
1

Neural Networks and Bounded Rationality

Daniel Sgroi*1 and Daniel J. Zizzo#

*Faculty of Economics and Churchill College, University of Cambridge, U.K.

#School of Economics, University of East Anglia, U.K.

Abstract

Traditionally the emphasis in neural network research has been on improving their

performance as a means of pattern recognition. Here we take an alternative approach and

explore the remarkable similarity between the under-performance of neural networks

trained to behave optimally in economic situations and observed human performance in the

laboratory under similar circumstances. In particular, we show that neural networks are

consistent with observed laboratory play in two very important senses. Firstly, they select a

rule for behavior which appears very similar to that used by laboratory subjects. Secondly,

using this rule they perform optimally only approximately 60% of the time.

Keywords: neural networks, game theory, bounded rationality, learning.

PACS codes: 02.50.Le; 02.70.c; 84.35.i

1 Corresponding author: Faculty of Economics, University of Cambridge, Cambridge CB3 9DD, United

Kingdom. E-mail: daniel.sgroi@econ.cam.ac.uk. Phone: +44 1223 335244. Fax: +44 1223 335299.

Manuscript

2

1. Introduction

We argue that simulated neural networks can be used to model the real-world behavior of

laboratory subjects, and in particular, that they can approximate the observed bounded

rationality that human subjects appear to demonstrate. We believe that neural networks will

not only allow us to model human behavior, but will more importantly provide insight into

why and how subjects consistently perform below the expectations of social scientists who

base their predictions on rationality. The theoretical tools we use to capture the notion of

rationality is Nash equilibrium and Game Theory.

Game theory is the study of strategic interaction between agents. Perhaps the most

common rationality assumption in game theory is that agents play the Nash equilibrium

strategy [1], which requires that each player’s action is an optimal strategy given that the

other player also chooses optimally. For example, if a motorist drives on the right-hand side

of the road, then a motorist driving in the opposite direction should optimally drive on the

left. Given that the second motorist drives on the left, the first should be content to stick to

the right hand side of the road. Most Nash equilibria are unfortunately a little harder to find,

but similarly have the in-built stability property that players would do badly to shift to an

alternative strategy given that everyone else is playing their optimal strategy. This should

provide a good predictive tool for assessing likely behavior when two competitors meet.

However, recent research indicates that in the laboratory, people often fail to play

according to Nash equilibria [2,3]. So how and why does real-world behavior fail to live up

to the widely accepted standard set by Nash play?

One way to answer this is to build of model of human behavior to attempt to

determine exactly what is going on. In the realm of artificial intelligence there are several

forms of machine learning which might be employed by a scientist seeking to approximate

3

likely patterns of human behavior, and we have opted for a neural network. This choice is

in part justified by the large body of related literature in cognitive science and engineering,

and in part by the consistency between our results and those seen in experimental testing on

human subjects [3,4,5]. Neural networks are trained (just as human children are taught),

they learn primarily through example (as is often the case with humans), and they create

general pattern-recognizing algorithms, learning general rules of optimal behavior, which

look very close to theorized optimal rules of thumb envisaged in economics and the social

sciences which go back to Simon [6,7]. Neural networks do have serious limitations, but

rather than a focus on how to improve on neural network learning, it is the limitations of

neural network learning and the similarity between those limitations and those seen in

laboratory subjects that provides the focus for our work. For more on the use of neural

networks as models of bounded-rational behavior in games see [8] and the further

references therein.

To motivate this, consider how an agent would face the following challenge. She

believes she is a fair player of a board game, and has to decide what odds she places on her

chances of winning versus a beginner. How would she change her odds of winning if she

were told that her opponent rarely plays any board games at all? How about if her opponent

is a chess Grand Master, and known to be a very strong player of many other similar board

games? What we need is a model of how good players can be if they have experience of

similar, though not identical games. More generally, we want to model real-world agents

who have faced similar, though not identical, situations in the past. A good way to go about

this is to focus on learning general rules of behavior by example. By training a neural

network according to the Nash algorithm, and then allowing our simulated neural network

to try playing new games, using whatever rules it has learned, we can approximate a human

adult who, having learned rules of conduct during childhood, must venture forth into the

4

economy. What we find is that a neural network trained in this way seems to make errors

that are remarkably similar to those errors made by humans in the laboratory, and has

similar success rates. A neural network should then provide a good tool for determining

how and why humans routinely fail to live up to the standards of optimal decision-making.

