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Mixed Strategies

So far we have considered only pure strategies,
and players’ best responses to deterministic beliefs.

Now we will allow mixed or random strategies,
as well as best responses to probabilistic beliefs.

Many games have no pure strategy Nash equilibrium.
But we will discuss why every finite game
has at least one mixed strategy Nash equilibrium.
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Matching Pennies

This is a classic “two-person zero sum” game.
Players 1 and 2 each put a penny on a table simultaneously.
If the two pennies match (heads or tails)
then player 1 gets both; otherwise player 2 does.

P2

H T

H 1∗ −1
−1 1∗

P1 T −1 1∗
1∗ −1

The method used earlier finds no pure strategy Nash equilibria.
Player 2 wants to deviate from any matching strategy profile;
player 1 wants to deviate from any non-matching strategy profile.
No Nash equilibrium exists.
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Rock–Paper–Scissors (RPS)

In this child’s game, recall that rock blunts scissors,
scissors cut paper, and paper wraps rock.
The following bimatrix assumes winning gives a payoff of 1,
losing a payoff of −1, and a draw is worth 0.

P2

R P S

R 0 −1 1∗
0 1∗ −1

P1 P 1∗ 0 −1
−1 0 1∗

S −1 1∗ 0
1∗ −1 0

Again, there is no pure strategy equilibrium.
Starting with any pure strategy pair, at least one player is not
responding best, and wants to change strategy.
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Mixed Strategies

Mixed or randomized strategies offer
several important advances over what we have done so far.

1. Players can make choices like
“I’ll toss a coin and choose accordingly”.
Fatherly advice: “Never gamble.”
“If you have a hard decision to make,
toss a coin and see if you’re disappointed.”

2. More importantly, players can have probabilistic beliefs.
These are subjective or personal probabilities
such that the player acts as if
these were specified objective probabilities
by maximizing subjective expected utility.
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Example

Let E be the event that it is snowing at noon today.
Consider an indifference map describing preferences
between the two commodities:

1. the probability p of winning £1000 if E occurs;

2. the probability q of winning £1000 if E does not occur.

Let v(w) be the von Neumann–Morgenstern utility
from winning an amount £w .
Let π be the subjective or personal probability that E occurs.
Then the obvious expected utility function is

Ev = Pv(1000)+(1−P)v(0) = v(0)+[v(1000)−v(0)]P = A+BP,

where P = πp + (1− π)q is the compound probability
of winning £1000, whether or not E occurs,
and A,B are constants with B > 0.
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Probabilistic Beliefs as Constant MRSs
So the expected utility function

Ev = Pv(1000) + (1− P)v(0) = A + BP

with A = v(0), B = v(1000)− v(0) > 0 and P = πp + (1− π)q
represents the same preferences as the normalized utility function

U(p, q) = P = πp + (1− π)q

This is characterized by the parameter π ∈ (0, 1).

The corresponding indifference curves in (p, q) space
are parallel straight lines whose slope is −π/(1− π),
the likelihood ratio of “rain” versus “no rain”.

Generally, subjective probability ratios like this
are (constant) marginal rates of substitution (MRSs)
between two perfect substitutes — namely,
the objective probabilities of winning a prize in two different events.
EC202, University of Warwick, Term 2 7 of 48
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Parallel Linear Indifference Curves

The utility function U(p, q) = P = πp + (1− π)q represents
preferences described by parallel linear indifference curves
on the unit square [0, 1]× [0, 1].

The probabilities p and q of winning £1000
in events E and not E respectively are perfect substitutes
with constant MRS equal to the likelihood ratio −π/(1− π).

In the diagram π > 1− π and −π/(1− π) < −1.
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History of Ideas

This approach to subjective probability was pioneered
by Anscombe & Aumann in (1961).
The latter also won a Nobel Prize in economics
for game theory (though not for this specific work).
An excellent earlier book
is Savage’s Foundations of Statistics.
This lays out a theory of subjective probability
without postulating objective probability.
But it is much more complicated, possibly unnecessarily so.
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Finite Strategy Sets

Suppose players have finite strategy sets Si (i ∈ N).
A probability distribution σi (·) over a finite state space,
in our case player i ’s strategy set Si ,
is a mapping σi : Si → [0, 1] satisfying

∑
si∈Si σi (si ) = 1.

Definition
A mixed strategy for player i
is a probability distribution σi ∈ ∆Si .

