupation changes relies on occupation, not industry,
and therefore, uses larger cells. Consequently, we use the current occupation in the 1970-72,
1982-84, and 1994-96 March CPS for this purpose.

4 Results
Table 1 shows how use of the five skills evolved from 1959 to 2016. Recall, however, that the
measures in the first and last three periods are not comparable. Therefore, when discussing
trends, we focus on changes within each sub-period. If the changes within each sub-period
are directionally similar, it is plausible but not certain that the change applies to the entire
period.

With this caveat in mind, we see a steady increase in the use of social skills. Social-skill
use grew from .12 to .15 between 1959 and 1983 and from .15 to .23 between 1995 and 2016.
As social-skill use increased, the use of routine-cognitive, finger-dexterity, and manual skills
decreased. Note that this must be true for one or more skills in aggregate since skill use
sums to 1. However, we observe declines in the use of these three skills over the full period.
There are, however, some notable departures from trends. Manual-skill use increased in the
1960s, while the use of finger-dexterity skills marginally increased in the 1970s.

The use of abstract skills is the only one for which we observe different patterns in the two
sub-periods analyzed. While their use increased between 1959 and 1983, it decreased from .24
to .22 between 1995 and 2016. These changes are not startling in light of the Deming [2017]
finding that between 1980 and 2012, employment growth in abstract-intensive occupations
only occurred in those characterized by high social-skill use.
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Our results suggest that, within both sub-periods, overall abstract/social-skill use in-
creased, and overall routine-skill use declined. Previous work has documented these trends,
focusing only on the changes in three skills: nonroutine-cognitive skills, which are an aver-
age of abstract and social skills; routine skills, which are an average of routine-cognitive and
finger-dexterity skill; and manual skills.

If we believed that the DOT and O*NET measures were comparable, we would, for
instance, conclude that social-skill use fell between 1983 and 1995. We find differences
between the measures to be a more plausible explanation for the decline. In the same period,
we also observe major shifts in the use of finger-dexterity and manual skills, reinforcing the
plausibility of this hypothesis. Between 1983 and 1995, we also observe that abstract-skill
use decreased. Given the uncertainty generated by the combination of the two data sets,
we abstain from determining whether the trend reversal for abstract-skill use started before
1995.

Differences in the standard deviations of skill use across occupations reinforce our con-
cerns about treating the results from the DOT and O*NET as a single time series. Except for
finger-dexterity and manual skills in 1959, the standard deviation of skill use is consistently
higher in the DOT.

4.1 Within-occupation changes in skill use are important
Table 2 decomposes skill-use changes into within- and across-occupation changes using the
following decomposition:

Skille+1,t+1 − Skille,t = (Skille+1,t+1 − Skille+1,t)︸ ︷︷ ︸
∆ across

+ (Skille+1,t − Skille,t)︸ ︷︷ ︸
∆ within

(25)

where e indicates the DOT or O*NET edition, and t indicates the period considered. Thus,
∆ within shows how skill use would have changed had the occupations in which people
worked been the same, for example, in 1959 and 1971. In parallel, ∆ across shows how much
skill use would have changed had skill use in each occupation remained constant between
1959 and 1971, and only the distribution of workers across occupations shifted. With the
exceptions discussed in the introduction, this latter measure corresponds to that typically
presented in the literature. Therefore, we begin with across-occupation changes. Differences
from the prior literature may reflect our use of different editions of the DOT and O*NET
and/or our somewhat different use of the skill measures.

The across-occupation patterns we observe are consistent with the prior literature. In
each period, we observe movement toward abstract- and social-intensive occupations. This
shift was particularly large in the 1970s. The change over the full period was more sizable for
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social than abstract skills. The movement away from routine-cognitive and finger-dexterity-
intensive occupations was particularly notable during the DOT periods, while the movement
away from manual-intensive occupations was greatest in the 1970s.

As with Table 1, we show changes between 1983 and 1995 for completeness, despite our
concerns about their reliability. With this caveat in mind, we observe the general across-
occupation shift from routine and manual skills to nonroutine-cognitive skills reported in
Consoli et al. [2023].

