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1 Introduction

Over the past few decades, high-income countries have witnessed a swift rise in the services share of
economic activity. Researchers have largely attributed this structural transformation to a combination
of differential productivity growth across manufacturing and services and price-inelastic demand for
services (Ngai and Pissarides, 2007), a phenomenon related to Baumol’s cost disease. In an open
economy, international trade can further accelerate structural change by encouraging countries to
specialize in certain sectors, driven by comparative advantage or economies of scale (Matsuyama,
2009, 2019; Alessandria, Johnson, and Yi, 2021).

While the literature has focused on explaining trends for economies as a whole, less is known
about the patterns of structural transformation within countries across urban and rural regions –
and the driving forces behind those regional patterns. Recent evidence suggests that structural
change may play out unevenly across domestic regions, as services have become more spatially
concentrated over time (Desmet and Henderson, 2015). Possible causes of uneven structural change
within countries include spatially concentrated international trade shocks (Autor, Dorn, and Hansen,
2013; FajgelbaumandRedding, 2022) and differential changes in agglomeration forces across sectors
(Desmet and Rossi-Hansberg, 2009).

In this paper, we ask three related questions. First, to what extent is the structural change
from manufacturing to services observed unevenly across different regions of a country? Second,
how can we explain the uneven change, and what role do productivity growth, falling international
trade costs, and changing agglomeration forces play in explaining this phenomenon? Third, are
within-country spatial differences in structural change important for how we understand aggregate
structural change?

We begin our analysis by constructing measures of structural change from manufacturing to
services across different commuting zones in France between 1995 and 2018 (we will refer to
commuting zones as ‘cities’). Using detailed micro data on the universe of French firms, we then
relate those measures to firms’ characteristics such as their size, exports, and location, unveiling
previously undocumented stylized facts about the underpinnings of structural change in France.

First, we find that structural change is urban-biased. That is, the services share of economic
activity increases more rapidly in bigger French cities, and the manufacturing share declines more
slowly in smaller cities. This is true regardless of whether economic activity is measured as sales,
value added, or employment. The urban bias is not unique to Paris but holds across the distribution
of French cities. We rule out potential explanations based on composition effects: we find no
evidence of changes in comparative advantage away from manufacturing sectors that were more
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concentrated in big cities in 1995, and no evidence that services sectors traditionally considered as
non-tradable (such as catering and hospitality) expanded more in urban areas.

Second, the urban bias in structural change can be accounted for by the behavior of large firms.
Among these firms, defined as firms in the top 5% of the French sales distribution, we see a sharp
expansion of the services share in big cities between 1995 and 2018. Among the remaining 95% of
firms we see no such urban bias.

Third, large services firms sort into big cities but large manufacturing firms do not. Comparing
services firms in the biggest cities such as Paris and Lyon, where one-fifth of the French workforce
is located, to those in the smallest cities that also house one-fifth of the French workforce, we find
that the average services firm in the biggest cities is approximately 40% larger than its counterpart
in the smallest cities. By contrast, the size of manufacturing firms is more evenly spread out across
cities, with a slightly negative correlation between firm size and city size.

Fourth, and consistent with the stylized facts above, since exporting firms tend to be large, we see
sharp urban-biased structural change among exporters but not among domestic firms. Exporters of
services are more likely to locate in big cities, but the opposite is true for manufacturing exporters.

To understand the driving forces behind urban-biased structural change (UBSC henceforth), we
develop a quantitative spatial general equilibrium model of city formation whose ingredients are
motivated by the patterns we see in the detailed French micro data. The model has two sectors,
manufacturing and services, each with heterogeneous firms. It features differential TFP growth
across the two sectors (Ngai and Pissarides, 2007) as well as non-homothetic preferences (Comin,
Lashkari, and Mestieri, 2021). The model generates cities of different sizes through agglomeration
externalities that make bigger cities more productive but at the same time more congested due to
land constraints.

The model rationalizes the sorting of firms by allowing for heterogeneous agglomeration effects
across firms and sectors. When more efficient firms benefit more from locating in big cities (i.e.,
when the effects of city size and efficiency on firm productivity are log-supermodular; see Gaubert,
2018; Combes, Duranton, Gobillon, Puga, and Roux, 2012), the model predicts positive sorting by
firm size and city size – consistent with what we see for French services firms. Large firms in such a
sector gain relatively more from Marshallian externalities in big cities. But conversely, when more
efficient firms benefit less from locating in big cities (log-submodular agglomeration effects), the
model predicts negative sorting – consistent with the patterns we see for Frenchmanufacturing firms.
Large firms in such a sector suffer disproportionately from congestion costs associatedwith big cities.
In addition, we allow services production to be labor intensive andmanufacturing to be land intensive.
Big cities thus put pressure on manufacturing firms in two ways: log-submodular agglomeration
effects give them an incentive to locate in smaller cities where they can be more productive, and
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higher land prices disproportionately affect their costs, giving them a further incentive to settle in
smaller, less densely populated locations.1

The final ingredient relates to international trade. We model the economy as internationally
open. Firms face fixed and variable trade costs and decide whether to become an exporter and how
much to export. As we observe differences in export intensities across sectors in the data, we allow
trade costs to vary across manufacturing and services.

In the resulting spatial equilibrium, heterogeneous firms generate endogenous spatial patterns of
specialization and export composition across cities of different size. By implication, each city has
a distinct exposure to shocks that drive structural change.

The model combines, in a unified framework, three key driving forces of structural change that
each operate at the sectoral level: productivity growth, changes in agglomeration externalities, and
changes in international trade costs. First, differential productivity growth across sectors leads to
structural change through the conventional complementarities in the consumption of manufacturing
goods and services. Non-homothetic income effects further alter the relative demand for services.
Second, differential changes in agglomeration externalities across sectors can lead to changes in the
concentration of economic activity. For example, if agglomeration externalities rise in the services
sector, services firms expand in big cities and crowd out manufacturing to suburban and rural areas.
Third, falling international trade costs reallocate sales and resources from non-exporters to exporters.
The differential sorting patterns across manufacturing and services exporters imply that some cities
are more exposed to falling manufacturing trade costs, while others are more exposed to falling
services trade costs.

Based on the French micro data, we calibrate and structurally estimate the model’s key param-
eters, in particular those that determine sectoral productivity, agglomeration effects and sorting,
and trade costs. Our procedure jointly matches moments of the firm size distributions across cities
for 1995 and 2018 as well as the falling aggregate manufacturing share, the changes in sectoral
trade flows, and the increase in real GDP per capita in the French economy. The estimated model
is capable of replicating UBSC and the spatial sorting of large and small firms that differs across
manufacturing and services (the first and third stylized facts discussed above). It also reflects the
fact that big cities account for the lion’s share of services growth. The estimated model also does
well at attributing UBSC to the growth of large firms and exporting firms (the second and fourth

1Gaubert (2018) allows for footloose capital as an input that is uniformly priced across space, but land is not an input.
In our production function, higher land prices affect firms’ production costs both directly and indirectly through higher
labor costs as workers need to be compensated for higher housing costs. Sectoral differences in land intensity make it
possible for the model to account for why, despite being less labor intensive, manufacturing firms are more likely than
services firms to locate in less densely populated locations.
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stylized facts), even though these are not targeted moments in the estimation.
We then use the estimated model to assess the contributions of sectoral productivity growth,

changing agglomeration effects, and falling international trade costs to UBSC. To do this, we
start from the estimated 1995 equilibrium and turn on each driving force one-by-one as a separate
counterfactual experiment, switching it to its 2018 value and leaving the others at their 1995 values.
We then compare each counterfactual UBSC prediction to that of the full estimated model.

First, while we confirm the role of strong manufacturing productivity growth as a leading driving
force of structural change on aggregate (Herrendorf, Rogerson, and Valentinyi, 2014), we find that
it does not explain the urban bias. In our corresponding counterfactual experiment, manufacturing
productivity growth expands the aggregate services share of the economy, consistent with the
literature. In big cities, where services already represented the majority of economic activity in
1995 and where services growth is concentrated, the services share naturally rises. But in small
cities, where manufacturing was dominant in 1995, the services share also rises because of the
relative decline of manufacturing – even though services growth is not concentrated in those cities.
On balance, structural change induced by manufacturing productivity growth shows no urban bias.

In this experiment, with heterogeneous firms operating at different locations in our model, the
expansion of services is first and foremost driven by the growth of large services firms. Those
are labor intensive and tend to be concentrated in big cities, pulling in more workers and raising
the productivity of services firms through agglomeration externalities. Our model therefore also
incorporates a cross-sectoral spillover from manufacturing TFP to services productivity growth.
Such an effect is absent from canonical analyses that abstract from firm heterogeneity and urban
agglomeration externalities. In our estimates, however, this productivity gain turns out to be almost
exactly offset by rising land prices in big cities and so has no overall impact on aggregate structural
change.

Second, our estimates show that agglomeration externalities have changed in opposite directions
across sectors over time, becoming stronger for services and weaker for manufacturing. This result is
consistent with evidence based on US and European data of greater spatial concentration in services
but de-concentration in manufacturing (Desmet and Henderson, 2015). It is also consistent with the
finding that local knowledge spillovers are more important for young industries such as innovative
services than they are for mature industries (Duranton and Puga, 2001; Desmet and Rossi-Hansberg,
2009). In our counterfactual experiment, we find that this divergence in agglomeration externalities
is a major contributor to UBSC. Strengthening agglomeration externalities for services lead to an
increased concentration of services firms in big cities, driving up wages and land prices, thereby
crowding out manufacturing firms to less densely populated areas. Services firms become more
productive, especially large services firms due to the positive sorting by firm size and city size. At
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the same time, weakening agglomeration externalities for manufacturing give firms in that sector a
further incentive to leave big cities, leading to a rising concentration of manufacturing in other parts
of France. Due to negative sorting, it is large manufacturing firms in particular that reorient towards
small cities, making room for less efficient services firms to enter big cities.2 In our estimates,
diverging agglomeration externalities significantly dampen aggregate structural change – by about
one-tenth – due to their disproportionately positive effect on services sector productivity.

Thus, inmodels that do not account for the differential growth of heterogeneous firms across cities
and that do not account for changes in agglomeration externalities, researchers would understate the
inferred growth of manufacturing productivity – the main driver of aggregate structural change.3

Related Literature. Our paper falls into the intersection of macroeconomics, urban economics
and international trade. We contribute to the macroeconomic literature that studies the drivers of
aggregate structural change (Ngai and Pissarides, 2007; Herrendorf et al., 2014; Comin et al., 2021).
This literature implicitly assumes that any spatial variation in the patterns of structural change can
be understood as being orthogonal to changes in the aggregate. But in our framework and in our
estimates, the mechanisms operating through heterogeneous firms, agglomeration effects, and their
cross-sectoral spillovers make a non-negligible, dampening contribution to aggregate structural
change. That is, they lead to a slower transition from manufacturing to services compared to what a
conventional macroeconomic model would imply.

At the same time, urban economists have long debated the causes underlying the growth of cities
while abstracting from structural change (e.g., Glaeser, Kallal, Scheinkman, and Shleifer, 1992).
Our results contribute to this debate by highlighting a novel interplay between manufacturing
productivity growth and city size growth through agglomeration externalities. In our framework,
structural change on its ownmay change the city size distribution even if agglomeration forces remain
unchanged. Recent studies have stressed the role of heterogeneous preferences for urban amenities
across individuals with different incomes in accounting for spatial inequality (see Diamond and
Gaubert, 2022, for a survey). Our model abstracts from this potential source of UBSC as it does
not distinguish between worker types and thus takes the composition of the workforce as being
homogeneous across sectors.4

2The shift of large manufacturing firms into small cities offsets the increase in population in large cities that is
brought about by an increase in manufacturing TFP. As a result, the distribution of city sizes in our model remains stable
over time, consistent with the corresponding empirical distribution in the data.

3Related to this line of arguing, Davis, Fisher, andWhited (2014) show that agglomeration contributes to consumption
growth.

4If the demand for urban amenities was more income elastic than the demand for other goods, and if services firms
employed higher wage workers compared to manufacturing firms, then urban bias could arise purely as the result of
the differential composition of worker types across the two sectors. In our data, however, it is manufacturing firms that
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An emerging literature studies the spatial patterns of structural change (Desmet and Rossi-
Hansberg, 2009; Desmet and Henderson, 2015). Desmet and Rossi-Hansberg (2014) further show
that spatial patterns of technological diffusion can explain the spatial growth patterns of manufac-
turing and services. Our empirical findings are consistent with theirs, while also highlighting the
role of large firms’ location choices in driving UBSC.5

Our paper also relates to the literature studying the spatial impact of trade liberalization. Alessan-
dria et al. (2021) make the case for international trade as a driver of aggregate structural change,
emphasizing the role of comparative advantage and scale economies.6 We find no evidence in our
data that this channel plays out unevenly across locations within a country, but our results underscore
the role of large firms in shaping the impact of international trade on structural change.

Roadmap. Section 2 describes the key data patterns that motivate our analysis. In Section 3 we
develop our model of differential structural change across locations. In Section 4 we parameterize
and estimate the model. In Section 5 we use the estimated model to decompose structural change
into the various driving forces that our framework highlights. Section 6 concludes.

2 Urban-biased structural change: Evidence from France

In this section, we describe the French firm-level data and illustrate the main empirical patterns
relating to structural change in France over recent decades. These findings motivate our theoretical
framework in Section 3 and the structural estimation in Sections 4 and 5.

employ higher wage workers in comparison to services firms. Another potential explanation for UBSC is differential
spending by age group. Cravino, Levchenko, and Rojas (2022) show that population aging explains a sizable share of
the observed increase in US services consumption as older households tend to spend more on services. As in other
parts of Western Europe, however, there has been no obvious divergence in age structures across French urban and rural
regions (see Kashnitsky, De Beer, and Van Wissen, 2021).

5Desmet and Rossi-Hansberg (2014) study the evolution of spatial clustering in the production of goods and services
in a model with sector-specific agglomeration externalities and endogenous technical change. Their analysis, however,
does not address UBSC as it assumes that firms at each location specialize in either services or manufacturing, and it
does not allow for systematic variation in population density across locations beyond that which is implied by differences
in labor intensity and technology across firms. Eckert, Ganapati, and Walsh (2022) show that the rapid wage growth in
large US cities since 1980 has been led by large business services firms, in line with our findings. Ding, Fort, Redding,
and Schott (2022) offer a framework of structural change within the firm. They demonstrate that large multi-plant US
manufacturers have become more services intensive over recent decades. Eckert and Peters (2022) and Coeurdacier,
Oswald, and Teignier (2022) study structural change in historical perspective with a focus on agricultural productivity
growth, while we consider the more recent period.

6Fajgelbaum and Redding (2022) show that increased trade integration led to spatially concentrated patterns of
structural change in Argentina in the late nineteenth and early twentieth centuries. Bakker, Garcia-Marin, Potlogea,
Voigtländer, and Yang (2022) study the impact of trade on cities (and the reverse) in a quantitative spatial model.
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2.1 Data description

To document structural change at the aggregate level and at the level of cities across France, we
use the FICUS (1995-2007) and FARE (2008-2018) firm balance sheet data from INSEE. These
data sets allow us to observe firm-level revenue, value added, employment, and exports of all active
firms, and also provide information about firms’ geographic locations. Throughout the analysis we
focus on 1995 and 2018 as the initial and final years.7

Following Combes et al. (2012) and Gaubert (2018), we define a city as a commuting zone
(“zone d’emploi”). There are 297 commuting zones covering all of mainland France (excluding
Corsica and overseas regions) based on the 2010 revision. To arrive at a measure of population
size by commuting zone, we rely on the DADS matched employer-employee data set. This includes
information on all employees, their location of work and residence. We use the number of total
employees in the initial year as our measure of population size.8 Figure A.1 in Appendix A.1 shows
a map of the population across commuting zones.

Firms may have multiple establishments, and those establishments may be located in multiple
cities. We restrict attention to firms with one establishment and firms whose establishments are all
located in the same city, as we do not want to rely on location information that may be tainted by
headquarter effects whereby firms report activity in places where production may not be happening
(Duranton and Puga, 2005). However, our empirical findings are robust to including all firms.9
To identify single-establishment and single-city firms, we use the DADS data set, which contains
information about the locations of all firms’ establishments.

