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ABSTRACT

I model ex-post screening of teachers by pupils based on student experience. If

screening costs for pupils are sufficiently low, the only equilibrium features imperfect

screening and suboptimal curriculum choices. Restricting ex-post screening then raises

pupils’ welfare.
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1 Introduction

The education literature has emphasized moral hazard with respect to effort in education
provision. A widely adopted remedy for the lack of direct observability of teaching quality
is standardized testing.1

A separate dimension of education provision that has received much attention is stu-
dent choice, evidence showing that competition amongst schools can boost performance
(see, e.g., Hoxby, 2003). This is often understood as also implying that retrospective as-
sessment of teaching by students promotes efficient selection.

I show that retrospective screening of teachers by students can lead to worse outcomes
for students. When students can screen out poor teachers on the basis of student expe-
rience, this can improve outcomes for students when the relationship between the costs
students incur and student or teacher ability is orthogonal to the relationship between
observed costs and curriculum choice. Otherwise, retrospective screening can promote in-
efficient curriculum choices – a problem that may be particularly serious in contexts where
standardized testing is not widely used (such as higher education).

2 Curriculum choice and ex-post screening

I formalize my arguments in terms of a game of sequential curriculum choices by teachers
and screening choices by pupils.

2.1 Setup

Assume a large number of teachers and an even larger number of students. A teacher
may have more than one pupil, and there is a sufficiently large number of teachers that, if
teachers and students are randomly matched, the probability of a teacher being matched
to any particular pupil is approximately zero.

Teachers and pupils each have ability aT ∈ {0, 1} and aP ∈ {0, 1}, respectively. The
proportions of high-ability teachers (aT = 1) and high-ability pupils (aP = 1) are respec-
tively qP and qT, and are known to both teachers and pupils.

There are two possible curriculum choices, h ∈ {0, 1}, yielding a gross payoff to pupils
equal to v(h) = αh, with α > 0; i.e. v(1) ≡ α > v(0) = 0. Tackling curriculum h involves a
cost to pupils that depends on h and on the ability types of both the pupil and the teacher,
taking the form c(h, aP, aT) = (1− aP aT) β h, with β < α; i.e., a choice h = 0 never entails
any learning cost, whereas a choice h = 1 entails no cost only if both teacher and pupil are
of high ability. The assumption β < α implies that h = 1 always delivers a higher payoff
to pupils than h = 0, irrespective of the pupil’s ability. Thus, h = 1 is the efficient choice.

1 See Neal (2011) for a discussion of accountability and performance systems in education.
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The payoff to teachers if they deliver the curriculum h is 1 + γh, with γ > 0; i.e., other
things equal, teachers of all types prefer h = 1 to h = 0.

Teachers observe their own ability, aT, and are able to distinguish between curricula –
this is what makes them teachers. Pupils cannot observe either aP or aT, and cannot tell
h = 0 and h = 1 apart.2

The sequence of actions is as follows:

(i) Teachers and pupils are matched at random.

(ii) The teacher observes aT and chooses h.

(iii) The pupil observes a perfectly informative signal of cost, σ = c(h, aP, aT), without
directly observing h, aP or aT, and without actually incurring the cost.

(iv) The pupil can either stick to the initially assigned teacher or switch to another, newly
sampled teacher. If the pupil does not switch the game ends, the realized payoff for
the pupil is v(h)− c(h, aP, aT) =

(
α− (1− aP aT) β

)
h and the realized payoff for the

teacher is 1 + γh. If the pupil decides to switch, the game proceeds to the next stage.

(v) The new randomly assigned teacher chooses h and the game ends, with a realized
payoff for the pupil of δ

(
v(hR) − c(hR, aP, aR

T)
)
= δ

(
α − (1− aP aR

T)β
)

hR, where R
refers to the new randomly sampled teacher, and δ ∈ [0, 1] is a discount factor, re-
flecting a cost of switching for the pupil. The realized payoff for the newly assigned
teacher is 1 + γhR and the realized payoff for the teacher initially assigned to the
pupil is zero.

Given that actions in stage (iv) are made on the basis of beliefs that vary in dependence
of an informative signal that depends on preceding actions, the relevant solution concept
is Perfect Bayesian Equilibrium.