Perhaps the most important message of Table 2 is that between-occupation shifts miss
much of the action. Within-occupation changes are less consistent from period to period
but are often large. Between 1959 and 1971, there were large within-occupation increases in
abstract- and manual-skill use and large declines in the use of social- and routine-cognitive
skills. Within occupation, social and finger-dexterity-skill use rose notably between 1971
and 1983. Over the first two periods, the within-occupation changes were considerable,
significantly increasing the movement away from routine-cognitive skills and toward abstract
skills, while partially offsetting the movement away from finger-dexterity and manual skills
and toward social skills.

Changes between 1995 and 2016 are almost entirely within occupation. While the shift
toward more social-intensive and less manual-intensive occupations continued in the pe-
riod during which we rely on O*NET, the decline in routine-cognitive and finger-dexterity-
intensive occupations and, to a lesser extent, abstract-skill use all but ended. The decreases
we observe in abstract- and routine-skill use between 1995 and 2016 are driven entirely by
changes within occupation.

If we look only across occupations, merging the DOT and O*NET gives plausible results.
However, we must believe that the within-occupation shifts in social-, routine-cognitive-, and
manual-skill use differed fundamentally between 1983 and 1995 compared with the 24 years
before or 21 years after. We find this implausible, reinforcing our concerns about differences
between the two data sources. Henceforth, we treat the periods relying on them as distinct
and do not use changes between 1983 and 1995.

In sum, over our entire period, we observe a shift from routine-cognitive-, finger-dexterity-
, and manual-skill use to social-skill use both between and within occupations, even though
we observe some surprising changes within occupations in the DOT period. While increas-
ing across occupations throughout the entire period, abstract-skill use within occupations
increased between 1959 and 1983 and decreased between 1995 and 2016.
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4.2 Relative skill-productivity growth matters
Recall that estimating (22) and imposing that the coefficients sum to 0 allows us to identify
the relative growth of skill productivity.13 Table 3 shows the results of this exercise (see Table
1A in the Appendix for untransformed coefficients). The coefficients in the table measure
the relative growth rate of the productivity of the skills multiplied by ε/ (1 − ε) . Assuming
that the elasticity of substitution is less than one, 0 > ε/ (1 − ε) > −1, and we can bound
the difference relative to the average in the annualized rate of growth over some period by
the coefficient divided by the period’s length.

The four coefficients are jointly significant in each period except the first. Recall that
the mean change is normalized to 0, making one coefficient redundant so there are only four
coefficients.

The table shows a clear pattern, even though most individual estimates are imprecise.
The only strong statements we can make about individual coefficients are that 1) abstract-
skill productivity grew slower and routine-cognitive productivity grew faster than the average
in the most recent period, 2) finger-dexterity-skill productivity grew faster than average in
the 1970s, and 3) there is weak evidence that social-skill productivity grew slower than
average in the 1960s.

However, we can confidently conclude that over the entire DOT period, social skill pro-
ductivity grew more slowly, while both routine- and finger-dexterity skill productivity in-
creased more rapidly than average.14 We can similarly conclude that during the O*NET
period, abstract- and social-skill productivity grew more slowly, and routine-cognitive and
finger-dexterity-skill productivity grew faster than average.

Finally, for each skill, we can test the null that the relative growth was average in both
periods. We conclude that over this entire period, abstract- and social-skill productivity
grew more slowly, and routine-cognitive- and finger-dexterity-skill productivity grew more
rapidly than average. We do not find evidence that manual-skill productivity growth was
different than average over our entire period or the DOT and O*NET periods individually.15

We provide further evidence of the importance of differences in skill-productivity growth
13To reduce measurement error, we restrict the sample to occupation/industry combinations comprising at

least .0001 percent of employment in each year included in the pair and at least an average of .0002 percent
over the two years. The second requirement ensures that we do not create bias by dropping observations near
the threshold that saw a modest change in employment that caused it to cross the .0001 percent threshold but
keep similarly small occupation/industry observations that happen not to cross the threshold. Nevertheless,
many of the employment changes we observe remain implausible. Since occupations are coded consistently
across periods, we are not concerned that changes in occupation drive these changes. We winsorize the data
at the 5th and 95th percentiles. Finally, we average our skill-use measures from the two editions (or the
revision) of the DOT, and the three editions of the O*NET corresponding to the pair of years in our analysis.