A unique feature of the French administrative balance sheet data is that export revenues are ob-
served not only for manufacturing firms but also for services firms. This allows us to measure export
intensity for both manufacturing and services firms. The specific sectors included in services are
accommodation and catering, administrative and support services, arts and entertainment, construc-
tion, finance and insurance, information and communications technology, real estate, specialized
and technical services, and transportation.10

7The key data patterns we rely on in our estimation evolve gradually and smoothly over time. In particular, revenue
and export shares across city size bins do not jump from year to year.

8Total employees include those inmanufacturing, services and all other sectors being employed by any firm, including
multi-establishment firms. While there is population growth over time, the city size distribution is stable.

9In Table A.1 we show that multi-establishment firms represent around 5% of all firms and around half of aggregate
economic activity. As we demonstrate further below, the urban-biased patterns we document are not materially affected
by including multi-establishment firms.

10Firms classified as offering retail/wholesale services are not included. Since those firms tend to have multiple
establishments and are typically active in multiple locations, they effectively drop out of our single-establishment
sample. Adding those firms to our sample does not change our empirical results in any meaningful way.
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2.2 Empirical patterns

We next describe how structural change occurred across France over the period from 1995 to 2018.
We distinguish between cities with different population sizes and present the patterns in terms of city
size quintiles. We refer to these quintiles as city size bins, with bin 1 containing the smallest cities
and bin 5 containing the largest cities. By construction, each bin has roughly the same population,
measured as the number of total employees.11 We define these bins based on population size in
1995 and we do not change the assignment of cities to bins over time. The two largest cities in
each bin are: Nevers and Boulogne-sur-Mer (bin 1), Aix-en-Provence and Troyes (bin 2), Rennes
and Nice (bin 3), Roissy-Sud Picardie and Saclay (bin 4), Paris and Lyon (bin 5). Tables A.2-A.4
provide descriptive statistics by city size bin for variables of interest such as revenue, value added,
employment, and exports.

Stylized fact 1: Aggregate and urban-biased structural change
On aggregate, France experiences the typical structural change from manufacturing towards ser-
vices. But structural change is uneven across space, with the largest cities experiencing the strongest
decline in manufacturing and the strongest rise in services.

Focusing on the aggregate level, Figure 1a illustrates the well-known pattern of structural change
from manufacturing towards services in our sample. It shows the aggregate revenue shares of
manufacturing and services in 1995 and 2018. While in 1995 the two sectors have roughly the
same revenue, in 2018 the services share is almost twice as large as the manufacturing share: the
aggregate revenue shares of manufacturing and services are 53% and 47% in 1995, and they stand
at 38% and 62% in 2018.12 When we compute shares based on value added rather than revenue, we
arrive at a similar picture. The value-added share of manufacturing declines from 42% in 1995 to
27% in 2018, while the services share increases from 58% to 73%. Corresponding shares based on
employment are virtually the same.13

Overall, aggregate structural change in France mirrors developments in other high-income

11The number of employees is not exactly the same across bins due to the discrete nature of cities. The city size
ranking based on total employees is very highly correlated with the ranking based on working-age population.

12See Table A.2 for details. These shares add up to 100% as we exclude agriculture and mining since those sectors
were small in 1995 and their shares hardly changed over time. Specifically, the value-added shares of agriculture,
forestry and fishing in the French economy were 2.7% in 1995 and 1.9% in 2018. The value-added shares for mining
and quarrying were 0.2% and 0.1%.

13See Table A.2 for details. As shown in Table A.3, manufacturing value added in our sample declines in real terms
by 2% between 1995 and 2018. Manufacturing employment (not listed in Table A.3) drops by 22%, broadly comparable
in magnitude to a decline in US manufacturing employment by 18% between 2001 and 2007 as reported by Pierce and
Schott (2016). In Figure A.2 we show different measures of aggregate structural change (revenue, exports, value added,
employment) including multi-establishment firms.
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Figure 1: Aggregate and urban-biased structural change in France, 1995-2018

(a) Aggregate structural change (b) Urban-biased structural change

Notes: In panel (a) the bars show the aggregate sectoral revenue shares for manufacturing and services in 1995 and
2018. The shares of the two sectors add up to 1. Panel (b) shows structural change within French city bins, with city
bin 1 representing the smallest cities and bin 5 the largest cities. The bars show the percentage point change in sectoral
revenue shares for manufacturing and services between 1995 and 2018. For example, −0.1 means a ten percentage point
decline. The changes within city bins add to zero as manufacturing and services are the only sectors (agriculture and
mining are excluded).

Table 1: Urban-biased structural change across French city size bins, 1995-2018

Manufacturing share of revenue
City size bin 1995 2018 UBSC

1 0.67 0.58 −0.09
2 0.64 0.53 −0.11
3 0.54 0.42 −0.12
4 0.56 0.37 −0.19
5 0.33 0.15 −0.18

Notes: The table reports the manufacturing sector revenue shares in each city size bin. Bin 1 represents the smallest
cities and bin 5 the largest cities. The column labeled UBSC (which stands for urban-biased structural change) reports
the changes in the shares between 1995 and 2018. For example, -0.09 means a nine percentage point decline.

countries. For example, for the period from 1970 to 2007, Herrendorf et al. (2014) report an
increase in the value-added share of services by about 15 to 20 percentage points in the EU15, Japan
and the US.14

Next, Figure 1b illustrates a key empirical motivation for our paper, namely the observation
that structural change occurs faster in larger cities. We refer to this observation as urban-biased

14See their Figure 6.2. Specifically, from 1970 to 2007 the nominal value-added share of services rises from roughly
65% to 80% in the US, from roughly 50% to 70% in Japan, and from roughly 55% to 75% in the EU15. The
corresponding manufacturing shares fall from roughly 30% to 20% in the US, and from roughly 40% to 25% in Japan
and the EU15. The remaining sector is agriculture.
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Figure 2: City size and the decrease in the manufacturing share across French cities, 1995-2018

Notes: The figure plots city size (population, measured as the number of total employees) against the decrease in the
manufacturing share across 297 French cities (commuting zones) between 1995 and 2018. Each dot represents one
French city, proportional to city size in 1995. The largest dot represents Paris. The variable on the vertical axis is the
change in the manufacturing share in percentage points. The slope of the regression line is significantly different from
zero.

structural change (UBSC). The figure shows the change in sectoral revenue shares within city size
bins between 1995 and 2018. In each bin, the manufacturing share declines and the services share
increases, but the changes are stronger in larger cities, giving rise to a rough ‘pyramid’ shape. As
shown in Table 1, the decrease in the manufacturing share is 18 percentage points in the largest cities
but only 9 percentage points in the smallest cities. The stronger decrease comes on top of a lower
1995 baseline share of manufacturing in the largest cities (33% compared to 67% in the smallest
cities).15

Consistent with the literature, we measure structural change as the percentage point change in
the sector shares of economic activity. Mechanically, this means that a lower baseline share of
manufacturing in the largest cities (and thus a higher baseline share of services) makes it relatively
hard to find UBSC. The reason is that a given growth rate of services translates into a smaller
percentage point increase in the services share of economic activity of a larger city compared to
a smaller city where services were initially less prominent. Our measurement of the urban bias is
therefore conservative.

The urban bias of structural change is not merely a ‘Paris versus the rest’ phenomenon. The
scatter plot in Figure 2 shows the systematic negative relationship between city size and the change

15In Figure A.3 we also show the change in sectoral revenue shares across city bins between 1995 and 2018.
Manufacturing shifts away from the largest cities towards smaller cities, and the opposite is true for services.
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Figure 3: City size and the increase in the services share across French cities, 1995-2018

Toulouse

Bordeaux

Lille

Lyon

Paris

Marseille

Notes: The map illustrates the city size (population, measured as the number of total employees) and the increase in the
services share across 297 French cities (commuting zones) between 1995 and 2018. The dots are proportional to city
size. The increase in the services share is depicted in five shades of orange, with the darkest shade corresponding to the
strongest increase. In addition to the Paris region, the labels indicate the five largest cities outside of the Paris region.
Ordered by size these are Lyon, Marseille, Toulouse, Bordeaux, and Lille.

in the manufacturing share across all 297 cities. The map in Figure 3 illustrates the corresponding
pattern for services, namely the positive correlation between population size and the increase in the
services share across cities. Figure A.4 demonstrates that the urban bias also holds for different
measures of structural change (expressed in terms of exports, value added, and employment).16 In
Figure A.6 we show that, consistent with Figure 1b, the share of all firms within the manufacturing
sector falls in the largest cities and rises in all other cities. By implication, the share of all firms
within the services sector increases in the largest cities and falls in the smallest cities.

The fact that economic activity experiences a stronger shift from manufacturing to services in
larger cities may reflect a swift decline of the manufacturing sector in those cities or a rapid growth
of the services sector. To determine this, we decompose the growth in the total domestic and export

16Figure A.5 shows the corresponding graphs for the sample including multi-establishment firms.
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Table 2: Concentration of sectoral growth across city size bins

City size bin Domestic revenue Export revenue
Manufacturing Services Manufacturing Services

1 29% 13% 22% 3%
2 26% 15% 25% 4%
3 18% 16% 19% 9%
4 17% 19% 20% 16%
5 10% 38% 14% 68%

Total contribution 100% 100% 100% 100%
Total growth −14% 74% 40% 181%

Notes: The table decomposes the growth of the manufacturing and services sectors into the contributions of each city
size bin. Revenues in 2018 are adjusted to 1995 prices. ‘Total contribution’ refers to the sum of the contribution of
each city size bin to the total (domestic or export) revenue growth of each sector. ‘Total growth’ in the last row refers to
the total real (domestic or export) revenue growth of each sector between 1995 and 2018. Bin 1 represents the smallest
cities and bin 5 the largest cities.

revenues of each sector into the share accounted for by each city size bin:

6A9C+1 =
∑
8

(
'A
9C
(8)∑

8′ '
A
9C
(8′)

)
6A9C+1(8), (1)

where A = {domestic, export}, 6A
9C+1 is the revenue growth rate of sector 9 , 6

A
9C+1(8) is the correspond-

ing growth rate for bin 8, and 'A
9C
(8) is the total domestic or export revenue of sector 9 in bin 8. We

report the results of this decomposition in Table 2, showing that sectoral growth is highly spatially
concentrated. The growth of services is concentrated in large cities, with the largest cities accounting
for 38% of domestic revenue growth and 68% of export revenue growth between 1995 and 2018.
Conversely, the decline of domestic manufacturing revenue and the growth of manufacturing exports
are concentrated in small cities. UBSC thus reflects a disproportionate growth of services in large
cities, rather than a disproportionate decline of manufacturing in large cities.

The role of non-tradable services. We do not find evidence that non-tradable services explain
the urban bias. When we examine subsectors of services, we do not find that the urban bias in
structural change is driven by an expansion of local services that cannot be traded nationally or
internationally. In Figure A.7, we categorize services subsectors into tradable and non-tradable
services. We categorize ICT, professional and business services, and finance and insurance as
tradable services and other services sectors as non-tradable. We find no urban bias for non-tradable
services but a clear urban bias for tradable services.

Changes in comparative advantage. Our data show that a shift in manufacturing comparative
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advantage cannot explain the urban bias in structural change.17 For comparative advantage to be a
driver, the manufacturing subsectors whose output is replaced by outsourcing or imports should be
those sectors that (i) decline at the fastest rate, and (ii) are more concentrated in large cities in 1995
compared to manufacturing sectors that have a smaller (or non-negative) rate of decline. To examine
this, we correlate the growth rates of individual manufacturing subsectors in large cities with their
initial size. Figure A.10 shows that there is no systematic relationship. This suggests that a shift
in comparative advantage working against manufacturing subsectors that were over-represented in
large cities in 1995 cannot explain the urban bias in structural change.

Stylized fact 2: Large firms account for urban-biased structural change
Structural change among large firms is urban-biased, but structural change among other firms
displays no urban bias.

To better understand how different firms may contribute to urban-biased structural change, we de-
compose structural change into the contributions of large firms and other firms, measuring structural
change in each city size bin in the same way as discussed in the context of Figure 1b, i.e., as the
change in the manufacturing share in a city size bin between 1995 and 2018. This change can be
expressed as

Δl<,2018(8) =
(
e
non-large
1995 (8) Δl non-large

<,2018 (8)︸                              ︷︷                              ︸
(a) Structural change
among non-large firms

+ l non-large
<,2018 (8) Δe non-large2018 (8)︸                              ︷︷                              ︸
(b) Changing non-large firms’

revenue share

)

+
(
e
large
1995 (8) Δl

large
<,2018(8)︸                     ︷︷                     ︸

(c) Structural change
among large firms

+ l large
<,2018(8) Δe

large
2018 (8)︸                     ︷︷                     ︸

(d) Changing large firms’
revenue share

)
,

where l<C (8) = '<C (8)/
∑
:':C (8) is the manufacturing sector’s share of revenue in bin 8, l large

<C (8) =
'
large
<C (8)/

∑
:'

large
:C
(8) is the manufacturing share in the revenue of large firms in bin 8 (the total

revenue of large firms in that bin, including export sales and domestic sales). As previously, the
other sector is services (: = <, B). The variable e largeC (8) = ∑

: '
large
:C
(8)/∑:':C (8) is the large

firms’ share of revenue in bin 8. The first term (a) on the right-hand side captures structural change
among non-large firms, while the third term (c) represents structural change among large firms. The
second and fourth terms (b) and (d) capture the contributions to structural change in bin 8 of the
changing relative sizes of non-large and large firms.

17In Appendix A.2 we show that aggregate structural change in France cannot be fully explained through changes in
comparative advantage over time that may have increasingly led France to specialize in sectors other than manufacturing.
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Table 3: Contribution of large firms and non-large firms to urban-biased structural change

Non-large firms Large firms
City size UBSC Structural change Changing non-large Structural change Changing large firms’

bin (total) among non-large revenue share among large firms revenue share
(a) (b) (c) (d)

1 −0.093 −0.066 0.005 −0.021 −0.010
2 −0.106 −0.061 0.014 −0.041 −0.008
3 −0.114 −0.065 −0.001 −0.050 0.003
4 −0.193 −0.069 0.011 −0.112 −0.023
5 −0.180 −0.041 −0.005 −0.142 0.008

Notes: The table decomposes the percentage point changes in the manufacturing sector revenue share in each city size
bin (see the column labeled ‘UBSC’, which stands for urban-biased structural change). For example, -0.1 means a ten
percentage point decline. Bin 1 represents the smallest cities and bin 5 the largest cities.

Table 3 presents the results of this decomposition. The column labeled ‘UBSC’ reports the total
change in the manufacturing share. It corresponds to the black bars in Figure 1b. What can explain
the urban bias in this structural change? We find that it is mostly accounted for by structural change
among large firms, as shown in column (c). This is the only column that exhibits a negative and
monotonically declining contribution across city bins. That is, the decline in the manufacturing
share accounted for by structural change among large firms has a gradient. It is weakest for the
smallest cities (minus 2.1 percentage points in bin 1), and it is strongest for the largest cities (minus
14.2 percentage points in bin 5). Figure 4 demonstrates graphically that there is a clear ‘pyramid’
pattern for structural change among large firms, but not among non-large firms. As shown in Figure
A.8, we also find similar patterns among exporters, who tend to be large firms.18

Stylized fact 3: Differential firm sorting in manufacturing and services
For services, we observe positive sorting between firm size and city size – larger services firms
tend to be located in larger cities. For manufacturing, we observe weak negative sorting – larger
manufacturing firms tend to be located in smaller cities.

Figure 5 shows average log revenue across firms for manufacturing and services in each city size
bin, normalized to zero for the smallest bin.19 The figure exhibits a distinct positive sorting pattern
for services firms – larger firms are located in larger cities. The average services firm in the bin
of largest cities has revenue approximately 40 log points larger than the average firm in the bin of
smallest cities.

18In addition, Table A.5 provides a decomposition as in Table 3 but for exporting and non-exporting firms. Hsieh and
Rossi-Hansberg (2023) show that top services firms in the US have grown by opening new establishments predominantly
in small and mid-size cities. We focus on single-plant firms, but our results are robust to including all firms.

19Note that Figure 5 averages log revenue across firms, whereas Table A.3 reports average revenue in each city bin.