2.2 Actions

Starting from (v), selecting h = 1 is a dominant strategy for teachers of both ability types.
Moving backwards to (iv), choices at (v) mean that the continuation payoff to the pupil

from switching is δ
(
α− (1− q′P(σ, π(0), π(1))qT)β

)
≡ δωS(σ, π(0), π(1)), where π(aT)

are the probabilities with which teachers of each ability type select h = 1, and where
q′P(σ, π(0), π(1)) is the pupil’s updated belief about aP after observing the signal, σ, at
(iii). Bayesian updating gives

q′P
(

β, π(0), π(1)
)
= qP

Pr(σ = β | aP = 1)
Pr(σ = β)

< qP, (1)

2 In the real world, students accumulate experiences that inform them about their own abilities. Previous
learning experiences, however, cannot fully remove a student’s uncertainty about her suitability to new
learning opportunities (e.g. a new stage in a sequence of learning stages).
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q′P
(
0, π(0), π(1)

)
= qP

1− Pr(σ = β | aP = 1)
1− Pr(σ = β)

> qP, (2)

where

Pr(σ = β | aP = 1) = (1− qT)π(0) (3)

is the probability of a signal σ = β being received by a high-ability pupil, and

Pr(σ = β) = qP (1− qT)π(0) + (1− qP)
(
(1− qT)π(0) + qT π(1)

)
(4)

is the probability of such a signal being received by a randomly selected pupil.
Let z(σ, π(0), π(1)) denote the pupil’s posterior belief that, having observed σ, the

curriculum choice is h = 1. Since a positive cost can only be experienced if h = 1,
the pupil’s posterior belief that, having observed σ = β, curriculum choice is h = 1 is
h = 1 is z(β, π(0), π(1)) = 1, and so the expected payoff from not switching if σ = β

is α − β ≡ ρ(β). On the other hand, the pupil’s posterior belief that, having observed
σ = 0, curriculum choice is h = 1 is qT qP π(1)/((1 − qT)(1 − π(0)) + qT (1 − π(1) +
π(1)qP) ≡ z(0, π(0), π(1)), and so the expected payoff from not switching if σ = 0 is
z(0, p(0), p(1)) α ≡ ρ(0).

The switching decision given σ depends on a comparison of δωS(σ, π(0), π(1)) and
ρ(σ). Noting that ωS(σ, π(0), π(1)) equals δ times a convex combination of ρ(β) and ρ(0),
and given that δ < 1, we can exclude that ρ(σ) < δωS(σ, π(0), π(1)) for both σ = β and
σ = 0, i.e. switching can only occur for one of the two signal types. If δ is sufficiently small,
switching never occurs. If the pupil is indifferent between switching and not switching for
one of the two signal types, switching can occur with some probability πS(σ) between zero
and unity.

In stage (ii), the expected payoff to a teacher of ability type aT from choosing h is

(1 + γh)
(
1− Pr(β | h, aT)

)
πS(β) ≡ V(h, aT), (5)

where Pr(β | h, aT) = (1− aT qP)h is the probability of generating a signal σ = β for a
given curriculum choice and teacher ability type. The teacher then chooses the curriculum
h that delivers the higher V(h, at) given her type, or mixes between the two if indifferent.

2.3 Equilibria

An equilibrium where the pupil switches upon observing σ = 0 with any positive proba-
bility cannot exist: anticipating this, selecting h = 1 is a dominant strategy for both teacher
types, implying π(0) = π(1) = 1; this in turn means that switching when receiving σ = 0
is a dominated strategy for the pupil – because, given these beliefs about play and since
the cost realization is zero, not switching delivers α, the maximum possible payoff for the
pupil.
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An equilibrium with no switching is possible if δ ≤ δ̄, where δ̄ is the discount rate that
makes the pupil indifferent between switching and not switching upon receiving σ = β,
i.e. the value of δ that solves ρ(β) = δωS

(
β, 1, 1

)
:

δ̄ =
ρ(β)

ωS(β, 1, 1)
=

α− β

α− β(1− 2qT qP + q2
T qP)/(1− qT qP)

. (6)

I.e. if the pupil believes that both teacher types always select h = 1, and δ is sufficiently
low that switching upon receiving a signal σ = β is not profitable under these beliefs, then
selecting h = 1 is a dominant strategy for all teachers; and so this is an equilibrium.