14These and similar results are based on an exponential bootstrap with weights assigned by cluster.
15We implicitly assume that changes in the 1980s would not undo these conclusions.
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in the line labeled “proportion due to skills.” This uses the Shapley-Owen decomposition to
show the proportion of the R-squared allocated to skill. Strikingly, this proportion grows
over the four periods. While accounting for only one-quarter of the explanatory power may
appear modest, recall that the number of industries dwarfs the four skill variables included
in the regression. We conclude that relative skill-productivity growth matters at least after
1970.

As noted previously, we also perform this exercise by adding the percentage change in
average wages to the controls. Table 2A in the Appendix shows that this has no meaningful
impact on our estimates.

4.3 Fast routine- and slow nonroutine-cognitive productivity growth
changed how jobs are done

To understand what our model says about within-occupation skill shifts, we take a linear
expansion of Si (J) with respect to relative changes in skill productivities:

dSi(J) = Σk
∂Si(J)
∂ ln Ak

d ln Ak. (26)

Now, we multiply by f(J) and integrate over all jobs

∫
J

(dSi (J) f(J)) = Σk

(
d ln Ak

∫
J

∂Si (J)
∂ ln Ak

f(J)
)

. (27)

Now, we use the fact that ΣkSk = 1 to get

Σk
∂Sk(J)
∂ ln Ai

= 0. (28)

A short argument based on Slutsky symmetry and the regularity and constant-returns-
to-scale assumptions on y(·, J) shows that16

∂Si (J)
∂ ln Ak

= ∂Sk (J)
∂ ln Ai

(29)

16As we have assumed that y(·, J) is a neoclassical production function subject to a linear skill budget
constraint, we can turn to standard demand theory. The arguments of y(·, J), (AiSi)i≤n, can be thought
of as “effective” skills . Now, AiSi is simply the Marshallian demand for effective skill i, where the price
of effective skill i is 1/Ai. We denote by AiS

Hicks
i the Hicksian demand of effective skill i, and by ω

the skill budget constraint. The Slutsky equation is ∂(AiSi)
∂ 1

Ak

+ ∂(AiSi)
∂ω AkSk = ∂(AiSHicks

i )
∂ 1

Ak

. From Slutsky

symmetry, ∂(AiSHicks
i )

∂ 1
Ak

= ∂(AkSHicks
k )

∂ 1
Ai

, and from constant returns to scale we have symmetric income effects
∂(AiSi)

∂ω AkSk = AiSiAkSk = ∂(AkSk)
∂ω AiSk. Thus, ∂(AiSi)

∂ 1
Ak

= ∂(AkSk)
∂ 1

Ai

, so that −AiA
2
k

∂Si

∂Ak
= −AkA2

i
∂Sk

∂Ai
or

simply ∂Si

∂ ln Ak
= ∂Sk

∂ ln Ai
as desired.
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so that we can rewrite (28) as

Σk
∂Si(J)
∂ ln Ak

= 0. (30)

Thus, we can normalize (27) with respect to an arbitrary d ln An:

∫
J

(dSi (J) f(J)) = Σk ̸=n (d ln Ak − d ln An)
∫

J

∂Si (J)
∂ ln Ak

f(J). (31)

Denoting the integral on the right by ∂Si/∂ ln Ak, and replacing the left-hand-side with
the within estimates in Table 2 and the d ln Ak terms with the estimates in Table 3, we arrive
at

ŵithini = Σk ̸=n

(
d̂ ln Ak − d̂ ln An

) ∂Si

∂ ln Ak

. (32)

These ∂Si/∂ ln Ak terms represent the average changes in workers’ skills brought on by
isolated productivity changes, and we are most interested in extracting them. As Section 4.2
suggests, however, more than one Ak changed in each of our periods, making this exercise
nontrivial.

Because of the measurement differences, we estimate these substitution effects separately
for the DOT and O*NET periods. Assuming the derivatives do not change over time within
data sets, in each case we have ten equations and ten unknowns after imposing symmetry
per (29) and that the substitution effects sum to 0. We choose the parameter estimates that
minimize the sum of the squared differences between the calculated within change and the
predicted within change. Two of the equations within each set of ten are redundant. Rather
than arbitrarily discarding two equations, we minimize the sum of the squared deviations.