14



Figure 4: Large firms and urban-biased structural change in France, 1995-2018

(a) Structural change among non-large firms (bot-
tom 95%)

(b) Structural change among large firms (top 5%)

Notes: City size bin 1 represents the smallest cities and bin 5 the largest cities. Large firms are defined as those in the
top 5% of the log sales distribution (adjusted to 1995 prices). In panel (a) the bars show the percentage point change in
sectoral revenue shares within city bins for manufacturing and services between 1995 and 2018 among non-large firms
only. The numbers correspond to the red element of the first row in the decomposition formula above. Panel (b) does
the same among large firms only. The numbers correspond to the red element of the second row in the decomposition
formula. For example, −0.1 means a ten percentage point decline. The changes within city bins add to zero.

Figure 5: Sorting patterns between firm size and city size in France

Notes: The figure shows the relationship between firm size (measured as log sales) and city size bins for each sector.
The figure pools data for 1995 and 2018. Sales in 2018 are adjusted to 1995 prices. The bars show the average log sales
across firms for manufacturing (black) and services (orange) in each city size bin, normalized to zero for city size bin
1. City size bin 1 represents the smallest cities and bin 5 the largest cities.

By contrast, we observe an entirely different sorting pattern formanufacturing firms. The average
size of manufacturing firms is not as different across city size bins as for services, but nevertheless
manufacturing firm revenue is weakly negatively correlated with city size. Firms in the largest cities
are on average approximately 10 log points smaller than those in the smallest cities.
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Figure 6: Urban-biased structural change in French exports, 1995-2018

(a) Change in exports within city bins (b) Change in the share of exporting firms

Notes: City size bin 1 represents the smallest cities and bin 5 the largest cities. The changes are between 1995 and
2018. In panel (a) the bars show the change in sectoral export revenue shares within city bins for manufacturing (black)
and services (orange). The changes within city bins add to zero. In panel (b) the bars show the change in the share of
exporting firms.

Stylized fact 4: Urban-biased structural change in exporting activity
Urban-biased structural change extends to exporting behavior, with the largest cities experiencing
the strongest shift in exporting shares from manufacturing to services. At the same time, manu-
facturing exports become more concentrated in small cities, while the opposite is true for services
exports.

Figure 6a has the same structure as Figure 1b, but it focuses on export revenue. That is, it shows
the changes in sectoral export revenue shares within each city bin between 1995 and 2018. The
manufacturing export shares contracted the most in the largest cities and the least in the smallest
cities, mirrored by corresponding increases in the services export shares. We thus observe structural
change in exporting behavior that is tilted towards the largest cities. Quantitatively, we obtain a
steeper ‘pyramid’ shape than for overall revenue in Figure 1b. As Table A.2 shows, the services
export share expanded by 21 percentage points in the largest cities compared to only 2 points in the
smallest cities. It is also worthwhile considering the corresponding levels of export shares. Exports
in the smallest cities were almost exclusively geared towards manufacturing with a share of 97% in
1995, falling only marginally to 95% by 2018. But in the largest cities, while in 1995 the majority of
exports (54%) was still in manufacturing, by 2018 services dominated exports with a share of 67%.

Figure 6b plots the change in the shares of exporting firms across city bins, i.e., the change in the
extensive margin of exporting. Manufacturing firms became more likely to export in the smallest
and medium-sized cities but less likely to export in the largest cities. By contrast, services firms
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became more likely to export across all city sizes.20

3 A model of urban-biased structural change

Motivated by our empirical findings, we develop a model of location decisions by heterogeneous
firms in manufacturing and services in the presence of agglomeration externalities that can give rise
to urban-biased structural change. We later use the model to quantify the channels through which
economic activity shifts from manufacturing to services across French cities. Ours is primarily an
economic geography model in which heterogeneous firms sort into cities of various sizes (Behrens,
Duranton, and Robert-Nicoud, 2014; Gaubert, 2018). The sorting into different cities determines
the exposure of each city to the forces of structural change. Our model features three main drivers
of structural change: sectoral TFP growth, changes in sectoral international trade costs, and changes
in agglomeration forces (Melitz, 2003; Herrendorf et al., 2014; Desmet and Henderson, 2015;
Alessandria et al., 2019).

3.1 Countries

There are two countries, Home and Foreign. We assume they are symmetrically identical and omit
country indices.21

3.2 Cities and industries

There is a continuum of ex-ante identical cities 8, each hosting manufacturing and services firms.
The manufacturing and services sectors 9 ∈ {<, B} are monopolistically competitive. Manufactured
goods and services are traded domestically at zero cost.

Let the equilibrium population size be ! (8) in city 8. For simplicity, we assume that land is
owned by absentee landlords from another country and leased to workers and firms. Following
Hsieh and Moretti (2019) and Behrens et al. (2014) the user price of land (and housing) in city 8 is
an increasing function of population size:

?ℎ (8) =
(
! (8)
! (1)

)W
, (2)

20See the top panel of Table A.4 for details.
21This modeling assumption implies that trade balances between manufacturing and services are zero, adding

considerable tractability. In Appendix B.1 we discuss a version of the model that allows for trade imbalances arising
from comparative advantage through differential productivity and trade costs parameters.
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where W represents the elasticity of land prices with respect to normalized population size.22

3.3 Workers and final demand

There is a total mass !̄ of identical workers, each endowed with one unit of labor. Workers are freely
mobile across cities, with each choosing a city 8, a level of consumption of a final goods composite
� (8), and housing ℎ(8) to maximize utility subject to a budget constraint. The worker’s problem
can be solved in two steps. First, choose housing and consumption, taking city 8 as given. Second,
choose 8. The first stage of utility maximization is to choose � (8) and ℎ(8) to maximize

* (8) =
(
� (8)
[

)[ (
ℎ(8)

1 − [

)1−[
, (3)

subject to a budget constraint

%� (8) + ?ℎ (8)ℎ(8) = (1 + `), (8), (4)

where the parameter [ ∈ (0, 1) captures the worker’s expenditure share on final goods, % is the price
of the final goods composite, ?ℎ (8) is the price of housing (and land use) in city 8,, (8) is the wage
earned by workers in city 8, and ` is a proportional wage subsidy from the redistribution of profits
made by the final goods producer.

Workers choose which city to live in. Free worker mobility equalizes worker utility across cities,
i.e.,* (8) = * for all 8. The city-level equilibrium wage is then

, (8) = _?ℎ (8)1−[, (5)

where _ = *%[/(1 + `) is an economy-wide proportionality factor to be determined in general
equilibrium that we take as the numeraire. Since denser cities have higher housing prices, wages in
denser cities must also be higher to compensate for higher land prices: , (8) = ?ℎ (8)1−[/(1 + `).
Housing is therefore a congestion force – larger cities are more expensive to operate in – ensuring a
non-degenerate city size distribution.

To model non-homothetic preferences, we assume there is a final goods firm that aggregates
output & 9 from the manufacturing and service sectors 9 ∈ {<, B} to obtain & units of a final
consumption goods composite. The price of the final goods composite is determined competitively.

22In Appendix B.2 we discuss a model extension in which we introduce a full land market clearing condition. We
find that this extension yields quantitatively similar results to those in our baseline estimation in Section 5.

18



The firm maximizes profits

Π = %& −
∑

9∈{<,B}
% 9& 9 , (6)

by choosing & 9 at price % 9 , subject to a non-homothetic constant elasticity of substitution (CES)
production function over sectors (Comin et al., 2021), implicitly defined as

∑
9∈{<,B}

\ 9
1
d

(
& 9

&e 9

) d−1
d

= 1. (7)

The sector-specific parameters \ 9 > 0 capture production weights on each sector 9’s output, the
parameter 0 < d < 1 captures the constant elasticity of substitution between the output of each
sector implying complementarity, and e 9 ≥ 1 represents non-homothetic income effects. As Comin
et al. (2021) show, this allows for income effects as expenditure shares for each sector depend not
only on their relative prices, but also on the level of aggregate production. Each sector 9’s sales
share is then

o 9 =
% 9& 9∑
: %:&:

=
\ 9%

1−d
9
& (1−d) (e 9−1)∑

: \:%
1−d
:
& (1−d) (e:−1)

. (8)

When e 9 = 1 ∀ 9 , the production function is homothetic, in which case the sectoral sales shares
depend only on sectoral relative prices (Ngai and Pissarides, 2007).

Within sectors, quantities @ 9 (l) of differentiated varieties are aggregated through a sector-
specific, homothetic CES aggregator

& 9 =

(∫
l∈Ω 9

@ 9 (l)
f9−1
f9 dl

) f9

f9−1

, (9)

where f9 > 0 captures the elasticity of substitution between differentiated varieties l ∈ Ω 9 . The
corresponding price index % 9 is common across cities as varieties are freely traded within each
country.

The non-homothetic CES production function features (weakly) decreasing returns to scale as
long as e 9 ≥ 1. Therefore, the final goods firmmakes positive profits, which are entirely redistributed
to workers such that Π = `

∑
8, (8) ! (8), ` > 0.
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3.4 Production technologies, agglomeration effects, and trade costs

Firms pay an ex-ante entry cost 5 4
9
, denominated in final goods, to draw an idiosyncratic efficiency

type I from a sector-specific distribution � 9 (I) with support [1,∞). Goods and services are then
produced using labor and land as inputs according to a constant returns to scale technology with a
unitary substitution elasticity (Cobb-Douglas technologies)

@39 (I, 8) = Ψ 9 (I, 8)
(
;39

)U 9 (ℎ39 )1−U 9 ,

@G9 (I, 8) =
1
g9
Ψ 9 (I, 8)

(
;G9
)U 9 (ℎG9 )1−U 9 , U 9 ∈ (0, 1), (10)

where the 3 and G subscripts refer to production for the domestic and export markets, and where
g9 > 1 reflects sector-specific variable iceberg trade costs. A firm’s factor-neutral productivity level
Ψ 9 (I, 8) depends on its idiosyncratic efficiency draw I, the sector 9 in which the firm operates, and
the population density in its chosen city ! (8). Agglomeration externalities capture the productivity
advantage to firms of locating in larger cities, which may arise from knowledge spillovers, labor
pooling, inter-firm trade, or demand externalities (Duranton and Puga, 2020; Dauth, Findeisen,
Moretti, and Suedekum, 2022).

As in Gaubert (2018), we assume that the composite productivity function Ψ 9 (I, 8) is not log-
modular in I and ! (8), i.e., m2 logΨ 9 (.)/(m log I m log ! (8)) ≠ 0. But we extend Gaubert’s (2018)
specification by allowing for both log-supermodularity and log-submodularity

logΨ 9 (I, 8) = log � 9 + log I

+
0 9

2

(
log

! (8)
! (1) +

1
B 9

( (1 + b 9 ) log I + (1 − b 9 )
1 + log I

) ((
1 + log

! (8)
! (1)

) B 9
− 1

) )
, (11)

where � 9 is a sectoral TFP shifter, and the parameter 0 9 ∈ [0, 1] governs the strength of agglom-
eration externalities in sector 9 , i.e., it is equal to d logΨ 9/d log(! (8)/! (1)) when evaluated at
! (8) = ! (1) for I = min{I} = 1 and b 9 = 0.23

The parameter b 9 determines the direction of the deviation from log-modularity in sector 9 ,
i.e., the extent to which more efficient firms experience greater or smaller agglomeration effects
for a given city, with −1 ≤ b 9 ≤ 1.24 This in turn dictates how differentially efficient firms sort
across cities of different size. When b 9 > 0, the function is log-supermodular in I and !, implying

23The normalization ! (8)/! (1) ensures that log ! (8)/! (1) ≥ 0. As discussed by Glaeser et al. (1992), these
agglomeration externalities could arise within industries (Marshall, 1890) and across industries (Jacobs, 1969). As in
Gaubert (2018), our specification is neutral in that composite productivity depends on city size ! (8), not industry size.

24In Appendix B.3 we show that the productivity function Ψ 9 (I, 8) is only well-behaved within these bounds.
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that more efficient firms benefit relatively more from locating in a larger city. We would therefore
obtain positive sorting (more efficient firms locating in denser cities). When b 9 < 0, the function is
log-submodular in I and !, implying that more efficient firms benefit relatively less from locating in
a larger city. We would therefore obtain negative sorting (more efficient firms locating in less dense
cities). A value of b 9 = 0 would give no sorting.

The parameter B 9 ≤ 1 determines the marginal benefit of choosing a larger city – how the
elasticity of Ψ 9 with respect to ! (8)/! (1) varies with ! (8)/! (1). This in turn determines the shape
of the equilibrium sorting relationship between firm types and city sizes.25 This gives our model full
flexibility for accommodating differences between larger, high-efficiency firms (typically exporters)
and smaller, low-efficiency firms (typically non-exporters) in terms of how sharply they sort across
differentially dense cities.

We additionally allow for imperfect sorting by making each firm l draw a random, location-
specific productivity shock n̂ (l, 8) on top of their permanent efficiency I. Define firm-level overall
productivity as Φ 9 (I, 8) ≡ Ψ 9 (I, 8) 4 n (l,8) . Let the location shock n (l, 8) be i.i.d. and distributed
Type-I Extreme Value (Gumbel) with mean 0 and variance an, 9 . Then, n (l, 8) ≡ 4(f9−1) n̂ (l,8) is dis-
tributed Fréchet with shape parameter j 9 ≡ an, 9/(f9 − 1). Firms with otherwise identical efficiency
might thus choose different cities. When an, 9 → 0, the model features a perfect (frictionless) sorting
equilibrium.

Another difference between our model and Gaubert’s (2018) is that firms use land as a factor
input. This feature allows us to account for the empirical relationship between city sizes and
their shares of economic activity in each sector. In the data, this empirical relationship is positive
for services and negative for manufacturing (see Table A.2). Conditional on having the same
agglomeration and sorting parameters, a model without land as a factor of production would predict
the opposite pattern. The reason would be that services, which are more labor intensive than
manufacturing, would effectively be more land intensive because of workers’ demand for housing,
suggesting that services would face stronger congestion forces. Instead, our model interprets the
empirical relationship as coming from the higher land intensity of manufacturing.26

The goods and services produced by firms can be sold domestically and exported. In addition
to the variable trade costs g9 , exporting incurs sector-specific fixed trade costs 5 G9 .

25We provide details on how sorting varies with the parameters of (11) in Appendix B.4.
26In Gaubert (2018), labor is combined with fully mobile capital, whereas in our model it is combined with a fully

immobile factor (land). More generally, non-labor inputs could be modeled as consisting of a combination of mobile
and immobile capital. As long as the composition of non-labor inputs in manufacturing is not excessively biased
towards mobile capital, the ranking between services and manufacturing in terms of land intensity, and the qualitative
implications that follow from it, would remain unchanged.
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3.5 Firms’ choices

To maximize profits, a firm from sector 9 with efficiency I located in city 8 chooses the amount of
labor and land to employ, taking input prices as given. Each firm produces a differentiated variety
l. The firm’s profit maximization problem is

c 9 (I, 8) = max
;3 ,;G ,ℎ3 ,ℎG ,

@3 ,@G ,?3 ,?G ,p

?3@3 −, (8) ;3 − ?ℎ (8)ℎ3

+ p 9 (I, 8)
(
?G@G −, (8) ;G − ?ℎ (8)ℎG − % 5 G9

)
, (12)

where p 9 (I, 8) ∈ {0, 1} denotes the firm’s extensive-margin export choice, and the G superscripts
refer to the production of exports, subject to the technologies

@3 = @39 (I, 8), @G = @G9 (I, 8),

where @3
9
(I, 8) and @3

9
(I, 8) are as defined in (10), and subject to firm-specific domestic and export

demand curves

@39 =

(
?3
9

% 9

)−f9
& 9 , @G9 =

(
?G
9

% 9

)−f9
& 9 . (13)

The firm’s profits can be written as c 9 (I, 8) = c39 (I, 8) + p 9 (I, 8)
(
cG
9
(I, 8) − % 5 G

9

)
, where c3

9
and

cG
9
denote profits from domestic sales and variable profits from exports. Firms only export (i.e.,

choose p 9 (I, 8) = 1) if doing so delivers profits at least as high as the fixed trade costs, i.e., if

cG9 (I, 8) ≥ % 5 G9 . (14)

Given the above characterization of profits at any given location, firms choose a city that
maximizes their profits. Given that the firm draws a random, location-specific shock n (l, 8), we can
write variable profits as a composite of an idiosyncratic component E 9 (I, 8) and the random shock:

c 9 (I, 8) = E 9 (I, 8) n (l, 8) − % 5 G9 . (15)

Since the fixed trade costs are independent of location, the firm’s location choice problem can be
expressed as

8∗9 (I) = arg max
8∈I

E 9 (I, 8) n (l, 8). (16)
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3.6 Equilibrium

The entry cost 5 4
9
pins down the mass of firms in each sector " 9 in equilibrium. There are no fixed

operating costs, hence there is no selection upon entry. Following Behrens et al. (2014), we assume
that firms and workers self-organize in the creation of cities.

