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Appendix A:

Additional results on the effects of aggregation

Introduction and setup

Besides the advantages highlighted by Santos Silva and Tenreyro (2006), the Poisson

pseudo maximum likelihood (PPML) estimator is the only pseudo maximum likelihood

(PML) estimator that is valid in models with high-dimensional fixed effects (Weidner

and Zylkin, 2021), that is not adversely affected by the possible non-existence of the

estimates (Correia, Guimarães and Zylkin, 2021), and whose results are compatible with

structural gravity models (Fally, 2015). Therefore, PPML is particularly well suited to

estimate gravity equations. However, in other contexts, other PML estimators can be

interesting. In this appendix, we sketch the extension of our results on aggregation effects

in models estimated by PPML to the case where other PML estimators based on the linear

exponential family are used; we focus on the popular non-linear least squares (NLS) and

gamma PML (GPML) estimators (see, e.g., Manning and Mullahy, 2001) but the results

apply more widely.

We assume that a sector-level dependent variable yijs is described by a stochastic

constant-elasticity model of the form

yijs = exp
(
z′ijsβs

)
ηijs, (1)

where zijs is a vector of explanatory variables, ηijs is a non-negative error term such

that E
(
ηijs|zijs

)
= 1, βs is a vector of parameters that are allowed to vary with s and

in which the slope parameters have the usual interpretation as (semi-) elasticities. As
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before, aggregation leads to

yij =
l∑

s=1

yijs =
∑
s

exp
(
z′ijsβs

)
ηijs, (2)

and we consider four particular cases of the aggregation problem. In Case 1 neither

regressors nor parameters vary with s. In Case 2 the parameters vary with s but regressors

do not, and the reverse holds in Case 3. Finally, in Case 4 both parameters and regressors

vary with s.

Case 1: Parameters and regressors are constant

The first-order condition of the estimation of β in (1) using a PML estimator based on

the linear exponential family has the form (see Gourieroux, Monfort, and Trognon, 1984)

S
(
β̂
)
=
∑
ijs

(
yijs − exp

(
z′ijβ̂

))
f
(
z′ijβ̂

)
zij = 0, (3)

where a “hat”is used to denote parameter estimates and
∑

ijs is shorthand for
∑

i

∑
j

∑
s.

In (3), f
(
z′ijβ̂

)
is a function of z′ijβ̂ that defines the estimator. In particular, we have

f
(
z′ijβ̂

)
= exp

(
z′ijβ̂

)
for NLS, f

(
z′ijβ̂

)
= 1 for PPML, and f

(
z′ijβ̂

)
= exp

(
−z′ijβ̂

)
for

GPML. That is, NLS gives extra weight to the observations with large expected values of

the dependent variable, GPML down-weights observations with large expected values of

the dependent variable, whereas PPML gives the same weight to all observations.

Because f
(
z′ijβ̂

)
does not depend on s, (3) can be written as

S
(
β̂
)
=
∑
ij

(
yij − exp

(
ln l + z′ijβ̂

))
f
(
z′ijβ̂

)
zij = 0,

3



which is the first-order condition of the PML estimator of β in the aggregate model defined

by (2) when f
(
ln l + z′ijβ̂

)
is proportional to f

(
z′ijβ̂

)
, as is the case for the NLS, PPML,

and GPML estimators. Therefore, these estimators are invariant to aggregation (except

for the intercept) when neither the parameters nor the regressors vary with s.

Case 2: Parameters vary with s but regressors do not

As in Section 4, it is possible to show that estimating the model with disaggregated data

but ignoring the parameter heterogeneity, we estimate a parameter defined by

β̂
r
=

[∑
s

Hs (β
∗
s)

]−1∑
s

Hs (β
∗
s) β̂s, (4)

and thus the estimates obtained in this case can be interpreted as an average of the

estimates of βs weighted by the matrices Hs (β
∗
s) = − ∂Ss (b) /∂b|b=β∗s , where β

∗
s is a point

between β̂s and β̂
r
.

Therefore, the interpretation of β̂
r
depends only on the form of Hs (β

∗
s), which in turn

depends on the form of f
(
z′ijβ̂

)
. In particular, it follows from (3) that

Hs (β
∗
s) =

∑
ij

(
zijz

′
ij exp

(
z′ijβ

∗
s

)
f
(
z′ijβ

∗
s

))
−
∑
ij

zij
(
yijs − exp

(
z′ijβ

∗
s

)) ∂f (z′ijβ∗s)
∂β∗s

. (5)

Because the second term on the right-hand side of (5) tends to be small,4 Hs (β
∗
s) is

approximately a weighted sum of exp
(
z′ijβ

∗
s

)
f
(
z′ijβ

∗
s

)
, with weights given by zijz′ij. We

have seen that when PPML is used, β̂
r
can be interpreted as being approximately equal

to the weighted average of the estimates of βs with weights given by
∑

ij yijs/
∑

ijs yijs.