What we find is that Nash equilibrium is just too complex a concept for a neural network to

use in general in new environments. It is not difficult for the network to find Nash

equilibria in specific games, but what is difficult is to learn to employ Nash as a general

algorithm. We first describe the theoretical limitations to neural network learning, and then

go on to show that these limitations are precisely the sort of limitations we want to see

when modelling bounded rationality in human subjects, since they evolve endogenously

and reflect a method of learning by example that is very loosely biological plausible [9].

2. The Theory

A neural network typically learns by exposure to a series of examples or training set, and

adjusts the strengths of the connections between its nodes. It is then able to perform well

not only on the original training set, but also when facing problems never encountered

before by learning rules of play. To provide an intuitive summary: a neural network is

continuously shown and re-shown a set of games until it recognizes the optimal way to play

these games via back-propagation. Recognition comes in terms of a simple measure of

mean squared error. This form of learning accords with an intuitive notion of a teacher

continuously correcting the behavior of a student until behavior is close to that expected in

a Nash equilibrium. When it has achieved this or close enough to it (when it knows the best

way to play in this set of games) it is shown some different games and asked to find the

Nash equilibria for these without ever having seen these new games before. It can however

5

use the algorithms (rules) it has already learned to attempt to select the Nash equilibria in

games which it has seen before.

Consider a feed-forward neural network, or more simply C, to be a machine capable

of taking on a number of states, each representing some computable functions mapping

from input space to output space, with hidden intermediate layers of further computation

between input and output. Formally, let R be the set of real numbers and define the neural

network as C = 〈Ω, X, Y, F〉 where Ω is a set of states, X ⊆ Rn is a set of inputs, Y is a set of

outputs and F : Ω × X → Y is a parameterized function. For any ω the function represented

by state ω is hω : X → Y given by hω (x) = F (ω, x) for an input x ∈ X. The set of functions

computable by C is { hω : ω ∈ Ω }, and this is denoted by HC. Put simply, when C is in

state ω it computes the function hω, providing it is computable. In order to reasonably

produce answers which correspond to a notion of correctness such as a Nash strategy,

which explicitly chooses the best reply to the optimal action of a rival player in a game, we

need to train the network for which we use back-propagation. Rumelhart et al. [10] is the

definitive reference for the back-propagation method. More detail can also be found in

Sgroi and Zizzo [11].

The situation faced by the neural network is well modeled by a normal form game G

= 〈N, {Ai, ui}i∈ N〉 of full information with a unique pure strategy Nash equilibrium. Actions

are given by ai ∈ Ai. Feasible action combinations are given by A = A1 × A2 × … × AN.

Payoffs for player i are given by a von Neumann-Morgenstern [12] bounded utility function

ui : Ai → R. We normalize payoffs to be drawn from a uniform distribution with support

[0,1] and then revealed to the players before they select an action. Figure 1 provides a

stylized view of a neural network in this context.

[“Figure 1: A stylized neural network” around here]

6

Hornik et al. [13] found that standard feed-forward networks can approximate any

continuous function uniformly on any compact set and any measurable function arbitrarily

well. Their main result effectively concerns the existence of a set of weights which allow

the perfect emulation of the algorithm that the neural network is attempting to learn.

However, the network may experience inadequate learning, so the learning dynamic will

fail to reach the global error-minimizing algorithm. A learning algorithm takes the training

sample and acts on these to produce a function hω ∈ HC that is with probability of at least 1-

δ within ε of the global error-minimizing algorithm (the algorithm which picks out the

Nash equilibrium actions) provided the sample is large enough. The final function hω

produced by the neural network can be thought of as representing the entire processing of

the neural network’s multiple layers, taking an input vector x and producing a vector

representation of a choice of strategy. Over a long enough time period the network will

return a set of weights which will produce a function, which attempts to select the Nash

strategy.