An equilibrium is defined by the following conditions:

• Export selection condition

Φ 9 (I, 8) ≥ g9 ?ℎ (8)1−[U 9
(
% 5 G

9

^ 9

) 1
f9−1

,

where ^ 9 ≡ 1
f9

(
f9−1
f9

)f9−1
Ũ
f9−1
9

_(1−f9 )U 9%
f9

9
& 9 and Ũ 9 = U

U 9

9
(1 − U 9 )1−U 9 , and where % is an

aggregate price index

% =

( ∑
9∈{<,B}

e 9o 9

) ( ∑
9∈{<,B}

\ 9%
1−d
9
& (1−d) (e 9−1)

) 1
1−d
,

which is the same across cities within the country (absent intercity trade frictions) and the same
in Home and Foreign (because of symmetry).

• Optimal firm location choice condition (free movement of firms)

8∗9 (I) = arg max
8∈I

E 9 (I, 8) n (l, 8).

This allows us to derive the share of firms that choose city 8, and the share of firms that choose
city 8 and are exporters

X 9 (8) = Pr(choose 8) and XG9 (8) = Pr(choose 8 ∩ exporter).

• Utility equalization across locations (free worker mobility)

, (8) = ?ℎ (8)1−[
1 + ` .

• Aggregate labor market clearing∫
r(8) d8 = 1,

where r(8) is the share of the population living in city 8.
• Zero profit for the marginal entrant in each sector (free entry of firms)
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" 9 =
1
f9

(
% 9& 9

% 5 4
9
+ % 5 G

9

∑
8 X
G
9
(8)

)
.

• Goods market clearing

%
1−f9
9

=

(
f9 − 1
f9

Ũ 9
(
*%[

)−U 9 )f9−1
" 9G9 ,

where

G9 (8) =
�

[
Φ 9 (I, 8)f9−1 | 8, 9

]
?ℎ (8) (1−[U 9 ) (f9−1) +

XG
9
(8)

X 9 (8)

�

[ (
Φ 9 (I, 8)/g9

)f9−1 | 8, 9 , p 9 (I, 8) = 1
]

?ℎ (8) (1−[U 9 ) (f9−1) ,

and

G9 =
∫

X 9 (8) G9 (8) d8.

• Local labor market clearing

, (8) r(8) !̄ =
∑

9∈{<,B}
X 9 (8)" 9 (f9 − 1) U 9� [c 9 (I, 8) | 9],

where !̄ is total population.
• Final goods market clearing

& = � +
∑

9∈{<,B}
" 9

(
5 49 + 5 G9

∫
XG9 (8) d8

)
,

where � ≡
∫
� (8) d8.

There are two equilibria. One is an unstable equilibrium where all cities are of equal size. The other
is a stable equilibrium which features cities of different sizes and which is relevant for our purposes.

4 Parameterization and estimation

To quantify the channels that lead to structural change across French cities, we derive the model’s
parameters from the data through a procedure that combines calibration and structural estimation.
In Section 5 we then use the parameterized model to carry out counterfactual simulations. Our
purpose is to decompose the contributions of sectoral TFP growth, falling international trade costs,
and changing agglomeration effects to urban-biased structural change. In this section, we explain
how we obtain the values of these key parameters.
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The parameters {�1995
9

, �2018
9
} are sectoral TFP shifters, {g1995

9
, g2018
9

, 5
G,1995
9

, 5
G,2018
9

} represent
sector-specific variable and fixed trade costs, and {01995

9
, 02018

9
} determine the strength of sectoral

agglomeration externalities. As we discuss below, our approach to quantifying these parameters
requires firstmeasuring variable trade costs and then incorporating them into the structural estimation
routine to estimate agglomeration externalities. However, we show that our approach to estimating
agglomeration externalities does not require measuring sectoral TFP shifters as an initial step.

4.1 Calibrated parameters

Exogenously specified parameters. Following Lewis, Monarch, Sposi, and Zhang (2022), we
set the degree of non-homotheticity for manufacturing and services to e< = 1 and eB = 1.62, and
the elasticity of substitution between the two sectors to d = 0.16.27 As for the land price elasticity,
we lean on estimates by Combes, Duranton, and Gobillon (2019) who use French administrative
data on land prices, setting it to W = 0.7. Table 4 summarizes the exogenously specified parameters.

Parameters obtained through calibration. The sector-specific labor intensity parameter U 9 is
set to match the sector-level wage bill share of total expenditure (wage bill, materials, and capital
expenditure) under the assumption of constant returns to scale production technologies. We calibrate
the elasticity of substitution across varieties within sectors f9 to match the sector-specific ratio of
revenues to total expenditure. The household non-housing consumption share in utility [ is set to
match French households’ expenditure share on housing related costs.

The aggregate sectoral productivity shifters for manufacturing and services are set to unity in
1995, �1995

< = �1995
B = 1. Changes in sectoral productivity shifters between 1995 and 2018 are

potential key drivers of structural change. We calibrate �2018
< and �2018

B to match the growth rate
of real GDP per capita and changes in the manufacturing sector share of aggregate sales between
1995 and 2018. The weight on consumption of goods versus services \< = 1 − \B is calibrated
to match the manufacturing sector share of aggregate sales in 1995. The fixed entry cost 5 4

9
for

services is normalized to unity and that for manufacturing is set to match the average firm size
(average revenue) in manufacturing relative to services. The fixed trade costs are set to match the
share of firms that are exporters in each sector. We calibrate one fixed trade cost for each sector and
year, { 5 G,1995

< , 5
G,2018
< , 5

G,1995
B , 5

G,2018
B }. Finally, consistent with the model, the variable trade costs

27Comin et al. (2021) estimate a somewhat lower value for eB of around 1.3 and a higher value for d of around
0.3, based on household expenditure data and a model featuring agriculture, manufacturing, and services sectors. Our
quantitative results in Section 5 are robust to those parameter values. We draw parameter values from Lewis et al.
(2022) because they estimate those values using data for the manufacturing and services sectors only, which are the two
sectors we model. We provide robustness checks for alternative values of the land price elasticity (see Section 4.2).
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Table 4: Exogenously specified and calibrated parameters

Parameter Source Sector Value

Income elasticity parameter in consumption (e 9) Lewis et al. (2022) Manufacturing 1
Services 1.62

Elasticity of substitution in consumption (d) Lewis et al. (2022) - 0.16

Land price elasticity (W) Combes et al. (2019) - 0.7

Elasticity of substitution across varieties (f9)
Manufacturing 11
Services 2.96

Share parameters in consumption (\ 9)
Manufacturing 0.41
Services 0.59

Sectoral labor intensity (U 9)
Manufacturing 0.35
Services 0.47

Non-housing consumption share in utility ([) 0.8

Sectoral TFP parameter (� 9)
Manufacturing 1 2.357
Services 1 1.027

Variable trade costs (g9)
Manufacturing 0.148 0.073
Services 3.009 1.196

Fixed trade costs ( 5 G
9
) Manufacturing 0.022 0.028

Services 0.186 0.391

are calibrated to match the sector-specific export intensity, defined as total export revenues among
exporters 'G

9
divided by the total domestic revenues among exporters '3,p=1

9
, i.e., g1−f9

9
= 'G

9
/'3,p=1

9
.

This gives {gG,1995
< , g

G,2018
< , g

G,1995
B , g

G,2018
B }. Table 4 lists the calibrated parameters.

4.2 Parameters inferred via structural estimation

Parameters to estimate. We assume that firm-specific efficiency log I is drawn from a Gamma
distribution with scale parameter aB20;4

I, 9
and shape parameter aBℎ0?4

I, 9
. Firm and location-specific

shocks n (l, 8) are drawn from a Gumbel distribution with scale parameter aB20;4
n, 9

. Given the
functional form for firms’ composite productivity Ψ 9 (I, 8) in equation (11), the sector-specific
parameters to estimate include the agglomeration externality parameter 0 9 , the sorting parameter
b 9 , and the agglomeration curvature B 9 .

For each sector, we allow the agglomeration externality parameter to differ between 1995 and
2018. We keep firms’ land intensity and the scale and shape parameters for their idiosyncratic
efficiency draws constant over time. Specifically, the set of parameters we estimate for each sector
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are

� 9 =

(
aB20;4I, 9 , a

Bℎ0?4

I, 9
, aB20;4n, 9 , 01995

9 , 02018
9 , b 9 , B 9

)
. (17)

This allows us to compare the 1995 and 2018 equilibria, and we can isolate the effects of the drivers
of structural change we focus on, namely changes in agglomeration effects, changes in trade costs,
and changes in TFP, the latter of which are exactly identified through calibration.

Identification. The parameters � 9 are estimated in partial equilibrium by solving the firm’s
location choice problem (16).28 We estimate these parameters separately for manufacturing and
services to match a set of sector-specific moment conditions detailed below. Given the composite
productivity function (11), we first write the log of firms’ total revenues, normalized by the average
log revenue of firms in the same sector in the least populated city (8 = 1), as

log ' 9 (I, 8) − � [log ' 9 (1)] = (f9 − 1) logΨ 9 (I, 8) − (f9 − 1) �
[

logΨ 9 (I, 1)
�� I ∈ Z9 (1)

]
+ log

(
1 + p 9 (I, 8)g

1−f9
9

)
− �

[
log

(
1 + p 9 (I, 8)g

1−f9
9

) �� I ∈ Z9 (1)
]

+ (f9 − 1) (1 − [U 9 )
(
log ?ℎ (8) − log ?ℎ (1)

)
+ (f9 − 1) n̂8, (18)

where Z9 (1) is the set of firms that belong to sector 9 and locate in the least populated city.
Variable trade costs g9 therefore need to be measured before implementing the estimation routine.
However, given the assumption that sectoral TFP shifters � 9 are Hicks-neutral, these TFP shifters
are differenced away by comparing firms not in the smallest cities to those in the smallest cities. In
the data, we observe the difference between a firm’s revenue and the average revenue in the smallest
city log ' 9 (I, 8) − � [log ' 9 (1)], and the relative city size ! (8)/! (1). For a given set of calibrated
parameters and observed firm size and city size distributions, we estimate the set of parameters � 9

to match data moments that are informative about their underlying values.

Intuition behind identification. The agglomeration externality parameter 0 9 can be identified
from proportional shifts in the distribution of log ' 9 (I, 8) − � [log ' 9 (1)] across city sizes. This is
because the agglomeration parameter affects all firms within a given sector equally. By contrast, the
sorting parameter b 9 determines the gains from locating in a larger city depending on the efficiency
I of the firm. For b 9 > 0, firms with a higher I gain disproportionately in terms of productivity from
locating in a larger city. For b 9 < 0, firms with a higher I lose disproportionately from locating in
a larger city. The sorting parameter can therefore be identified from differences in the skewness of

28See Appendix B.5 for an outline of the solution algorithm.
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log ' 9 (I, 8) − � [log ' 9 (1)] across city sizes, i.e., how the firm size-city size gradient changes for
firms at different points of the firm size distribution. The parameter B 9 can be identified from how
the intensity of firm sorting by size and location varies across the distribution of firm sizes.29

The variance of firm efficiency draws, related to aB20;4
I, 9

and aBℎ0?4
I, 9

, can be identified from the
overall, non-location-specific variance of log ' 9 (I, 8)−� [log ' 9 (1)]. The variance of firm-location-
specific shocks aB20;4

n, 9
introduces imperfect sorting between firm size and city size, which can be

identified from the correlation between log ' 9 (I, 8) − � [log ' 9 (1)] and log(! (8)/! (1)).

Targeted moments. Given the above discussion of which moments are informative about each
parameter, we target the following thirteen moments for each sector, with the choice of targeted
moments being the same as that of Gaubert (2018):

1. The 50-10, 75-25, 90-50, and 90-10 differences of the log normalized revenue distributions.

2. The average (normalized) log revenue by city size quintiles 8 ∈ I.

3. The share of revenue that originates from a city size quintile 8 ∈ I.30

Estimation is carried out by the Method of Simulated Moments using a pooled specification for
1995 and 2018, i.e., letting � ≡

(
�<,�B

)
. We denote the combined vector of empirical moments

for 1995 and 2018 (a vector of dimension 13 × 2 = 26) by m, with m̂
(
�

)
the corresponding vector

of model moments. WithW an estimate of the matrix of variances and covariances of the empirical
moments (obtained by bootstrapping), we derive an estimate �̂ as

�̂ = arg min
�

(
m − m̂

(
�

) )′
W−1

(
m − m̂

(
�

) )
. (19)

By using this estimation strategy, we can obtain time-invariant estimates for those parameters that
are constrained to remain the same across the two periods while allowing other parameters of interest
to change.

Parameter values and model fit. The parameter values obtained via this estimation procedure
are shown in Table 5. The model accommodates the observed changes in economic activity patterns
across locations mainly through a relative decline of TFP in services (� 9 in Table 4), a substantially
larger fall of trade costs in services than in manufacturing (g9 in Table 4), as well as an increase in
the strength of agglomeration externalities for services and a decrease in those for manufacturing

29As explained in Appendix B.4, B 9 is a determinant of the sorting condition, i.e., how the elasticity of ! with respect
to I varies with I.

30We do not target any moments of the export revenue distribution beyond those used to calibrate the trade cost
parameters as discussed above.
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Table 5: Estimated parameter values

Parameter Sector 1995 2018

Shape of Gamma productivity (aBℎ0?4
I, 9

)
Manufacturing 0.548 0.548

(0.019) (0.019)
Services 1.465 1.465

(0.025) (0.025)

Scale of Gamma productivity (aB20;4
I, 9

)
Manufacturing 0.163 0.163

(0.011) (0.011)
Services 0.319 0.319

(0.012) (0.012)

Scale of Gumbel shock (aB20;4
n , 9

)
Manufacturing 0.069 0.069

(0.000) (0.000)
Services 0.257 0.257

(0.014) (0.014)

Agglomeration curvature (B 9)
Manufacturing 0.668 0.668

(0.023) (0.023)
Services 0.912 0.912

(0.063) (0.063)

Agglomeration effect (0 9)
Manufacturing 0.718 0.694

(0.010) (0.004)
Services 0.703 0.712

(0.015) (0.011)

Sorting effect (b 9)
Manufacturing −0.104 −0.104

(0.021) (0.021)
Services 0.420 0.420

(0.114) (0.114)
Notes: Asymptotic standard errors in parentheses.

(0 9 in Table 5).31 The estimated sorting parameter is negative for manufacturing and positive for
services (b 9 in Table 5).32

Table 6 reports the values of the targeted empirical moments and the corresponding values
predicted by the model. The model generally performs well in matching the targeted moments. It is
able to closely match the firm size distribution. It also captures the mostly negative sorting patterns
by firm size and city size for manufacturing, and the relatively strong positive sorting patterns for

31In light of the observed change in the manufacturing trade balance between 1995 and 2018, the relatively modest
decline in manufacturing trade costs we infer through our calibration procedure can be partly accounted for by a change
in manufacturing comparative advantage. Given its symmetric structure, the model interprets a fall in the manufacturing
trade balance as an increase in manufacturing trade costs such that our inferred decline in manufacturing trade costs
would appear understated.