Likewise, when NLS is used, β̂
r
can be interpreted as being approximately the average

4Note that this term is zero in the case of PPML.
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of the estimates of βs weighted by the square of expectation of yijs, and for GPML β̂
r
is

approximately the average of β̂s.

Invoking the invariance result from Case 1, we conclude that the parameters estimated

with aggregated data can also be interpreted as weighted averages of the estimates of the

individual parameters, and that the particular weighted average that is estimated depends

on the PML estimator that is used.

Case 3: Regressors vary with s but parameters do not

Our earlier results for this case are not specific to the PPML estimator, and therefore

readily apply to the other estimators based on generalized linear models considered by

Gourieroux, Monfort, and Trognon (1984). Therefore, for the NLS, PPML, and GPML

estimators, ignoring that the regressors vary with s leads to an estimate whose relation

to β depends on how the conditional moments of exp
(
z′ijsβ − z′ijβ

)
are related to zij.

Again, when the ommited variable
(
z′ijs − z′ij

)
β contributes little to the overall variance

of yijs, it may be possible to predict the magnitude and sign of the differences between

the elements of the two vectors when we have information on how the conditional mo-

ments of the omitted variable
(
z′ijsβ − z′ijβ

)
vary with zij. Furthermore, the estimated

parameters are such that the fitted values of the aggregate model approximate some of

the characteristics of the fitted values of the regression with disaggregated data, and in

that sense the estimates can be seen as an approximation to β̂.

Case 4: Regressors and parameters vary with s

The case where both the regressors and the parameters vary with s can again be addressed

by combining earlier results. As we know from Case 3, the effect of replacing zijs with
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zij in the regressions for each s is that in each case we estimate a vector of parameters

that is an approximation to βs. From Case 2 we know that imposing the same coeffi cients

for all s leads to a weighted average of these individual estimates. Therefore, it follows

from the invariance result for Case 1 that in Case 4 we estimate a weighted average of the

approximations to βs, with the weights depending on the particular PML estimator that

is used.
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Appendix B:

Simulation evidence

Design

In this appendix we present the results of a simulation study illustrating the effects of

aggregation in models estimated by PML. To simplify the design of the experiments, we

consider a design without fixed effects where each observation only has two indices.

Following Santos Silva and Tenreyro (2011), for i = 1, . . . , n and s = 1, . . . , l, we

generate yis as draws from a χ2(mis)
distribution where, conditionally on the regressors zis,

mis has a negative binomial distribution with E (mis|zis) = exp (z′isβs) and Var (mis|zis) =

aE (mis|zis) + bE (mis|zis)2.

Estimation is performed with aggregate data defined as yi =
∑l

s=1 yis and zi =

1
l

∑l
s=1 zis. To keep the design close to that used in Santos Silva and Tenreyro (2011),

we specify E (mis|zis) = exp (0.4 + βszis) /l and set a = 1 and b = 2, which implies that

neither PPML nor GPML are optimal estimators, and that in Case 1 the aggregate data

have about 50 percent of zeros. Note that the distribution of the aggregate data does not

depend on l, but the distribution of the disaggregated data does.

The way βs and zis are generated depends on the case we consider. For Case 1, we have

βs = −1 and zis = zi ∼ N (0, 1). For Case 2, βs ∼ N (−1, σβ) and zis is obtained as in

Case 1. For Case 3, βs = −1 as in Case 1, but now zis = N (zi, σ (zi)), with zi ∼ N (0, 1)

and σ (zi) = 1 − σz if zi < 0 and σ (zi) = 1 + σz if zi > 0. Therefore, in Case 3 the

difference between zis and zi has mean zero and a variance that has a positive correlation

with zi for σz > 0. Finally, in Case 4 we have βs as in Case 2 and zis as in Case 3.

To complete the description of the data generating process, we need to set the values

of n, l, σβ, and σz. As in Santos Silva and Tenreyro (2011), we perform simulations
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with n ∈ {1, 000, 10, 000}. The choice of l is not particularly important because the

aggregation results do not depend on it. We, therefore, set l = 60, which is close to

the number of 2-digit SITC sectors in our illustrative example; using a larger value of

l should not substantially change the results but has a high computational cost. The

choice of σz is more important because this parameter affects the magnitude of the bias

in Case 3 and also affects the results in Case 4. We therefore perform experiments with

σz ∈ {0.20, 0.40}. Finally, for the more interesting parameter σβ, we choose values based

on the dispersion of the estimates we obtained in our illustrative example (see Figure 1),

and perform experiments with σβ ∈ {0.40, 0.56}.