This all crucially rests on the ability of back-propagation to pick out the globally

error-minimizing algorithm for finding Nash equilibria. Back-propagation is a gradient

descent algorithm and will therefore lead to a local minimum of the error function [14]. The

learning process can get stuck at local minima or saddle points or can diverge, and so need

not get close to a global minimum. The problem is exacerbated since: the space of possible

weights is large; local minima will always exist in problems of this type [15]; and the

number of local minima for this class of networks can be exponentially large in the number

of network parameters [16]. The upper bound for the number of such local minima is

calculable, but it is unfortunately not tight enough to lessen the problem [17]. Therefore, as

the probability of finding the absolute minimizing algorithm (the Nash algorithm) is likely

to be exponentially small, the learning problem is intractable (technically, NP-hard). In

7

response, a neural network will find a decision-making algorithm that will retain error even

at the limit, leaving an algorithm which is effective only in a subclass of games [11]. This

imperfect game-playing algorithm can be loosely described as a local-minimizing algorithm

or LMA.

3. Training and Testing

We will now focus on the results of an extensive programme of training and testing. The

training set consisted of 2000 games with unique pure Nash equilibria, and the precise

method of training and convergence are detailed in the Appendix. We found that the

network trained to a convergence level of γ = 0.1 played the Nash equilibria of 60.03% of

the games to an error tolerance of 0.05. This is consistent with the 59.6% average success

rate of human subjects newly facing 3×3 games in [4]. With an error tolerance of 0.25 and

0.5, the correct answers increased to 73.47% and 80%, respectively. Further training

improves the performance on exactness (the 0.02-converged network plays the Nash

equilibria of a mean 67% of the games) but not on ‘rough correctness’ (the 20% result

appears robust). This suggests and further training of the network confirms that there is an

upper bound on the performance of the network.

The network did learn to generalize from the examples and to play Nash strategies at

a success rate that is significantly above chance, but significantly below 100%. While the

network has been trained to recognize Nash equilibria we know that the process of

calculating a Nash equilibrium is a hard one, so what simpler algorithms might be capable

of describing what the network does?

For testing we used the 30 networks trained with the 30 different random seeds but

with learning rate 0.5 and momentum 0 (our results are robust to alternatives). Using these

8

30 networks, we tested the average performance of the various algorithms on the same

testing set of 2000 new games with unique pure Nash equilibria considered previously. We

considered the following alternative solution algorithms in turn: (1) minmax; (2)

rationalizability; (3) 0-level strict dominance (0SD); (4) 1-level strict dominance (1SD); (5)

pure sum of payoff dominance (L1); (6) best response to pure sum of payoff dominance

(L2); (7) maximum payoff dominance (MPD); (8) nearest neighbor (NNG). Further

information about these algorithms can be found in the Appendix, but some explanations

follow.

Minmax chooses the action that gives the player the maximum guaranteed payoff no

matter what the other player does. 0SD chooses the strictly dominant strategy, if available;

dominated strategies are those that always give a lower payoff than another strategy, no

matter what the other player does. 1SD iterates the process by choosing the dominant

strategy assuming that the other player is a 0SD type: after having removed the actions that

are strictly dominated for the other player, the simulated player chooses the dominant

action among the remaining possible outcomes. In the context of a 3×3 game,

rationalizability chooses the strictly dominant strategy assuming that the other player is

1SD. MPD corresponds to going for the highest conceivable payoff for itself; L1 to

choosing the best action against a uniformly randomizing opponent; L2 to choosing the best

action against a L1 player. NNG responds to new situations by comparing them to the

nearest example encountered in the past, behaving accordingly.

[“Table 1: Answerable games and relationship to Nash” around here]

We define a game as answerable by an algorithm if a unique solution exists. Sgroi

and Zizzo [11] provides supporting analysis for games with multiple equilibria. Table 1

9

lists the percentage of answerable games out of 2000 according to each algorithm, averaged

out across the 30 neural networks trained with different random seeds, learning rate 0.5 and

momentum 0. The central column considers the cases where these unique solutions

coincide with the pure Nash equilibrium of the game. The right column adjusts this Nash

predictive success of the non-Nash algorithm by assuming that the agent randomizes over

all the choices admissible according to the non-Nash algorithm.