32Table A.6 in Appendix A.3 shows estimated parameters for alternative values of the land price elasticity W. These
values correspond to those reported by Combes et al. (2019) based on housing price data as opposed to land price data.
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Table 6: Model fit

Data Model

Moment 1995 2018 1995 2018
< B < B < B < B

Firm size 50-10 ratio 1.14 1.05 1.26 1.61 1.17 1.02 1.19 1.03
Firm size 75-25 ratio 1.75 1.31 1.82 1.45 1.75 1.35 2.09 1.36
Firm size 90-50 ratio 2.19 1.60 2.31 1.62 2.41 1.59 2.57 1.60
Firm size 90-10 ratio 3.33 2.65 3.57 2.93 3.58 2.61 3.76 2.63
Normalized mean log sales in city bin 2 0.02 0.07 0.02 0.07 0.05 0.09 0.01 0.08
Normalized mean log sales in city bin 3 −0.04 0.09 −0.05 0.08 0.01 0.09 −0.02 0.08
Normalized mean log sales in city bin 4 0.07 0.18 −0.12 0.10 0.01 0.17 −0.04 0.16
Normalized mean log sales in city bin 5 0.07 0.47 −0.17 0.31 0.02 0.36 −0.10 0.34
City bin 1 share of sectoral revenue 0.26 0.14 0.31 0.13 0.23 0.14 0.29 0.13
City bin 2 share of sectoral revenue 0.23 0.15 0.24 0.14 0.23 0.13 0.28 0.12
City bin 3 share of sectoral revenue 0.17 0.16 0.19 0.17 0.19 0.18 0.18 0.17
City bin 4 share of sectoral revenue 0.16 0.17 0.15 0.18 0.14 0.19 0.12 0.19
City bin 5 share of sectoral revenue 0.18 0.38 0.11 0.39 0.21 0.36 0.13 0.39

Notes: The table reports the model’s fit to the moments used in the structural estimation routine. Normalized mean log
sales in each city size bin are defined relative to city size bin 1 (smallest cities). See Section 4.2 for more information.
The numbers in italics are not targeted in the estimation routine because the distribution of firm-level efficiency draws
is kept constant over time. ‘<’ refers to manufacturing and ‘B’ refers to services.

services firms. The model also matches each city bin’s share of sectoral revenue reasonably well. In
particular, the model replicates the positive relationship in the data between city size and the revenue
share of the services sector. It also does well in matching the opposite pattern for manufacturing.33

5 What drives the urban bias in structural change?

We use our estimated model to assess the contribution of the different drivers of the urban-biased
structural change we observe in the data from 1995 to 2018. We proceed as follows. First, in
Section 5.1 we assess the model’s ability to reproduce the stylized facts presented in Section 2.2.
Next, in Section 5.2 we carry out counterfactual experiments to decompose the urban bias into the
contributions of three driving forces: sectoral TFP growth, falling international trade costs, and
changes in agglomeration externalities.

33In Appendix B.6 we derive values for agglomeration elasticities as implied by our model. These values are in line
with reduced-form estimates from the literature.
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Table 7: Data vs. model: Decomposition of the change in manufacturing revenue shares by firm
size

Contribution of bottom 95% of sales Contribution of top 5% of sales
City size UBSC Direct Contribution from Direct Contribution from

bin (total) contribution change in rev. share contribution change in rev. share
Data Model Data Model Data Model Data Model Data Model
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1 −0.093 −0.066 −0.068 −0.003 0.006 0.002 −0.017 −0.060 −0.014 −0.005
2 −0.106 −0.077 −0.061 −0.020 0.014 0.002 −0.020 −0.055 −0.039 −0.004
3 −0.114 −0.144 −0.061 −0.024 0.004 0.004 −0.043 −0.116 −0.015 −0.008
4 −0.193 −0.166 −0.079 −0.031 0.025 0.004 −0.063 −0.129 −0.076 −0.010
5 −0.180 −0.241 −0.056 −0.013 0.001 0.001 −0.122 −0.219 −0.003 −0.010

Aggregate −0.145 −0.151 - - - - - - - -

Notes: The table decomposes percentage point changes in the manufacturing sector revenue share in each city size bin
(see the column labeled ‘UBSC’, which stands for urban-biased structural change). For example, −0.1 means a ten
percentage point decline. Bin 1 represents the smallest cities and bin 5 the largest cities. The columns ‘Model’ show
the predictions of the 2018 estimated model. Columns 3, 5, 7, 9 add to column 1. Columns 4, 6, 8, 10 add to column 2.

5.1 Urban-biased structural change: Data vs. model

The model does well at reproducing the key urban-biased patterns of structural change presented
in Section 2.2. Columns 1 and 2 of Table 7 compare the full estimated model to the data. They
show that the model is capable of reproducing the ‘pyramid’ pattern of structural change – our first
stylized fact – as well as the magnitude of aggregate structural change. The remaining columns
in the table decompose this pattern into the contributions of non-large firms (firms in the bottom
95% of the sales distribution, columns 3-6) and large firms (firms in the top 5%, columns 7-10).
Although this decomposition is not a target of the estimated model, the table shows that, just as in
the data, the urban bias is fully accounted for by large firms – our third stylized fact.

The fact that economic activity experienced a sharper shift from manufacturing to services in
larger cities may be due to a decline in the size of the manufacturing sector, or a relatively faster
increase in the size of the services sector. Table 8 reports the real domestic and export revenue growth
of the manufacturing and services sectors in the data and in the model, based on the decomposition
described in equation (1). These growth rates are not targeted in the quantification of the model.
Columns 1 and 2 show that the model closely replicates the decline in domestic revenue of the
manufacturing sector: −14% both in the data and in the model. The model also closely replicates
the contribution of each city size bin to the decline in domestic revenue. Columns 3 and 4 show that
the model can also reproduce the growth of domestic revenues for the services sector.

The model performs less well in capturing the growth of export revenues for manufacturing and
services. In particular, the model overstates the growth rate of export revenues for both sectors.

31



Table 8: Data vs. model: Contributions of city size bins to sectoral growth

Domestic revenue Export revenue
Manufacturing Services Manufacturing Services

City size bin Data Model Data Model Data Model Data Model
(1) (2) (3) (4) (5) (6) (7) (8)

1 29% 29% 13% 13% 22% 29% 3% 14%
2 26% 28% 15% 12% 25% 28% 4% 11%
3 18% 18% 16% 17% 19% 18% 9% 17%
4 17% 13% 19% 19% 20% 13% 16% 17%
5 10% 12% 38% 39% 14% 12% 68% 42%

Total contribution 100% 100% 100% 100% 100% 100% 100% 100%
Total growth −14% −14% 74% 75% 40% 71% 181% 551%

Notes: The table decomposes the growth of total revenue of the manufacturing and services sectors into the contributions
of each city size bin. Revenues in 2018 are adjusted to 1995 prices. The columns ‘Model’ show the predictions of
the 2018 estimated model. ‘Total contribution’ refers to the sum of the contributions of each city size bin to the total
(domestic and export) revenue growth of each sector. ‘Total growth’ in the last row refers to the total real (domestic and
export) revenue growth of each sector between 1995 and 2018.

For the manufacturing sector, the model slightly over-predicts the rural bias in the contribution of
city size bins to export revenue growth. For the services sector, the model understates the urban
bias in export revenue growth. One reason why the model understates the urban bias in services is
that trade costs are constant across firms within a given sector, as is standard in Melitz-style trade
models. As discussed in Section 4.1, variable trade costs are measured using the average export
intensity of exporters, defined as total export revenue among exporters over total domestic revenue
among exporters in each sector, which downweights smaller exporters. In the data, however, export
intensity is higher and increased more among larger firms, especially for services.

5.2 Assessing the drivers of urban-biased structural change

We now turn to counterfactual experiments that examine the three driving forces of structural change
in our model – sectoral TFP growth, falling international trade costs, and changes in agglomeration
externalities. For this purpose, we set all parameters to their 1995 levels and change them one set
at a time to their estimated 2018 level, with each set pertaining to one of the driving forces. The
parameters associated with each of these “partial counterfactual” experiments are as follows:

(i) Sectoral TFP: {�1995
9
} 9∈{<,B} → {�2018

9
} 9∈{<,B}

(ii) Trade costs: {g1995
9

, 5
G,1995
9

} 9∈{<,B} → {g2018
9

, 5
G,2018
9

} 9∈{<,B}

(iii) Agglomeration: {01995
9
} 9∈{<,B} → {02018

9
} 9∈{<,B}

To assess the quantitative importance of each driving force, we then compare each of these partial
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Table 9: Counterfactual changes in the share of manufacturing revenue within city size bins and
contribution of large firms

Counterfactuals
All changes TFP Trade costs Agglomeration

City size all contribution all contribution all contribution all contribution
bin of top 5% of top 5% of top 5% of top 5%

(1) (2) (3) (4) (5) (6) (7) (8)
1 −0.066 98% −0.154 92% 0.001 −300% 0.069 87%
2 −0.077 77% −0.147 86% 0.003 0% 0.054 109%
3 −0.144 86% −0.160 85% 0.002 0% 0.014 71%
4 −0.166 84% −0.158 82% 0.004 25% −0.010 60%
5 −0.241 95% −0.157 95% 0.000 0% −0.104 96%

Overall −0.151 96% −0.162 98% 0.002 150% 0.010 83%

Notes: The table indicates the percentage point changes in the manufacturing sector revenue share in each city size bin.
For example, −0.1 means a ten percentage point decline. Bin 1 represents the smallest cities and bin 5 the largest cities.
The columns ‘All changes’ show the predictions of the estimated 2018 model (see column 2 of Table 7). The columns
‘TFP’, ‘Trade costs’, and ‘Agglomeration’ show the predictions of the partial counterfactuals. The columns ‘All’ refer
to all firms. The columns ‘Contribution of top 5%’ show the contribution of firms in the top 5% of the sales distribution
to structural change in each city size bin.

counterfactuals to the baseline 2018 estimated equilibrium, which combines all changes and which
is shown in Tables 7 and 8.

The role of sectoral TFP growth. In our calibration, we find that TFP in manufacturing grew
substantially relative to services.34 Table 9 compares UBSC in the counterfactual simulation that
only allows for TFP growth (see column 3) to UBSC in the full estimated model (see column 1 ). As
is standard in the structural change literature, the increase in manufacturing TFP has two aggregate
effects in our model. First, it reduces goods prices and shifts the consumption expenditure share
towards services due to complementarities between goods and services (Ngai and Pissarides, 2007).
Second, the consumption expenditure share also shifts towards services due to non-homothetic
demand effects (Comin et al., 2021). As a result, TFP growth generates rapid structural change in
the model, but there is no urban bias. When we look at the role of large and non-large firms, we
again see that large firms account for the bulk of the TFP-induced structural change. Indeed, column
4 shows that large firms account for the bulk of structural change within each city size bin.

We can conclude from this counterfactual experiment that sectoral TFP growth accounts for the

34TFP growth in the model is global: given our symmetry assumption, it occurs at the same rate in the Home country
(France) and the Foreign country (rest of the world). As explained in Appendix A.2, this assumption is motivated by
three features of the data: (i) the level and the increase in the manufacturing trade deficit are relatively small, (ii) the
services trade surplus is small and constant over time, and (iii) the manufacturing sectors that decline the most were not
more concentrated in large cities in 1995. In Appendix B.1, we explicitly model shifting comparative advantage and
find that while it plays a non-negligible role in aggregate structural change, it cannot explain the urban bias.
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bulk of aggregate structural change but does not explain UBSC. Although TFP growth generates
a larger expansion of services in large cities, it does not translate into a larger percentage point
increase in the services revenue share in large cities since the initial share is already high.

Table 10 decomposes the growth of the manufacturing and services sectors, both in the estimated
2018 equilibrium and the partial counterfactual. Columns 1 and 2 in the top panel show that while
manufacturing real domestic revenue declines by 14% in the estimated model, it declines by only
1% in the partial counterfactual. Manufacturing export revenue, on the other hand, increases by
71% in the estimated model, while it remains unchanged in the partial counterfactual. The reason
for this gap is that changes in TFP have little effect on the relative price of exported vs. domestic
goods. As shown below, the strongest determinant of the change in this relative price from 1995
to 2018 is a change in trade costs. By contrast, the TFP-induced services growth in domestic
revenue is comparable to that of the estimated model (see columns 3 and 4). The increase in
global manufacturing TFP also increases the demand for French services exports, leading to a 152%
increase in services exports in the partial counterfactual, with the largest share of growth coming
from the largest French cities. On the extensive margin of trade, services exports get some boost
from TFP changes as manufacturing firms vacate large cities and make it possible for large services
firms in those cities to grow and start exporting. However, the bulk of the expansion in services
exports in the estimated model could not have occurred if trade costs for services had not also fallen.

The role of falling international trade costs. Our second counterfactual experiment isolates
the effects of changes in trade costs. Our measure of manufacturing variable trade costs (g<) declines
from 14.8% in 1995 to 7.3% in 2018, while for services (gB) it declines from a high level of 300.9%
to 119.6%. Column 5 in Table 9 shows that the decline in trade costs increases the manufacturing
revenue share across city size bins slightly, by around 0.2 percentage points.

How does the decline in trade costs affect the size of the manufacturing and services sectors?
The middle panel of Table 10 reports our results. We find that the fall in g< reduces the size of
manufacturing domestic revenues by 14% and increases the size of manufacturing exports by 70%,
driven by a reallocation of sales from non-exporters to exporters. These numbers are very similar
to the corresponding numbers for the estimated 2018 equilibrium, which are −14% and 71%. For
the services sector, falling trade costs generate a 6% decline in domestic sales compared to a 75%
increase in the estimated model. However, they generate a 247% increase in services exports,
explaining a large fraction of the export growth predicted by the estimated model.

Our main takeaways from this counterfactual are as follows. Falling international trade costs do
not generate large aggregate or urban-biased structural change but provide an important explanation
for the (rural-biased) decline in the manufacturing sector’s domestic sales and its increase in exports.
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Table 10: Counterfactuals: Contributions of city size bins to sectoral growth

TFP counterfactual
Domestic revenue Export revenue

Manufacturing Services Manufacturing Services
City size bin Model Cntrf Model Cntrf Model Cntrf Model Cntrf

(1) (2) (3) (4) (5) (6) (7) (8)
1 29% 23% 13% 14% 29% 23% 14% 15%
2 28% 24% 12% 13% 28% 24% 11% 12%
3 18% 19% 17% 18% 18% 19% 17% 17%
4 13% 14% 19% 19% 13% 14% 17% 17%
5 12% 20% 39% 36% 12% 20% 42% 39%

Total contribution 100% 100% 100% 100% 100% 100% 100% 100%
Total growth −14% −1% 75% 90% 71% 0% 551% 152%

Trade cost counterfactual
1 29% 23% 13% 14% 29% 23% 14% 15%
2 28% 23% 12% 14% 28% 23% 11% 12%
3 18% 19% 17% 18% 18% 19% 17% 18%
4 13% 14% 19% 19% 13% 14% 17% 17%
5 12% 21% 39% 36% 12% 21% 42% 38%

Total contribution 100% 100% 100% 100% 100% 100% 100% 100%
Total growth −14% −14% 75% −6% 71% 70% 551% 247%

Agglomeration counterfactual
1 29% 28% 13% 13% 29% 28% 14% 14%
2 28% 27% 12% 13% 28% 27% 11% 11%
3 18% 18% 17% 17% 18% 18% 17% 16%
4 13% 13% 19% 19% 13% 13% 17% 17%
5 12% 14% 39% 38% 12% 14% 42% 42%

Total contribution 100% 100% 100% 100% 100% 100% 100% 100%
Total growth −14% −3% 75% −8% 71% −2% 551% 21%

Notes: The table decomposes the impact of TFP growth, changing international trade costs, and changing agglomeration
externalities on the growth of total revenue of the manufacturing and services sectors into the contributions of each city
size bin. ‘Total contribution’ refers to the sum of the contributions of each city size bin to the total (domestic and export)
revenue growth of each sector. ‘Total growth’ in the last row refers to the total real (domestic and export) revenue growth
of each sector between 1995 and 2018.

They also explain the fast (urban-biased) growth of services exports.

The role of changing agglomeration externalities. In our third counterfactual experiment,
we show that changing agglomeration externalities can account for UBSC in our model and also
play a non-trivial role for aggregate structural change. Our structural parameter estimates in Table 5
suggest that the agglomeration parameter 0 9 – the sensitivity of productivity with respect to city size
– declined from 0.718 in 1995 to 0.694 in 2018 for manufacturing, while it increased from 0.703 to
0.712 for services.