Results

The results of this simulation exercise are summarized in Table B1, which displays the

average and standard deviation (in parentheses) of the PPML and GPML estimates of

the coeffi cient on zi obtained with 10, 000 replicas of the simulation procedure described

above.5 Additionally, the table also reports the weighted average
∑

i yisβs/
∑

is yis, which

provides a benchmark for the performance of the PPML estimator in Cases 2 and 4.

Overall, the results in Table B1 are in line with our theoretical results and in that

sense they are not surprising. Nevertheless, the results are useful in that they provide

information on the magnitude of the effects of aggregation.

The results for Case 1 confirm that both estimators identify the parameter of interest

and that, in this particular design, they have comparable precision. For Case 2, as ex-

pected, we find that the GPML estimator identifies the average of sectoral parameters,

whereas PPML identifies a parameter that is close to the weighted average of the sectoral

5We do not report results for NLS and for the least squares estimates based on the log-linearized

model because these are too poor to be interesting.
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parameters, with weights given by the sectoral shares of the dependent variable (trade,

in the case of the gravity equation). Even with σβ = 0.56, the difference between the two

quantities is relatively small, confirming the findings in our illustrative application (see

Figure 1).

The results for Case 3 show that, as in the example considered in Subsection 4.2.3, the

estimates are biased upwards (towards zero) when the variance of the sectoral regressors

Table B1: Simulation results

n = 1, 000 n = 10, 000

Gamma Poisson Weighted Gamma Poisson Weighted

PML PML average PML PML average

Case 1 −1.010
(0.090)

−0.994
(0.101)

−1 −1.001
(0.029)

−1.000
(0.035)

−1

Case 2
σβ= 0.40 −1.011

(0.101)
−1.143
(0.222)

−1.173
(0.088)

−1.002
(0.034)

−1.175
(0.113)

−1.185
(0.043)

σβ= 0.56 −1.001
(0.119)

−1.275
(0.318)

−1.356
(0.167)

−0.997
(0.046)

−1.338
(0.163)

−1.395
(0.090)

Case 3
σz= 0.20 −0.930

(0.092)
−0.940
(0.134)

−1 −0.924
(0.029)

−0.948
(0.048)

−1

σz= 0.40 −0.853
(0.090)

−0.883
(0.128)

−1 −0.847
(0.029)

−0.892
(0.045)

−1

Case 4
σβ= 0.40,σz= 0.20 −1.039

(0.134)
−1.127
(0.278)

−1.300
(0.112)

−1.041
(0.049)

−1.173
(0.124)

−1.323
(0.050)

σβ= 0.56,σz= 0.20 −1.099
(0.166)

−1.202
(0.315)

−1.550
(0.161)

−1.102
(0.066)

−1.252
(0.127)

−1.595
(0.072)

σβ= 0.40,σz= 0.40 −0.933
(0.130)

−1.055
(0.282)

−1.228
(0.105)

−0.935
(0.050)

−1.102
(0.131)

−1.301
(0.050)

σβ= 0.56,σz= 0.40 −0.984
(0.165)

−1.151
(0.336)

−1.533
(0.166)

−0.986
(0.069)

−1.201
(0.143)

−1.575
(0.075)
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increases with their average.6 Interestingly, in the scenarios we considered, PPML is

always less sensitive to this problem than GPML.

As in the theoretical results, the findings for Case 4 follow from the ones for the

previous cases. In particular, in Case 4 both PPML and GPML estimate the quantity

identified in Case 2 with a bias that is generally similar to the one observed in Case 3.

Therefore, for GPML the results in Case 4 tend to be similar to those in Case 3, whereas

for PPML the results for Case 4 are similar to those for Case 2.

Overall, these results are encouraging and can be summarized as follows. For both

estimators, the effect of aggregation results only from the impossibility to account for

sectoral variation in parameters and regressors. When there is sectoral variation in the

parameters, both estimators identify different potentially interesting averages of the sec-

toral parameters. Sectoral variation in the regressors biases the estimates, but in some

applications researchers may have information to determine at least the direction of the

bias. Perhaps the more surprising result of these simulations is that in the scenarios we

considered, both estimators are relatively robust to this problem. Finally, when both

kinds of heterogeneity are present, the parameter identified in Case 2 is estimated with

a bias similar to that observed in Case 3. Therefore, in this case we obtain a biased

estimate of an average of the sectoral parameters. These findings provide guidance on

the interpretation of estimates obtained using aggregate data and should be helpful to

applied researchers who do not have disaggregated data at their disposal.