Let σi (si ) denote the probability
that player i plays the specific strategy si .

We may identify each pure strategy si
with the degenerate probability distribution δsi
that picks the specific pure strategy si with probability one.
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Matching Pennies

Here each player i ’s strategy set is Si = {H,T}.
Then σi (H) and σi (T ) denote the probabilities
that player i plays H and T , respectively.
And the set ∆Si of mixed strategies is

∆Si = {(σi (H), σi (T )) ∈ R2

| σi (H) ≥ 0, σi (T ) ≥ 0,

σi (H) + σi (T ) = 1}

i.e., the set of all pairs (σi (H), σi (T )) ∈ R2

that are non-negative, and sum to one.

We identify H and T with δH and δT respectively.
The set ∆Si is a line interval joining δH and δT .
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Rock–Paper–Scissors

In the game of rock–paper–scissors (RPS),
one has Si = {R,P, S}, so

∆Si = {(σi (R), σi (P), σi (S)) ∈ R3

| σi (R), σi (P), σi (S) ≥ 0,

σi (R) + σi (P) + σi (S) = 1}.

Let ∆Si denote the set of all such probability distributions.
When #Si = 3 with Si = {R,P,S},
then ∆Si is a triangle with corners at (1, 0, 0), (0, 1, 0), (0, 0, 1)
in the space of triples (σ(R), σ(P), σ(S)) ∈ R3

representing probabilities of the three strategies in Si .
More generally, the set ∆Si is the unit simplex
in the #Si -dimensional Euclidean space R#Si .
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Three Strategy Case
Suppose Si = {a, b, c}.
Then ∆Si is a triangle whose three corners
are the degenerate mixed strategies as shown.

x y

z

b b

b

δa = (1, 0, 0) δb = (0, 1, 0)

δc = (0, 0, 1)

1
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Supports

Given a mixed strategy σi (·), we distinguish between
pure strategies that are chosen with positive probability,
and those that are chosen with zero probability.

Definition
Say that a pure strategy si ∈ Si is in the support of σi (·)
if and only if σi (si ) > 0.

In the RPS game example,
suppose a player chooses R or P with equal probability,
and S with zero probability.
Then σi (R) = σi (P) = 1

2 and σi (S) = 0.
What is the support?

Both R and P are in the support of σi (·), but S is not.
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Infinite Strategy Sets

The Cournot and Bertrand duopoly examples
show that strategy sets need not be finite.
In case the strategy sets are subsets of the real line, a mixed
strategy will be given by a cumulative distribution function:

Definition
Suppose Si ⊆ R.
A mixed strategy for player i
is a cumulative distribution function (or c.d.f.) Fi : Si → [0, 1],
where Fi (x) denotes the probability Pr{si ≤ x} that si ≤ x .

Say that fi (·) is a (probability) density function for Fi

in case Fi (x) =
∫ x
−∞ fi (si )dsi for all x ∈ R.

(Note that fi (x) = F ′i (x) wherever the latter exists.)
When Fi has such a density function,
its support is the union of all the closed intervals [a, b] ⊂ R
such that a < b and fi (x) > 0 for all x ∈ (a, b).
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Cournot Duopoly Example
Consider the mixed strategy where firm i chooses a quantity
between 30 and 50 with a uniform distribution. Then

Fi (si ) =


0 for si < 30
1

20 (si − 30) for si ∈ [30, 50]

1 for si > 50

and we can take

fi (si ) = F ′i (si ) =



0 for si < 30

undefined for si = 30
1

20 for si ∈ (30, 50)

undefined for si = 50

0 for si > 50

The support of this distribution is [30, 50].
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A Uniformly Mixed Strategy
These distribution and density functions are illustrated below.

0

0

F and f

s

1

1/20

30 50
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Probabilistic Beliefs

There are many reasons for player i to be uncertain
about the other players’ strategies s−i .
One possibility is that i believes the other players
are indeed choosing mixed strategies,
which immediately implies that s−i is random.
Alternatively, player i may have incomplete information
about the other players’ preferences, beliefs,
or other factors determining how they will play.

Definition
A (probabilistic) belief for player i
is a probability distribution πi ∈ ∆S−i
over the joint strategies s−i of i ’s “opponents”
— i.e., over s−i ∈ S−i =

∏
j∈N\{i} Sj .