Columns 7 and 8 of Table 9 show the results of the counterfactual simulation where we only
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introduce changes in these two agglomeration parameters. Changes in agglomeration externalities
lead to a substantial decline in the manufacturing share of revenue in large cities but an increase
in small cities (column 7). These effects are driven by large firms (column 8). Recall that the
manufacturing sector is characterized by negative sorting (i.e., log-submodularity of Ψ< between
firm efficiency I and city size). That is, more efficient manufacturing firms tend to prefer smaller
cities. While the decline in agglomeration externalities reduces the attractiveness of large cities for
all manufacturing firms, log-submodularity implies that large manufacturing firms in large cities are
relatively more likely to respond by locating in small cities.35 This reorientation of manufacturing
towards smaller cities makes room for services firms to enter large cities, leading to strong UBSC.

The services sector, by contrast, is characterized by positive sorting (i.e., log-supermodularity
of ΨB). The increase in agglomeration externalities for services pushes services firms into large
cities, with large services firms in small cities relatively more likely to react. This reorientation of
services firms crowds out manufacturing firms, pushing them into smaller cities. This generates
further UBSC.

The diverging agglomeration externalities between the two sectors also have a sizable impact
on aggregate structural change. Taken together, they effectively represent a relative productivity
boost for services, increasing the manufacturing share of revenue by one percentage point (see the
final row of Table 9). But overall, both manufacturing and services decline in absolute size. As
the bottom panel of Table 10 shows, domestic and export revenues in manufacturing shrink by 3%
and 2%, meaning that the manufacturing sector declines in absolute size. Given that the share of
manufacturing in total output rises, this implies an even stronger decline of services production.
While services export revenue increases by 21% as large services exporters in large cities become
more productive, this is more than offset by the 8% drop in domestic services revenue.

How could the decline in manufacturing agglomeration externalities and the increase in services
agglomeration externalities be rationalized? A possible interpretation relates to land markets. To
see this, note that firms’ location choices in the model are determined by the net benefits they receive
from agglomeration in any given city. That is, firms consider the gross agglomeration productivity
benefits in a city minus any cost premium for using land directly as a production input or indirectly
by hiring workers who need to be compensated for housing price differentials across cities.

In our estimation exercise, we have assumed that the elasticity of land prices with respect to
population size W remains unchanged between 1995 and 2018. The model therefore interprets
changes in net agglomeration benefits as reflecting changes in gross sectoral agglomeration benefits,

35Highly efficient manufacturing firms with a random productivity draw n that favors large cities are more likely to
respond by locating in small cities compared to less efficient manufacturing firms with the same n draw.
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i.e., changes in the sectoral agglomeration parameters 0< and 0B. However, since manufacturing
is more land intensive than services, the net benefits of operating in denser cities could have also
changed differentially for manufacturing and services because of a change in W. Specifically, if
land prices become more sensitive to population size over time (a rise in W), this increases the
attractiveness of smaller, less densely populated areas for manufacturing and in turn frees up space
for services firms in larger, more densely populated cities.

Evidence on housing price indices across French communes for 1995 and 2018 is consistent
with a rising elasticity of land prices with respect to population density.36 In a log-linear regression
of housing prices on population, we find that the elasticity increases by 17% between 1995 and
2018.37 To gauge the extent to which a change in the relationship between density and land prices is
capable of accounting for UBSC, we carry out a counterfactual exercise where we increase the value
of W between 1995 and 2018 by the same proportion – from 0.7 to 0.82 – while leaving all other
parameters unchanged.38 The counterfactual exercise shows that this change generates even stronger
UBSC than for the baseline model. The rise in the land price elasticity generates a 28 percentage
point decline in the manufacturing share in city bin 5 (largest cities), and a 7 percentage point
increase in city bin 1. For comparison, the baseline model in Table 7 generates a 24.1 percentage
point decline in the manufacturing share in bin 5 and a 6.6 percentage point decline in bin 1.39

5.3 Implications for local and aggregate productivity

The above counterfactual experiments show how various sector-specific shocks – TFP growth, falling
international trade costs, and changing agglomeration externalities – shape local and aggregate
structural change. Agglomeration effects and the spatial sorting patterns of heterogeneous firms
imply that cities are differentially exposed. We now quantify the impact of those shocks on local

36The data are proprietary and were provided by ADNOV, a private organization that collaborates with INSEE to
produce price indices, based on the PERVAL database, of all housing transactions for existing apartments and houses
combined (i.e., new constructions are excluded) recorded by solicitors in France, with the exception of Ile de France
and Corsica. As the price indices are hedonic and control for the characteristics of each dwelling and therefore for
differences in quality, the indices are comparable over time. We use data for the years 1995 and 2018, available on a
quarterly basis for 33,192 French communes.

37The point estimates are 0.350 and 0.412, respectively. The level of these estimates is lower than the value for W
taken from Combes et al. (2019) that we report in Table 4. The reason is that the higher value is based on land price
data as opposed to housing price data. Combes et al. (2019) also report housing price elasticities which fall into the
same ballpark as our estimates (see their Tables 4 and 5).

38Formally, in our model this corresponds to a decrease in the land supply parameter a (see Appendix B.2).
39Another possible cause for the decline in agglomeration effects in manufacturing, leading to a reorientation of

manufacturing from large to small cities, would be a tightening of environmental pollution standards in densely
populated cities. However, if we compare changes in location sorting across different manufacturing industries in the
French data, we find no evidence that the change was greater in more pollution intensive industries.
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and aggregate sectoral productivity, and we also quantify their impact on marginal costs.
In Appendix B.7 we show that the local (i.e., city-specific) sectoral productivity growth between

time C′ > C and C is
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The first component of the above equation is the exogenous TFP growth. The second component is
the local sectoral productivity index
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where Ψ 9 (I, 8) ≡ � 9 Ψ̃ 9 (I, 8) and " 9 C ′ (8) is the mass of firms in sector 9 and city 8 at time C′. It is
a harmonic mean of firm-specific productivity and depends on endogenous agglomeration effects.
This definition of sectoral productivity follows from the CES sectoral price index, obtained from
sectoral goods (and services) market clearing conditions.40 Using the exact same market clearing
conditions, we can write aggregate sectoral productivity growth as
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Similarly, the growth of local marginal costs, net of firm productivity Φ 9 (I, 8) for firms in sector 9
and city 8, is given by41
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which is shaped directly by land prices because land is a factor input, and indirectly through wages
due to the need to compensate workers for higher land prices. Given the expression for local marginal

40The intuition for it being a harmonic mean rather than an arithmetic mean is that the productivities of any two firms
are not perfect substitutes since firms produce differentiated goods.

41To see this, notice that the firm’s optimal price is given by a constant markup over marginal costs: ? 9 (I, 8) =
f 9

f 9−1 2̃
local
9
(8)/Φ 9 (I, 8).
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cost growth, we can then define the growth of aggregate sectoral marginal costs as
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This equation shows that aggregate sectoral marginal costs give more weight to cities in which (i)
more firms of that sector locate, and in which (ii) firms of that sector are relatively less productive
compared to the average firm in the same sector.

Panel A of Table 11 reports how local and aggregate sectoral productivity growth responds
to each shock. The last two rows of column 1 indicate that manufacturing productivity grew by
120% between 1995 and 2018 compared to 15% for services. Column 3 shows that the endogenous
component of sectoral productivity growth dampened the manufacturing productivity advantage
over services: it reduced manufacturing productivity by 9% and boosted services productivity by
12%.42 Column 3 in panel B shows that the manufacturing productivity advantage was further
dampened by a larger increase in manufacturing marginal costs than in services (37% vs. 6%).

When we introduce only exogenous TFP growth into the model’s 1995 equilibrium, holding
constant other drivers of structural change, we find that it leads to sizable productivity spillovers
both within and across sectors through agglomeration and sorting effects. Column 4 in panel A
shows the results of this counterfactual experiment: the endogenous components of manufacturing
and services productivity growth induced by TFP growth contribute 5% and 7%. These effects do
not play out evenly across space. Productivity grows more in large cities because exogenous TFP
growth leads to an expansion of the services sector, which is concentrated in large cities. Population
growth in large cities leads to higher productivity through agglomeration externalities (recall that
in 1995 agglomeration externalities were larger for manufacturing than for services). Why then
do services firms in large cities experience a larger productivity boost (7%) than manufacturing
firms (5%) in the same cities? This is because highly efficient services firms, which were already
located in large cities in 1995, benefit disproportionately more from agglomeration externalities.
As population grows more in large cities, however, land prices also increase, driving marginal costs
of production higher in large cities. Column 4 in panel B shows that, for both manufacturing and

42Note that, in column 3 of panel A, aggregate productivity growth is larger in magnitude than local productivity
growth. The reason for this can be seen by comparing equations (20) and (21). The local measure of productivity
growth considers how the (harmonic) average firm productivity in a given city 8 changes in response to shocks. The
aggregatemeasure further considers the shifting distribution of firms across space, " 9 (8)/" 9 . The same reason applies
to columns 6 and 7, as well as to the results for local and aggregate marginal cost growth in panel B.
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Table 11: Local and aggregate productivity and marginal cost growth in manufacturing and services

Panel A: Productivity growth
Counterfactual

All changes Δ�<, Δ�B Δg<, ΔgB Δ0< Δ0B

City size bin Total Exogenous Endogenous Endogenous
(1) (2) (3) (4) (5) (6) (7)

Manufacturing

1 140% 142% −1% 0% 0% −1% 0%
2 137% 142% −2% 0% 0% −2% 0%
3 129% 142% −5% 3% 0% −9% 1%
4 137% 142% −2% 5% 0% −10% 1%
5 132% 142% −4% 6% 0% −17% 3%

Aggregate 120% 142% −9% 5% 0% −19% 3%

Services

1 3% 3% 0% 0% 0% 0% 0%
2 3% 3% 0% 0% 0% 0% 2%
3 2% 3% −1% 3% 0% −6% 2%
4 6% 3% 3% 5% 0% −7% 4%
5 10% 3% 7% 7% 0% −13% 9%

Aggregate 15% 3% 12% 7% 0% −13% 14%

Panel B: Marginal cost growth

Manufacturing

1 0% - 0% 0% 0% 0% 0%
2 0% - 0% −1% 0% 0% 1%
3 −3% - −3% 3% 0% −7% 1%
4 0% - 0% 5% 0% −7% 1%
5 2% - 2% 7% 0% −12% 4%

Aggregate 37% - 37% 3% 2% −35% 3%

Services

1 0% - 0% 0% 0% 0% 0%
2 0% - 0% 0% 0% 0% 1%
3 −2% - −2% 3% 0% −6% 1%
4 0% - 0% 4% 0% −6% 1%
5 2% - 2% 6% 0% −11% 3%

Aggregate 6% - 6% 7% 0% −13% 7%

Notes: The table decomposes the impact of exogenous TFP growth, falling international trade costs, and changing
agglomeration externalities on local and aggregate productivity growth as well as marginal cost growth in the manu-
facturing and services sectors between 1995 and 2018. In panel A, ‘Exogenous’ refers to the exogenous component
of productivity growth, whereas ‘Endogenous’ refers to the endogenous component that depends on agglomeration
externalities. The corresponding equations for local and aggregate productivity growth are (20) and (21). In panel B,
marginal cost growth is net of productivity. The corresponding equations for local and aggregate marginal cost growth
are (22) and (23).

services, the associated rise in marginal costs almost entirely offsets the productivity gains due to
agglomeration externalities. Therefore, although large cities are relativelymore exposed to a sectoral
manufacturing TFP boost due to the sorting of large services firms into large cities, the changes in
agglomeration and congestion effects approximately cancel out.

An isolated fall in the manufacturing agglomeration externality (Δ0<, in column 6 of panel A)
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generates a sizable negative cross-sectoral effect on services, whose productivity declines by 13%
in large cities. This occurs because large services firms, which are concentrated in large cities, are
negatively affected by the reduction in large-city population that results from manufacturing firms
shifting to small cities (due to 0< falling), and also because of the associated inflow of less productive
services firms into large cities. An isolated increase in the services agglomeration externality (Δ0B,
in column 7) generates productivity gains for both manufacturing and services, particularly for large
services firms in large cities. However, as column 7 of panel B shows, the gains of 14% for services
are partially offset by a corresponding rise in marginal costs (due to rising land prices) of 7%, with
the result that the net productivity effect is cut by half.

In sum, these results highlight twomain insights that critically depend on the spatial heterogeneity
of the effects we model. First, as shown in columns 1-3 of panel A, productivity growth in
manufacturing is almost fully explained by exogenous TFP growth, with fairly even effects across
city bins. By contrast, productivity growth in services is mainly explained by the endogenous
component, with a clear urban bias. Second, as shown in column 1 in panels A and B, total
productivity growth for manufacturing is to a considerable degree offset by rising marginal costs as
firms endogenously sort into different city bins (120% vs. 37%). The unexplained component of
productivity growth for manufacturing (as reflected in �<) would therefore be smaller in a model
without spatial heterogeneity. This would lead to an understatement of the exogenous component of
relative manufacturing productivity growth in such a model.

6 Conclusion

We document uneven spatial patterns of structural change in France from 1995 to 2018. We show
that while the country experienced a shift from manufacturing to services on aggregate, this shift
was concentrated in the largest cities with the highest density of economic activity. The services
sector grew disproportionately in such cities, while manufacturing reoriented towards less populous
locations. In the largest cities, the services sector became more than five times as prominent as
manufacturing in terms of revenue, value added, and employment, whereas in the smallest cities
the split is more even. This urban-biased pattern of structural change was driven by the behavior
of large firms, with large services firms expanding in urban areas and large manufacturing firms
expanding in other parts of the country. The expansion of large services firms in large cities was
also accompanied by a rapid increase in services exports.

To understand these patterns of structural change, we estimate a structuralmodel of city formation
with location choices by heterogeneous firms in an open economy setting. We find that strengthening
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agglomeration externalities in services relative to manufacturing are a major driving force behind the
urban bias. Rapidly declining international trade costs for services further reinforce urban-biased
services growth. Strong TFP growth in manufacturing also increases the share of services in the
economy but evenly across locations. Sectoral TFP growth thus does not explain the urban bias,
although it is a crucial determinant of structural change at the aggregate level.

Differences in structural change across locations, driven by the behavior of heterogeneous
firms, also have implications for understanding structural change at the aggregate level. Rising
manufacturing TFP encourages the concentration of large services firms in large cities, raising their
productivity through agglomeration externalities. In the estimated model, this productivity gain
turns out to be almost exactly offset by rising land prices in large cities and so has no impact on
aggregate structural change. However, diverging sectoral agglomeration externalities, which are
the main driver of the urban bias, induce large manufacturing firms to grow disproportionately in
smaller cities, making room for less efficient services firms to enter large cities. This significantly
dampens aggregate structural change – by about one-tenth. Such cross-sectoral productivity effects
are absent from canonical analyses that abstract from firm heterogeneity and urban agglomeration
externalities.
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A Data appendix

A.1 Descriptive statistics
Figure A.1 shows amap of the population across French cities (commuting zones). Figure A.2 shows
different measures of aggregate structural change (revenue, exports, value added, employment)
including multi-establishment firms. Figure A.3 shows the change in sectoral revenue shares across
city bins between 1995 and 2018. For manufacturing we observe a redistribution of activity from
the largest to the smallest cities. For services we see a shift in the opposition direction (albeit
weaker), with the services shares declining in the three smallest bins and rising in the two largest
bins. Figure A.4 illustrates that the urban-biased pattern of structural change holds across individual
cities and for different measures of structural change (revenue, exports, value added, employment).
Figure A.5 also illustrates that the urban-biased pattern of structural change holds across individual
cities and for different measures of structural change (revenue, exports, value added, employment)
but including multi-establishment firms. Figure A.6 shows, for manufacturing and services each,
the change in the share of firms across city bins between 1995 and 2018. Figure A.7 illustrates the
role of tradable vs. non-tradable services. Figure A.8 shows the urban bias in structural change
associated with non-exporting and exporting firms.