6We also performed some exploratory experiments where the variance of the sectoral regressors de-

creases with their average and found that in that case the estimates are biased downwards (away from

zero).
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Appendix C:

Implications for gravity-based predictions: An
application to free trade agreements

The gravity equation has been used extensively to evaluate the impact of free trade

agreements (FTAs) on trade flows, which is the application that we used in Section 3

to illustrate how aggregation affects parameter estimates. A natural question to ask is

whether aggregation also matters for predictions of the trade flow increases expected after

the implementation of FTAs. That is, would a researcher who has access to trade data at

the sector level reach the same conclusion as another researcher who only has country-level

trade data available?

In trying to answer this question, we use the same data as in Section 3 and consider

again two estimation methods (OLS and PPML), three levels of aggregation, and models

that impose coeffi cient homogeneity or allow the estimates to vary at the sector level.7

Note that there are three types of counterfactuals we can perform. First, we could ask by

how much trade flows between existing FTA partners are higher because of the FTAs in

place. Second, we might be interested in finding out by how much trade would be larger

if countries without FTAs put such agreements in place. Third, we could consider the

change in trade moving from a situation without FTAs to a situation with FTAs in place

between all countries. Conceptually, the first counterfactual corresponds to the average

treatment effect on the treated (ATT), the second captures the average treatment effect

on the untreated (ATU), and the third captures the average treatment effect (ATE).8

7See the description of Figure 1 and Table 1 for details.
8Note, however, that we are interested in changes in total trade flows rather than the average change

in bilateral flows. That is, if we allow for sectoral coeffi cient heterogeneity, estimates for sectors with

more trade get more weight. We also note that we are only concerned with the direct trade cost effects,

not the indirect general equilibrium effects that operate through price indices, income and expenditure.
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Denoting by xijst,1 the value of trade for country pair ij in sector s at time t in the pres-

ence of an FTA, and by xijst,0 the same flow in the absence of an FTA, the relevant coun-

terfactuals are easily computed from the estimates of β1, β2 and β3 obtained either by es-

timating (9) by OLS or (10) by PPML. For example, trade among FTA partners is simply

the observed trade flow, xijst,1,FTAijt=1 = exp
(
α̂ist + α̂jst + α̂ijs + β̂1s + β̂2s + β̂3s

)
η̂ijst,

where we let the estimated parameters vary with s and we have assumed that the agree-

ment is fully phased in (for the purpose of this illustration, we drop all pairs for which

there is an FTA that is not fully phased in).9 The (counterfactual) trade flow be-

tween the partners in the absence of an agreement is then given by xijst,0,FTAijt=1 =

exp (α̂ist + α̂jst + α̂ijs) η̂ijst = xijst,1,FTAijt=1×exp
(
−β̂1s − β̂2s − β̂3s

)
, which can be com-

puted using data on actual trade flows and the OLS or PPML estimates obtained at the

disaggregated level. Likewise, current trade among non-FTA partners can be expressed as

xijst,0,FTAijt=0 = exp (α̂ist + α̂jst + α̂ijs) η̂ijst, and the (counterfactual) trade in the pres-

ence of an FTA would be xijst,1,FTAijt=0 = xijst,0,FTAijt=0 × exp
(
β̂1s + β̂2s + β̂3s

)
. Once

we have computed these counterfactuals, we can calculate the implied percentage changes

in trade flows as

ATT =

∑
ijst xijst,1,FTAijt=1∑
ijst xijst,0,FTAijt=1

− 1

=

∑
ijst xijst,1,FTAijt=1∑

ijst xijst,1,FTAijt=1 × exp
(
−β̂1s − β̂2s − β̂3s

) − 1,
9Using standard Neyman—Rubin notation, the subscript FTAijt indicates whether or not countries i

and j have an FTA in place at time t. Thus, xijst,1,FTAijt=1 is the trade flow with an FTA for country

pair ij in sector s at time t, given that country pair ij has an FTA in place. Note that this is of course

simply the observed trade flow. By contrast, xijst,0,FTAijt=1 is the trade flow for country pair ij in sector

s at time t without an FTA, which is a counterfactual trade flow given there is currently an FTA in place.
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ATU =