Thus, πi (s−i ) denotes the probability
that player i assigns to the opponents playing s−i ∈ S−i .
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Example

In the rock–paper–scissors game, player 1’s beliefs
are modelled as a triple (π1(R), π1(P), π1(S))
where, by definition, π1(R), π1(P), π1(S) ≥ 0,
and π1(R) + π1(P) + π1(S) = 1.

The interpretation of π1(s2) is the probability
that player 1 assigns to player 2 playing a particular s2 ∈ S2.

Recall that a mixed strategy for player 2
is a triple σ2(R), σ2(P), σ2(S) ≥ 0,
with σ2(R) + σ2(P) + σ2(S) = 1.
This makes clear the analogy between beliefs π
and a mixed strategy σ;
both are members of the same space ∆({R,P,S})
of probability distributions over the strategy space {R,P,S}.
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Expected Utility of Consequence Lotteries

In matching pennies, suppose player 2 chooses
the mixed strategy σ2(H) = 1

3 and σ2(T ) = 2
3 .

If player 1 plays H,
then the payoff is 1 with probability 1

3 ,
and −1 with probability 2

3 .
If, however, player 1 plays T ,
then the payoff is 1 with probability 2

3 ,
and −1 with probability 1

3 .
So player 1’s different actions
lead to different consequence lotteries.

It is usual to represent a player’s preferences over such lotteries
by the expected value
of a von Neumann–Morgenstern utility function.
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Expected Payoff

Definition
When the others play the mixed strategy σ−i ∈ ∆S−i
player i ’s expected payoff from choosing si ∈ Si

is ui (si , σ−i ) =
∑

s−i∈S−i
σ−i (s−i ) ui (si , s−i ).

Similarly, player i ’s expected payoff
from choosing the mixed strategy σi ∈ ∆Si

when the opponents play σ−i ∈ ∆S−i
is ui (σi , σ−i ) =

∑
si∈Si σi (si ) ui (si , σ−i ).

This expectation of the expected payoff is the double sum

ui (si , σ−i ) =
∑

si∈Si σi (si )
(∑

s−i∈S−i
σ−i (s−i ) ui (si , s−i )

)
.

Thus, the lottery player i faces from choosing any si ∈ Si

is created by the random selection of s−i ∈ S−i ,
as specified by the probability distribution σ−i (·).
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Rock–Paper–Scissors Again

P2

R P S

R 0 −1 1∗
0 1∗ −1

P1 P 1∗ 0 −1
−1 0 1∗

S −1 1∗ 0
1∗ −1 0

Suppose player 2 chooses σ2(R) = σ2(P) = 1
2 and σ2(S) = 0.

Player 1’s expected payoffs from the three different pure strategies
are:

u1(R, σ2) = 1
2 · 0 + 1

2 · (−1) + 0 · 1 = −1
2

u1(P, σ2) = 1
2 · 1 + 1

2 · 0 + 0 · (−1) = 1
2

u1(S , σ2) = 1
2 · (−1) + 1

2 · 1 + 0 · 0 = 0.

Given these beliefs, player 1’s unique best response is P.
EC202, University of Warwick, Term 2 22 of 48
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Extension to Interval Strategy Sets

Suppose each player i ∈ N has a strategy set
given by the interval Si = [s i , s̄i ].

Suppose, say, player 1 is playing s1,
and the other players j = 2, 3, . . . , n are each using
the mixed strategy given by the density function fj(·).

Let f−1(s−1) denote the product f2(s2)f3(s3) · · · fn(sn).

Then player 1’s expected utility is given by the multiple integral∫ s̄2

s2

∫ s̄3

s3

· · ·
∫ s̄n

sn

u1(s1, s−1)f−1(s−1)ds2ds3 · · · dsn.
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Example: Bidding for a Dollar
Suppose two players bid for a dollar.
Each can submit a bid that is any real number
(so we are not restricted to penny increments).
Thus Si = [0,∞) for i ∈ {1, 2}.
As usual, the higher bidder gets the dollar,
but both bidders must pay their bids.
(This is called an all pay auction.)
In a tie both pay, and the dollar is awarded to each player
with a probability of 1

2 .
Thus, if player i bids si and the other player j 6= i bids sj ,
then player i ’s expected payoff is

ui (si , s−i ) =


−si if si < sj ;
1
2 − si if si = sj ;

1− si if si > sj .
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Bidding for a Dollar: Expected Utility

Suppose player 2 has a mixed strategy σ2,
which is a uniform distribution over the interval [0, 1].
So the cumulative distribution function is

F2(s2) =

{
s2 for s2 ∈ [0, 1];

1 for s2 > 1.