If δ > δ̄ then beliefs π(0) = π(1) = 1 would induce switching upon receiving σ = β;
but then a low-ability teacher (who can never induce a signal σ = 0 by choosing h = 1)
would always gain from selecting h = 0 over h = 1. In turn, if the pupil holds beliefs
π(0) = 0, switching cannot be a best response for her, since a signal σ = β would reveal
a choice h = 1 by a high-ability teacher, and also reveal that the pupil is of low-ability
type, implying a payoff α− β with no switching and a continuation payoff δ(α− β) with
switching. The only possible equilibrium in this case is a mixed-strategy equilibrium with
πS(β) strictly between zero and one and

ρ(β) = δωS(β, π(0), π(1)). (7)

Since, for any given πS(β), the expected payoff from choosing h = 1 is higher for high-
ability teachers than it is for low-ability teachers but the expected payoff from choosing
h = 0 is the same for both ability types, an equilibrium where both types play mixed
strategies is not possible. If the high-ability teacher type is indifferent between the two,
then the low-ability teacher type must strictly prefer h = 0; but, as was noted above, this
cannot be an equilibrium because it makes no switching a dominant strategy for the pupil.
So, the only possible equilibrium in this case involves high-ability teachers selecting h = 1
with probability π(1) = 1 and low-ability teachers playing a mixed strategy with π(0)
strictly between zero and one, and

V(1, 0) = V(0, 0). (8)

Since π(1) = 1, (7) becomes

ρ(β) = δωS(β, π(0), 1). (9)

Mixed-strategy equilibrium probabilities π(0) and πS(β) are identified by (8) and (9), giv-
ing

πS(β) =
γ

1 + γ
, π(0) =

(1− qP)qT/(1− qT)

qT qP δβ/((1− δ)(α− β))− 1
. (10)

4



2.4 Welfare and policy implications

I focus on welfare implications for pupils, both because this is what education policies are
typically concerned with, and because, with individual teachers being matched to multi-
ple students, welfare effects for teachers are less important from a utilitarian perspective
(becoming increasingly negligible as the student-to-teacher ratio increases).

With full information about teacher ability, making it possible to select high-ability
teachers ex ante, the mean surplus for pupils is α− (1− qP)β ≡ UF. This is the maximum
level that can be theoretically achieved. Pupils’ expected surplus in an equilibrium with
private information in a scenario with δ > δ̄ and where (9) holds is (1 − qT)π(0)(α −
β) + qT

(
qP α + (1 − qP)(α − β)

)
≡ UN. A ban on ex-post screening – or, equivalently,

an increase in switching costs as represented by an exogenous fall in δ below δ̄ – yields
an expected surplus to pupils equal to α− (1− qT qP)β ≡ UB. Comparing this with UN

gives UB −UN = (1− π(0))(1− qT)(α− β) ≥ 0; i.e. restricting switching raises pupils’
expected welfare. Finally, a curriculum standard that directly enforces h = 1 but does not
restrict switching gives qT qP α + (1− qT qP)δ(α− (1− qT qP)β) ≡ US. A ban on switching
also results in a choice of h = 1 by all teacher types, but a standard does so without
restricting the ability to screen out low-ability teachers, and so it must produce a level of
expected welfare for pupils that is at least as high as that under a switching ban.

A parameterized example can help illustrate these comparisons. Assume α = 2, β = 1,
qT = qP = 1/2, δ = 1/1.05 = 20/21, γ = 1/2. We then have δ̄ = 6/7 < δ (and so we
have a mixed-strategy equilibrium), πS(β) = 1/3, π(0) = 1/8, UN/UF = 13/24 ' 0.54,
UB/UF = 5/6 ' 0.83, US/UF = 13/14 ' 0.93.

If a direct curriculum standard can be enforced, restrictions on ex-post student choice
become redundant. Still, if a standard cannot be perfectly enforced, it can be dominated
by restrictions on ex-post student choice. To see this, suppose that, rather than directly
imposing h = 1, students receive, in addition to σ, a separate noisy signal, τ, about cur-
riculum choice through standardized testing that equals the curriculum actually chosen
with probability η > 1/2 and the other curriculum with probability 1− η. If η is suffi-
ciently close to 1/2, then τ will have no effect on the switching choice. On the other hand,
for η = 1 testing is equivalent to a standard. Then, by continuity, there must be a value
η̃ lying between 1/2 and unity for which pupils’ expected welfare in an equilibrium with
noisy standardized testing equals UB; and so for values of η strictly between 1/2 and η̃

restricting ex-post screening dominates testing.
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