[“Table 2: Predictive power of algorithms” around here]

Table 2 shows the degree to which different algorithms are successful in describing

the behaviour of the trained network under different convergence rates γ. We find that our

set of candidate LMAs typically can do better than an agent employing no rationality who

simply plays randomly across all choices and games. More strategically sophisticated

LMAs can do better than less strategically sophisticated ones, but at the same time,

although the network has been trained on Nash, Nash is not the best performing algorithm.

L2, a simple algorithm based on payoff dominance, is our best approximation for the

behavior of the neural network, predicting the simulated network's behavior exactly 76.44%

over the full testing set. L2 is a decision-rule that selects the best action against a player

who is in turn choosing the best action against a uniformly randomizing opponent. Together

with L1, which also does not perform badly in our simulations, L2 has been found to be a

good predictor in lab tests using human subjects [3]. As Table 2 shows, L2 has the virtue

that, while being simpler than Nash, its predictions do coincide with Nash predictions more

than any other non Nash algorithm. The fact that L2 outperforms less strategic algorithms

suggests that the simulated network behaves as if capable of some strategic thinking.

10

4. Discussion

We have attempted to analyse the nature of the errors made by neural networks in an

attempt to draw conclusions about observed human-error made in laboratory conditions.

Several important laboratory experiments have highlighted the type of errors made by

human subjects and the success rates which they obtain. We find that a very simple

specification of neural network can easily duplicate both the observed error-rates and

provide insight into how and why human subjects continue to make errors which are ruled

out by traditional rationality assumptions in the social sciences. As we more understand the

methods used by biologically plausible neural networks, so we may better hope to

understand the errors made by human subjects in the laboratory and competitors in the real

world. During the learning process both humans and neural networks make progress, and

both achieve significantly better than chance rates of success. The major research question

to be asked is why both neural networks and humans seem content to hit simple rules which

offer success around 60% of the time, and why concepts like payoff maximisation seem

more important than overall optimisation. We might also wish to understand why some

humans get closer to optimality than others, and how we might model this by using

different specifications of neural networks. Much work is still to be done, but by borrowing

a well-understood model from the physical sciences the social sciences are already

beginning to understand better how people behave in the real-world, a perfect example of

cross-fertilisation between disciplines.

[1] J.F. Nash, Proceedings of the National Academy of Sciences 36 (1950) 48-49.
[2] A.E. Roth and I. Erev, American Economic Review 88 (1998) 848-881.

[3] M. Costa-Gomes, V.P. Crawford, B. Broseta, Econometrica 69 (2001) 1193-1235.
[4] D.O. Stahl and P.W. Wilson, Journal of Economic Behavior and Organization 25

(1994) 309-327.

11

[5] D.O. Stahl P.W. Wilson, Games and Economic Behavior 10 (1995) 218-254.

[6] H.A. Simon, Quarterly Journal of Economics 69 (1959) 99-118.
[7] H.A. Simon, American Economic Review 49 (1959) 253-283.

[8] D. Sgroi in D.J. Zizzo (ed) Transfer of Knowledge in Economic Decision Making,
Palgrave Macmillan, London, U.K. (2005) 128-147.

[9] D.J. Zizzo, Social Choice and Welfare 19 (2002) 477-488.

[10] D.E. Rumelhart, R.J. Hinton, R.J. Williams, Nature 323 (1986) 533-536.
[11] D. Sgroi and D.J. Zizzo, Cambridge Working Paper in Economics 0207, Cambridge

University, U.K. (2002).
[12] J.V. Neumann and O. Morgenstern, The Theory of Games and Economic Behavior,

Princeton University Press (1944).

[13] K. Hornik, M.B. Stinchombe, H. White, Neural Networks 2 (1989) 359-366.
[14] E.D. Sontag and H.J. Sussmann, Complex Systems 3 (1989) 91-106.

[15] K. Fukumizu and S. Amari, Neural Networks 13 (2000) 317-327.
[16] P. Auer, M. Herbster, M.K. Warmuth in D.S. Turetzky, M.C. Mozer, M.E. Hasslemo

(eds), Advances in Neural Information Processing Systems 8, MIT Press,
Cambridge, Mass. and London (1996) 316-322.