Player 1’s expected payoff from bidding si > 1 is 1− si < 0
since the bid will win for sure, but this would not be wise.

Because Pr{s1 = s2} = 0,
the expected payoff from bidding si < 1 is

Eu1(s1, σ2) = Pr{s1 < s2}(−s1) + Pr{s1 > s2}(1− s1)

which reduces to [1− F (s1)](−s1) + F (s1)(1− s1)
or to (1− s1)(−s1) + s1(1− s1) = 0.
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Mixed Strategy Nash Equilibrium

We restate the definition of Nash equilibrium for a game
in which each player i ’s pure strategy set Si

is replaced with the mixed strategy set ∆Si .

Definition
The mixed strategy profile σ∗ = (σ∗1, σ

∗
2, . . . , σ

∗
n) in

∆S1 ×∆S2 × . . .×∆Sn is a Nash equilibrium
if every player i ∈ N is choosing
a best response σ∗i in ∆Si to σ∗−i ∈ ∆S−i
— that is, ui (σ

∗
i , σ
∗
−i ) ≥ ui (σi , σ

∗
−i ) for all σi ∈ ∆Si .

We can think of σ∗−i as player i ’s belief πi
about the opponents’ pure strategies s−i ∈ S−i .
Rationality requires each player i
to respond best given the probabilistic beliefs πi .
A Nash equilibrium requires all players’ beliefs to be correct.
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Which Pure Strategies are Possible?

Recall that pure strategy si ∈ Si

is in the support of the mixed strategy σi if σi (si ) > 0
— that is, if si is played with positive probability.

Suppose σ∗ a Nash equilibrium profile.

Of course, σ∗i must be a best response to σ∗−i .

Assume more than one of player i ’s pure strategies,
say s ′i and s ′′i , are both in the support of σ∗i .
That is, suppose both σ∗i (s ′i ) > 0 and σ∗i (s ′′i ) > 0.

What can we then conclude about BRi (σ
∗
−i ),

player i ’s best response set to σ∗−i?
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Purified Best Responses

Proposition

If σ∗ is a Nash equilibrium,
and si is any pure strategy in the support of σ∗i ,
then si ∈ BRi (σ

∗
−i ).

Indeed, the same is true whenever σ∗i
is a mixed strategy best response to σ∗−i .

This describes a procedure for purifying a mixed strategy,
to replace it with a pure strategy that is an equally good response.
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Implications

This simple observation helps find mixed strategy Nash equilibria.

In particular, a player with a mixed strategy in equilibrium
must be indifferent between all the actions
being chosen with positive probability — that is, the actions
that are in the support of his mixed strategy.
Requiring one player to be indifferent
between several different pure strategies
imposes restrictions on other players’ behaviour,
which helps find the mixed strategy Nash equilibrium.

For games with many players,
or with two players that have many strategies,
finding the set of all mixed strategy Nash equilibria is tedious,
often left to computer algorithms.
But we find all the mixed strategy Nash equilibria
for some simple games.
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Matching Pennies

P2

H T

H 1∗ −1
−1 1∗

P1 T −1 1∗
1∗ −1

Recall that matching pennies
has no pure strategy Nash equilibrium.
Does it have any mixed strategy Nash equilibria?
Let p denote the probability that player 1 plays H,
so 1− p is the probability that 1 plays T .
Similarly, let q be the probability that player 2 plays H,
so 1− q is the probability that 2 plays T .
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Player 1’s Best Responses
With this notation, player 1’s expected utilities
from the two pure actions H and T are:

u1(H, q) = q · 1 + (1− q) · (−1) = 2q − 1;

u1(T , q) = q · (−1) + (1− q) · 1 = 1− 2q.

Now H will be strictly better than T for player 1
if and only if u1(H, q) > u1(T , q).
This is true iff 2q − 1 > 1− 2q, or iff q > 1

2 .
Similarly, T will be strictly better than H for player 1 iff q < 1

2 .
Finally, if q = 1

2 , player 1 is indifferent between H and T .
Hence player 1’s best response correspondence is

BR1(q) =


p = 0 if q < 1

2 ;

p ∈ [0, 1] if q = 1
2 ;

p = 1 if q > 1
2 .
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Player 2’s Best Responses

Similarly, player 2’s expected utilities
from the two pure actions H and T are

u2(p,H) = p · (−1) + (1− p) · 1 = 1− 2p;

u2(p,T ) = p · 1 + (1− p) · (−1) = 2p − 1.