The derivatives, ∂Si/∂ ln Ak, capture a concept analogous to p and q complementarity and
substitutability. If the derivative is positive, an increase in the productivity of skill k increases
the amount of skill i acquired by workers. We refer to this case as A-complementarity. Note
that, unlike p-complementarity, a skill may be A-complementary or A-substitutable with
itself. In contrast, AiSi, the “effective” amount of skill i supplied by the worker must
increase with Ai.

Recall that in Table 3, we estimate ε/ (1 − ε)∗d ln Ai. So, as ε is unknown, with a change
of sign, the coefficients represent lower bounds on the absolute values of the skill-productivity
changes. Therefore, using these coefficients yields upper bounds on the derivatives. Conse-
quently, we focus on the signs of the estimated derivatives rather than their precise magnitude
and ignore the ε/ (1 − ε) term other than to assume that it is negative. Thus, in reading
Table 4, which displays the results of this exercise, readers can rely on their intuition to
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divide the estimated derivative by something in the range of 1.3 to 1.7.
As a result of our exercise, the cross-derivatives of finger-dexterity and abstract skills,

and finger-dexterity and social skills are set to 0 in both periods. This choice minimizes
squared differences between derivatives in the DOT and their corresponding derivative in
the O*NET period. As seen in Table 4, social, routine-cognitive, and manual skills are,
on average, A-substitutes for themselves in both periods, while finger-dexterity skill is an
A-complement for itself. The cross-derivative for abstract skill is one of the few that changes
between the DOT and the O*NET, being respectively an A-complement and an A-substitute
to itself in the DOT and the O*NET periods. Notably, abstract skill is an A-substitute
with both social and routine-cognitive skills. Consequently, the slow productivity growth of
abstract skills and social skills both contributed to the within-occupation growth in abstract-
skill use, while the fast productivity growth of routine-cognitive skills contributed to the
decline in routine-cognitive-skill use. At the same time, routine-cognitive-skill use increased
due to the slow growth of abstract-skill productivity and to a lesser extent of social-skill
productivity. Similarly, abstract-skill use decreased due to the rapid growth in routine-
cognitive skill growth.

The results change very little between the DOT and the O*NET data. The only notable
exceptions are represented by finger-dexterity skills, which are an A-complement in the DOT
period and and A-substitute in the O*NET period with manual skills, and social skills, which
are an A-substitute with routine-cognitive skills in the DOT period and the opposite (but
with a negligible coefficient in terms of magnitude) in the O*NET period.

Still, we cannot discount the possibility that the changes reflect measurement differences.
While we have done our best to match the measures of routine-cognitive skills, social skills,
and manual skills, they are not identical and may affect the degree of A-complementarity or
substitutability.

We remind readers that the parameters in Table 4 are averages. Increased productivity of
finger dexterity could increase the use of abstract skill among secretaries and decrease its use
among university faculty. Averaged across occupations, the cross-effect could be consistent
with our estimate of no effect.

Table 5 leverages these results to provide more precise estimates of how the change in
the productivity of each skill accounts for the overall within-occupation shift in skill use. It
also compares the predictions of the model with the data. In general, the model predicts
the direction and magnitude of changes very well. In fact, we closely match the changes in
within-job skill use for all skills in all periods.

Recall that in Table 3, our skill measures increasingly explain changes in log employment
as the period we examine becomes more recent. For the 1960s, they are jointly insignificant
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and explain little of the observed employment growth. Therefore, we treat the estimated
sources of within changes cautiously.

In the last three periods, social-skill use increased markedly within occupation. Table
5 reveals that this shift was due primarily to the slow growth of abstract- and social-skill
productivity. Over the same period, within occupation, there was a shift away from the use
of routine-cognitive skills, largely explained by their rapid productivity growth, although the
slow growth of abstract-skill productivity also contributed.

During the O*NET period, the rapid growth of routine-cognitive productivity reduced
abstract-skill use, but the slow growth of abstract skills offset this, at least in the most recent
period. In a similar manner, these two forces had largely offsetting effects on manual-skill
use.