[17] E.D. Sontag, Advances in Computational Mathematics 5 (1995) 245-268.

[18] R.A. Reilly, Connectionist exploration of the computational implications of
embodiment. Proceedings of the Swedish Conference on Connectionism. Hillsdale:
Lawrence Erlbaum (1995).

Acknowledgements

Daniel Sgroi is grateful to AEA Technology plc for financial support and both authors

would like to thank Michael Bacharach, Vincent Crawford, Huw Dixon, Glenn Ellison, Jim

Engle-Warnick, Meg Meyer, Michael Rasmussen, Andrew Temple and seminar

participants in Cambridge, Copenhagen and Oxford.

12

Appendix

This appendix provides supporting material. Further details on the testing and development

of a simulated neural network can also be found in Sgroi and Zizzo [11], including findings

related to games with multiple equilibria.

Training

Training was random with replacement subject to the unique Nash equilibrium condition,

and continued until the error ε converged below convergence level γ ∈ {0.1, 0.05, 0.02}.

Three values of γ were used for the sake of performance comparison, and convergence was

checked every 100 games. The initial connection weights and order of presentation of the

games where generated according to a random seed given at the start of training. To check

the robustness of the analysis, the neural network was trained 360 times, that is once for

every combination of: 3 learning rates η ∈ {0.1, 0.3, 0.5} that give the speed of the

adjustment of the connection weights when the network fails to play following Nash

equilibrium behavior; 4 momentum rates µ ∈ {0, 0.3, 0.6 and 0.9} which introduce auto-

correlation in the adjustments of the connection weights when successive examples are

presented; and 30 random seeds. Convergence was always obtained, at least at the 0.1 level,

except for a very high momentum rate. More details on convergence can be found in the

next section. The simulated network was tested on a new set of 2000 games with unique

Nash equilibria which it had never played before. We considered an output value to be

correct when it is within some range from the exact correct value. If both outputs are within

the admissible range, then we can consider the answer “correct” [18].

[“Table 3: Percentage of Correct Answers” around here]

13

Table 3 displays the average performance classified by γ, η and µ. The numbers given

under ‘At least 1 Correct Output’ are the % of cases in which at least 1 of the two output

nodes is correct. The numbers given under ‘Correct Answer Given’ are the % of cases in

which both output nodes are correct. The table shows that the network trained until γ = 0.1

played the Nash equilibria of 60.03% of the games within the 0.05 range.

Convergence

Table 4 lists the number of networks (of 30) trained with different random seeds that

achieved various levels of convergence for different learning and momentum rates.

Convergence was achieved at all but a combination of high η and µ (η = 0.5 and µ = 0.9).

A high momentum rate was particularly detrimental. A low learning rate (η = 0.1) slowed

learning, particularly with µ ≤ 0.3, but did not prevent convergence at γ = 0.1 or better. A

maximum of 600,000 rounds was used to try to achieve convergence, though in practice, γ

= 0.1 convergence was usually reached in about 100,000 to 200,000 rounds.

[“Table 4: Number of neural networks (of 30) achieving convergence” around here]

Solution Algorithms

This section provides some detail about alternative solution algorithms. Consider the game

G and the trained neural network player C. Index the neural network by i and the other

player by j. The neural network’s minmax value (or reservation utility) is defined as ri =

minaj [maxai ui (ai, aj)]. The payoff ri is literally the lowest payoff player j can hold the

network to by any choice of aj ∈ Aj, provided that the network correctly foresees aj and

plays a best response to it. Minmax therefore requires a particular brand of pessimism to

have been developed during the network’s training on Nash equilibria.

14

Rationalizability is widely considered a weaker solution concept than Nash

equilibrium, in the sense that every Nash equilibrium is rationalizable, though every

rationalizable equilibrium need not be a Nash equilibrium. A dominated strategy for i

produces a lower payoff against all possible strategies for j. Rationalizable sets and the set

which survives the iterated deletion of strictly dominated strategies are equivalent in two

player games: call this set Si
n for player i after n stages of deletion. Si

n is the set of player i’s

strategies that are not strictly dominated when players j ≠ i are constrained to play strategies

in Sj
n-1. So the network will delete strictly dominated strategies and will assume other

players will do the same, and this may reduce the available set of strategies to be less than

the total set of actions for i, resulting in a subset Si
n ⊆ Ai. Since we are dealing with only

three possible strategies in G, the subset can be adequately described as Si
2 ⊆ Ai with player

j restricted to Sj
1 ⊆ Aj.