This implies that player 2’s best responses are

BR2(q) =


q = 1 if p < 1

2 ;

q ∈ [0, 1] if p = 1
2 ;

q = 0 if p > 1
2 .
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The Nash Equilibrium
Now, when player 1’s best response mixes H and T ,
both with positive probability,
then the expected payoffs from H and T must be equal.
This imposes a restriction on player 2’s behaviour,
represented by q.
Namely, player 1 is willing to mix H and T
if and only if u1(H, q) = u1(T , q), which holds if and only if q = 1

2 .

Similarly, player 2 is willing to mix H and T
if and only if u2(p,H) = u2(p,T ), which is true only when p = 1

2 .

So there is a Nash equilibrium pair of mixed strategies,
namely (p, q) = ( 1

2 ,
1
2 ).

Finally, since there is no pure strategy Nash equilibrium,
and each player is only willing to mix strategies
when the other chooses H or T with equal probability,
this is the unique Nash equilibrium.
EC202, University of Warwick, Term 2 33 of 48
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Graphs of Best Responses

Player 1’s best response correspondence is in red.
Player 2’s best response correspondence is in blue.
The only point of intersection is the unique Nash equilibrium,
where p = q = 1

2 .

0 1
2 1 p

0

1
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1

q

-

6

u
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Rock–Paper–Scissors, I

Recall the rock–paper–scissors game
that was introduced in Lecture Notes 17.

Player 2

R P S

R 0 −1 1∗
0 1∗ −1

Player 1 P 1∗ 0 −1
−1 0 1∗

S −1 1∗ 0
1∗ −1 0
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Rock–Paper–Scissors, II

In two-person games like this
with more than 2 strategies for each player,
solving for mixed strategy equilibria
is much less straightforward than in 2× 2 games.
There will usually be several equations in several unknowns.
To find the Nash equilibrium of the Rock–Paper–Scissors game,
we proceed in three steps:

1. first, we show that there is no Nash equilibrium
in which at least one player plays a pure strategy;

2. then we show that there is no Nash equilibrium
in which at least one player mixes only two pure strategies;

3. we find the solution,
in which both players mix all three pure strategies,
and show it is unique.
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Step 1

Suppose i plays a pure strategy.
The payoff matrix implies that player j receives
three different payoffs from j ’s three pure strategies
whenever i plays a pure strategy.

Therefore, player j has a unique best response,
which must be a pure strategy.
Hence, j cannot be playing a mixed strategy
if i plays a pure strategy.
Similarly, i cannot be playing a mixed strategy
if j plays a pure strategy.

We conclude that there are no Nash equilibria
where either player plays a pure strategy.
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Step 2

Next we consider what happens if one player mixes
only two of the three strategies in {R,P, S}.
Suppose σi (S) = 0, for example.
Then P is better than R for player j ,
so σj(R) = 0 when j responds best.

But then S is better than P for player i ,
so σi (P) = 0 when i responds best.

Since σi (R) = 1 was ruled out in step 1,
there can be no Nash equilibrium with σi (S) = 0.

Similar reasoning shows that no Nash equilibrium
can have σi (R) = 0 or σi (P) = 0 either.
And a similar argument shows that there is no equilibrium
where the other player j mixes only two strategies.
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Step 3: A Symmetric Equilibrium

By now you may have guessed
that the symmetric mixed strategies σ∗1 = σ∗2 = ( 1

3 ,
1
3 ,

1
3 )

form a Nash equilibrium.

Indeed, if i plays σ∗i ,
then j has an expected payoff of 0 from every pure strategy.

So BRj(σ
∗
i ) consists of the whole of ∆Sj ,

whenever i 6= j and i , j ∈ {1, 2}.

We conclude that (σ∗1, σ
∗
2) is a Nash equilibrium.
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Unique Equilibrium

Note that player 1’s payoffs from pure strategies are:

u1(R, σ2) = −σ2(P) + σ2(S);

u1(P, σ2) = σ2(R)− σ2(S);

u1(S , σ2) = −σ2(R) + σ2(P).