∑
ijst xijst,1,FTAijt=0∑
ijst xijst,0,FTAijt=0

− 1

=

∑
ijst xijst,0,FTAijt=0 × exp

(
β̂1s + β̂2s + β̂3s

)
∑

ijst xijst,0,FTAijt=0
− 1,

and

ATE =

∑
ijst xijst,1∑
ijst xijst,0

− 1 =
∑

ijst

[
xijst,1,FTAijt=1 + xijst,1,FTAijt=0

]∑
ijst

[
xijst,0,FTAijt=1 + xijst,0,FTAijt=0

] − 1
=

∑
ijst

[
xijst,1,FTAijt=1 + xijst,0,FTAijt=0 × exp

(
β̂1s + β̂2s + β̂3s

)]
∑

ijst

[
xijst,1,FTAijt=1 × exp

(
−β̂1s − β̂2s − β̂3s

)
+ xijst,0,FTAijt=0

] − 1,
where the summations are over all country pairs ij, sectors s and time periods t in our

data.10

Table C1 presents the results of this exercise. The first row of the table shows the pre-

dicted increases in trade flows when we estimate our FTA coeffi cients using country-level

data (i.e., 0-digit). As there is no sector-level dimension, we have that ATT=ATU=ATE.

We also have that ATT=ATU=ATE whenever we impose coeffi cient homogeneity. The

reason is obvious on inspection of the relevant expressions above. Indeed, if the coeffi cient

estimates do not vary by sector s, the trade flow terms in the numerator and denomi-

nator of the ATT and ATU cancel so that the estimated treatment effect is simply the

10Since we compute treatment effects as percentage changes, the above definition of the ATE yields

the same results as the more traditional ATE definition in terms of the average effect of a treatment

(here: the presence of an FTA) across the units in a population (here: all country pairs, sectors and time

periods) when the effect is expressed relative to the average baseline trade flows without FTAs. To see

this write

ATE =

∑
ijst (xijst,1 − xijst,0)∑

ijst xijst,0
=

∑
ijst xijst,1 −

∑
ijst xijst,0∑

ijst xijst,0
=

∑
ijst xijst,1∑
ijst xijst,0

− 1.
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exponential of the sum of the coeffi cients for both the ATT and ATU. Since the ATE is

simply a weighted mean of the ATT and the ATU, it will also be equal to whatever value

the ATT and ATU take.

Table C1: Estimated treatment effects at different aggregation levels

Aggregation Heterogeneous Treatment Estimator

level coeffi cients effect type OLS PPML

SITC 0-digit No ATT=ATU=ATE 104.2% 80.7%

SITC 2-digit Yes ATT 56.3% 66.2%

SITC 2-digit Yes ATU 61.7% 83.4%

SITC 2-digit Yes ATE 60.5% 79.8%

SITC 2-digit No ATT=ATU=ATE 71.9% 80.7%

SITC 4-digit Yes ATT 61.0% 57.6%

SITC 4-digit Yes ATU 92.0% 105.4%

SITC 4-digit Yes ATE 85.3% 95.0%

SITC 4-digit No ATT=ATU=ATE 61.8% 80.7%

Notes: The table shows the predicted effect of FTAs at the 0-digit, 2-digit and 4-digit levels

of aggregation. ATT is average treatment effect on the treated, ATU is average treatment

effect on the untreated, ATE is average treatment effect. See text for details.

After these preliminary observations, we now move on to the more interesting com-

parison of how predicted trade flow increases vary with the level of aggregation and the

underlying estimation method. Consistent with our results from Case 1, which demon-

strated the invariance of PPML estimates when coeffi cient estimates do not vary at the

sector level, Table C1 shows that the predicted trade flow increase under PPML with
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homogeneous estimates is the same regardless of whether we use aggregate, 2-digit or

4-digit data (it is always 80.7%). However, the same is not true for predictions based on

OLS estimates, even if we impose coeffi cient homogeneity. Thus, using country-level data

instead of 4-digit sector-level data can lead to substantially different predictions regarding

the trade effects of FTAs when based on traditional OLS estimation.

As expected from our results for Case 2, however, aggregation matters even with PPML

when the underlying sector-level elasticities are heterogeneous. Looking at the results in

Table C1, when we use 4-digit data we estimate an ATE of 95.0%. When we instead use

2-digit data (allowing coeffi cient estimates to vary at that level), the estimated ATE is

79.8%. When we aggregate up further to bilateral trade at the country level, we obtain an

ATE of 80.7% as mentioned previously.11 The corresponding results for OLS estimation

are considerably more heterogeneous. This variability reflects the fact that OLS combines

the aggregation bias and the bias resulting from log-linearization, and these biases can

partially offset or compound each other.

11Note that with aggregate bilateral trade, there is of course no sector dimension and so we cannot

allow for sector heterogeneity in our FTA estimates. Accordingly, Table C1 only reports results without

coeffi cient heterogeneity at the aggregate (0-digit) level.
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