The algorithm 0SD checks whether all payoffs for the neural network player i from

playing an action are strictly higher than those from the other actions, so no restriction is

applied to the action of player j ≠ i, and player i’s actions are chosen from Si
0 ⊆ Ai. 1SD

allows a single level of iteration in the deletion of strictly dominated strategies: the row

player thinks that the column player follows 0SD, so chooses from Sj
0 ⊆ Aj, and player i’s

action set is restricted to Si
1 ⊆ Ai. Both of these algorithms can be viewed as weakened, less

computationally demanding versions of iterated deletion.

L1 and MPD are different ways of formalizing the idea that the agent might try to go

for the largest payoffs, almost independently of strategic considerations. Following MPD,

the neural network player i (the row player in a normal form game) simply learns to spot

the highest conceivable payoff for itself, and picks the corresponding row, hoping that j will

pick the corresponding column to ensure the highest payoff for i. In the case of L1, an

15

action ai = aL1 is chosen by the row player according to aL1 = arg max ai ∈ Ai { ai  aj = Mj },

where Mj is defined as a perfect mix over all available strategies in Aj. Put simply, aL1 is the

strategy which picks a row by calculating the payoff from each row, based on the

assumption that player j will randomly select each column with probability 1/3, and then

chooses the row with the highest payoff calculated in this way. This corresponds to Stahl

and Wilson’s definition of ‘level 1 thinking’ [5]. A player that assumes that his opponent is

a ‘level 1 thinker’ will best-respond to L1 play, and hence engage in what we can label L2

(for ‘level 2’) play [3,4].

Finally, the NNG algorithm is based on the idea that agents respond to new situations

by comparing them to the nearest example encountered in the past, and behave accordingly.

The NNG algorithm examines each new game from the set of all possible games, and

attempts to find the specific game from the training set (which proxies for memory) with

the highest level of ‘similarity’. We compute similarity by summing the square differences

between each payoff value of the new game and each corresponding payoff value of each

game of the training set. The higher the sum of squares, the lower the similarity between

the new game and each game in the training set. The NNG algorithm looks for the game

with the lowest sum of squares, the nearest neighbor, and chooses the unique pure Nash

equilibrium corresponding to this game. Since, by construction, all games in the training set

have a unique pure strategy Nash equilibrium, we are virtually guaranteed to find a NNG

solution for all games in the testing set. The only potential (but unlikely) exception is if the

nearest neighbor is not unique, because of two (or more) games having exactly the same

sum of squares. The exception never held with our game sample. A unique solution, or

indeed any solution, may not exist with algorithms such as rationalizability, 0SD and 1SD.

A unique solution may occasionally not exist with other algorithms, such as MPD, because

of their reliance on strict relationships between payoff values.

1

Figure for “Neural Networks and Bounded Rationality” by D. Sgroi and D. J. Zizzo

 • • • • • • • •

 • • •

 •

Figure 1: A stylized neural network

1) Input nodes
(receiving input from
economic
environment).

2) All input nodes are
connected to all the nodes of
the downstream layer (the
connections are shown for one
input node only).

3) All nodes in downstream layer
are connected to the output node.

Features of economic problem at hand, expressed as
numbers (e.g. payoffs from a game)

The network makes its economic choice, expressed as a number from the
output node (e.g., the strategy to be played in a game)

Figure(s)

1

Tables for “Neural Networks and Bounded Rationality” by D. Sgroi and D. J. Zizzo

Table 1: Answerable games and relationship to Nash

Table 2: Predictive power of algorithms

Non Nash Algorithm Answerable Uniquely predicted Expected performance
Games (%) Nash equilibria (%) in predicting Nash (%)