Table A.1 reports the size of multi-establishment firms relative to the aggregate French economy.
Based on the main sample in Section 2, Tables A.2-A.4 report descriptive statistics for key variables.
Table A.5 decomposes the contribution of non-exporters and exporters to urban-biased structural
change.
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Figure A.1: Population across French cities

Notes: Themap illustrates the population across 297 French cities (commuting zones). Population (city size) ismeasured
as the number of total employees. The dots are proportional to population. See Section 2 for more information.
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Figure A.2: Aggregate structural change in France, 1995-2018 (incl. multi-establishment firms)

(a) Structural change in revenue (b) Structural change in exports

(c) Structural change in value added (d) Structural change in employment

Notes: Compared to Figure 1a and other data in Section 2, this figure includes multi-establishment firms whose
establishments are located in different commuting zones.
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Figure A.3: Structural change across French city bins, 1995-2018

Notes: City size bin 1 represents the smallest cities and bin 5 the largest cities. The bars show the percentage point
change in sectoral revenue shares across city bins between 1995 and 2018. The changes within each sector add to zero.
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Figure A.4: Structural change across French cities, 1995-2018

(a) Structural change in revenue (b) Structural change in exports

(c) Structural change in value added (d) Structural change in employment

Notes: Each dot represents one French city (commuting zone), proportional to population size in 1995. The largest dot
represents Paris. The variable on the vertical axis is the change in the manufacturing share in percentage points. The
slope of the regression line is significantly different from zero in each panel.
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Figure A.5: Structural change across French cities, 1995-2018 (incl. multi-establishment firms)

(a) Structural change in revenue (b) Structural change in exports

(c) Structural change in value added (d) Structural change in employment

Notes: Each dot represents one French city (commuting zone), proportional to population size in 1995. The largest
dot represents Paris. The variable on the vertical axis is the change in the manufacturing share in percentage points.
Compared to Figure A.4, this figure includes multi-establishment firms whose establishments are located in different
commuting zones. The slope of the regression line is statistically significantly different from zero in each panel.
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Figure A.6: Change in the share of manufacturing and services firms across city bins, 1995-2018

Notes: City size bin 1 represents the smallest cities and bin 5 the largest cities. The figure shows the change across city
bins in the share of manufacturing firms (black) and services firms (orange). The changes are between 1995 and 2018
and add to zero in each sector.

Figure A.7: Tradable vs. non-tradable services and urban-biased structural change, 1995-2018

Notes: City size bin 1 represents the smallest cities and bin 5 the largest cities. The changes are across French city bins
between 1995 and 2018 and add to zero. Black denotes manufacturing, orange denotes tradable services, and green
denotes non-tradable services. The panels show the change in a sector’s share of economic activity, measured in terms
of revenue, export, value added, and employment.
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Figure A.8: Non-exporters, exporters, and urban-biased structural change in France, 1995-2018

(a) Structural change among non-exporters (b) Structural change among exporters

Notes: City size bin 1 represents the smallest cities and bin 5 the largest cities. In panel (a) the bars show the percentage
point change in sectoral revenue shares within city bins for manufacturing and services between 1995 and 2018 among
non-exporters only. The numbers correspond to the red element of the first row in the decomposition formula in Section
2.2 adapted to non-exporters and exporters. Panel (b) does the same among exporters only. The numbers correspond
to the red element of the second row in the adapted decomposition formula. For example, -0.1 means a ten percentage
point decline. The changes within city bins add to zero.
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Table A.1: Multi-establishment firms’ share of the French economy

Manufacturing Services Overall

Statistic 1995 2018 1995 2018 1995 2018

Fraction of all firms 0.055 0.065 0.031 0.047 0.040 0.051
Share of revenue 0.615 0.664 0.349 0.413 0.523 0.542
Share of exports 0.690 0.750 0.539 0.427 0.671 0.701
Share of value added 0.623 0.628 0.355 0.425 0.502 0.499
Share of employment 0.489 0.474 0.348 0.409 0.418 0.427

Notes: The table reports the size of multi-establishment firms relative to the aggregate French economy. Establishment-
level employment is directly measured from the French DADS data set. However, establishment-level revenue, exports,
and value added are not directly observed in the data. To compute these variables, we split firm-level revenue into
establishment-level revenue using each establishment’s share of the firm-level wage bill. This way of allocating firm-
level output to each establishment works under the assumption of firm-level Cobb-Douglas production technologies and
constant markups.
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Table A.2: Descriptive statistics by city size bin (shares)

Manufacturing Services
Statistic City size bin 1995 2018 1995 2018
Share of revenue 1 0.67 0.58 0.33 0.42

2 0.64 0.53 0.36 0.47
3 0.54 0.42 0.46 0.58
4 0.56 0.37 0.44 0.63
5 0.33 0.15 0.67 0.85

overall 0.53 0.38 0.47 0.62
Share of value added 1 0.58 0.47 0.42 0.53

2 0.54 0.42 0.46 0.58
3 0.43 0.31 0.57 0.69
4 0.44 0.27 0.56 0.73
5 0.24 0.10 0.76 0.90

overall 0.42 0.27 0.58 0.73
Share of employment 1 0.55 0.40 0.45 0.60

2 0.51 0.34 0.49 0.66
3 0.42 0.26 0.58 0.74
4 0.42 0.22 0.58 0.78
5 0.26 0.10 0.74 0.90

overall 0.43 0.26 0.57 0.74
Share of exports 1 0.97 0.95 0.03 0.05

2 0.96 0.94 0.04 0.06
3 0.88 0.84 0.12 0.16
4 0.92 0.75 0.08 0.25
5 0.54 0.33 0.46 0.67

overall 0.83 0.71 0.17 0.29

Notes: The table reports descriptive statistics for the sample of firms with one establishment and firms whose estab-
lishments are all located in the same commuting zone. See Section 2 for more information. Revenue, value added and
exports are in real terms (in 1995 values). Bin 1 represents the smallest cities and bin 5 the largest cities.
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Table A.3: Descriptive statistics by city size bin (totals and averages)

Manufacturing Services
Statistic City size bin 1995 2018 1995 2018
Total revenue (’000) 1 57594 60479 28268 44160

2 52016 58562 29119 50942
3 37613 41624 32667 57202
4 43168 39796 33896 68537
5 40032 25426 82806 149034

sum 230423 225887 206756 369875
Total value added (’000) 1 28837 30256 20952 34161

2 26636 29165 22272 40465
3 19338 20849 25645 47049
4 21469 21337 27170 56871
5 22253 14357 70089 136219

sum 118533 115964 166128 314765
Total exports (’000) 1 11310 15580 330 781

2 10398 17934 488 1173
3 6251 13291 829 2613
4 13737 13817 1191 4565
5 8640 9743 7401 19675

overall 50336 70365 10239 28807
Average revenue (’000) 1 1899 2796 465 551

2 2016 2705 529 643
3 1791 2510 600 754
4 1904 2421 741 820
5 2381 2734 1421 1661

overall 1976 2633 746 894
Average value added (’000) 1 947 1417 345 426

2 1038 1357 404 509
3 936 1270 471 623
4 1025 1298 595 678
5 1308 1526 1218 1518

overall 1031 1366 601 759

Notes: The table reports descriptive statistics for the sample of firms with one establishment and firms whose estab-
lishments are all located in the same commuting zone. See Section 2 for more information. Revenue, value added and
exports are in real terms (in 1995 values). ‘Average’ refers to the average over firms in each bin. Bin 1 represents the
smallest cities and bin 5 the largest cities.
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Table A.4: Descriptive statistics by city size bin (firm shares)

Manufacturing Services
Statistic City size bin 1995 2018 1995 2018
Share of exporting firms 1 0.25 0.31 0.02 0.05

2 0.25 0.31 0.03 0.06
3 0.24 0.30 0.04 0.08
4 0.26 0.29 0.06 0.08
5 0.35 0.33 0.13 0.17

overall 0.25 0.30 0.05 0.08
Share of firms 1 0.27 0.28 0.23 0.20

2 0.23 0.25 0.20 0.19
3 0.19 0.19 0.20 0.20
4 0.17 0.18 0.17 0.20
5 0.15 0.10 0.21 0.21

sum 1.00 1.00 1.00 1.00
Share of firms 1 0.26 0.28 0.20 0.18
(above median log sales) 2 0.22 0.25 0.19 0.19

3 0.18 0.19 0.19 0.19
4 0.18 0.18 0.17 0.20
5 0.16 0.10 0.25 0.24

sum 1.00 1.00 1.00 1.00
Share of firms 1 0.28 0.28 0.25 0.22
(below median log sales) 2 0.23 0.24 0.21 0.20

3 0.20 0.20 0.21 0.20
4 0.16 0.18 0.17 0.20
5 0.14 0.11 0.16 0.19

sum 1.00 1.00 1.00 1.00

Notes: The table reports descriptive statistics for the sample of firms with one establishment and firms whose establish-
ments are all located in the same commuting zone. See Section 2 for more information. Bin 1 represents the smallest
cities and bin 5 the largest cities.
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Table A.5: Contribution of non-exporters and exporters to urban-biased structural change

Non-exporters Exporters
City size UBSC Structural change Changing non-exp. Structural change Changing exp.

bin (total) among non-exp. revenue share among exp. revenue share
(a) (b) (c) (d)

1 −0.093 −0.068 0.006 −0.017 −0.014
2 −0.106 −0.061 0.014 −0.020 −0.039
3 −0.114 −0.061 0.004 −0.043 −0.015
4 −0.193 −0.079 0.025 −0.063 −0.076
5 −0.180 −0.056 0.001 −0.122 −0.003

Notes: The table decomposes the percentage point changes in the manufacturing sector revenue share in each city size
bin (see the column labeled ‘UBSC’, which stands for urban-biased structural change). For example, -0.1 means a ten
percentage point decline. Bin 1 represents the smallest cities and bin 5 the largest cities.
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A.2 The trade balance and comparative advantage
Figure A.9 plots the aggregate French trade balance over time. It moved from a surplus of around
2.5% of GDP in the late 1990s to a deficit of aroundminus 1% by 2018. This decline in the aggregate
trade balance is driven by a commensurate decline in the manufacturing trade balance, while the
services trade balance remained constant at roughly 1% on average. The change in the trade balance
is therefore not sizable enough to explain the decline in the manufacturing value-added share from
42% to 27%.

In addition, we explore whether the manufacturing trade balance evolved differentially across 2-
digit manufacturing industries, mapping these industries to city size bins. We find a slightly stronger
decline in the manufacturing trade balance of smaller cities. The intuition is that high-tech French
manufacturing, which is attractive on international markets, tends to be more strongly represented in
larger cities. This trade balance pattern across cities of different sizes goes in the opposite direction
of the relatively strong decline of manufacturing in the largest cities documented in Figure 1b.

Can a shift in comparative advantage away from certain Frenchmanufacturing sectors explain the
urban bias in structural change? For this to be a driver, the manufacturing sectors whose output was
replaced by outsourcing or imports should be the sectors that (i) declined at the fastest rate, and (ii)
were more concentrated in large cities in 1995 compared to manufacturing sectors that had a smaller
(or non-negative) rate of decline. We therefore correlate the growth rates of manufacturing sectors
in large cities with their initial size. Figure A.10 shows that there is no systematic relationship.
This finding suggests that a shift in comparative advantage away from certain manufacturing sectors
cannot explain the urban bias in structural change. Nevertheless, in Appendix B.1 we extend our
quantitative framework to assess whether a decline in the price of imported manufactured goods
relative to domestically produced goods can quantitatively account for aggregate and urban-biased
structural change.
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Figure A.9: French trade balance

-5%

-4%

-3%

-2%

-1%

0%

1%

2%

3%

4%

Total trade balance (% GDP, BoP) Services trade balance (% GDP, EBOPS)

Merchandise trade balance (% GDP)

Notes: The figure shows the French merchandise trade balance from 1995 to 2018 (black), the French services trade
balance from 1995 to 2013 (orange) and the total (aggregate) trade balance (blue) as a fraction of GDP. Data sources:
Services total exports and imports (USD) and merchandise total exports and imports (USD) are from the World Trade
Organization (WTO). The term ‘merchandise’ has the same meaning as the terms ‘goods’ and ‘commodities.’ The
services data are available between 1995 and 2013 according to theExtendedBalance of Payments ServicesClassification
(EBOPS) 2002 (this classification was replaced by EBOPS 2010 but data for EBOPS 2010 are only available from 2005
and not reported here). Nominal GDP (USD) and total exports and imports of goods and services (USD, from the
Balance of Payments, BoP) are from the World Bank World Development Indicators.

Figure A.10: Manufacturing growth and large cities’ share of manufacturing activity, 1995-2018

Notes: The left panel shows the relationship between the growth of two-digit manufacturing subsectors (1995-2018)
and the initial share of revenue of that sector accounted for by large cities (city size bin 5). The right panel does the
same for employment.
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A.3 Parameter estimates under alternative land price elasticity values
Table A.6 shows estimated model parameters for alternative values of the land price elasticity W.
See Section 4.2 for details.

Table A.6: Estimated parameter values under alternative values of W

W = 0.35 W = 0.20
Parameter Sector 1995 2018 1995 2018

Shape of Gamma productivity (aBℎ0?4
I, 9

)
Manufacturing 0.549 0.549 0.466 0.466

(0.007) (0.007) (0.031) (0.031)
Services 1.454 1.454 2.546 2.546

(0.054) (0.054) (1.116) (1.116)

Scale of Gamma productivity (aB20;4
I, 9

)
Manufacturing 0.173 0.173 0.159 0.159

(0.001) (0.001) (0.001) (0.001)
Services 0.274 0.274 0.297 0.297

(0.017) (0.017) (0.067) (0.067)

Scale of Gumbel shock (aB20;4
n , 9

)
Manufacturing 0.072 0.072 0.077 0.077

(0.000) (0.000) (0.000) (0.000)
Services 0.289 0.289 0.153 0.153

(0.005) (0.005) (0.024) (0.024)

Agglomeration curvature (B 9)
Manufacturing 0.491 0.491 0.694 0.694

(0.022) (0.022) (0.051) (0.051)
Services 0.990 0.990 0.903 0.903

(0.079) (0.079) (0.971) (0.971)

Agglomeration effect (0 9)
Manufacturing 0.290 0.283 0.159 0.148

(0.005) (0.004) (0.007) (0.003)
Services 0.320 0.327 0.166 0.164

(0.020) (0.024) (0.039) (0.036)

Sorting effect (b 9)
Manufacturing −0.139 −0.139 −0.139 −0.139

(0.043) (0.043) (0.067) (0.067)
Services 0.554 0.554 0.607 0.607

(0.108) (0.108) (0.949) (0.949)
Notes: Asymptotic standard errors in parentheses.
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B Model appendix

B.1 Shifting comparative advantage
In our baseline structural framework, the Home and Foreign countries are symmetrically identical.
This means that the trade balances for both goods and services are zero. However, as shown in
Figure A.9, the French trade balance for goods has declined from about 1% of GDP to minus
4% of GDP between 1995 and 2018. For services, the trade surplus remains at about 1% of
GDP. This section quantitatively addresses how shifting comparative advantage away from French
manufacturing affects our main findings.
Changes to the baseline model. In this section, we abstract from non-homothetic income effects
by working with homothetic CES preferences (e 9 = 1). We model the Home country (France) as a
small open economy, i.e., Home takes the Foreign price of goods and services as given. Let %�

9
be

the exogenous Foreign price of manufactured goods. The Home price index for sector 9 is now:

% 9 =

(∑
8

∫
I∈Z 9 (8)

?39 (I, 8)
1−f9 dI +

(
%�9

)1−f9
) 1

1−f9
,

where ?3
9
(I, 8) is the domestic price of a Home producer with efficiency I located in city 8. A decline

in %�
9
implies that Home firms in sector 9 face stronger import competition.

Quantification of the extended model. In our baseline model, we rely on the assumption that
the Home and Foreign countries are symmetrically identical to measure variable international trade
costs (g9 ) using data on sectoral export intensity. In the extended framework in this section in which
the Home country is a small open economy, sectoral export intensity is now:

?G
9
(I, 8) @G

9
(I, 8)

?3
9
(I, 8) @3

9
(I, 8)

= g
1−f9
9

��
9

%
f9

9
& 9

,

where ��
9
is a demand shifter capturing exogenous shifts in Foreign’s demand for Home sector 9’s

output. We assume that in 1995, Home and Foreign are symmetrically identical: ��
9
= %

f9

9
& 9 .