Since any Nash equilibrium
involves completely mixed strategies with full support,
all these three expected payoffs must be equal.
Let ū denote their common value.
Adding the left-hand sides of these three equations gives 3ū.
Adding their right-hand sides gives 0, as everything cancels.
Hence ū = 0, so the RHS of each equation equals 0.
It follows that the three probabilities σ2(R), σ2(S)
and σ2(P) are all equal, so all are equal to 1

3 .
Moreover, there is no other Nash equilibrium.
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Multiple Nash Equilibria, Both Pure and Mixed
Matching Pennies and Rock–Paper–Scissors
both have unique Nash equilibria in mixed strategies.
But mixed strategy equilibria need not be unique.
In fact, a game with multiple pure strategy Nash equilibria
will often have mixed strategy equilibria as well.

P2

L R

U 0 3∗
0 5∗

P1 D 4∗ 0
4∗ 3

Here (U,R) and (D, L) are two pure strategy Nash equilibria.
It turns out that in cases like this,
with two distinct pure strategy Nash equilibria,
there will generally be a third equilibrium in mixed strategies.
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Both Pure and Mixed Nash Equilibria

P2

L R

U 0 3∗
0 5∗

P1 D 4∗ 0
4∗ 3

Let p, q denote σ1(U) and σ2(L) respectively.
Player 1 will mix when u1(U, σ2) = u1(D, σ2),
or when q · 0 + (1− q) · 3 = q · 4 + (1− q) · 0,
which implies that q = 3

7 .
Player 2 will mix when u2(σ1, L) = u2(σ1,R),
or when p · 0 + (1− p) · 4 = p · 5 + (1− p) · 3,
which implies that p = 1

6 .
This yields our third Nash equilibrium:
(σ∗1, σ

∗
2) =

(
( 1

6 ,
5
6 ), ( 3

7 ,
4
7 )
)

.
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Finding All Nash Equilibria
All the equilibria emerge from carefully analysing best responses.
Given the expected utility functions u1(U, σ2) = 3(1− q)
and u1(D, σ2) = 4q, we have

BR1(σ2) =


p = 1 if q < 3

7 ;

p ∈ [0, 1] if q = 3
7 ;

p = 0 if q > 3
7 .

Similarly, using the two expected utility
functions u2(σ1, L) = 4(1− p) and u2(σ1,R) = 5p + 3(1− p),

BR2(σ1) =


q = 1 if p < 1

6 ;

q ∈ [0, 1] if p = 1
6 ;

q = 0 if p > 1
6 .

Graphing these correspondences in the following diagram
reveals all three Nash equilibria: (p, q) ∈ {(1, 0), ( 1

6 ,
3
7 ), (0, 1)}.
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Graphs of Best Responses

Player 1’s best response correspondence is in red.
Player 2’s best response correspondence is in blue.
The three points of intersection are the unique Nash equilibria
at (p, q) ∈ {(1, 0), ( 1

6 ,
3
7 ), (0, 1)}.

0 1
6 1 p

0

3
7

1

q

-

6u

u
u
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Nash’s Existence Theorem

Theorem
Any finite game has a Nash equilibrium in mixed strategies.

COMMENT: In any finite game, each player’s expected utility
function is a continuous function of the probabilities used to
describe a mixed strategy profile.

Proof.
Not trivial. After all, Nash’s proof helped win a Nobel Prize!
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Implications

Nash’s theorem revolutionized Game Theory.

It allowed us to say that we have some sort of predicted behaviour
for any finite game.

The proof and the method of analysis are also very similar in spirit
to the methods used in general equilibrium (fixed point theorems),
ushering in a new era for microeconomics in which game theory
became extensively used.

Note that as with GE theory this also hints at a nice feature: the
number of equilibria will in general be odd (note that infinity can
be classified as odd for this purpose!).
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Uniqueness?

Despite the revolution ushered in by Nash’s Theorem, the problem
of multiple equilibria remained.

Nash’s Theorem guarantees at least one equilibrium but not
exactly one equilibrium.

The age of “refinement” which followed included a long search for
a concept that could generate uniqueness, but to date nothing has
yet been found that can produce uniqueness in a general setting.
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Stability?

Also related to the quest for uniqueness is the issue of stability
which also resulted in a wide variety of refinements.

Some Nash equilibria may be more stable in some sense than
others (compare again with general equilibrium theory), and a huge
literature sprang up around this idea in an attempt to identify what
we can say about stability.

This included the birth of evolutionary game theory and links with
biology and genetics.

But that really is beyond the scope of this course...
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