5 Summary and conclusion
We make two contributions. First, at a purely empirical level, we provide new evidence on
changes in skill use between and within occupations over a very long period. Second, we
develop a simple model of technological change that increases the productivity of individual
skills. Our model allows us to identify the sources of technological change that generate
movement across occupations and skill-use changes within occupations. It contrasts with the
skill-biased technological change literature by focusing on skills rather than a one-dimensional
skill, such as “college graduate.” It also contrasts with the routine-biased technological
change literature by focusing on how technology alters how jobs are done. Our model does
account for technological change that replaces occupations but only through changes in
industry demand.

The empirical application of the structural model is strikingly simple, requiring only OLS
and algebra. Yet, it produces valuable insights. While the prior literature has focused on
technological change as replacing routine tasks, we find that the slow growth of abstract- and
social-skill productivity plays at least an equal role in explaining the shift within occupation
to abstract- and social-skill use and in reducing the shift out of routine-cognitive-skill use.

The model and results highlight how substitutability and complementarity among skills
within occupations interact with the relative growth rates of skill productivities to generate
shifts in skill usage. While differential changes in skill productivity also generate movements
across occupations, as emphasized in the RBTC literature, that literature has not focused
on the link between the within and between changes. We believe that this paper is a signif-
icant step forward in addressing this gap. Obviously, readers must make that judgment for
themselves.
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Table 1: Skills Use Levels by Year

1959 1971 1983 1995 2006 2016
Abstract skills

0.231 0.264 0.280 0.241 0.224 0.220
(0.082) (0.121) (0.115) (0.072) (0.050) (0.047)

Social skills
0.121 0.122 0.154 0.149 0.204 0.225

(0.139) (0.167) (0.176) (0.109) (0.060) (0.065)
Routine cognitive skills

0.289 0.258 0.224 0.257 0.248 0.247
(0.164) (0.195) (0.179) (0.051) (0.053) (0.048)

Finger dexterity skills
0.289 0.272 0.274 0.194 0.185 0.183

(0.075) (0.098) (0.098) (0.083) (0.045) (0.037)
Manual skills

0.070 0.085 0.068 0.158 0.139 0.125
(0.056) (0.106) (0.091) (0.091) (0.086) (0.088)

Notes: Estimates use the occupation distributions from the 1960 census, the March 1970-72, 1982-84, and
1994-96 Current Population Surveys, the 2005-2007 3-Year ACS/PRCS, the 2015-2017 ACS. The skills
used in each occupation are taken from the third, fourth, and revised fourth editions of the Dictionary of
Occupational Titles and from the 3.0, 12.0, 22.2 versions of the O*NET. DOT occupations are aggregated
to census occupations using the April 1971 Current Population Survey. O*NET occupations are aggregated
using the Occupational Employment and Wage Statistics (OEWS). The data for 1959-1983 and 1995-2016
are not strictly comparable. Standard deviations across occupations are provided in parentheses.
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Table 2: Within- and Across-Occupation Components

1959-1971 1971-1983 1983-1995 1995-2006 2006-2016
Abstract skills
∆ within 0.032 0.002 -0.044 -0.018 -0.005
∆ across 0.001 0.014 0.005 0.001 0.002
Social skills
∆ within -0.018 0.013 -0.014 0.052 0.017
∆ across 0.018 0.019 0.009 0.003 0.003
Routine cognitive skills
∆ within -0.022 -0.019 0.035 -0.009 0.000
∆ across -0.009 -0.015 -0.002 0.000 -0.001
Finger dexterity skills
∆ within -0.008 0.012 -0.073 -0.009 -0.000
∆ across -0.009 -0.009 -0.007 -0.001 -0.001
Manual skills
∆ within 0.016 -0.008 0.096 -0.017 -0.011
∆ across -0.001 -0.010 -0.006 -0.003 -0.003

Notes: This table decomposes the change in the use of each of five skills into the change that would have
been observed if the occupation distribution had been the same at the end of the period as at the beginning
of the period (∆ within) and what would have been observed if the skill use were always the skill use at the
end of the period but the occupation distribution had changed. Estimates use the occupation distributions
from the 1960 census, the March 1970-72, 1982-84, and 1994-96 Current Population Surveys, the 2005-2007
3-Year American Community Survey/PRCS, and the 2015-2017 American Community Survey. The skills
used in each occupation come from the decennial censuses and the American Community Survey samples for
the last two periods. DOT occupations are aggregated to census occupations using the April 1971 Current
Population Survey. O*NET occupations are aggregated using the Occupational Employment and Wage
Statistics (OEWS).
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Table 3: Skill-Productivity Growth Relative to Average