Trade costs (g9 ) in 1995 therefore retain the same values as in the baseline model.
We calibrate the changes in the price of Foreign manufactured goods (%�

9
) relative to Home

manufactured goods to replicate changes in the manufacturing trade balance as a percentage of GDP
between 1995 and 2018 – a 5 percentage point decline in the manufacturing trade balance share of
GDP.
Main finding. We run a counterfactual simulation in which we introduce the calibrated change in
the price of imported goods into the estimated 1995 Home equilibrium. We find that the decline
in the price of imported goods relative to Home goods can explain around 11% (or 1.7 percentage
points) of the increase in the aggregate services share of revenue (aggregate structural change), but
very little in terms of the urban bias: the increase in the services share of revenue is 0.002 percentage
points higher along the largest cities (city size bin 5) compared to the smallest cities (city size bin
1).
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B.2 Extension: Land market clearing
In the baseline version of our model, we represent the relationship between population density and
land price in terms of an ad-hoc “equilibrium” land price schedule that depends on population size:
?ℎ (8) = ! (8)W. Below we relax this assumption by introducing an explicit land market clearing
condition that determines equilibrium land prices.

Assume that the land supply function for city 8 is given by ℎB (8) = ?ℎ (8)a. The total demand for
land in city 8 is the aggregate demand by firms in both the manufacturing and services sectors, as
well as workers’ demand. The land market clearing condition for city 8 is∑

9∈{<,B}

( ∫
I∈Z 9 (8)

?ℎ (8)ℎ 9 (I, 8) dI
)
+ (1 − [), (8) ! (8) = ?ℎ (8) ℎB (8),

whereZ9 (8) is the set of firms from sector 9 located in city 8. Using firms’ first-order conditions for
an optimal input choice, we obtain ?ℎ (8) ℎ 9 (I, 8) =

1−U 9
U 9

, (8) ; 9 (I, 8). Substituting this into the land
market clearing condition gives∑

9∈{<,B}

1 − U 9
U 9

( ∫
I∈Z 9 (8)

, (8) ; 9 (I, 8) dI
)
+ (1 − [), (8) ! (8) = ?ℎ (8) ℎB (8).

Dividing each side of the equality by , (8) and using the free worker mobility condition , (8) =
?ℎ (8)1−[, we can rewrite this expression as∑

9∈{<,B}

1 − U 9
U 9

! 9 (8) + (1 − [)! (8) = ?ℎ (8)a+[,

where ! 9 (8) is the total employment of sector 9 in city 8. We can now write the equilibrium land
price schedule as

?ℎ (8) =
(
1 − [ +

∑
9∈{<,B}

1 − U 9
U 9

! 9 (8)
! (8)

) 1
a+[
! (8)

1
a+[ . (24)

Note that if all sectors have the same labor and land intensity, then equation (24) converges to
the land price schedule in our baseline model (up to a constant). In the estimation approach of
our baseline model, firms solve the location choice problem taking population size ! (8) as given.
With a land market clearing condition as in equation (24), firms would additionally take as given
the within-city sectoral share of employment ! 9 (8)/! (8). Equation (24) also shows that, with an
explicit land market clearing condition and since manufacturing is more land intensive than services
(U< < UB), structural change can offset the effect of population size on land price as it shifts land
demand from the more land-intensive sector to the less land-intensive sector. Overall, when we
estimate the model using equation (24) and use it to run counterfactual experiments, we obtain
similar estimated sectoral agglomeration externalities and similar quantitative findings.
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B.3 Bounds on the sorting parameter (b 9 )
We show in this section that the productivity functionΨ 9 (I, 8) is only well-behaved when the sorting
parameter b 9 lies between −1 and 1. From (11), and denoting ! (8)/! (0) by !, the elasticity of firm
productivity with respect to city size is then

m logΨ 9 (I, 8)
m log !

=
0 9

2

(
1 +
(1 + b 9 log I) + (1 − b 9 )

1 + log I
(1 + log !)B 9−1

)
,

where B 9 ∈ [0, 1]. This elasticity determines the marginal benefit to the firm of choosing a city of
a given population size. The marginal cost of choosing that same city is the elasticity of the firm’s
marginal production costs with respect to city size: "� 9 (I, 8) = (1− [U 9 )W. Equating the marginal
benefit and marginal cost of choosing a city 8 gives the following optimality condition

(1 + b 9 ) log I + (1 − b 9 )
1 + log I

=

(
2
(1 − [U 9 )W

0 9
− 1

)
(1 + log !)1−B 9 .

To ensure that no firms prefer a negative city size, we first impose the following parameter restriction
2(1 − [U 9 )W/0 9 > 1. We now show that, when b 9 > 1 or b 9 < −1, the productivity function is not
well-behaved: firms would prefer negative city sizes.

For firms to always prefer a positive city size, we require that log I ≥ −(1−b 9 )/(1+b 9 ). Consider
the least efficient firm, with I<8= = 1. The requirement reduces to 0 ≥ −(1− b 9 )/(1+ b 9 ) ≡ b̃ 9 . This
condition is always satisfied when b 9 ∈ [−1, 1]. However, this condition does not hold outside this
range:

limb 9→−1− b̃ 9 = ∞;

limb 9→1+ b̃ 9 ≥ 0;

limb 9→+∞ b̃ 9 = 1 > 0;

limb 9→−∞ b̃ 9 = 1 > 0.

We therefore impose the parameter restriction b 9 ∈ [−1, 1].
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B.4 The elasticity of firms’ location choices with respect to their efficiency
type

Below we discuss how the elasticity of firm’s location choices varies with the parameters in (11).
In what follows, ! denotes ! (8)/! (0) ≥ 1, and for simplicity we omit the sector 9 subscript. The
first-order condition for a sorting equilibrium yields the following closed-form solution for I(!)

log I = −W(1 + log !) − 0(1 + log !)B (1 − b)
W(1 + log !) − 0(1 + log !)B (1 + b) ,

where W is the elasticity of land prices with respect to city size. The above expression must be non-
negative for I ≥ 1 (as we assume), i.e., the expressions in the numerator (NUM) and the denominator
(DEN) must have opposite signs (with NUM = 0 at I = 1). For b > 0, we have NUM > DEN,
whereas for b < 0 we have NUM < DEN. Therefore

b > 0 ⇒ NUM ≥ 0, DEN < 0,
b < 0 ⇒ NUM ≤ 0, DEN > 0.

The expression for 3 log !/3 log I = 1/(3 log I/3 log !) ≡ [!I is

[!I =
DEN2

2b (1 − B)0W(1 + log !)B .

For B < 1, the sign of [!I agrees with the sign of b. Consider next how [!I varies with ! (and thus I)

3[!I

3!
=

DEN
2b (1 − B)0W(1 + log !)1+B

(
(2 − B)W(1 + log !) − B0(1 + log !)B (1 + b)

)
.

– Case b > 0:
In this case, we have DEN < 0. The limit of the last expression in within the large parentheses for
B < 1 and B→ 1 equals DEN < 0 (making thewhole expression positive); so, in the neighborhood
of B = 1, [!I (which is positive in this case) must be increasing in ! and thus decreasing in I
(since ! is increasing in I in this case). The limit of the same expression for B → 0 equals
(2 − B)W(1 + log !), which is positive; so, for B sufficiently low, [!I must be decreasing in ! (and
in I). Note that a decreasing elasticity implies that log ! (I) is concave in log I, not that ! (I) is
concave in I.

– Case b < 0:
In this case, we have DEN > 0. The limit of the numerator in the expression for B < 1 and
B → 1 equals DEN, which is positive in this case (making the whole expression positive); so, in
the neighborhood of B = 1, [!I (which is negative in this case) must be increasing in ! and thus
increasing in I (since ! is decreasing in I in this case). The numerator in the expression remains
positive for all values of B < 1, and so [!I remains increasing in I (decreasing in absolute value)
for any value B < 1.
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B.5 Solution algorithm
Preliminaries.

• Define parameter values.

• Permanently draw firm idiosyncratic efficiency I and firm-location-specific productivity n .

• Let*%[ = 1 be the numeraire.

Outer loop. Guess the population distribution {r0(8)}8∈I:

• Obtain {?=
ℎ
(8)}8∈I in the =Cℎ iteration from the land price schedule.

• Obtain composite productivity {Ψ=
9
(I, 8)}8∈I .

• Compute the optimal city choice of firms 8∗ = arg max8∈I c 9 (I, 8).

• Compute the share of firms in each location for each sector {X=
9
(8)}8∈I, 9∈� as well as the

associated mean composite productivity {Ψ̄=
9
(8)}8∈I, 9∈� .

• Inner loop. Guess sectoral price indices {%=,0
9
} 9∈� and aggregate output &:

– Compute sectoral sales sharesl 9 , then the final goods price index %, then the final goods
firm profits Π.

– Compute the shares of exporters in each location for each sector {XG,=
9
(8)}8∈I, 9∈� as well

as the associated mean productivity of exporters �
[ (ΦG

9
(I,8)
g9

)f9−1] .
– Compute the sectoral mass of firms " 9 and the � 9 function.

– Use the sectoral goods market clearing condition to iterate on {%=,0
9
} 9∈� . Use the final

goods market clearing condition to iterate on &.
– Repeat until convergence.

• Use the local labor market clearing technology to update {r=+1(8)}8∈I .

Iterate until the equilibrium labor allocation across cities is achieved.
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B.6 Estimates of agglomeration elasticities and model-implied elasticities
To relate the agglomeration elasticities of sectoral productivity implied by our estimates with
corresponding estimates from the literature, we compute two elasticity measures. The first measure,
based on the CES aggregator across firms within sectors, is (see B.7 for the derivation)

m logΨlocal
9
(8)

m log(! (8)/! (1)) =
∫
I∈Z 9 (8)

Ω 9 (I, 8)
m logΨ 9 (I, 8)

m log(! (8)/! (1)) dI, (25)

where

Ω 9 (I, 8) ≡

(
1 + p 9 (I, 8) g

1−f9
9

)
Ψ(I, 8) 9 f9−1∫

I∈Z 9 (8)

(
1 + p 9 (I, 8) g

1−f9
9

)
Ψ 9 (I, 8)f9−1 dI

is the weight placed on firms with efficiency I in sector 9 and location 8. The aggregated local
(i.e., location-specific) elasticity is a weighted average of firm-location-specific elasticities that fully
accounts for equilibrium selection effects with respect to the productivity types of firms operating
at different locations. While this is the theory-consistent measure of the elasticity of sectoral
productivity with respect to city size, it is not observable in the data. As such, the literature has
often focused on the estimation of firm-level productivity Ψ 9 (I, 8).

The literature has also typically abstracted from land as a factor input because land use in
production is not observed (Rosenthal and Strange, 2004; Melo, Graham, and Noland, 2009;
Graham and Gibbons, 2019; full references at the end of this appendix). In these estimates, just
as in expression (25), land prices do not affect firms’ marginal costs other than through wages, as
wages compensate workers for higher local land prices. In contrast, the second measure we compute
also accounts for how the elasticity of land prices with respect to city size affects net productivity
through the cost of land use:

m logΨnet, local
9

(8)
m log(! (8)/! (1)) =

m logΨlocal
9
(8)

m log(! (8)/! (1)) − (1 − U 9 ) W, (26)

where the first term on the right-hand side is the sectoral elasticity of gross firm productivity with
respect to city size. The values of these two measures implied by our estimates are reported in
Table B.1. Our estimates of the net elasticities are in the range of those reported elsewhere in the
literature. For example, Combes, Duranton, Gobillon, Puga, and Roux (2012) report that estimates
of the elasticity of productivity with respect to city size range between 0.02 and 0.10, depending on
the sector and the details of the estimation procedure.
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Table B.1: Elasticity of sectoral productivity with respect to city size

Gross Net of land prices
Manufacturing Services Manufacturing Services

City size bin 1995 2018 1995 2018 1995 2018 1995 2018
(1) (2) (3) (4) (5) (6) (7) (8)

2 0.50 0.49 0.53 0.54 0.05 0.04 0.15 0.17
3 0.49 0.48 0.52 0.54 0.03 0.02 0.15 0.16
4 0.48 0.47 0.52 0.53 0.02 0.01 0.15 0.16
5 0.46 0.45 0.52 0.53 0.01 0.00 0.14 0.16

Notes: The table shows the elasticity of sectoral productivity (gross and net of land prices) with respect to city population
size. The values in columns 1-4 correspond to expression (25), those in columns 5-8 correspond to expression (26).
The values reported are elasticities relative to bin 1 as described in (25) and (26).
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B.7 Aggregating firm productivity
In this section, we derive the theory-consistent sector-location-level and sector-level productivity
used in Section 5.3. To proceed, first note that the sector-level price index can be written as

% 9 =

(∑
8

∫
I∈Z 9 (8)

?39 (I, 8)1−f9
(
1 + p 9 (I, 8) g

1−f9
9

)
3I

) 1
1−f9

=

(∑
8

% 9 (8)1−f9
) 1

1−f9

, (27)

where % 9 (8) ≡
(∫
I∈Z 9 (8)

?3
9
(I, 8)1−f9

(
1 + p 9 (I, 8) g

1−f9
9

)
3I

) 1
1−f9 is the sector-location-specific price

index. Note that the welfare-relevant equilibrium sectoral price index is % 9 since goods and services
are traded costlessly across cities within a given country. Define the marginal production cost copula

2̃local
9
(8) ≡

(
, (8)
U 9

)U 9 ( ?ℎ (8)
1 − U 9

)1−U 9
. Then, the sector-location-specific price index can be written as

% 9 (8) =
f9

f9 − 1
2̃local9 (8) " 9 (8)

1
Φ local
9
(8)
, (28)

where the sector-location-specific productivity index is

Φ local
9 (8) ≡

(
Φ

local, D
9

(8)
f9−1
+
"G
9
(8)

" 9 (8)
g

1−f9
9

Φ
local, X
9

(8)
f9−1

) 1
f9−1

, (29)

the sector-location-specific productivity index across exporters is

Φ
local, X
9

(8) ≡
(

1
"G
9
(8)

∫
I∈ZG

9
(8)
Φ
f9−1
9
(I, 8) 3I

) 1
f9−1

, (30)

and the sector-location-specific productivity index across both exporters and non-exporters is

Φ
local, D
9

(8) ≡
(

1
" 9 (8)

∫
I∈Z 9 (8)

Φ
f9−1
9
(I, 8) 3I

) 1
f9−1

. (31)

Substituting equation (28) into equation (27), we can define the following expression for sectoral
productivity

Φ
agg
9
≡

(∑
8

" 9 (8)
" 9

Φ local
9 (8)f9−1

) 1
f9−1

. (32)

Given this definition of sectoral productivity, we can also define the sectoral marginal cost copula
as

2̃
agg
9
≡ ©«

∑
8

(
" 9 (8)
" 9

Φ
agg
9

Φlocal
9
(8)
2̃local9 (8)

)1−f9ª®¬
1

1−f9

. (33)

24



Appendix references

Combes, P., Duranton, G., Gobillon, L., Puga, D., Roux, S., 2012. The Productivity Advantages
of Large Cities: Distinguishing Agglomeration from Firm Selection. Econometrica 80(6), pp.
2543-2594.

Graham, D., Gibbons, S., 2019. Quantifying Wider Economic Impacts of Agglomeration for
Transport Appraisal: Existing Evidence and Future Directions. Economics of Transportation
19, 100121.

Melo, P., Graham, D., Noland, R., 2009. A Meta-Analysis of Estimates of Urban Agglomeration
Economies. Regional Science and Urban Economics 39(3), pp. 332-342.

Rosenthal, S., Strange, W., 2004. Evidence on the Nature and Sources of Agglomeration Economies.
In: Henderson, V., Thisse, J. (Eds), Handbook of Regional and Urban Economics, Vol. 4,
Elsevier, Amsterdam, pp. 2119-2171.

25


	Introduction
	Urban-biased structural change: Evidence from France
	Data description
	Empirical patterns

	A model of urban-biased structural change 
	Countries
	Cities and industries
	Workers and final demand
	Production technologies, agglomeration effects, and trade costs
	Firms' choices
	Equilibrium

	Parameterization and estimation
	Calibrated parameters
	Parameters inferred via structural estimation

	What drives the urban bias in structural change?
	Urban-biased structural change: Data vs. model
	Assessing the drivers of urban-biased structural change
	Implications for local and aggregate productivity

	Conclusion
	Data appendix
	Descriptive statistics
	The trade balance and comparative advantage
	Parameter estimates under alternative land price elasticity values

	Model appendix
	Shifting comparative advantage
	Extension: Land market clearing 
	Bounds on the sorting parameter (j)
	The elasticity of firms' location choices with respect to their efficiency type
	Solution algorithm
	Estimates of agglomeration elasticities and model-implied elasticities
	Aggregating firm productivity