0SD 18.3 18.3 46.97
1SD 39.75 39.75 62.19
Rationalizability 59.35 59.35 74.78
L1 100 67 67
L2 99.75 88.4 88.48
MPD 99.6 62.1 62.23
Minmax 99.75 58.55 58.63
Nearest Neighbor 100 62.8 62.8

Algorithm
Over Answerable Games Over Full Testing Set
γγγγ=0.5 γγγγ=0.25 γγγγ=0.05 γγγγ=0.5 γγγγ=0.25 γγγγ=0.05 γγγγ=0.5 γγγγ=0.25 γγγγ=0.05

Nash 80.38 75.7 66.53 80.38 75.7 66.53 80.38 75.7 66.53
0SD 90.83 87.79 80.98 16.62 16.06 14.82 43.91 43.35 42.12
1SD 87.63 84 76.25 34.83 33.39 30.31 54.51 53.15 50.19
Rationalizability 86.44 82.57 74.36 51.3 49.01 44.13 64.16 61.94 57.18
L1 67.71 63.48 55.97 67.71 63.48 55.97 67.71 63.48 55.97
L2 85.11 82.23 76.54 84.9 82.03 76.35 84.98 82.11 76.44
MPD 61.08 57.02 49.95 60.84 56.79 49.75 60.84 56.79 49.76
Minmax 57.75 53.83 46.89 57.6 53.7 46.77 57.67 53.77 46.85
Nearest Neighbor 62.97 58.78 51.48 62.97 58.78 51.48 62.97 58.78 51.48

% of Correct Answers % of Correct Answers Expected Performance
O ver Full Testing Set (%)

Table(s)

2

At Least 1 Correct Output Correct Answer Given
Convergence Error tolerance criterion Error tolerance criterion
Level γγγγ 0.05 0.25 0.5 0.05 0.25 0.5

0.1 85.12 91.76 94.31 60.03 73.47 80
0.05 87.26 92.24 94.31 64.12 74.75 80.09
0.02 88.52 92.51 94.25 66.66 75.47 79.96

At Least 1 Correct Output Correct Answer Given
Learning Error tolerance criterion Error tolerance criterion
Rate ηηηη 0.05 0.25 0.5 0.05 0.25 0.5

0.1 86.88 92.3 94.42 63 74.48 80.22
0.3 86.75 92.06 94.25 63.3 74.42 79.89
0.5 86.81 92.04 94.2 63.66 74.54 79.94

At Least 1 Correct Output Correct Answer Given
M omentum Error tolerance criterion Error tolerance criterion
Rate µµµµ 0.05 0.25 0.5 0.05 0.25 0.5

0 86.87 92.36 94.5 62.86 74.63 80.47
0.3 86.77 92.27 94.42 62.89 74.49 80.22
0.6 86.91 92.09 94.23 63.73 74.53 79.9
0.9 86.6 91.52 93.8 64.05 74.05 79.04

Table 3: Percentage of Correct Answers

3

C o n v e r g e n c e M o m e n t u m R a t e µµµµ
L e v e l γ = 0 .1γ = 0 .1γ = 0 .1γ = 0 .1 0 0 .3 0 .6 0 .9
L e a r n in g 0 .1 3 0 3 0 3 0 3 0
R a t e ηηηη 0 .3 3 0 3 0 3 0 2 5

0 .5 3 0 3 0 3 0 0

C o n v e r g e n c e M o m e n t u m R a t e µµµµ
L e v e l γ = 0 .0 5γ = 0 .0 5γ = 0 .0 5γ = 0 .0 5 0 0 .3 0 .6 0 .9
L e a r n in g 0 .1 2 7 3 0 3 0 3 0
R a t e ηηηη 0 .3 3 0 3 0 3 0 1 1

0 .5 3 0 3 0 3 0 0

C o n v e r g e n c e M o m e n t u m R a t e µµµµ
L e v e l γ = 0 .0 2γ = 0 .0 2γ = 0 .0 2γ = 0 .0 2 0 0 .3 0 .6 0 .9
L e a r n in g 0 .1 0 1 3 0 3 0
R a t e ηηηη 0 .3 3 0 3 0 3 0 0

0 .5 3 0 3 0 3 0 0

Table 4: Number of neural networks (of 30) achieving convergence