1960-1970 1970-1980 1990-2006 2006-2016

Abstract -0.344 0.424 0.216 1.615
(0.477) (0.316) (1.071) (0.498)

Social 0.749 0.340 1.251 -0.062
(0.408) (0.273) (0.767) (0.325)

Routine cognitive -0.163 -0.037 -0.972 -1.123
(0.220) (0.194) (0.733) (0.334)

Finger dexterity -0.307 -0.841 -0.173 -0.564
(0.481) (0.370) (0.746) (0.363)

Manual 0.066 0.113 -0.322 0.134
(0.490) (0.323) (0.545) (0.204)

R-squared 0.16 0.14 0.17 0.15
N 4784 7137 8926 8977
Proportion due to skills 0.13 0.17 0.20 0.25
p(all skill coefs=0) 0.264 0.034 0.001 0.000
p(abstract=social=rout.cog.=fing.dext.) 0.168 0.016 0.003 0.000

Notes: Standard errors clustered at the occupation level are in parentheses. Estimates are transformed
from regression of change in log employment in an occupation/industry cell on average skill (Abstract,
Social, Routine cognitive, Finger dexterity) use in that cell over the period (equation (22) in the text) and
imposing that the mean deviation from mean skill growth for all five skills is 0. Proportion due to skills
is the proportion of the R-squared attributable to the five skills in the regression using the Shapley-Owen
decomposition.
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Table 4: Derivatives of Skill Use with Respect to Skill Productivity

1960-1983
Skill Used

∆ lnAi Abstract Social Routine cognitive Finger dexterity Manual
Abstract 0.010
Social -0.060 -0.025
Routine cognitive -0.068 -0.052 -0.052
Finger dexterity 0.000 0.000 -0.047 0.018
Manual 0.118 0.137 0.219 0.029 -0.502

1995-2016
Skill Used

∆ lnAi Abstract Social Routine cognitive Finger dexterity Manual
Abstract -0.081
Social -0.008 -0.029
Routine cognitive -0.099 0.002 -0.105
Finger dexterity 0.000 0.000 -0.013 0.025
Manual 0.188 0.036 0.215 -0.012 -0.427

Notes: Each cell shows the derivative of the average use of the column skill with respect to a change in
the relative productivity of the row skill. Estimates are up to a factor of proportionality of −ε

1−ε (which
is strictly between 0 and 1). The estimates are derived from combining changes in skill use across time
with estimates of relative productivity growth from Table 3. See equation (32) in the text for the precise
formulation. See the text for more detail.
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Table 5: Decomposition of Within-Occupation Changes in Skill Use

Predicted Skill-Use Change 1959-1971
Source of Change Abstract Social Routine cognitive Finger dexterity Manual
Abstract 0.004 -0.021 -0.023 0.000 0.041
Social 0.045 0.019 0.039 0.000 -0.103
Routine Cognitive -0.011 -0.008 -0.008 -0.008 0.036
Finger Dexterity 0.000 0.000 -0.014 0.006 0.009
Manual -0.008 -0.009 -0.014 -0.002 0.033
Total Predicted 0.030 -0.019 -0.022 -0.004 0.015
Data 0.032 -0.018 -0.022 -0.008 0.016
Predicted Skill-Use Change 1971-1983

Source of Change Abstract Social Routine cognitive Finger dexterity Manual
Abstract -0.004 0.026 0.029 0.000 -0.050
Social 0.021 0.009 0.018 0.000 -0.047
Routine Cognitive -0.003 -0.002 -0.002 -0.002 0.008
Finger Dexterity 0.000 0.000 -0.040 0.015 0.024
Manual -0.013 -0.016 -0.025 -0.003 0.057
Total Predicted 0.000 0.017 -0.020 0.010 -0.008
Data 0.002 0.013 -0.019 0.012 -0.008
Predicted Skill-Use Change 1995-2006

Source of Change Abstract Social Routine cognitive Finger dexterity Manual
Abstract 0.017 0.002 0.021 0.000 -0.041
Social 0.011 0.036 -0.002 0.000 -0.045
Routine Cognitive -0.096 0.002 -0.102 -0.013 0.209
Finger Dexterity 0.000 0.000 -0.002 0.004 -0.002
Manual 0.061 0.012 0.069 -0.004 -0.138
Total Predicted -0.008 0.051 -0.016 -0.012 -0.016
Data -0.018 0.052 -0.009 -0.009 -0.017
Predicted Skill-Use Change 2006-2016

Source of Change Abstract Social Routine cognitive Finger dexterity Manual
Abstract 0.130 0.014 0.160 0.000 -0.304
Social -0.001 -0.002 0.000 0.000 0.002
Routine Cognitive -0.111 0.002 -0.118 -0.015 0.242
Finger Dexterity 0.000 0.000 -0.007 0.014 -0.007
Manual -0.025 -0.005 -0.029 0.002 0.057
Total Predicted -0.006 0.009 0.006 0.001 -0.009
Data -0.005 0.017 0.000 0.000 -0.011

Notes: Each entry is the predicted change in the within-occupation use of the column skill due to changes
in the productivity of the row skill according to equation (32) in the text and using the values from Tables
3 and 4. Total predicted is the sum of the five values above. The predictions can be compared with the
within changes reported in Table 2 and repeated in the line labelled Data.
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Appendix

Table 1A: Skill-Productivity Growth Relative to Average - Nontransformed Coefficients

1960-1970 1970-1980 1990-2006 2006-2016
Abstract -0.411 0.311 0.538 1.481

(0.601) (0.458) (1.112) (0.484)
Social 0.683 0.227 1.573 -0.196

(0.740) (0.489) (1.036) (0.431)
Routine Cognitive -0.229 -0.151 -0.650 -1.257

(0.636) (0.432) (0.883) (0.361)
Finger Dexterity -0.373 -0.954 0.149 -0.697

(0.895) (0.582) (1.233) (0.545)
R-squared 0.16 0.14 0.17 0.15
N 4784 7137 8926 8977

0.13 0.17 0.20 0.25
p(all skill coefs=0) 0.264 0.034 0.001 0.000
p(abstract=social=rout.cog.=fing.dext.) 0.168 0.016 0.003 0.000

Notes: Standard errors in parentheses, clustered at the occupation level. Estimates from regression of
change in log employment in an occupation/industry cell on average skill (Abstract, Social, Routine cogni-
tive, Finger dexterity) use in that cell over the period (equation (22) in the text) before the transformation
shown in Table 3.
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Table 2A: Skill-Productivity Growth Relative to Average - Including Wages

1960-1970 1970-1980 1990-2006 2006-2016
Abstract -0.336 0.427 0.214 1.609

(0.478) (0.315) (1.075) (0.499)
Social 0.745 0.352 1.249 -0.058

(0.409 ) (0.274) (0.767) (0.325)
Routine cognitive -0.170 -0.034 -0.970 -1.122

(0.220) (0.194) (0.736 ) (0.334)
Finger dexterity -0.314 -0.843 -0.174 -0.564

(0.482) (0.370) (0.748) (0.362)
Manual 0.075 0.099 -0.320 0.135

(0.492) (0.324) (0.551) (0.204)
% Change mean wage 60 -0.043

(0.038)
% Change mean wage 70 0.034

(0.012)
% Change mean wage 90 0.005

(0.045)
% Change mean wage 06 0.039

(0.015)
R-squared 0.16 0.14 0.17 0.15
N 4784 7110 8926 8977
Proportion due to skills 0.13 0.17 0.20 0.25
p(all skill coefs=0) 0.263 0.031 0.001 0.000
p(abstract=social=rout.cog.=fing.dext.) 0.166 0.015 0.003 0.000

Notes: Standard errors in parentheses, clustered at the occupation level. Nominal wages are converted to
1999 dollars with CPI99 provided by IPUMS - USA. Estimates are transformed from regression of change
in log employment in an occupation/industry cell on average skill (Abstract, Social, Routine-cognitive,
Finger-dexterity) use in that cell over the period (equation (22) in the text) and imposing that the mean
deviation from mean skill growth for all five skills is 0. Proportion due to skills is the proportion of the
R-squared attributable to the five skills in the regression using the Shapley-Owen decomposition.
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